1
|
Lv Y, Yang X, Sun X, Ren X. Immune-microbiota dysregulation in maintenance hemodialysis: a 16S rRNA sequencing-based analysis of gut flora and T cell profiles. Ren Fail 2025; 47:2498630. [PMID: 40375064 PMCID: PMC12082729 DOI: 10.1080/0886022x.2025.2498630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Maintenance hemodialysis (MHD) patients frequently exhibit immune dysregulation and gut dysbiosis, both of which contribute to increased infection risk and adverse outcomes. However, the relationship between gut microbial composition and immune competence in this population remains underexplored. METHODS This study assessed 45 MHD patients and 30 healthy controls, stratifying MHD patients into immunocompetent (HD-NLI, CD4+/CD8+ ≥ 1) and immunodeficient (HD-LI, CD4+/CD8+ < 1) groups. Circulating cytokines (IL-6, IL-10, IL-12, TNF-α, IFN-γ) were quantified using ELISA. Gut microbiota profiles were derived via 16S rRNA gene sequencing (V3-V4 regions), followed by QIIME2 and LEfSe-based bioinformatics analyses. RESULTS HD-LI patients displayed severe T cell dysregulation and elevated pro-inflammatory cytokines. Compared to controls, HD patients had reduced abundance of beneficial taxa (e.g., Prevotella copri, Bacteroides vulgatus, Agathobacter), and enrichment of pro-inflammatory taxa (e.g., Escherichia-Shigella, Blautia, Citrobacter). LEfSe identified 39 discriminatory taxa with distinct immune group signatures. Redundancy analysis revealed that CD4+ levels, CD4+/CD8+ ratios, and TNF-α significantly shaped microbiota composition. Correlation analysis confirmed strong associations between immune parameters and microbial taxa involved in short-chain fatty acid (SCFA) metabolism. CONCLUSION This study provides novel evidence linking gut microbial dysbiosis to immune impairment in MHD patients. The findings suggest that SCFA-producing bacteria are depleted in immunodeficient states, offering a potential target for microbiota-directed immunomodulatory therapies in ESRD.
Collapse
Affiliation(s)
- Yan Lv
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuting Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaowu Sun
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Ren
- Department of Intensive Care Unit, Lvliang People’s Hospital, Lvliang City, China
| |
Collapse
|
2
|
Liu C, Fan P, Dai J, Ding Z, Yi Y, Zhan X, Wang CC, Liang R. Integrated microbiome and metabolome analysis reveals that zishen qingre lishi huayu recipe regulates gut microbiota and butyrate metabolism to ameliorate polycystic ovary syndrome. Microb Pathog 2025; 204:107533. [PMID: 40185172 DOI: 10.1016/j.micpath.2025.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/10/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a metabolic disorder disease strongly associated with gut microbiota (GM). Zishen Qingre Lishi Huayu recipe (ZQLHR), a traditional Chinese medicinal compound, has patented and shown therapeutic effects in treating PCOS in clinical trials without clear pharmacological mechanisms. This study aimed to disclose the potential therapeutic mechanism of ZQLHR on PCOS. METHODS We firstly confirmed the therapeutic effects of ZQLHR treatment in PCOS patients. 16 S rRNA sequencing, untargeted metabolomics, fecal microbiota transplantation (FMT), high performance liquid chromatography (HPLC) and Person's correlation analysis were conducted to elucidate the potential therapeutic mechanism. RESULTS These results showed that PCOS symptoms in ZQLHR patients were significantly ameliorated. ZQLHR could increase the levels of butyrate-producing Lachnospira and Faecalibacterium and decrease the abundance of Escherichia-Shigella. Untargeted metabolomics showed that ZQLHR significantly improved host metabolic function, particularly butyrate metabolism and citrate cycle (TCA cycle) metabolism. The combined Faecalibacterium and butyrate metabolism datasets were correlated. Stool samples from ZQLHR patients could ameliorate ovarian architecture, significantly reduce testosterone (T), estradiol (E2) and luteinizing hormone (LH) levels and increased follicle-stimulating hormone (FSH) levels and increase the content of butyric acid in PCOS mice (P < 0.01). Moreover, the correlation analysis showed that some biochemical parameters (T, E2, LH levels and FSH) and butyric acid were correlated. CONCLUSION We firstly depicted that ZQLHR could alleviate the series of symptom in women with PCOS by regulating gut microbiota and butyrate metabolism. This study provides a scientific basis and new ideas for the therapy of PCOS.
Collapse
Affiliation(s)
- Chengyi Liu
- Jiangxi University of Chinese Medicine, Nanchang, China (330000); Institute of Obstetrics and Gynecology, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, China (330000).
| | - Pei Fan
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China (518000).
| | - Jinfang Dai
- Jiangxi University of Chinese Medicine, Nanchang, China (330000).
| | - Zhiling Ding
- Jiangxi University of Chinese Medicine, Nanchang, China (330000); Institute of Obstetrics and Gynecology, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, China (330000).
| | - Yao Yi
- Jiangxi University of Chinese Medicine, Nanchang, China (330000); Institute of Obstetrics and Gynecology, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, China (330000).
| | - Xiaoxuan Zhan
- Jiangxi University of Chinese Medicine, Nanchang, China (330000).
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, And The Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ruining Liang
- Jiangxi University of Chinese Medicine, Nanchang, China (330000); Institute of Obstetrics and Gynecology, Second Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, China (330000).
| |
Collapse
|
3
|
Coskuner D, Bhatt AP. Phase IV Metabolism: Gut Microbial Metabolism of Common Gastrointestinal Drugs. Gastroenterol Clin North Am 2025; 54:383-395. [PMID: 40348494 DOI: 10.1016/j.gtc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Intestinal microbiota possess a plethora of biotransformation capabilities, which can modify medications, including their Phase I or II metabolites in a process termed "Phase IV" metabolism. Phase IV metabolism is emerging as a significant contributor to interindividual variability in drug responses. Here we present examples of gastrointestinal-relevant medications that are known to be subject to bacterial Phase IV metabolism and propose avenues to improve precision medicine by modulating these bacterial functions.
Collapse
Affiliation(s)
- Deniz Coskuner
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, CB #7555, 130 Mason Farm Road, Chapel Hill, NC 27599-7555, USA
| | - Aadra Prashant Bhatt
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, CB #7555, 130 Mason Farm Road, Chapel Hill, NC 27599-7555, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, CB #7032, 111 Mason Farm Road, Chapel Hill, NC 27599-7032, USA.
| |
Collapse
|
4
|
Elkrief A, Routy B, Derosa L, Bolte L, Wargo JA, McQuade JL, Zitvogel L. Gut Microbiota in Immuno-Oncology: A Practical Guide for Medical Oncologists With a Focus on Antibiotics Stewardship. Am Soc Clin Oncol Educ Book 2025; 45:e472902. [PMID: 40262063 DOI: 10.1200/edbk-25-472902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The gut microbiota has emerged as a critical determinant of immune checkpoint inhibitor (ICI) efficacy, resistance, and toxicity. Retrospective and prospective studies profiling the taxonomic composition of intestinal microbes of patients treated with ICI have revealed specific gut microbial signatures associated with response. By contrast, dysbiosis, which can be caused by chronic inflammatory processes (such as cancer) or comedications, is a risk factor of resistance to ICI. Recent large-scale meta-analyses have confirmed that antibiotic (ATB) use before or during ICI therapy alters the microbiota repertoire and significantly shortens overall survival, even after adjusting for prognostic factors. These results underscore the importance of implementing ATB stewardship recommendations in routine oncology practice. Microbiota-centered interventions are now being explored to treat gut dysbiosis and optimize ICI responses. Early-phase clinical trials evaluating fecal microbiota transplantation (FMT) from ICI responders or healthy donors have shown that this approach is safe and provided preliminary data on potential efficacy to overcome both primary and secondary resistance to ICI in melanoma, non-small cell lung cancer, and renal cell carcinoma. More targeted interventions including live bacterial products including Clostridium butyricum and Akkermansia massiliensis represent novel microbiome-based adjunct therapies. Likewise, dietary interventions, such as high-fiber diets, have shown promise in enhancing ICI activity. In this ASCO Educational Book, we summarize the current state-of-the-evidence of the clinical relevance of the intestinal microbiota in cancer immunotherapy and provide a practical guide for ATB stewardship.
Collapse
Affiliation(s)
- Arielle Elkrief
- University of Montreal Hospital Research Centre, Cancer Axis, Montreal, Canada
- University of Montreal Hospital Centre, Department of Hematology-Oncology, Montreal, Canada
| | - Bertrand Routy
- University of Montreal Hospital Research Centre, Cancer Axis, Montreal, Canada
- University of Montreal Hospital Centre, Department of Hematology-Oncology, Montreal, Canada
| | - Lisa Derosa
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Gustave Roussy, ClinicObiome, Villejuif, France
- Université Paris-Saclay, Faculty of Medicine, Kremlin-Bicêtre, France
| | - Laura Bolte
- Department of Medical Oncology, University Groningen and University Medical Center, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University Groningen and University Medical Center, Groningen, the Netherlands
| | | | | | - Laurence Zitvogel
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Gustave Roussy, ClinicObiome, Villejuif, France
- Université Paris-Saclay, Faculty of Medicine, Kremlin-Bicêtre, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| |
Collapse
|
5
|
Lee YZ, Kow ASF, Lee QL, Lim LWC, Yusof R, Tham CL, Ho YC, Lee MT. Antidiabetic potentials of gypenosides: A review on the preclinical effects in glucose and insulin modulation as well as diabetes-related complications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04265-x. [PMID: 40411617 DOI: 10.1007/s00210-025-04265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/03/2025] [Indexed: 05/26/2025]
Abstract
PURPOSE Diabetes mellitus is a significant public health issue. Despite the emergence of promising anti-hyperglycemic drugs, treatment outcomes for diabetic patients continue to be inadequate. Gypenosides are the major bioactive compounds isolated from Gynostemma pentaphyllum (Thunb.) Makino. Gynostemma pentaphyllum has longstanding history of usage in traditional oriental medicine, particularly for the treatment of diabetes mellitus. Gypenosides were found to exhibit antidiabetic effects. This review outlined the advancements in the preclinical studies of gypenosides' pharmacological properties on diabetes mellitus and their potential mechanism of action, while also noting the lack of clinical evidence for gypenosides' efficacy. METHODS Literatures search was done using scientific databases PubMed, Web of Science, Scopus and Google Scholar up to November 2024 utilizing keywords such as "Gynostemma pentaphyllum", "gypenoside*", and "diabet*". RESULTS Research has shown that gypenosides possess therapeutic properties in mitigating diabetes mellitus by regulating blood glucose levels and insulin production. Gypenosides can modulate various key pathways associated with diabetes pathogenesis, including PI3K/Akt, PPARγ, NF-κB, AMPK and PDX1, hence contributing to their antidiabetic properties. Nevertheless, there is a paucity of research on gypenosides in clinical settings, with existing studies being mainly conducted on animal models and in vitro. Future studies with the focus on the isolation and purification of specific gypenosides, as well as the exploration on the probable pharmacological effect and molecular mechanisms behind the biological actions are necessary. CONCLUSION The findings presented may establish a foundation for subsequent clinical trials for the development of specific gypenosides as antidiabetic therapies for the betterment of human health.
Collapse
Affiliation(s)
- Yu Zhao Lee
- Faculty of Medicine and Health Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | | | - Qi Long Lee
- School of Health Sciences, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Luis Wei Cheng Lim
- School of Health Sciences, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400 , Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia.
- UCSI Wellbeing Research Centre, UCSI University, No 1, Jalan Menara Gading, Cheras, 56000, Kuala Lumpur, Malaysia.
- Office of Postgraduate Studies, UCSI University, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Vatn SS, Hansen SH, Tannæs TM, Brackmann S, Olbjørn C, Bergemalm D, Keita ÅV, Gomollon F, Detlie TE, Kalla R, Satsangi J, Jahnsen J, Vatn MH, Halfvarson J, Hov JR, Ricanek P, Moen AEF, On behalf of the IBD-Character Consortium. Microbial Patterns in Newly Diagnosed Inflammatory Bowel Disease Revealed by Presence and Transcriptional Activity - Relationship to Diagnosis and Outcome. Clin Exp Gastroenterol 2025; 18:103-119. [PMID: 40491932 PMCID: PMC12148070 DOI: 10.2147/ceg.s504459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/29/2025] [Indexed: 06/11/2025] Open
Abstract
Background As part of the IBD Character initiative, we examined an inception cohort and investigated mucosal microbiota composition and transcriptional activity in relation to clinical outcomes. Methods A cohort of 237 individuals were included from five countries: Crohn's disease (CD, n = 72), ulcerative colitis (UC, n = 57), symptomatic non-IBD controls (SC, n = 78) and healthy controls (HC, n = 30). Rectal/colonic biopsies were obtained at inclusion, and DNA and RNA were extracted from the same biopsy and examined by sequencing the 16S rRNA V4 region. Results Beta diversity measurements separated IBD from both HC and SC. IBD and SC exhibited reduced intra-individual diversity compared with HC. When comparing taxonomy at DNA and RNA level, six bacteria were found to differ in abundance and/or transcriptional activity between IBD and symptomatic control, while there were 14 and three between symptomatic control and CD and UC, respectively. A limited number of bacterial taxa were responsible for the largest difference between presence and activity, separating patients and controls. Multiple bacterial taxa were associated with treatment escalation in both UC and CD. Machine-learning models separated IBD from symptomatic controls and treatment escalators from non-escalators (AUC >0.8). However, the differential effects were mainly driven by clinical biomarkers, such as f-calprotectin, s-albumin, and b-hemoglobin. Conclusion Differences between presence and transcriptional activity were found among multiple taxa when assessing 16S rRNA at DNA and RNA level. Symptomatic controls were more similar to the IBD patients compared to HC. The analyses suggest that the mucosal microbiota carries a moderate diagnostic and predictive potential, outcompeted by f-calprotectin.
Collapse
Affiliation(s)
- Simen Svendsen Vatn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- Innlandet Hospital Trust, Gjøvik, Norway
| | - Simen Hyll Hansen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian PSC Research Center and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Tone Møller Tannæs
- Section for Clinical Molecular Biology (Epigen), Akershus University Hospital, Lørenskog, Norway
| | - Stephan Brackmann
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Christine Olbjørn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Trond Espen Detlie
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Rahul Kalla
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, Division of Medical and Radiological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jack Satsangi
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, Division of Medical and Radiological Sciences, University of Edinburgh, Edinburgh, UK
- Translational Gastroenterology Unit, Medical Sciences/ Experimental Medicine Division, University of Oxford, Oxford, UK
| | - Jørgen Jahnsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | | | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Johannes Roksund Hov
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian PSC Research Center and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Petr Ricanek
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- Department of Gastroenterology, lovisenberg Diaconal Hospital, Oslo, Norway
| | - Aina E F Moen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section for Clinical Molecular Biology (Epigen), Akershus University Hospital, Lørenskog, Norway
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - On behalf of the IBD-Character Consortium
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- Innlandet Hospital Trust, Gjøvik, Norway
- Norwegian PSC Research Center and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
- Section for Clinical Molecular Biology (Epigen), Akershus University Hospital, Lørenskog, Norway
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Digestive Diseases Unit, IIS Aragón, Zaragoza, Spain
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, Division of Medical and Radiological Sciences, University of Edinburgh, Edinburgh, UK
- Translational Gastroenterology Unit, Medical Sciences/ Experimental Medicine Division, University of Oxford, Oxford, UK
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Department of Gastroenterology, lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
7
|
Comajuncosa-Creus A, Bertoni M, Duran-Frigola M, Fernández-Torras A, Guitart-Pla O, Kurzawa N, Locatelli M, Martins Y, Pareja-Lorente E, Rojas-Granado G, Soler N, Viesi E, Aloy P. Integration of diverse bioactivity data into the Chemical Checker compound universe. Nat Protoc 2025:10.1038/s41596-025-01167-3. [PMID: 40399664 DOI: 10.1038/s41596-025-01167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/28/2025] [Indexed: 05/23/2025]
Abstract
Chemical signatures encode the physicochemical and structural properties of small molecules into numerical descriptors, forming the basis for chemical comparisons and search algorithms. The increasing availability of bioactivity data has improved compound representations to include biological effects (for example, induced gene expression changes), although bioactivity descriptors are often limited to a few well-documented molecules. To address this issue, we implemented a collection of deep neural networks able to leverage the experimentally determined bioactivity data associated to small molecules and infer the missing bioactivity signatures for any compound of interest. However, unlike static chemical descriptors, these bioactivity signatures dynamically evolve with new data and processing strategies. Here we present a computational protocol to modify or generate novel bioactivity spaces and signatures, describing the main steps needed to leverage diverse bioactivity data with the current knowledge, as catalogued in the Chemical Checker (CC; https://chemicalchecker.org/ ), using the predefined data curation pipeline. We illustrate the functioning of the protocol through four specific examples, including the incorporation of new compounds to an already existing bioactivity space, a change in the data preprocessing without altering the underlying experimental data and the creation of two novel bioactivity spaces from scratch, which are completed in under 9 h using graphics processing unit computing. Overall, this protocol offers a guideline for installing, testing and running the CC data integration approach on user-provided data, extending the annotation presented for a limited number of small molecules to a larger chemical landscape and generating novel bioactivity signatures.
Collapse
Affiliation(s)
- Arnau Comajuncosa-Creus
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Martino Bertoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Miquel Duran-Frigola
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Adrià Fernández-Torras
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oriol Guitart-Pla
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nils Kurzawa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Martina Locatelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yasmmin Martins
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Pareja-Lorente
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gema Rojas-Granado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nicolas Soler
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Viesi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Computer Science, University of Verona, Verona, Italy
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
8
|
Dukaew N, Noppakun K, Thongkumkoon P, Na Takuathung M, Inpan R, Kongta N, Suyayai N, Manoree C, Koonrungsesomboon N. Associations between the gut microbiota and the metabolism rate of tacrolimus in kidney transplant recipients during the early posttransplant period. Arch Pharm Res 2025:10.1007/s12272-025-01549-x. [PMID: 40388103 DOI: 10.1007/s12272-025-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
The use of tacrolimus (TAC), a critical immunosuppressant post transplantation, is complicated by its high pharmacokinetic variability. While the gut microbiota has gained attention as a potential contributor, few studies have assessed its role in TAC metabolism variability. This study investigated the associations between the gut microbiota and TAC metabolism rates in kidney transplant recipients during the first month post transplantation-a crucial period for adjusting TAC to achieve therapeutic levels. We recruited 20 kidney transplant recipients and profiled their gut microbiota diversity and composition from stool samples collected before transplantation and at weeks 1 and 4 post transplantation via 16S rRNA sequencing. The TAC pharmacokinetic parameters were also collected. Associations between TAC metabolism status or pharmacokinetic parameters and gut microbiota diversity and composition were evaluated. Recipients with a fast TAC metabolism rate (C0/D ratio < 1.05 ng/mL × 1/mg) presented significantly greater changes in both bacterial alpha and beta diversity metrics at 1 week post transplantation than did those with a slow metabolism rate (C0/D ratio ≥ 1.05 ng/mL × 1/mg). Compared with slow metabolizers, fast metabolizers were associated with a significant increase in the abundance of three bacterial genera (Faecalibacterium, Clostridia vadinBB60, and Ruminococcus) and a significant decrease in the abundance of two bacterial species (Bacteroides plebeius and Parabacteroides goldsteinii). This study revealed links between gut microbiota diversity and composition and TAC metabolism rates in kidney transplant recipients during the early posttransplant period, underscoring the importance of investigating the gut microbiota as a contributor to TAC pharmacokinetic variability. Clarifying this causal relationship could better predict inter- and intraindividual TAC pharmacokinetic variability.
Collapse
Affiliation(s)
- Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- School of Health Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Kajohnsak Noppakun
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Pharmacoepidemiology and Statistics Research Center, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patcharawadee Thongkumkoon
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ratchanon Inpan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattharinee Kongta
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Naruemon Suyayai
- Transplant and Dialysis Unit, Medical Nursing Division, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, 50200, Thailand
| | - Chalongrat Manoree
- Transplant and Dialysis Unit, Medical Nursing Division, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
9
|
Beheshti I. Exploring Risk and Protective Factors in Parkinson's Disease. Cells 2025; 14:710. [PMID: 40422213 DOI: 10.3390/cells14100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025] Open
Abstract
Understanding the risk and protective factors associated with Parkinson's disease (PD) is crucial for improving outcomes for patients, individuals at risk, healthcare providers, and healthcare systems. Studying these factors not only enhances our knowledge of the disease but also aids in developing effective prevention, management, and treatment strategies. This paper reviews the key risk and protective factors associated with PD, with a particular focus on the biological mechanisms underlying these factors. Risk factors include genetic mutations, racial predispositions, and environmental exposures, all of which contribute to an increased likelihood of developing PD or accelerating its progression. Conversely, protective factors, such as regular physical exercise, adherence to a Mediterranean diet, and higher urate levels, have the potential to reduce inflammation and support mitochondrial function, thereby mitigating the risk of disease. However, identifying and validating these factors presents significant challenges. These challenges include the absence of reliable biomarkers, intricate interactions between genetic and environmental components, and clinical heterogeneity observed in patients with PD. These barriers complicate the establishment of clear causal relationships and hinder the development of targeted preventive strategies. To overcome these challenges, we propose several solutions and recommendations. Understanding the mechanisms underlying risk factors may inform future research aimed at developing standardized and more accurate biomarkers for PD, facilitating earlier diagnosis and improved monitoring of disease progression. Additionally, we offer actionable recommendations for PD prevention and management tailored to healthy individuals, patients diagnosed with PD, and healthcare systems. These strategies aim to improve clinical outcomes, enhance the quality of life, and optimize healthcare delivery for PD.
Collapse
Affiliation(s)
- Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
10
|
Hsu CY, Ahmad I, Maya RW, Abass MA, Gupta J, Singh A, Joshi KK, Premkumar J, Sahoo S, Khosravi M. The potential therapeutic approaches targeting gut health in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a narrative review. J Transl Med 2025; 23:530. [PMID: 40350437 PMCID: PMC12066075 DOI: 10.1186/s12967-025-06527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disorder characterized by persistent fatigue and cognitive impairments, with emerging evidence highlighting the role of gut health in its pathophysiology. The main objective of this review was to synthesize qualitative and quantitative data from research examining the gut microbiota composition, inflammatory markers, and therapeutic outcomes of interventions targeting the microbiome in the context of ME/CFS. METHODS The data collection involved a detailed search of peer-reviewed English literature from January 1995 to January 2025, focusing on studies related to the microbiome and ME/CFS. This comprehensive search utilized databases such as PubMed, Scopus, and Web of Science, with keywords including "ME/CFS," "Gut-Brain Axis," "Gut Health," "Intestinal Dysbiosis," "Microbiome Dysbiosis," "Pathophysiology," and "Therapeutic Approaches." Where possible, insights from clinical trials and observational studies were included to enrich the findings. A narrative synthesis method was also employed to effectively organize and present these findings. RESULTS The study found notable changes in the gut microbiota diversity and composition in ME/CFS patients, contributing to systemic inflammation and worsening cognitive and physical impairments. As a result, various microbiome interventions like probiotics, prebiotics, specific diets, supplements, fecal microbiota transplantation, pharmacological interventions, improved sleep, and moderate exercise training are potential therapeutic strategies that merit further exploration. CONCLUSIONS Interventions focusing on the gut-brain axis may help reduce neuropsychiatric symptoms in ME/CFS by utilizing the benefits of the microbiome. Therefore, identifying beneficial microbiome elements and incorporating their assessments into clinical practice can enhance patient care through personalized treatments. Due to the complexity of ME/CFS, which involves genetic, environmental, and microbial factors, a multidisciplinary approach is also necessary. Since current research lacks comprehensive insights into how gut health might aid ME/CFS treatment, standardized diagnostics and longitudinal studies could foster innovative therapies, potentially improving quality of life and symptom management for those affected.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ, USA
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India
- Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - J Premkumar
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, India
| | - Mohsen Khosravi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
- Community Nursing Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
11
|
Schiavone N, Isoldi G, Calcagno S, Rovida E, Antiga E, De Almeida CV, Lulli M. Exploring the Gut Microbiota-Retina Axis: Implications for Health and Disease. Microorganisms 2025; 13:1101. [PMID: 40431274 PMCID: PMC12113749 DOI: 10.3390/microorganisms13051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
The gut microbiota represents a rich and adaptive microbial network inhabiting the gastrointestinal tract, performing key functions in nutrient processing, immune response modulation, intestinal wall protection, and microbial defense. Its composition remains highly personalized and responsive to external influences, including lifestyle patterns, physical activity, body composition, and nutritional intake. The interactions of the gut microbiota with bodily systems are conventionally interpreted as broad systemic impacts on organ balance. Yet, emerging research-exemplified by the gut microbiota-brain axis-suggests the potential existence of more targeted and direct communication mechanisms. Dysbiosis, characterized by microbial ecosystem disturbance, generates multiple metabolic compounds capable of entering systemic circulation and reaching distant tissues, notably including ocular structures. This microbial imbalance has been associated with both systemic and localized conditions linked to eye disorders. Accumulating scientific evidence now supports the concept of a gut-retina axis, underscoring the significant role of microbiota disruption in generating various retinal pathologies. This review comprehensively investigates gut microbiota composition, functional dynamics, and dysbiosis-induced alterations, with specific focus on retinal interactions in age-related macular degeneration, diabetic retinopathy, glaucoma, and retinal artery occlusion. Moreover, the review explores microbiota-targeted therapeutic strategies, including precision nutritional interventions and microbial transplantation, as potential modulators of retinal disease progression.
Collapse
Affiliation(s)
- Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Section of Experimental Pathology and Oncology, University of Florence, 50134 Florence, Italy; (N.S.); (G.I.); (S.C.); (E.R.)
| | - Giulia Isoldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Section of Experimental Pathology and Oncology, University of Florence, 50134 Florence, Italy; (N.S.); (G.I.); (S.C.); (E.R.)
| | - Sara Calcagno
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Section of Experimental Pathology and Oncology, University of Florence, 50134 Florence, Italy; (N.S.); (G.I.); (S.C.); (E.R.)
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Section of Experimental Pathology and Oncology, University of Florence, 50134 Florence, Italy; (N.S.); (G.I.); (S.C.); (E.R.)
| | - Emiliano Antiga
- Department of Health Sciences, Section of Dermatology, University of Florence, 50139 Florence, Italy;
| | - Carolina Vieira De Almeida
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Section of Experimental Pathology and Oncology, University of Florence, 50134 Florence, Italy; (N.S.); (G.I.); (S.C.); (E.R.)
- Press Start SRL Società Benefit, 50134 Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Section of Experimental Pathology and Oncology, University of Florence, 50134 Florence, Italy; (N.S.); (G.I.); (S.C.); (E.R.)
| |
Collapse
|
12
|
Zhang B, He C, Su T, Qin Z, Cheng Q, Zhu Z, Chen M, Yu W. Association and dynamic change of fecal calprotectin with sepsis associated liver dysfunction in adults with sepsis. Sci Rep 2025; 15:16192. [PMID: 40346167 PMCID: PMC12064738 DOI: 10.1038/s41598-025-98904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/15/2025] [Indexed: 05/11/2025] Open
Abstract
Fecal calprotectin (FC) is a biomarker of gut inflammation but its association with sepsis associated liver dysfunction (SALD) is unclear. This single-center, prospective cohort study investigated the relationship between FC and SALD in adults with sepsis. FC concentrations were measured on days 1 (FC1) and 3 (FC3). The difference between FC3 and FC1 (∆FC) was calculated. The relationship between FC and SALD was assessed using multivariate analysis. Receiver operating characteristic curves were used to assess the predictive value of SALD biomarkers. Ninety-five patients with sepsis (33 with SALD and 62 without SALD) were enrolled between January 2023 and March 2024. The median FC3 level and ∆FC were significantly higher in the SALD group than in the non-SALD group (both p < 0.001), whereas the median FC1 level did not differ significantly between groups. FC3 level and ∆FC were positively associated with SALD in the adjusted analysis (both p < 0.001) with areas under the curve of 0.784 and 0.848, respectively, and cut-off values of 930.88 μg/g and - 8.80 μg/g, respectively. In adults with sepsis, SALD occurrence was more strongly associated with elevated FC3 levels and ∆FC than with FC1 levels; therefore, monitoring FC3 levels and ∆FC could help detect SALD.
Collapse
Affiliation(s)
- Beiyuan Zhang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, Jiangsu Province, China
| | - Chenzhe He
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, Jiangsu Province, China
| | - Ting Su
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, Jiangsu Province, China
| | - Zimeng Qin
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, Jiangsu Province, China
| | - Qi Cheng
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, Jiangsu Province, China
| | - Zhanghua Zhu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, Jiangsu Province, China
| | - Ming Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, Jiangsu Province, China.
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, Jiangsu Province, China.
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, Jiangsu Province, China.
| |
Collapse
|
13
|
Huang Y, Fang R, Xiong T, Li W, Yu N. The Relationship Between Gut Microbiota and Recurrent Spontaneous Abortion. Microorganisms 2025; 13:1073. [PMID: 40431246 PMCID: PMC12114443 DOI: 10.3390/microorganisms13051073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/20/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Recently, the gut microbiota has been found to be associated with multiple organs and systems in the human body, playing a key role in the occurrence and development of various diseases, such as the gut-brain axis and the gut-liver axis. However, its interaction with miscarriages remains poorly understood. This article reviews the characteristics of gut microbiota and its metabolites in patients with recurrent spontaneous abortion (RSA), the mechanism of gut microbiota inducing RSA, and potential therapeutic strategies. Therefore, it provides a new perspective on the gut microbiota in the pathogenesis and treatment of recurrent abortion, and the prospect of the future research direction of gut microbiota and recurrent abortion is proposed based on existing studies.
Collapse
Affiliation(s)
- Yiyao Huang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Y.H.); (R.F.)
| | - Ruijie Fang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Y.H.); (R.F.)
| | - Ting Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (T.X.); (W.L.)
| | - Wei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (T.X.); (W.L.)
| | - Nan Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (T.X.); (W.L.)
| |
Collapse
|
14
|
Chen Y, Luo Q, Wu H, Wang Q, Zhang Y. Amomum longiligulare polysaccharide 1 supplementation promotes the proliferation of jejunal epithelial cells in piglets by regulating jejunal metabolites. Int J Biol Macromol 2025; 306:141366. [PMID: 39993675 DOI: 10.1016/j.ijbiomac.2025.141366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Although natural polysaccharides often have growth-promoting effects on animals, little is known about how polysaccharides act when they are administered as feed additives. This work shows that Amomum longiligulare polysaccharide 1 (ALP1) improves the growth performance of piglets by promoting the proliferation of jejunal epithelial cells. ALP1 improves the growth performance of piglets, increasing the average daily gain by 32.71 % and reducing the feed-to-gain (F/G) ratio by 21.93 %. The gut microbiota is an important regulatory target of polysaccharides. The results of jejunal microbiota transplantation trials indicate that the jejunal microbiota from ALP1-fed piglets exhibits better growth performance and that the F/G ratio is reduced by 12.72 %. Furthermore, 16S rDNA sequencing and nontargeted metabolomic analyses reveal that ALP1 supplementation can increase the abundance of Lactobacillus in the jejuna of piglets, resulting in a high abundance of 11Z-eicosenoic acid (EA). In addition, EA increases the villus height-to-crypt depth (VH/CD) ratio in the jejunum by 27.41 %, potentially increasing epithelial cell proliferation. These results suggest that oral ALP1 supplementation promotes growth by modulating the composition of the jejunal microbiota and its associated metabolites.
Collapse
Affiliation(s)
- Yun Chen
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, PR China.
| | - Qiyuan Luo
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, PR China
| | - Haowen Wu
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, PR China
| | - Quanjiang Wang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, PR China
| | - Yue Zhang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, PR China
| |
Collapse
|
15
|
Abavisani M, Tafti P, Khoshroo N, Ebadpour N, Khoshrou A, Kesharwani P, Sahebkar A. The heart of the matter: How gut microbiota-targeted interventions influence cardiovascular diseases. Pathol Res Pract 2025; 269:155931. [PMID: 40174272 DOI: 10.1016/j.prp.2025.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
The human body is habitat to a wide spectrum of microbial populations known as microbiota, which play an important role in overall health. The considerable research has mostly focused on the gut microbiota due to its potential to impact numerous physiological functions and its correlation with a variety of disorders, such as cardiovascular diseases (CVDs). Imbalances in the gut microbiota, known as dysbiosis, have been linked to the development and progression of CVDs through various processes, including the generation of metabolites like trimethylamine-N-oxide and short-chain fatty acids. Studies have also looked at the idea of using therapeutic interventions, like changing your diet, taking probiotics or prebiotics, or even fecal microbiota transplantation (FMT), to change the gut microbiota's make-up and how it works in order to prevent or treat CVDs. Exploring the cause-and-effect connection between the gut microbiota and CVDs offers a hopeful path for creating innovative microbiome-centered strategies to prevent and cure CVDs. This review presents an in-depth review of the correlation between the gut microbiota and CVDs, as well as potential therapeutic approaches for manipulating the gut microbiota to enhance cardiovascular health.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pourya Tafti
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khoshroo
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pardesh, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Ford D. Interactions between the intestinal microbiota and drug metabolism - Clinical implications and future opportunities. Biochem Pharmacol 2025; 235:116809. [PMID: 39983848 DOI: 10.1016/j.bcp.2025.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/10/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The importance of the intestinal microbita in a multitude of physiological processes is well-evidenced. These include metabolism of nutrients and xenobiotics, biosynthesis of vitamin K and vitamin B12, immunomodulation, maintenance of the gut mucosal barrier integrity and protection against some pathogens. Interindividual differences in the intestinal microbiota composition have impacts on health. The bioavailability and activity of some pharmaceuticals are heavily influenced by interindividual variability in metabolism, which has a genetic basis. This variability, primarily occurring in the liver but also in the intestine, has been studied extensively. Despite the advancement of this field - pharmacogenetics - its integration into clinical practice remains limited for reasons discussed herein. This highlights the even greater challenge of applying emerging knowledge on variability in the gut microbiota to drug therapy. However, ignoring these opportunities would be a mistake. While clinical applications of microbiota-guided drug therapy are currently absent and the ideas in this article are largely theoretical, research is uncovering that in cases where a substantial portion of a drug or its metabolites reaches the colon, or where drugs are formulated for colonic delivery, the gut microbiota can significantly affect drug metabolism and activity. Greater focus should be placed on research into how interindividual variability in the intestinal microbiome can modify pharmaceutical bioavailability and activity. This article is deliberately speculative and exploratory but proposes that, though there are still no clinical examples of microbiome-guided drug therapy, these interactions could afford opportunities for improvements in personalised medicine and also for drug design.
Collapse
Affiliation(s)
- Dianne Ford
- Faculty of Health and Life Sciences, Northumberland Building, Northumbria University,Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
17
|
Metris A, Walker AW, Showering A, Doolan A, McBain AJ, Ampatzoglou A, Murphy B, O'Neill C, Shortt C, Darby EM, Aldis G, Hillebrand GG, Brown HL, Browne HP, Tiesman JP, Leng J, Lahti L, Jakubovics NS, Hasselwander O, Finn RD, Klamert S, Korcsmaros T, Hall LJ. Assessing the safety of microbiome perturbations. Microb Genom 2025; 11. [PMID: 40371892 DOI: 10.1099/mgen.0.001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Everyday actions such as eating, tooth brushing or applying cosmetics inherently modulate our microbiome. Advances in sequencing technologies now facilitate detailed microbial profiling, driving intentional microbiome-targeted product development. Inspired by an academic-industry workshop held in January 2024, this review explores the oral, skin and gut microbiomes, focussing on the potential long-term implications of perturbations. Key challenges in microbiome safety assessment include confounding factors (ecological variability, host influences and external conditions like geography and diet) and biases from experimental measurements and bioinformatics analyses. The taxonomic composition of the microbiome has been associated with both health and disease, and perturbations like regular disruption of the dental biofilm are essential for preventing caries and inflammatory gum disease. However, further research is required to understand the potential long-term impacts of microbiome disturbances, particularly in vulnerable populations including infants. We propose that emerging technologies, such as omics technologies to characterize microbiome functions rather than taxa, leveraging artificial intelligence to interpret clinical study data and in vitro models to characterize and measure host-microbiome interaction endpoints, could all enhance the risk assessments. The workshop emphasized the importance of detailed documentation, transparency and openness in computational models to reduce uncertainties. Harmonisation of methods could help bridge regulatory gaps and streamline safety assessments but should remain flexible enough to allow innovation and technological advancements. Continued scientific collaboration and public engagement are critical for long-term microbiome monitoring, which is essential to advancing safety assessments of microbiome perturbations.
Collapse
Affiliation(s)
- Aline Metris
- Unilever, Safety, Environmental and Regulatory Sciences (SERS), Sharnbrook, UK
| | - Alan W Walker
- Microbiome, Food Innovation and Food Security Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | | | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Antonis Ampatzoglou
- Unilever, Safety, Environmental and Regulatory Sciences (SERS), Sharnbrook, UK
| | - Barry Murphy
- Unilever R&D Port Sunlight, Bebington, Wirral, UK
| | - Catherine O'Neill
- Division of Dermatology and Musculoskeletal Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Elizabeth M Darby
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | | | - Greg G Hillebrand
- University of Cincinnati, James L. Winkle College of Pharmacy, Cincinnati, OH, USA
| | - Helen L Brown
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Hilary P Browne
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College, Cork, Ireland
| | | | - Joy Leng
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Leo Lahti
- Department of Computing, University of Turku, Turku FI-20014, Finland
| | - Nicholas S Jakubovics
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Silvia Klamert
- Unilever, Safety, Environmental and Regulatory Sciences (SERS), Sharnbrook, UK
| | - Tamas Korcsmaros
- Food, Microbiomes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Division of Digestive Diseases, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
| | - Lindsay J Hall
- Food, Microbiomes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
18
|
Ding J, Gao T, Liu S, Li Z, Hu B, Zheng J, Yao X, Liu H, Hu H. Rhamnosidase from Parabacteroides distasonis exhibit the catabolism of epimedin C in the human gut microbiota. Int J Biol Macromol 2025; 309:142481. [PMID: 40157660 DOI: 10.1016/j.ijbiomac.2025.142481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Epimedin C, an anti-cardiovascular disease natural compound derived from Herba Epimedii, exhibits low oral bioavailability, with its metabolism closely related to the gut microbiota. In this study, we investigated the roles of intestinal bacteria in the catabolism of epimedin C. We discovered that a strain of Parabacteroides distasonis QZH 1201 (P. distasonis) from human fecal samples can convert epimedin C to 2"-O-rhamnosylicariside II and baohuoside I. More importantly, we identified an α-L-rhamnosidase enzyme from P. distasonis (PdRha), which plays a crucial role in this process by efficiently transforming epimedin C into icariside I. PdRha showed optimal activity at pH 6 and a temperature of 50 °C. Under the condition that the final concentration of epimedin C was 0.5 mM, its conversion efficiency reached 78.72 %. Additionally, we investigated the substrate profile of PdRha and discovered that it can hydrolyze rutin, naringin, and icariin, releasing isoquercitrin, prunin, and icariside I. Molecular docking was performed to gain insights into the enzymatic mechanism. This study provides valuable insights into how a common intestinal symbiotic bacterium processes an important natural flavonoid.
Collapse
Affiliation(s)
- Jiaojiao Ding
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China; College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Tiexiang Gao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Songlin Liu
- Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Zhezhe Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Xiaowei Yao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Haiming Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| |
Collapse
|
19
|
Shi Y, Jiang M, Zhu W, Chang K, Cheng X, Bao H, Peng Z, Hu Y, Li C, Fang F, Song J, Jian C, Chen J, Shu X. Cyclosporine combined with dexamethasone regulates hepatic Abca1 and PPARα expression and lipid metabolism via butyrate derived from the gut microbiota. Biomed Pharmacother 2025; 186:118017. [PMID: 40168721 DOI: 10.1016/j.biopha.2025.118017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025] Open
Abstract
Immunosuppression often leads to drastic metabolic, hormonal, and physiological disorders. Changes in the gut microbiota are believed to be one of the factors contributing to these disorders, but the association remains uncertain. Clinical studies can be complicated by confounding variables, such as diet and other drivers of heterogeneity in human microbiomes. In this study, we identified pronounced gut microbiome signatures in rhesus macaques (RMs) with immunosuppression-induced lipid metabolism disorders following cyclosporine combined with dexamethasone. Furthermore, we observed similar changes in the gut microbiota of mice with immunosuppression-induced lipid metabolism disorders, which were associated with short-chain fatty acid metabolism. ELISA showed that immunosuppression significantly reduced the levels of butyric acid in both feces and serum of mice. Spearman correlation analysis identified a significant correlation between serum butyric acid levels and gut microbial dysbiosis induced by immunosuppression, particularly in relation to f_Lachnospiraceae, g_unidentified_Ruminococcaceae, and s_Clostridium leptum. Additionally, mice transplanted with gut microbiota from immunosuppressed mice exhibited hepatic lipid metabolism disorders, and RNA sequencing revealed significant downregulation of ABC transporters and PPARα in the liver, which was closely associated with lipid transport and metabolism, particularly Abca1. Moreover, butyric acid supplementation alleviated hepatic lipid metabolism disorders and upregulated the expression of Abca1 and PPARα in mice transplanted with immunosuppression-induced gut microbiota. Thus, we propose that the combination of cyclosporine and dexamethasone regulates the expression of hepatic Abca1 and PPARα by modulating the gut microbiota and its derived butyrate, particularly Lachnospiraceae and Clostridium leptum, further regulating hepatic lipid metabolism.
Collapse
Affiliation(s)
- Yongping Shi
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Mi Jiang
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Wenzhong Zhu
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ke Chang
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xukai Cheng
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Haijun Bao
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Zuojie Peng
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yuan Hu
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Chao Li
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Feifei Fang
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jia Song
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Chenxing Jian
- Department of anorectal surgery, Affiliated hospital of Putian University, China
| | - Jinhuang Chen
- Department of emergency surgery, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiaogang Shu
- Department of ganstroenterology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
20
|
Han Q, Li J, Deng H, Shi S, Zhou M, Cai X, Chen Y, Lin Y. Tetrahedral Framework Nucleic Acid (tFNA)-Loaded Metformin (Met) Modulates Cellular Pyroptosis and AMPK to Ameliorate Type II Diabetic Periodontitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411740. [PMID: 39828624 DOI: 10.1002/smll.202411740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Diabetic periodontitis presents a unique therapeutic challenge, primarily due to its chronic inflammatory profile and the associated bone loss driven by immune dysregulation. Metformin (Met) is recognized for its potent anti-inflammatory properties, yet its limited cellular uptake has hindered its clinical effectiveness in diabetic periodontitis. A tetrahedral framework nucleic acid (tFNA)-based delivery system is developed to enhance Met cellular uptake and investigate its effects on diabetic periodontitis in this study. The tFNA-loaded Met complex (TMC) demonstrates efficient Met loading efficiency and rapid cellular internalization. These results show that in vitro, TMC significantly inhibited pro-inflammatory cytokines and matrix metalloproteinaseat both mRNA and protein levels under high glucose conditions. Mechanistically, TMC suppresses NLRP3-mediated pyroptosis by downregulating NLRP3, Caspase-1, Caspase-11, and GSDMD, ultimately reducing Mature-IL-1β and Mature-IL-18 production. Furthermore, TMC activates AMPK while inhibiting NF-κB signaling, thus mitigating the inflammatory response in diabetic periodontitis. In vivo, intraperitoneal administration of TMC in a diabetic periodontitis mouse model significantly reduces inflammatory cell infiltration, collagen degradation, and osteoclast formation, thus alleviating alveolar bone loss. These findings highlight the therapeutic potential of tFNA as an efficient Met delivery vehicle to tackle diabetic periodontitis-associated inflammation and bone resorption, providing a promising strategy for managing diabetic complications.
Collapse
Affiliation(s)
- Qi Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiaqi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hao Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
21
|
Cai Z, Zhang M, Zhou L, Xiong Y, Wang H, Chen Y, Yuan J. Kai-Xin-San polysaccharides exert therapeutic effects on D-gal and Aβ 25-35-induced AD rats by regulating gut microbiota and metabolic profile. Int J Biol Macromol 2025; 306:141850. [PMID: 40058438 DOI: 10.1016/j.ijbiomac.2025.141850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 05/11/2025]
Abstract
Metabolic abnormalities and gut microbiota imbalance are intricately linked to the onset and progression of Alzheimer's disease (AD). Kai-Xin-San (KXS) is a traditional herbal formula known for its therapeutic effects on AD. Our previous research indicated that Kai-Xin-San polysaccharide (KXS-P) exhibits a significant therapeutic impact on AD, but the precise mechanisms remain incompletely understood. In this study, untargeted fecal metabolomics and 16S rRNA gene sequencing were used to investigate the potential mechanisms by which KXS-P acts against AD. Key metabolites and gut microbial species were identified using multivariate analysis and a comprehensive examination of intestinal microecology. Our findings revealed that KXS-P improves lipid metabolism in AD rats by modulating a series of lipid molecules and bile acid levels. Additionally, KXS-P regulated gut microbiota composition and restored the symbiotic relationships within the gut microbiome. Notably, the anti-inflammatory effect of KXS-P may be related to its regulation of specific lipotypes levels and the abundance of Romboutsia, Bifidobacterium and Alloprevotella. KXS-P demonstrates the ability to alleviate symptoms of AD rats through multiple mechanisms: ① Improving lipid metabolism and maintaining lipid homeostasis; ② Reducing neuronal and inflammatory damage; ③ Regulating the composition and symbiotic relationships of gut microbiota to preserve intestinal microecological balance.
Collapse
Affiliation(s)
- Zhinan Cai
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Min Zhang
- Nanchang Key Laboratory of Detection and Control of Food Safety, Nanchang Inspection and Testing Center, Nanchang 330012, China
| | - Lifen Zhou
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yongchang Xiong
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huijuan Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ying Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jinbin Yuan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
22
|
Wang L, Ding Y, Tang Y, Yang M, Yang Z, Yang X, Xia J. Association between sphingomyelin levels and gut microbiota abundance in Alzheimer's disease: a two-sample Mendelian randomization study. BMC Neurol 2025; 25:191. [PMID: 40307740 PMCID: PMC12044981 DOI: 10.1186/s12883-025-04207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/24/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Several previous observational studies have shown that abnormal sphingomyelin metabolism may be implicated in the pathogenesis of Alzheimer's disease. To determine the causal relationship between sphingolipid abundance and gut microbiota abundance at the genetic level, we conducted a Mendelian randomization (MR) investigation. METHODS We first used the TwoSampleMR and MRPRESSO packages for conducting two-sample MR studies. Second, we utilized random effect inverse variance weighting (IVW) as the principal method of analysis and used MR‒Egger, the weighted median, the simple mode and the weighted mode as supplementary methods. Finally, we performed tests for heterogeneity and horizontal pleiotropy. These analyses were also conducted to evaluate the impact of individual SNPs on the outcomes of our analysis. A Bonferroni-corrected threshold of p = 2.4e-4(0.05/211) was considered significant, and p values less than 0·05 were considered to be suggestive of an association. RESULTS The results showed that sphingolipid levels were suggestively associated with the abundance of 6 gut microbiota taxa. Specifically, two taxa were positively correlated with sphingolipid levels, including the family Alcaligenaceae (p = 0.006, OR 95% CI = 1.109 [1.030-1.194]) and the species Ruminococcus callidus (p = 0.034, OR 95% CI = 1.217 [1.015-1.460]). In contrast, negative correlations were observed with the abundances of 4 gut microbiota taxa, including the genus Flavonifractor (p = 0.026, OR 95% CI = 0.804 [0.663-0.974]), the genus Streptococcus (p = 0.014, OR 95% CI = 0.909 [0.842-0.981]), the species Bacteroides caccae (p = 0.037, OR 95% CI = 0.870 [0.763-0.992]), and the species Haemophilus parainfluenzae (p = 0.006, beta 95% CI = -0.269 [-0.462, -0.076]). The results presented a normal distribution, with no anomalous values, heterogeneity, or horizontal pleiotropic effects detected. CONCLUSIONS This two-sample MR study revealed a potential causal relationship between sphingomyelin levels and gut microbiota abundance.
Collapse
Affiliation(s)
- Liping Wang
- Department of General Surgery, Institute of General Surgical Research, Jiangnan University Medical Center, Wuxi, China
| | - Yuyan Ding
- Department of General Surgery, Institute of General Surgical Research, Jiangnan University Medical Center, Wuxi, China
| | - Yu Tang
- Department of General Surgery, Institute of General Surgical Research, Jiangnan University Medical Center, Wuxi, China
| | - Mengqi Yang
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zhihui Yang
- Department of General Surgery, Institute of General Surgical Research, Jiangnan University Medical Center, Wuxi, China
| | - Xiao Yang
- Department of General Surgery, Institute of General Surgical Research, Jiangnan University Medical Center, Wuxi, China
| | - Jiazeng Xia
- Department of General Surgery, Institute of General Surgical Research, Jiangnan University Medical Center, Wuxi, China.
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
- Wuxi Clinical College, Nantong University, Wuxi, China.
| |
Collapse
|
23
|
Lehner MD, Ulsemer P, Christochowitz S. Menthacarin, a proprietary combination of peppermint and caraway oil, alters cultured human fecal microbiota composition, resulting in increased SCFA production. Front Pharmacol 2025; 16:1569052. [PMID: 40371337 PMCID: PMC12075938 DOI: 10.3389/fphar.2025.1569052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 05/16/2025] Open
Abstract
Background Disruptions in the gut microbiota metabolism may contribute to the pathophysiology of gut-brain interaction disorders, and correction of intestinal dysbiosis is considered a promising therapeutic approach. Menthacarin, a proprietary fixed combination of Mentha x piperita L. and Carum carvi L. essential oils, is used clinically for the treatment of functional dyspepsia and irritable bowel syndrome. Rodent model data indicate that treatment effects of Menthacarin on visceral hypersensitivity could be mediated via the normalization of gut dysbiosis. However, the impact of Menthacarin on human bacterial gut microbiota has not yet been studied. Aim The aim of the present study was to assess whether Menthacarin affects the composition and metabolic activity of human fecal microbiota. Methods Fecal slurry samples from 10 healthy volunteers were cultivated for 36 h under anoxic conditions with and without Menthacarin. Relative bacterial abundance at the phylum and genus levels was evaluated using 16S rRNA metagenomic analysis. Short-chain fatty acids (SCFAs) in the supernatants were measured using the LC-MS technology. Results Menthacarin induced robust changes in microbial composition at both the phylum and genus levels among the 10 donor microbiomes. The relative abundance of Firmicutes (+13.6 ± 8.6%) and Actinobacteria (+54.9 ± 47.6%) significantly increased, whereas that of Bacteroidetes (-27.7% ± 21.9%) and Proteobacteria (-25.7% ± 12.3%) significantly decreased in the presence of Menthacarin. At the genus level, the most notable changes were significant increases in Bifidobacterium (+105.1 ± 78.4%) and several SCFA-producing genera accompanied by a significant decrease in genera containing members involved in pro-inflammatory processes. In addition, Menthacarin significantly increased the levels of several SCFAs, namely, propionate, butyrate, isobutyrate, valerate, and isovalerate. Conclusion Menthacarin alters the microbiota composition and enhances SCFA production in human microbiota samples under in vitro conditions. These effects may contribute to the clinical benefits observed with Menthacarin treatment.
Collapse
Affiliation(s)
- Martin D. Lehner
- Preclinical R&D, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | | | | |
Collapse
|
24
|
Gadziński P, Skotnicka A, Lisiak N, Totoń E, Rubiś B, Florek E, Mlynarczyk DT, Szybowicz M, Nowak E, Osmałek T. Ionotropic Gelation and Chemical Crosslinking as Tools to Obtain Gellan Gum-Based Beads with Mesalazine. Pharmaceutics 2025; 17:569. [PMID: 40430861 PMCID: PMC12115198 DOI: 10.3390/pharmaceutics17050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction: Many orally administered drugs are either unstable in the acidic environment of the stomach or cause moderate to severe side effects in the upper gastrointestinal tract (GIT). These limitations can reduce therapeutic efficacy, discourage patient compliance, worsen the disease, and even contribute to the risk of cancer development. To overcome these issues, drug release often needs to be modified and targeted to the distal parts of the GIT. This is typically achieved through the use of pH-sensitive polymer coatings or incorporation into polymeric delivery systems. With this in mind, the aim of this project was to design, develop, and characterize gellan gum-based beads for colon-specific prolonged release of mesalazine, with potential application in the chemoprevention and treatment of bowel diseases. Materials and Methods: The dehydrated capsules were characterized using Raman spectroscopy and scanning electron microscopy. The crosslinked gellan gum was additionally evaluated for cytotoxicity. Key parameters such as pH-dependent swelling behavior, drug content, encapsulation efficiency, and drug release in simulated gastrointestinal fluids were also assessed. Furthermore, the behavior of the capsules in the gastrointestinal tract was studied in a rat model to evaluate their in vivo performance. Results: Significant differences in drug release profiles were observed between formulations crosslinked solely with calcium ions and those additionally crosslinked with glutaraldehyde (GA). The incorporation of GA effectively prolonged the release of mesalazine. These findings were further supported by in vivo studies conducted on Wistar rats, where the GA-crosslinked formulation demonstrated a markedly extended release compared to the formulation prepared using only ionotropic gelation. Conclusions: The combination of ionotropic gelation and glutaraldehyde crosslinking in gellan gum-based beads appears to be a promising strategy for achieving colon-specific prolonged release of mesalazine, facilitating targeted delivery to the distal regions of the gastrointestinal tract.
Collapse
Affiliation(s)
- Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland (T.O.)
- Doctoral School, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Agnieszka Skotnicka
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland (T.O.)
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (N.L.); (E.T.); (B.R.)
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (N.L.); (E.T.); (B.R.)
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (N.L.); (E.T.); (B.R.)
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Mirosław Szybowicz
- Institute of Materials Research and Quantum Engineering, Faculty of Materials Engineering and Technical Physics, Poznań University of Technology, Piotrowo 3, 60-965 Poznań, Poland; (M.S.); (E.N.)
| | - Ewelina Nowak
- Institute of Materials Research and Quantum Engineering, Faculty of Materials Engineering and Technical Physics, Poznań University of Technology, Piotrowo 3, 60-965 Poznań, Poland; (M.S.); (E.N.)
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland (T.O.)
| |
Collapse
|
25
|
Beaudoin CA, Norget S, Omran Z, Hala S, Daqeeq AH, Burnet PWJ, Blundell TL, van Tonder AJ. Similarity of drug targets to human microbiome metaproteome promotes pharmacological promiscuity. THE PHARMACOGENOMICS JOURNAL 2025; 25:9. [PMID: 40246834 PMCID: PMC12006021 DOI: 10.1038/s41397-025-00367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/27/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Similarity between candidate drug targets and human proteins is commonly assessed to minimize the occurrence of side effects. Although numerous drugs have been found to disrupt the health of the human microbiome, no comprehensive comparison between established drug targets and the human microbiome metaproteome has yet been conducted. Therefore, herein, sequence and structure alignments between human and pathogen drug targets and representative human gut, oral, and vaginal microbiome metaproteomes were performed. Both human and pathogen drug targets were found to be similar in sequence, function, structure, and drug binding capacity to proteins in diverse pathogenic and non-pathogenic bacteria from all three microbiomes. The gut metaproteome was identified as particularly susceptible overall to off-target effects. Certain symptoms, such as infections and immune disorders, may be more common among drugs that non-selectively target host microbiota. These findings suggest that similarities between human microbiome metaproteomes and drug target candidates should be routinely checked.
Collapse
Affiliation(s)
| | - Shannon Norget
- Department of Psychology, Health & Technology, University of Twente, Enschede, the Netherlands
| | - Ziad Omran
- King Abdullah International Medical Research Center, King Saud Bin Abdelaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Sharif Hala
- Biothreat Department, Public Health Laboratory, Public Health Authority, Riyadh, Saudi Arabia
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abdullah H Daqeeq
- Department of Anesthesia, International Medical Center, Jeddah, Kingdom of Saudi Arabia
| | | | - Tom L Blundell
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, Cambridge, UK
| | | |
Collapse
|
26
|
Gudnadottir U, Wickström R, Gunnerbeck A, Prast-Nielsen S, Brusselaers N. Prenatal and Early Childhood Exposure to Antibiotics or Gastric Acid Inhibitors and Increased Risk of Epilepsy: A Nationwide Population-Based Study. Clin Pharmacol Ther 2025. [PMID: 40231335 DOI: 10.1002/cpt.3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025]
Abstract
Over 10 million children in the world have epilepsy, with an unknown cause in half of the cases. The gut microbiome has been associated with various neurological disorders, and certain drugs greatly disturb the microbiome. Our aim was to study the association of prenatal and childhood exposure (before the age of two) to antibiotics, proton pump inhibitors (PPIs) and histamine-2 receptor antagonists, and the risk of childhood epilepsy. Using population-based registers, we included all live singleton births in Sweden from 2006 to 2017. Exposure was considered prescription(s) to antibiotics, proton pump inhibitors, or H2-receptor antagonists (separately). Multivariable Cox regression was used to calculate hazard ratios and 95% confidence intervals. 708,903 mother-child dyads were included, and 0.5% of children had an epilepsy diagnosis. Average follow-up was 3.8 years (IQR 1-6). Prenatal exposure to antibiotics (aHR 1.09, 95% CI 1.01-1.18) and PPIs (aHR 1.38, 95% CI 1.17-1.65) were associated with an increased risk of epilepsy. Exposure to antibiotics (1.11, 95% CI 1.02-1.21), PPIs (3.40, 95% CI 2.47-4.68) and H2RAs (1.65, 95% CI 1.03-2.64) before the age of two was associated with an increased risk of epilepsy after the age of two. Dose response analysis showed that one prescription of antibiotics in pregnancy or early life was not associated with an increased risk of epilepsy, while one prescription of PPIs in pregnancy or early life had an association. To conclude, our results support the hypothesis that microbiome modulating drugs are associated with an increased risk of epilepsy. This needs to be further validated in other studies, ideally including indications for drug use.
Collapse
Affiliation(s)
- Unnur Gudnadottir
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ronny Wickström
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Anna Gunnerbeck
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | | | - Nele Brusselaers
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Zheng Z, Jin W, Guo W, Jin Z, Zuo Y. Oral Fusobacterium nucleatum exacerbates ulcerative colitis via the oral-gut axis: mechanisms and therapeutic implications. Front Cell Infect Microbiol 2025; 15:1564169. [PMID: 40260115 PMCID: PMC12009839 DOI: 10.3389/fcimb.2025.1564169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Background Fusobacterium nucleatum (F. nucleatum) is an anaerobic bacterium known for its association with periodontal disease and oral infections. It has been implicated in the development of gastrointestinal diseases such as inflammatory bowel disease and colorectal cancer. Ulcerative colitis (UC), which is characterized by chronic inflammation of the colon, is a condition of unknown etiology with a rising incidence rate, significantly affecting the quality of life for patients. The increased intestinal permeability during UC may facilitate the adherence or invasion of F. nucleatum into the damaged intestinal barrier, leading to exacerbated inflammation. Methods This article introduces the concept of the oral-gut axis, reviewing existing literature to analyze the role of F. nucleatum in the pathogenesis of UC and exploring its potential pathogenic mechanisms. It also summarizes the latest advances in treating patients with UC who have F. nucleatum and looks forward to prospective therapeutic strategies and the translational prospects of F. nucleatum within the oral-gut axis. Results F. nucleatum may be a key player in the pathogenesis of UC, likely due to its invasiveness during periods of increased intestinal permeability. The paper also discusses innovative approaches for the prevention and management of UC exacerbated by F. nucleatum, paving the way for more effective treatment of UC. Conclusion The review offers new insights into the complex relationship between the oral microbiome and intestinal diseases, enhancing our understanding of their dynamic interactions. There is a paucity of literature on therapeutic approaches, indicating a need for further clinical research.
Collapse
Affiliation(s)
- Zhaoyu Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenqin Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiwei Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuling Zuo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Wu Q, Song D, Zhao Y, Verdegaal AA, Turocy T, Duncan-Lowey B, Goodman AL, Palm NW, Crawford JM. Activity of GPCR-targeted drugs influenced by human gut microbiota metabolism. Nat Chem 2025:10.1038/s41557-025-01789-w. [PMID: 40181149 DOI: 10.1038/s41557-025-01789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Microbiota-mediated drug metabolism can affect pharmacological efficacy. Here we conducted a systematic comparative metabolomics investigation of drug metabolism modes by evaluating the impacts of human gut commensal bacteria on 127 G-protein-coupled receptor (GPCR)-targeted drugs. For the most extensively metabolized drugs in our screen, we elucidated both conventional and unconventional drug transformations and the corresponding activities of generated metabolites. Comparisons of drug metabolism by a gut microbial community versus individual species revealed both taxon intrinsic and collaborative processes that influenced the activity of the metabolized drugs against target GPCRs. We also observed iloperidone inactivation by generating unconventional metabolites. The human gut commensal bacteria mixture incorporated sulfur in the form of a thiophene motif, whereas Morganella morganii used a cascade reaction to incorporate amino-acid-derived tricyclic systems into the drug metabolites. Our results reveal a broad impact of human gut commensal bacteria on GPCR-targeted drug structures and activities through diverse microbiota-mediated biotransformations.
Collapse
Affiliation(s)
- Qihao Wu
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yanyu Zhao
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Andrew A Verdegaal
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Tayah Turocy
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Brianna Duncan-Lowey
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
29
|
Shiver AL, Sun J, Culver R, Violette A, Wynter C, Nieckarz M, Mattiello SP, Sekhon PK, Bottacini F, Friess L, Carlson HK, Wong DPGH, Higginbottom S, Weglarz M, Wang W, Knapp BD, Guiberson E, Sanchez J, Huang PH, Garcia PA, Buie CR, Good BH, DeFelice B, Cava F, Scaria J, Sonnenburg JL, Van Sinderen D, Deutschbauer AM, Huang KC. Genome-scale resources in the infant gut symbiont Bifidobacterium breve reveal genetic determinants of colonization and host-microbe interactions. Cell 2025; 188:2003-2021.e19. [PMID: 40068681 DOI: 10.1016/j.cell.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/08/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
Bifidobacteria represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest in bifidobacteria as a live biotic therapy, our understanding of colonization, host-microbe interactions, and the health-promoting effects of bifidobacteria is limited. To address these major knowledge gaps, we used a large-scale genetic approach to create a mutant fitness compendium in Bifidobacterium breve. First, we generated a high-density randomly barcoded transposon insertion pool and used it to determine fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. Second, to enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1,462 genes. We leveraged these tools to reveal community- and diet-specific requirements for colonization and to connect the production of immunomodulatory molecules to growth benefits. These resources will catalyze future investigations of this important beneficial microbe.
Collapse
Affiliation(s)
- Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rebecca Culver
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Arvie Violette
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Char Wynter
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Samara Paula Mattiello
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; College of Mathematics and Science, The University of Tennessee Southern, Pulaski, TN 38478, USA
| | - Prabhjot Kaur Sekhon
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Francesca Bottacini
- School of Microbiology, University College Cork, Cork, Ireland; Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Lisa Friess
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel P G H Wong
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meredith Weglarz
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Benjamin D Knapp
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Emma Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Juan Sanchez
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Paulo A Garcia
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
30
|
Zouiouich S, Wan Y, Vogtmann E, Porras C, Abnet CC, Shi J, Sinha R. Sample Size Estimations Based on Human Microbiome Temporal Stability Over 6 Months: A Shallow Shotgun Metagenome Sequencing Analysis. Cancer Epidemiol Biomarkers Prev 2025; 34:588-597. [PMID: 39927868 DOI: 10.1158/1055-9965.epi-24-0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Biological factors affect the human microbiome, highlighting the need for reasonably estimating sample sizes in future population studies. METHODS We assessed the temporal stability of fecal microbiome diversity, species composition, and genes and functional pathways through shallow shotgun metagenome sequencing. Using intraclass correlation coefficients (ICC), we measured biological variability over 6 months. We estimated case numbers for 1:1 or 1:3 matched case-control studies, considering significance levels of 0.05 and 0.001 with 80% power, based on the collected fecal specimens per participant. RESULTS The fecal microbiome's temporal stability over 6 months varied (ICC < 0.6) for most alpha and beta diversity metrics. Heterogeneity was seen in species, genes, and pathways stability (ICC, 0.0-0.9). Detecting an OR of 1.5 per SD required 1,000 to 5,000 cases (0.05 significance for alpha and beta; 0.001 for species, genes, and pathways) with equal cases and controls. Low-prevalence species needed 15,102 cases, and high-prevalence species required 3,527. Similar needs applied to genes and pathways. In a 1:3 matched case-control study with one fecal specimen, 10,068 cases were needed for low-prevalence species and 2,351 for high-prevalence species. For ORs of 1.5 with multiple specimens, cases needed for low-prevalence species were 15,102 (one specimen), 8,267 (two specimens), and 5,989 (three specimens). CONCLUSIONS Detecting disease associations requires a large number of cases. Repeating prediagnostic samples and matching cases to more controls could decrease the needed number of cases for such detections. IMPACT Our results will help future epidemiologic study designs and implement well-powered microbiome studies.
Collapse
Affiliation(s)
- Semi Zouiouich
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Yunhu Wan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Carolina Porras
- Costa Rican Agency for Biomedical Research-INCIENSA Foundation, San José, Costa Rica
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
31
|
El Jaddaoui I, Sehli S, Al Idrissi N, Bakri Y, Belyamani L, Ghazal H. The Gut Mycobiome for Precision Medicine. J Fungi (Basel) 2025; 11:279. [PMID: 40278100 PMCID: PMC12028274 DOI: 10.3390/jof11040279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
The human gastrointestinal tract harbors a vast array of microorganisms, which play essential roles in maintaining metabolic balance and immune function. While bacteria dominate the gut microbiome, fungi represent a much smaller, often overlooked fraction. Despite their relatively low abundance, fungi may significantly influence both health and disease. Advances in next-generation sequencing, metagenomics, metatranscriptomics, metaproteomics, metabolomics, and computational biology have provided novel opportunities to study the gut mycobiome, shedding light on its composition, functional genes, and metabolite interactions. Emerging evidence links fungal dysbiosis to various diseases, including inflammatory bowel disease, colorectal cancer, metabolic disorders, and neurological conditions. The gut mycobiome also presents a promising avenue for precision medicine, particularly in biomarker discovery, disease diagnostics, and targeted therapeutics. Nonetheless, significant challenges remain in effectively integrating gut mycobiome knowledge into clinical practice. This review examines gut fungal microbiota, highlighting analytical methods, associations with human diseases, and its potential role in precision medicine. It also discusses pathways for clinical translation, particularly in diagnosis and treatment, while addressing key barriers to implementation.
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat 10000, Morocco; (I.E.J.); (Y.B.)
- Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10000, Morocco
- Laboratory of Precision Medicine & One Health (MedPreOne), School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco; (S.S.); (N.A.I.)
| | - Sofia Sehli
- Laboratory of Precision Medicine & One Health (MedPreOne), School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco; (S.S.); (N.A.I.)
| | - Najib Al Idrissi
- Laboratory of Precision Medicine & One Health (MedPreOne), School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco; (S.S.); (N.A.I.)
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat 10000, Morocco; (I.E.J.); (Y.B.)
- Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10000, Morocco
| | - Lahcen Belyamani
- School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco;
| | - Hassan Ghazal
- Laboratory of Precision Medicine & One Health (MedPreOne), School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco; (S.S.); (N.A.I.)
- Laboratory of Sports Sciences and Performance Optimization, Royal Institute of Executive Management, Salé 10102, Morocco
- National Center for Scientific and Technical Research, Rabat 10102, Morocco
| |
Collapse
|
32
|
Li C, Cai C, Wang C, Chen X, Zhang B, Huang Z. Gut microbiota-mediated gut-liver axis: a breakthrough point for understanding and treating liver cancer. Clin Mol Hepatol 2025; 31:350-381. [PMID: 39659059 PMCID: PMC12016628 DOI: 10.3350/cmh.2024.0857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
The trillions of commensal microorganisms living in the gut lumen profoundly influence the physiology and pathophysiology of the liver through a unique gut-liver axis. Disruptions in the gut microbial communities, arising from environmental and genetic factors, can lead to altered microbial metabolism, impaired intestinal barrier and translocation of microbial components to the liver. These alterations collaboratively contribute to the pathogenesis of liver disease, and their continuous impact throughout the disease course plays a critical role in hepatocarcinogenesis. Persistent inflammatory responses, metabolic rearrangements and suppressed immunosurveillance induced by microbial products underlie the pro-carcinogenic mechanisms of gut microbiota. Meanwhile, intrahepatic microbiota derived from the gut also emerges as a novel player in the development and progression of liver cancer. In this review, we first discuss the causes of gut dysbiosis in liver disease, and then specify the pivotal role of gut microbiota in the malignant progression from chronic liver diseases to hepatobiliary cancers. We also delve into the cellular and molecular interactions between microbes and liver cancer microenvironment, aiming to decipher the underlying mechanism for the malignant transition processes. At last, we summarize the current progress in the clinical implications of gut microbiota for liver cancer, shedding light on microbiota-based strategies for liver cancer prevention, diagnosis and therapy.
Collapse
Affiliation(s)
- Chenyang Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chujun Cai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chendong Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Dehghani E, Karimi K, Arekhi S, Ardeshir M, Rezapour R, Shayestehfar M, Memari AH. Effect of nutritional supplements on gut microbiome in individuals with neurodevelopmental disorders: a systematic review and narrative synthesis. BMC Nutr 2025; 11:64. [PMID: 40158118 PMCID: PMC11954342 DOI: 10.1186/s40795-025-01043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) encompass a range of disruptive conditions with varying prevalence rates and multiple contributing factors. Recent studies have suggested a potential connection between NDDs and the gut-brain axis. Furthermore, there is evidence indicating that nutritional supplements might have an impact on gastrointestinal (GI) and behavioral symptoms. This study aimed to explore the effects of nutritional supplements on the gut microbiota and behavioral symptoms in individuals with NDDs. METHODS A systematic search of databases such as PubMed, Scopus, Web of Science, Embase, and APA PsycINFO was conducted, utilizing relevant keywords until February 2025. In addition, the search for gray literature was carried out on Google Scholar and ProQuest. The risk of bias was assessed using the ROBINS-I tool for non-randomized studies and the RoB-1 tool for randomized controlled trials. Due to the heterogeneity of the studies, a Synthesis without Meta-analysis (SWiM) approach was employed. RESULTS The overall findings from the studies indicated positive effects of supplementation in reducing the Gastrointestinal Severity Index (GIS) score and alleviating GI symptoms. Supplementation with probiotics and vitamins increased good microbiomes (GM) and decrease in bad microbiomes (BM) among individuals with autism spectrum disorder (ASD). Moreover, the Firmicutes to Bacteroidetes ratio (F/R ratio) exhibited significant changes after supplementation. Additionally, improvements were observed in various assessment scores, including ATEC, ABC, CARS, and PGI-2. CONCLUSIONS Nutritional supplementation in individuals with NDDs can have a positive influence by modulating the microbiome, reducing dysbiosis, and enhancing gut barrier integrity. Shifting in the F/R ratio can be considered as the reason for improving gastrointestinal and behavioral symptoms by influencing neurotransmitter activity and neuroinflammation. Targeting the gut-brain axis with interventions that focus on gut microbiota offers a promising adjunct therapy for the management of NDD. Registration of the review protocol. PROSPERO registration no. CRD42023460449.
Collapse
Affiliation(s)
- Elaheh Dehghani
- Department of Clinical Nutrition, School of Nutrition and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Keyvan Karimi
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheil Arekhi
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Ardeshir
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran (TUMS), Tehran, Iran
| | - Reshad Rezapour
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Monir Shayestehfar
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amir Hossein Memari
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
34
|
Romeo M, Dallio M, Di Nardo F, Napolitano C, Vaia P, Martinelli G, Federico P, Olivieri S, Iodice P, Federico A. The Role of the Gut-Biliary-Liver Axis in Primary Hepatobiliary Liver Cancers: From Molecular Insights to Clinical Applications. J Pers Med 2025; 15:124. [PMID: 40278303 PMCID: PMC12028696 DOI: 10.3390/jpm15040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Hepatobiliary liver cancers (HBLCs) represent the sixth most common neoplasm in the world. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) constitute the main HBLC types, with alarming epidemiological projections. Methods: In recent decades, alterations in gut microbiota, with mutual implications on the gut-liver axis and gut-biliary axis permeability status, have been massively investigated and proposed as HBLC pathogenetic deus ex machina. Results: In the HCC setting, elevated intestinal levels of Escherichia coli and other Gram-negative bacteria have been demonstrated, resulting in a close association with increased lipopolysaccharide (LPS) serum levels and, consequently, chronic systemic inflammation. In contrast, the intestinal microbiota of HCC individuals feature reduced levels of Lactobacillus spp., Bifidobacterium spp., and Enterococcus spp. In the CC setting, evidence has revealed an increased expression of Lactobacillus spp., with enhanced levels of Actynomices spp. and Alloscardovia spp. Besides impaired strains/species representation, gut-derived metabolites, including bile acids (BAs), short-chain fatty acids (SCFAs), and oxidative-stress-derived products, configure a network severely impacting the progression of HBLC. Conclusions: In the era of Precision Medicine, the clarification of microbiota composition and functioning in HCC and CC settings can contribute to the identification of individual signatures, potentially providing novel diagnostic markers, therapeutic approaches, and prognostic/predictive tools.
Collapse
Affiliation(s)
- Mario Romeo
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Marcello Dallio
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Fiammetta Di Nardo
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Carmine Napolitano
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Paolo Vaia
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Giuseppina Martinelli
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Pierluigi Federico
- Pharmaceutical Department, ASL NA3 Sud, Torre del Greco, 80059 Naples, Italy;
| | - Simone Olivieri
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | | | - Alessandro Federico
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| |
Collapse
|
35
|
Zheng L, Zhang J, Yang J, Wang Y, Zhang Y, Fang K, Wu J, Zheng M. Association of the use of nonfood prebiotics, probiotics, and synbiotics with total and cause-specific mortality: a prospective cohort study. Nutr J 2025; 24:45. [PMID: 40114150 PMCID: PMC11924732 DOI: 10.1186/s12937-025-01104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The use of nonfood prebiotics, probiotics, and synbiotics has approximately tripled in the last 20 years. It is necessary to examine the associations of these substances with all-cause and cause-specific mortality in a large prospective cohort. METHODS This study included 53,333 adults from the National Health and Nutrition Examination Survey 1999-2018. All participants answered questions on the use of dietary supplements and medications, including prebiotics, probiotics, and synbiotics. Death outcomes were determined by linkage to National Death Index records through 31 December 2019. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for mortality from all causes, heart diseases, cancer, and other causes. RESULTS During a mean follow-up of 10.6 years, 9117 deaths were documented, including 2364 heart disease deaths, 1964 cancer deaths, and 4700 other causes deaths. Compared to nonusers, nonfood prebiotic, probiotic, and synbiotic users had a 59% (HR 0.41, 95% CI 0.30 to 0.56), 56% (HR 0.44, 95% CI 0.26 to 0.74), 49% (HR 0.51, 95% CI 0.31 to 0.83), and 64% (HR 0.36, 95% CI 0.23 to 0.59) for lower risk of all-cause, cancer, heart disease, and other causes mortality, respectively. Moreover, the inverse association of the use of prebiotics, probiotics, and synbiotics with mortality was stronger in female participants and participants without hypertension. CONCLUSION The use of nonfood prebiotics, probiotics, and synbiotics is significantly associated with lower all-cause mortality, as well as deaths from heart disease, cancer, and other causes.
Collapse
Affiliation(s)
- Luyan Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
| | - Jiaqi Zhang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
| | - Yanbo Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
| | - Yina Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
| | - Kailu Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China
| | - Jie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
36
|
Ruiz-Moreno AJ, Del Castillo-Izquierdo Á, Tamargo-Rubio I, Fu J. MicrobeRX: a tool for enzymatic-reaction-based metabolite prediction in the gut microbiome. MICROBIOME 2025; 13:78. [PMID: 40108657 PMCID: PMC11921629 DOI: 10.1186/s40168-025-02070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The gut microbiome functions as a metabolic organ, producing numerous enzymes that influence host health; however, their substrates and metabolites remain largely unknown. RESULTS We present MicrobeRX, an enzyme-based metabolite prediction tool that employs 5487 human reactions and 4030 unique microbial reactions from 6286 genome-scale models, as well as 3650 drug metabolic reactions from the DrugBank database (v.5.1.12). MicrobeRX includes additional analysis modules for metabolite visualization and enzymatic and taxonomic analyses. When we applied MicrobeRX to 1083 orally administered drugs that have been approved in at least one jurisdiction at some point in time (DrugBank), it predicted metabolites with physicochemical properties and structures similar to metabolites found in biosamples (from MiMeDB). It also outperformed another existing metabolite prediction tool (BioTransformer 3.0) in terms of predictive potential, molecular diversity, reduction of redundant predictions, and enzyme annotation. CONCLUSIONS Our analysis revealed both unique and overlapping metabolic capabilities in human and microbial metabolism and chemo- and taxa-specific microbial biotransformations. MicrobeRX bridges the genomic and chemical spaces of the gut microbiome, making it a valuable tool for unlocking the chemical potential of the gut microbiome in human health, the food and pharmaceutical industries, and environmental safety. Video Abstract.
Collapse
Affiliation(s)
- Angel J Ruiz-Moreno
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
- Department of Pediatrics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
| | - Ángela Del Castillo-Izquierdo
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
- Department of Medical Microbiology, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Isabel Tamargo-Rubio
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
- Department of Pediatrics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
| |
Collapse
|
37
|
Li D, Zhang K, Xue X, Bai Z, Yang L, Qi J, Suolang S. Treatment-Related Mechanisms of Tibetan Medicine Terminalia chebula (TC) Aqueous Extract Against Mouse Gastroenteritis Caused by Yak-Origin Salmonella Determined Using Intestinal Microbiome Analysis and Metabolomics. Animals (Basel) 2025; 15:755. [PMID: 40076040 PMCID: PMC11899446 DOI: 10.3390/ani15050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to evaluate the therapeutic effect of Terminalia chebula (TC) on Tibetan yak-origin Salmonella-induced diarrhea and dysentery in mice. The levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α), anti-inflammatory cytokines (IL-4 and IL-10), and the oxidative stress markers malondialdehyde (MDA), superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), reduced glutathione (GSH-PX), and catalase (CAT) in the serum of mice were measured using ELISA kits. Using microbial diversity sequencing and non-targeted metabolomics detection techniques, the relevant mechanisms of TC treatment in a mouse Salmonella infection model were evaluated. The results showed the following: TC can effectively reduce the diarrhea rate; alleviate weight loss caused by Salmonella invasion; reduce the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α in serum; and increase the concentrations of the anti-inflammatory cytokines IL-4 and IL-10. TC can improve the body's antioxidant levels to heal the damage caused by oxidative stress and lipid peroxidation. The histological section results show that TC can significantly improve gastric and intestinal tissue lesions and has no toxic effects on the liver and kidneys. 16S rRNA and ITS sequencing analysis suggests that Lactobacillus, Enterorhabdus, Alistipes (bacterial community), Lodderomyces, Saccharomyces, and Penicillium (fungal community) may be key functional microbial communities in TC. Non-targeted metabolomics also suggests that the antibacterial treatment of dysentery with chebulic acid may be related to regulation of the Ras signaling pathway, long-term potentiation, the MAPK signaling pathway, metabolic pathways, and gut microbiome composition. Conclusion: TC has clear clinical efficacy in treating bacterial diarrhea, presenting anti-inflammatory and antioxidant effects. Its roles in regulating the gut microbiome and metabolic pathways and products were determined as the main reason for its therapeutic effect in a mouse gastroenteritis model caused by Salmonella infection.
Collapse
Affiliation(s)
- Dengyu Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Kaiqin Zhang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Xiaofeng Xue
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Zhanchun Bai
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - La Yang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences China, Shanghai 200241, China
| | - Sizhu Suolang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
- Fourteenth Five-Year Plan China Agricultural Rural Ministry Key Laboratory, Jointly Built by the Ministry and Provincial Government, Nyingchi 860000, China
| |
Collapse
|
38
|
Wang M, Liu Y, Zhong L, Wu F, Wang J. Advancements in the investigation of gut microbiota-based strategies for stroke prevention and treatment. Front Immunol 2025; 16:1533343. [PMID: 40103814 PMCID: PMC11914130 DOI: 10.3389/fimmu.2025.1533343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Stroke represents a predominant cause of mortality and disability on a global scale, impacting millions annually and exerting a considerable strain on healthcare systems. The incidence of stroke exhibits regional variability, with ischemic stroke accounting for the majority of occurrences. Post-stroke complications, such as cognitive impairment, motor dysfunction, and recurrent stroke, profoundly affect patients' quality of life. Recent advancements have elucidated the microbiota-gut-brain axis (MGBA), underscoring the complex interplay between gut health and brain function. Dysbiosis, characterized by an imbalance in gut microbiota, is significantly linked to an elevated risk of stroke and unfavorable outcomes. The MGBA plays a crucial role in modulating immune function, neurotransmitter levels, and metabolic byproducts, which may intensify neuroinflammation and impair cerebral health. This review elucidates the role of MGBA in stroke pathophysiology and explores potential gut-targeted therapeutic strategies to reduce stroke risk and promote recovery, including probiotics, prebiotics, pharmacological interventions, and dietary modifications. However, the current prevention and treatment strategies based on intestinal flora still face many problems, such as the large difference of individual intestinal flora, the stability of efficacy, and the long-term safety need to be considered. Further research needs to be strengthened to promote its better application in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Jinjin Wang
- Department of Gastroenterology, The First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Caesar R. The impact of novel probiotics isolated from the human gut on the gut microbiota and health. Diabetes Obes Metab 2025; 27 Suppl 1:3-14. [PMID: 39726216 PMCID: PMC11894790 DOI: 10.1111/dom.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The gut microbiota plays a pivotal role in influencing the metabolism and immune responses of the body. A balanced microbial composition promotes metabolic health through various mechanisms, including the production of beneficial metabolites, which help regulate inflammation and support immune functions. In contrast, imbalance in the gut microbiota, known as dysbiosis, can disrupt metabolic processes and increase the risk of developing diseases, such as obesity, type 2 diabetes, and inflammatory disorders. The composition of the gut microbiota is dynamic and can be influenced by environmental factors such as diet, medication, and the consumption of live bacteria. Since the early 1900s, bacteria isolated from food and have been used as probiotics. However, the human gut also offers an enormous reservoir of bacterial strains, and recent advances in microbiota research have led to the discovery of strains with probiotic potentials. These strains, derived from a broad spectrum of microbial taxa, differ in their ecological properties and how they interact with their hosts. For most probiotics bacterial structural components and metabolites, such as short-chain fatty acids, contribute to the maintenance of metabolic and immunological homeostasis by regulating inflammation and reinforcing gut barrier integrity. Metabolites produced by probiotic strains can also be used for bacterial cross-feeding to promote a balanced microbiota. Despite the challenges related to safety, stability, and strain-specific properties, several newly identified strains offer great potential for personalized probiotic interventions, allowing for targeted health strategies.
Collapse
Affiliation(s)
- Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
40
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic human gut microbiome and immune shifts during an immersive psychosocial intervention program. Brain Behav Immun 2025; 125:428-443. [PMID: 39701328 PMCID: PMC11903166 DOI: 10.1016/j.bbi.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Although depression is a leading cause of disability worldwide, the pathophysiological mechanisms underlying this disorder-particularly those involving the gut microbiome-are poorly understood. METHOD To investigate, we conducted a community-based observational study to explore complex associations between changes in the gut microbiome, cytokine levels, and depression symptoms in 51 participants (Mage = 49.56, SD = 13.31) receiving an immersive psychosocial intervention. A total of 142 multi-omics samples were collected from participants before, during, and three months after the nine-day inquiry-based stress reduction program. RESULTS Results revealed that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. CONCLUSIONS These findings reveal a potentially protective link between the Prevotella-dominant microbiome and depression, as evidenced by a reduced pro-inflammatory environment and fewer depressive symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, may highlight potential avenues for microbiome-targeted therapies for managing depression.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA
| | - Ariel B Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA; Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA.
| |
Collapse
|
41
|
Zhao M, Zhang Y, Liu S, Wang F, Zhang P. Eradication of Helicobacter pylori reshapes gut microbiota and facilitates the evolution of antimicrobial resistance through gene transfer and genomic mutations in the gut. BMC Microbiol 2025; 25:90. [PMID: 40000989 PMCID: PMC11853306 DOI: 10.1186/s12866-025-03823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Treating Helicobacter pylori (H. pylori) infection requires large quantities of antibiotics, thus dramatically promoting the enrichment and dissemination of antimicrobial resistance (AMR) in feces. However, the influence of H. pylori eradication on the AMR mobility and the gut microbiota evolution has yet to be thoroughly investigated. Here, a study involving 12 H. pylori-positive participants was conducted, and the pre- and post- eradication fecal samples were sequenced. Metagenomic analysis revealed that the eradication treatment drastically altered the gut microbiome, with the Escherichia and Klebsiella genera emerging as the predominant bacteria. Interestingly, the eradication treatment significantly increased the relative abundance and diversity of resistome and mobilome in gut microbiota. Eradication of H. pylori also enriched AMR genes (ARGs) conferring resistance to antibiotics not administered because of the co-location with other ARGs or mobile genetic elements (MGEs). Additionally, the Escherichia and Klebsiella genera were identified as the primary bacterial hosts of these highly transferable ARGs. Furthermore, the genomic variations associated with ARGs in Escherichia coli (E. coli) caused by the eradication treatment were profiled, including the parC, parE, and gyrA genes. These findings revealed that H. pylori eradication promoted the enrichment of ARGs and MGEs in the Escherichia and Klebsiella genera, and further facilitated bacterial evolution through the horizontal transfer of ARGs and genomic variations.
Collapse
Affiliation(s)
- Meiqi Zhao
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
- The Third Central Hospital of Tianjin, Nankai University, Tianjin, 300170, China
| | - Yunlong Zhang
- Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Shuangqing Liu
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Fengmei Wang
- The Third Central Hospital of Tianjin, Nankai University, Tianjin, 300170, China
- Department of Organ Transplantation, Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Peng Zhang
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
42
|
Dunyach-Remy C, Pouget C, Pers YM, Gaujoux-Viala C, Demattei C, Salipante F, Grenga L, Armengaud J, Lavigne JP, Jorgensen C. Participation of gut microbiota and bacterial translocation in chronic systemic inflammation in recently diagnosed rheumatoid arthritis patients. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100366. [PMID: 40123592 PMCID: PMC11928969 DOI: 10.1016/j.crmicr.2025.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
The objective of this study was to investigate the link between gut microbiota (GM) dysbiosis, gut inflammation, and bacterial translocation (BT) in recently diagnosed rheumatoid arthritis (RA). This case-control, observational study prospectively recruited recently diagnosed (<12 months) RA patients and age-matched healthy controls (HC) from two French hospitals between July 2014 to March 2018. The primary objective was to investigate GM composition in each group using 16S rRNA sequencing and metaproteomics approaches. Three plasmatic BT markers (sCD14, LPS-binding protein, and number of 16S rRNA gene copies) and one intestinal permeability marker (I-FABP) were quantified in blood samples. Twenty-five were included in each group, and 50 stools and blood samples were analyzed. 16S rRNA gene analysis showed an decrease in Coprococcus in RA patients after Body Mass Index and HLA status. Circulating bacterial DNA (number of copies of the 16S rRNA gene) and plasmatic I-FABP were higher in RA patients compared to HCs (p < 0.01), indicating increased BT and intestinal permeability in these patients. Metaproteomics from stool samples highlighted an increased host humoral immune response in RA, with elevated levels of inflammatory proteins (azurocidin, cathepsin G, neutrophil defensing 1). Gut inflammation may contribute to increased intestinal permeability, leading to BT into the systemic circulation and thus chronic inflammation.
Collapse
Affiliation(s)
- Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infections, INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Nîmes, France
| | - Cassandra Pouget
- Bacterial Virulence and Chronic Infections, INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Nîmes, France
| | - Yves-Marie Pers
- Department of Rheumatology, Stem cells, Cellular plasticity, Regenerative medicine and Immunotherapies, IRMB, INSERM UMR1183, University of Montpellier & University Hospital of Montpellier, Montpellier, France
| | - Cécile Gaujoux-Viala
- Desbrest Institute of Epidemiology and Public Health, University of Montpellier, INSERM, Department of Rheumatology, CHU Nîmes, Montpellier, France
| | - Christophe Demattei
- Department of Biostatistics, Epidemiology, Public Health and Innovation in Methodology (BESPIM), CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Florian Salipante
- Department of Biostatistics, Epidemiology, Public Health and Innovation in Methodology (BESPIM), CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Lucia Grenga
- Department of Medicines and Technologies for Health, Atomic Energy and Alternative Energies Commission (CEA), Paris-Saclay University, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Department of Medicines and Technologies for Health, Atomic Energy and Alternative Energies Commission (CEA), Paris-Saclay University, Bagnols-sur-Cèze, France
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infections, INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Nîmes, France
| | - Christian Jorgensen
- Department of Rheumatology, Stem cells, Cellular plasticity, Regenerative medicine and Immunotherapies, IRMB, INSERM UMR1183, University of Montpellier & University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
43
|
Li Z, Geng H, Ye C, Cao L, Qin R, Chen K, Fu Y, Liu J. Gut microbial metabolite indole-3-propionic acid alleviates polycystic ovary syndrome in mice by regulating the AhR-NLRP3 axis. Int Immunopharmacol 2025; 148:114038. [PMID: 39826449 DOI: 10.1016/j.intimp.2025.114038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder that significantly impacts female reproductive health and increases the risk of metabolic and reproductive diseases. Emerging evidence suggests that alterations in gut microbiota and their metabolic activities contribute to PCOS pathogenesis, although the underlying mechanisms remain elusive. In the current study, we found that patients with PCOS had altered metabolic profiles, particularly characterized by reduced levels of indole-3-propionic acid (IPA). Administration of IPA alleviated dehydroepiandrosterone (DHEA)-induced PCOS in mice, as demonstrated by improved estrus cycle, insulin sensitivity, ovarian morphology and hormone levels. Additionally, IPA treatment alleviated DHEA-induced oxidative stress in the ovaries and enhanced thermogenesis in brown adipose tissue. Furthermore, IPA attenuated DHEA-induced inflammation both in vivo and in vitro. Mechanistically, IPA treatment suppressed DHEA-induced inflammatory responses and inhibited NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation by activating the aryl hydrocarbon receptor (AhR). Collectively, our findings indicate that IPA ameliorates DHEA-induced PCOS through modulation of the AhR-NLRP3 pathway in mice, suggesting that regulating gut microbial tryptophan metabolism and AhR activation may represent a promising therapeutic strategy for PCOS prevention.
Collapse
Affiliation(s)
- Zhuohan Li
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Huafeng Geng
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Cong Ye
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Lu Cao
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Rui Qin
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Ke Chen
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Junbao Liu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China.
| |
Collapse
|
44
|
Francini E, Badillo Pazmay GV, Fumarola S, Procopio AD, Olivieri F, Marchegiani F. Bi-Directional Relationship Between Bile Acids (BAs) and Gut Microbiota (GM): UDCA/TUDCA, Probiotics, and Dietary Interventions in Elderly People. Int J Mol Sci 2025; 26:1759. [PMID: 40004221 PMCID: PMC11855466 DOI: 10.3390/ijms26041759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The gut microbiota (GM), the set of microorganisms that colonizes our intestinal tract, can undergo many changes, some of which are age related. Several studies have shown the importance of maintaining a healthy GM for a good quality of life. In the elderly, maintaining a good GM may become a real defense against infection by pathogens, such as C. difficile. In addition to the GM, bile acids (BAs) have been shown to provide an additional defense mechanism against the proliferation of pathogenic bacteria and to regulate bacterial colonization of the gut. BAs are molecules produced in the host liver and secreted with the bile into the digestive tract, and they are necessary for the digestion of dietary lipids. In the gut, host-produced BAs are metabolized by commensal bacteria to secondary BAs. In general GM and host organisms interact in many ways. This review examines the relationship between GM, BAs, aging, and possible new approaches such as dietary interventions, administration of ursodesoxycholic acid/tauroursodesoxycholic acid (UDCA/TUDCA), and probiotics to enrich the microbial consortia of the GM in the elderly and achieve a eubiotic state necessary for maintaining good health. The presence of Firmicutes and Actinobacteria together with adequate levels of secondary BAs would provide protection and improve the frailty state in the elderly. In fact, an increase in secondary BAs has been observed in centenarians who have reached old age without serious health issues, which may justify their active role in achieving longevity.
Collapse
Affiliation(s)
- Emanuele Francini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
| | - Gretta V. Badillo Pazmay
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
| | - Stefania Fumarola
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
| | - Antonio Domenico Procopio
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Fabiola Olivieri
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Francesca Marchegiani
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
| |
Collapse
|
45
|
Dai J, Wang W, He F, Wang Y, Zou D. Alleviation of DSS-induced colitis by Meconopsis polysaccharides correlated with reduced PI3K/AKT signaling and gut microbiome diversity. Front Pharmacol 2025; 16:1459668. [PMID: 40012624 PMCID: PMC11861192 DOI: 10.3389/fphar.2025.1459668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Inflammatory bowel disease (IBD) is a recurrent gastrointestinal disorder that significantly impacts patients' quality of life globally. This study focuses on the polysaccharides (MP) extracted from Meconopsis integrifolia, to investigate its role in alleviating DSS (dextran sulfate sodium)-induced colitis in mice. Methods The study commenced with a comprehensive chemical characterization of Meconopsis polysaccharides. Subsequently, the colitis-alleviating activity of MP was validated through in vivo experiments. Results The results revealed that MP is primarily composed of ten monosaccharides, exhibits good thermal stability, and has a relatively uniform molecular weight distribution. In vivo experiments demonstrated that MP significantly mitigated DSS-induced weight loss, increased DAI, colon shortening, and tissue damage in mice. Furthermore, MP reduced the levels of inflammatory cytokines such as IL-1β, TNF-α, and IL-6 in serum. Mechanistically, MP exerted its anti-inflammatory effects by inhibiting the activation of the PI3K/AKT signaling pathway. Additionally, MP promoted gut microbiota diversity and regulated SCFA concentrations, contributing to an improved intestinal microenvironment and alleviation of colitis symptoms. Discussion Our findings highlight the superior effectiveness of Meconopsis polysaccharides in alleviating DSS-induced colitis and open new avenues for targeted therapeutic strategies in the treatment of IBD.
Collapse
Affiliation(s)
- Jun Dai
- Engineering technology research center of Plant Cell Engineering, West AnHui University, Lu’an, China
| | - Weidong Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fangfang He
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yujuan Wang
- Engineering technology research center of Plant Cell Engineering, West AnHui University, Lu’an, China
| | - Denglang Zou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
46
|
Guerrero P, Albarrán V, González-Merino C, García de Quevedo C, Sotoca P, Chamorro J, Rosero DI, Barrill A, Alía V, Calvo JC, Moreno J, Pérez de Aguado P, Álvarez-Ballesteros P, San Román M, Serrano JJ, Soria A, Olmedo ME, Saavedra C, Cortés A, Gómez A, Lage Y, Ruiz Á, Ferreiro MR, Longo F, Guerra E, Martínez-Delfrade Í, Garrido P, Gajate P. Detrimental effect of an early exposure to antibiotics on the outcomes of immunotherapy in a multi-tumor cohort of patients. Oncologist 2025; 30:oyae284. [PMID: 39425911 PMCID: PMC11883155 DOI: 10.1093/oncolo/oyae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) have changed the therapeutic landscape of many solid tumors. Modulation of the intestinal microbiota by antibiotics (Abx) has been suggested to impact on ICI outcomes. METHODS Retrospective analysis of 475 patients with advanced solid tumors treated with ICI from 2015 to 2022. For each patient, the use of Abx was recorded from 1 month before ICI initiation until disease progression or death. The impact of Abx on objective response rates (ORR), disease control rates (DCR), progression-free survival (PFS), and overall survival (OS) was analyzed. Kaplan-Meier and log-rank tests were used to compare survival outcomes. RESULTS In total 475 patients with advanced solid tumors were evaluated. Median age was 67.5 years and performance status (PS) was 0-1 in 84.6%. 66.5% of patients received Abx during treatment with ICI, mainly beta-lactams (53.8%) and quinolones (35.9%). The early exposure to Abx (from 60 days before to 42 days after the first cycle of ICI) was associated with a lower ORR (27.4% vs 39.4%; P < .01), a lower DCR (37.3% vs 57.4%; P < .001), lower PFS (16.8 m vs 27.8 m; HR 0.66; P < .001]) and lower OS (2.5 m vs 6.6 m; HR 0.68; P = .001]). The negative impact of Abx on OS and PFS was confirmed by a multivariable analysis. This effect was not observed among patients receiving Abx after 6 weeks from ICI initiation. CONCLUSIONS Our results validate the hypothesis of a detrimental effect of an early exposure to Abxon the efficacy of ICI in a multi-tumor cohort of patients.
Collapse
Affiliation(s)
- Patricia Guerrero
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Víctor Albarrán
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | - Pilar Sotoca
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Jesús Chamorro
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Diana Isabel Rosero
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Ana Barrill
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Víctor Alía
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Juan Carlos Calvo
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Jaime Moreno
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | - María San Román
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Juan José Serrano
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Ainara Soria
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - María Eugenia Olmedo
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Cristina Saavedra
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Alfonso Cortés
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Ana Gómez
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Yolanda Lage
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Álvaro Ruiz
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - María Reyes Ferreiro
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Federico Longo
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Eva Guerra
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | - Pilar Garrido
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Pablo Gajate
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| |
Collapse
|
47
|
Yang Q, He WH, Xie L, Chen T, Liu RF, Hu JJ, Guo JY, Tan GZ, Wu FL, Gu P, Chen P, Chen Y. Oral administration of astilbin mitigates acetaminophen-induced acute liver injury in mice by modulating the gut microbiota. Acta Pharmacol Sin 2025; 46:416-429. [PMID: 39313515 PMCID: PMC11747501 DOI: 10.1038/s41401-024-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/25/2024]
Abstract
Acetaminophen (APAP) overdose-induced acute liver injury (ALI) is characterized by extensive oxidative stress, and the clinical interventions for this adverse effect remain limited. Astilbin is an active compound found in the rhizome of Smilax glabra Roxb. with anti-inflammatory and antioxidant activities. Due to its low oral bioavailability, astilbin can accumulate in the intestine, which provides a basis for the interaction between astilbin and gut microbiota (GM). In the present study we investigated the protective effects of astilbin against APAP-induced ALI by focusing on the interaction between astilbin and GM. Mice were treated with astilbin (50 mg·kg-1·d-1, i.g.) for 7 days. After the last administration of astilbin for 2 h, the mice received APAP (300 mg/kg, i.g.) to induce ALI. We showed that oral administration of astilbin significantly alleviated APAP-induced ALI by altering the composition of GM and enriching beneficial metabolites including hydroxytyrosol (HT). GM depletion using an "antibiotics cocktail" or paraoral administration of astilbin abolished the hepatoprotective effects of astilbin. On the other hand, administration of HT (10 mg/kg, i.g.) caused similar protective effects in APAP-induced ALI mice. Transcriptomic analysis of the liver tissue revealed that HT inhibited reactive oxygen species and inflammation-related signaling in APAP-induced ALI; HT promoted activation of the Nrf2 signaling pathway to combat oxidative stress following APAP challenge in a sirtuin-6-dependent manner. These results highlight that oral astilbin ameliorates APAP-induced ALI by manipulating the GM and metabolites towards a more favorable profile, and provide an alternative therapeutic strategy for alleviating APAP-induced ALI.
Collapse
Affiliation(s)
- Qin Yang
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528244, China
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Hao He
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Ruo-Fan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Jia Hu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Yin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guo-Zhu Tan
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528244, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Fu-Ling Wu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yu Chen
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528244, China.
| |
Collapse
|
48
|
Lista S, Munafò A, Caraci F, Imbimbo C, Emanuele E, Minoretti P, Pinto-Fraga J, Merino-País M, Crespo-Escobar P, López-Ortiz S, Monteleone G, Imbimbo BP, Santos-Lozano A. Gut microbiota in Alzheimer's disease: Understanding molecular pathways and potential therapeutic perspectives. Ageing Res Rev 2025; 104:102659. [PMID: 39800223 DOI: 10.1016/j.arr.2025.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Accumulating evidence suggests that gut microbiota (GM) plays a crucial role in Alzheimer's disease (AD) pathogenesis and progression. This narrative review explores the complex interplay between GM, the immune system, and the central nervous system in AD. We discuss mechanisms through which GM dysbiosis can compromise intestinal barrier integrity, enabling pro-inflammatory molecules and metabolites to enter systemic circulation and the brain, potentially contributing to AD hallmarks. Additionally, we examine other pathophysiological mechanisms by which GM may influence AD risk, including the production of short-chain fatty acids, secondary bile acids, and tryptophan metabolites. The role of the vagus nerve in gut-brain communication is also addressed. We highlight potential therapeutic implications of targeting GM in AD, focusing on antibiotics, probiotics, prebiotics, postbiotics, phytochemicals, and fecal microbiota transplantation. While preclinical studies showed promise, clinical evidence remains limited and inconsistent. We critically assess clinical trials, emphasizing challenges in translating GM-based therapies to AD patients. The reviewed evidence underscores the need for further research to elucidate precise molecular mechanisms linking GM to AD and determine whether GM dysbiosis is a contributing factor or consequence of AD pathology. Future studies should focus on large-scale clinical trials to validate GM-based interventions' efficacy and safety in AD.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Antonio Munafò
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | | | | | - José Pinto-Fraga
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - María Merino-País
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Paula Crespo-Escobar
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Rome 00133, Italy.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| |
Collapse
|
49
|
Theodosiou AA, Fady PE, Bennett N, Read RC, Bogaert D, Jones CE. Microbiotoxicity: A call to arms for cross-sector protection of the human microbiome. J Infect 2025; 90:106408. [PMID: 39788158 DOI: 10.1016/j.jinf.2025.106408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Affiliation(s)
- Anastasia A Theodosiou
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G128TA, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK.
| | - Paul-Enguerrand Fady
- Biosecurity Policy Unit, The Centre for Long-Term Resilience, London WC2H 9JQ, England, UK
| | | | - Robert C Read
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK
| | - Debby Bogaert
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH164TJ, UK
| | - Christine E Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK
| |
Collapse
|
50
|
McIntyre DB, Long BM, Dawson BM, Barton PS. Effect of insect exclusion and microbial perturbation on piglet mass loss and total body score. Forensic Sci Int 2025; 367:112336. [PMID: 39644725 DOI: 10.1016/j.forsciint.2024.112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Recent conceptual and empirical developments in decomposition research have highlighted the intricate dynamics within necrobiome communities and the roles of various decay drivers. Yet the interactions between these factors and their regulatory mechanisms remain relatively unexplored. A comprehensive understanding of this facet of decomposition science is important, given its broad applicability across ecological and forensic disciplines, and current lack of research which investigates the inter-dependencies between two critical components of the necrobiome (the microbiome and insect activity), and the consequences of this interdependency on mass loss and total body score. Here we investigated the relationships among these key aspects of the decay process. We experimentally manipulated these variables by physically excluding insects and chemically perturbing the external microbiome of piglet (Sus scrofa) carcasses and quantified the effects on mass loss and total body score, as well as insect pre-appearance interval and colonisation. We found that piglets in the insect excluded and microbially perturbed treatment groups exhibited a significant delay in reaching 50 + % of mass loss compared with control piglets with insect access and intact microbiome. However, only remains with insects excluded displayed a significantly slower rate of total mass loss throughout the majority of the experiment and remained a significantly higher mass at the endpoint of 11,000 accumulative degree hours. Additionally, all insect excluded and microbially perturbed treatment groups displayed significantly lower total body scores compared to control piglets at corresponding time points. We also observed a significant delay in insect pre-appearance interval and colonisation for piglets with perturbed microbiomes compared to control piglets. Our findings demonstrate the significance of interacting components of the necrobiome, and the power of manipulative experiments in revealing causal relationships between biota and decomposition rates. These considerations are paramount for developing accurate post-mortem interval estimations and a comprehensive understanding of ecological processes during decomposition.
Collapse
Affiliation(s)
- Donna B McIntyre
- Future Regions Research Centre, Federation University, Mount Helen, VIC 3350, Australia; Graduate Research School, Federation University, Mount Helen, VIC 3350, Australia.
| | - Benjamin M Long
- Future Regions Research Centre, Federation University, Mount Helen, VIC 3350, Australia
| | - Blake M Dawson
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia
| | - Philip S Barton
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|