1
|
Dong L, Long T, Zhang S, Mao Y, Liu M, Zhao F, Yang Z, Li L, Chen SW, Liao S, Dong Y. Structure-activity relationship explorations of 2-(isoxazol-5-yl)phenyl-3,4-dihydroxybenzoate derivatives to develop potent Wnt/β-catenin pathway inhibitors for colorectal cancer treatment. Bioorg Chem 2025; 160:108433. [PMID: 40188614 DOI: 10.1016/j.bioorg.2025.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/08/2025]
Abstract
In the canonical Wnt/β-catenin pathway, the nucleus translocation of β-catenin and β-catenin/ B-cell lymphoma 9 (BCL9) protein-protein interactions (PPI) promote the expressions of oncoproteins (Cyclin D1 and C-myc), thereby inducing the colorectal cancer. Herein, we report the identification of the highly potent Wnt/β-catenin pathway inhibitor 19 t following structure-activity relationship (SAR) exploration of 2-(isoxazol-5-yl)phenyl-3,4-dihydroxybenzoate which was discovered by our previous work. Further mechanism research confirmed that the optimized compound 19 t reduced the expressions of oncoproteins (Cyclin D1 and C-myc) through inhibiting the nucleus translocation of β-catenin and disrupting the interaction of β-catenin/BCL9, thereby inducing the apoptosis of SW480 cells. Encouragingly, the results of HCT116-xenograft nude mice demonstrated that the compound 19 t with acceptable pharmacokinetic parameters significantly inhibited tumor growth (TGI: 61.85 % at 20 mg/kg and 77.52 % at 40 mg/kg) and did not exhibit objective hepatotoxicity and nephrotoxicity. Consistently, the compound 19 t could also inhibit expressions of Cyclin D1 and C-myc in vivo. Collectively, the optimized compound 19 t could serve as a promising Wnt/β-catenin pathway inhibitor for colorectal cancer treatment.
Collapse
Affiliation(s)
- Li Dong
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District, 561113, China.
| | - Tiemei Long
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District, 561113, China
| | - Shanghui Zhang
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District, 561113, China
| | - Yongqing Mao
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District, 561113, China
| | - Mingji Liu
- Pharmacy Department, Guizhou Provincial People's Hospital, Nanming District, 550002, Guiyang, China
| | - Fuhui Zhao
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District, 561113, China
| | - Zhangxiang Yang
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District, 561113, China
| | - Lei Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang 550004, China
| | - Shi-Wu Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Shanggao Liao
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District, 561113, China.
| | - Yongxi Dong
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District, 561113, China.
| |
Collapse
|
2
|
Gu T, Raval R, Bashkin Z, Zhou C, Ko S, Kong N, Hong S, Bhaskara A, Shah S, Joshi A, Thellakal S, Rim K, Marimuthu A, Venkatesan S, Wang E, Li S, Jayabalan A, Tao A, Fang Y, Xia L, Chui A, Shu E, Zhang T, Chen Z, Njoo E. Synthesis, antiproliferative activity, and biological profiling of C-19 trityl and silyl ether andrographolide analogs in colon cancer and breast cancer cells. Bioorg Med Chem Lett 2025; 121:130163. [PMID: 40043819 DOI: 10.1016/j.bmcl.2025.130163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/08/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Andrographolide, a labdane diterpenoid isolated from Andrographis paniculata, putatively functions through covalent inhibition of NF-κB, a transcription factor that modulates tumor survival and metastasis. Previous studies have found that functionalization of the C-19 hydroxyl alters the primary mode of action from inhibition of NF-κB to the modulation of the Wnt1/β-catenin signaling pathway. Here, we synthesized a series of twelve C-19 trityl and silyl ether analogs, including three novel substituted trityl analogs and four novel substituted silyl analogs of andrographolide. MTT assays revealed cell line selectivity between colorectal and breast cancer cells, which is consistent with known mechanisms of β-catenin-driven cell proliferation in colorectal cancer cell lines. Most compounds exhibited cell line specific antiproliferative activity in HCT-116 and HT-29 colorectal cancer cell lines. Specifically, within 24 h, C-19 analogs of andrographolide exhibit far more limited antiproliferative activity in MCF-7 breast cancer cells compared to HCT-116, HT-29, and MDA-MB-231 cells. Through in vitro TNF-α-dependent NF-κB reporter and Wnt1-dependent luciferase reporter assays, we observed that several analogs generally exhibit greater inhibitory activity compared to andrographolide. Fluorescence imaging demonstrated that cells treated with andrographolide and its C-19 analogs retained similar distributions of active β-catenin, but notable differences in antiproliferative potency upon co-delivery with GSK-3β inhibitor CHIR99021 indicate that several lead compounds exhibit attenuated biological activity selectively in HT-29 cells. Collectively, this work indicates that modest structural modifications at C-19 of andrographolide can have profound implications for its biological activity in mechanisms connected to its anticancer activity.
Collapse
Affiliation(s)
- Tiffany Gu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Rushika Raval
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Zachary Bashkin
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Carina Zhou
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Sanghyuk Ko
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Natalie Kong
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Seoyeon Hong
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Aditya Bhaskara
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Samarth Shah
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Aditi Joshi
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Samahith Thellakal
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Kaitlyn Rim
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Anushree Marimuthu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Srishti Venkatesan
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Emma Wang
- Department of Computer Science & Engineering, Aspiring Scholars Directed Research Program, USA
| | - Sophia Li
- Department of Computer Science & Engineering, Aspiring Scholars Directed Research Program, USA
| | - Aditi Jayabalan
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Alice Tao
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Yilin Fang
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Lorelei Xia
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Aidan Chui
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Emily Shu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Tracy Zhang
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Zhan Chen
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Edward Njoo
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA.
| |
Collapse
|
3
|
Nasir A, Afridi M, Afridi OK, Khan MA, Khan A, Zhang J, Qian B. The persistent pain enigma: Molecular drivers behind acute-to-chronic transition. Neurosci Biobehav Rev 2025; 173:106162. [PMID: 40239909 DOI: 10.1016/j.neubiorev.2025.106162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
The transition from acute to chronic pain is a complex and multifactorial process that presents significant challenges in both diagnosis and treatment. Key mechanisms of peripheral and central sensitization, neuroinflammation, and altered synaptic plasticity contribute to the amplification of pain signals and the persistence of pain. Glial cell activation, particularly microglia and astrocytes, is pivotal in developing chronic pain by releasing pro-inflammatory cytokines that enhance pain sensitivity. This review explores the molecular, cellular, and systemic mechanisms underlying the transition from acute to chronic pain, offering new insights into the molecular and neurobiological mechanisms involved, which are often underexplored in existing literature. It also addresses emerging therapeutic strategies beyond traditional pain management, offering valuable perspectives for future research and clinical applications.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Maryam Afridi
- Department of Pharmacy, Qurtuba University, Peshawar, KP, Pakistan
| | | | | | - Amir Khan
- Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jun Zhang
- Department of Pain, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Bai Qian
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
4
|
Bai P, Wang P, Ren T, Tang Q, Lin Z, Zhang N, Zhao L, Zhong R, Sun G. Natural small molecule thymoquinone increases the chemosensitivity of glioblastoma to temozolomide through inhibiting Wnt/β-catenin signaling pathway to downregulate MGMT expression: In vitro and in vivo validation. Biochem Pharmacol 2025; 236:116886. [PMID: 40127739 DOI: 10.1016/j.bcp.2025.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Temozolomide (TMZ) is the only one oral first-line chemotherapeutic drug for glioblastoma treatment. However, O6-methylguanine-DNA methyltransferase (MGMT) can repair the lethal O6-methylguaine (O6-MeG) lesion produced by TMZ, thus imparting resistance to TMZ. Currently, the clinical utility of small molecule covalent MGMT inhibitors is limited by the occurrence of severe hematological toxicity. Therefore, developing new strategies for overcoming MGMT-mediated resistance is highly urgent. Here, we explored the feasibility that modulating Wnt/β-catenin signaling pathway in glioblastoma to inhibit MGMT expression to overcome TMZ resistance. From eight natural products or approved drugs with inhibitory effects on Wnt/β-catenin pathway, we found thymoquinone (TQ) completely suppressed MGMT expression in glioblastoma SF763 and SF767 cell lines within 24 h. As expected, TQ exhibited synergistic killing effects with TMZ in SF763 and SF767 cells, while in MGMT-negative SF126 cells only additive effect observed. Moreover, TQ remarkably enhanced the inhibition of TMZ on cell proliferation, clone formation, invasion and migration, and promoted cell apoptosis. In resistant SF763 mice tumor xenograft model, TQ significantly increased the suppression of TMZ on tumor growth, meanwhile maintaining good biosafety. Western blotting analysis indicated that TQ significantly inhibited the nuclear translocation of β-catenin and the expression of downstream proteins Cyclin D1 and MGMT. The addition of Wnt activator LiCl reversed the nuclear translocation of β-catenin and the expression of Cyclin D1 and MGMT induced by TQ. For the first time, our findings indicate that TQ can considerably increase the sensitivity of glioblastoma to TMZ by interfering Wnt/β-catenin pathway to downregulate MGMT expression.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peng Wang
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ziao Lin
- OmixScience Research Institute, OmixScience Co., Ltd., Hangzhou 311199, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311100, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
5
|
Tal A, Gunawardana-Zeigler S, Peng D, Tan Y, Perez NM, Offenbacher R, Kastner L, Ciero P, Randolph ME, Gong Y, Deng HW, Cahan P, Loeb DM. Inhibition of DKK-1 by WAY262611 Inhibits Osteosarcoma Metastasis. Mol Cancer Ther 2025; 24:728-739. [PMID: 39781890 PMCID: PMC12048250 DOI: 10.1158/1535-7163.mct-24-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in osteosarcoma pathogenesis. DKK-1 inhibits the canonical Wnt signaling pathway, causing inhibition of osteoblast differentiation and disordered bone repair. Our lab previously demonstrated that an mAb against DKK-1 prevented metastatic disease in a mouse model. This study expands upon those findings by demonstrating similar results with a small-molecule inhibitor of DKK-1, WAY262611, both in vitro and in vivo. WAY262611 was evaluated in vitro on osteosarcoma cell lines, including proliferation, caspase activation, cell-cycle analysis, and signaling pathway activation. We utilized our orthotopic implantation/amputation model of osteosarcoma metastasis in vivo to determine the impact of WAY262611 on primary tumor progression and metastatic outgrowth of disseminated tumor cells. Differentiation status was determined using single-cell RNA sequencing. We show here that WAY262611 activates canonical Wnt signaling, enhances nuclear localization and transcriptional activity of β-catenin, and slows proliferation of osteosarcoma cell lines. We also show that WAY262611 induces osteoblastic differentiation of a patient-derived xenograft of osteosarcoma in vivo, as well as inhibiting metastasis. This work credentials DKK-1 as a therapeutic target in osteosarcoma, allowing for manipulation of the Wnt signaling pathway and providing preclinical justification for the development of new biologics for the prevention of osteosarcoma metastasis.
Collapse
Affiliation(s)
- Adit Tal
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY
| | - Shimara Gunawardana-Zeigler
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Da Peng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Yuqi Tan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
- Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, CA
| | - Natalia Munoz Perez
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
| | - Rachel Offenbacher
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY
| | - Laurel Kastner
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Paul Ciero
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Matthew E. Randolph
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Yun Gong
- Department of Medicine, School of Medicine, Tulane University, New Orleans, LA
| | - Hong-Wen Deng
- Department of Medicine, School of Medicine, Tulane University, New Orleans, LA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - David M. Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
6
|
Saadh MJ, Ghnim ZS, Mahdi MS, Mandaliya V, Ballal S, Bareja L, Chaudhary K, Sharma R, Gupta S, Taher WM, Alwan M, Jawad MJ, Hamad AK. The emerging role of kinesin superfamily proteins in Wnt/β-catenin signaling: Implications for cancer. Pathol Res Pract 2025; 269:155904. [PMID: 40073645 DOI: 10.1016/j.prp.2025.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Cellular processes such as proliferation, differentiation, and tissue homeostasis are significantly influenced by the Wnt/β-catenin signaling pathway. Dysregulation of this pathway has been implicated in the development of various types of cancer. This study focuses on the emerging role of kinesin superfamily proteins (KIFs) in modulating cancer signaling. KIFs, a group of motor proteins, have attracted attention for their dual roles in intracellular transport: facilitating the cellular entry of Wnt ligands and contributing to the assembly of the β-catenin destruction complex. The study explores the interactions between KIFs and the Wnt/β-catenin pathway, identifying specific KIFs that interact with key components of the signaling cascade and examining their roles in cancer progression. Furthermore, it evaluates therapeutic strategies targeting KIFs to suppress aberrant Wnt activity in cancer and investigates how KIF-mediated transport spatially and temporally regulates Wnt signaling. The insights provided could guide future research into the role of KIFs in cancer biology and their involvement in oncogenic signaling pathways.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Viralkumar Mandaliya
- Marwadi University Research Center, Department of Microbiology, Faculty of Science Marwadi University, Rajkot, Gujarat 360003, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Rsk Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | |
Collapse
|
7
|
Bronte F, D'Amato F, Barcellona MR, Bronte G, Malizia G, Ialuna S, Fusco G, Verderame F, Bronte E, Bavetta MG. The Association Between Hepatocellular Carcinoma and Gastrointestinal Adenocarcinoma: Is This a New Syndrome in Patients With Cirrhosis? A Case Series. Cancer Rep (Hoboken) 2025; 8:e70182. [PMID: 40348604 PMCID: PMC12062874 DOI: 10.1002/cnr2.70182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/04/2025] [Accepted: 03/05/2025] [Indexed: 05/14/2025] Open
Abstract
AIM This case series aimed to explore the occurrence of synchronous hepatocellular carcinoma (HCC) and gastrointestinal adenocarcinoma in cirrhotic patients and to propose a potential common pathogenic mechanism. CASES We reviewed the available literature and retrospectively analyzed seven cases of cirrhotic patients with synchronous HCC and gastrointestinal adenocarcinoma (colon or gastric) identified in our center between March 2020 and June 2023. All patients underwent upper gastrointestinal endoscopy, abdominal ultrasound, computed tomography (CT) scan, and histological confirmation through biopsy or surgery. The mean age of the patients was 77.3 years (range 76-83), with five males and two females. Five patients had liver cirrhosis, and two had chronic hepatitis (one with HCV, one with MASLD). HCC was confirmed in all patients, with elevated alpha-fetoprotein levels (mean: 737.6 ng/mL). Colon adenocarcinoma was found in five patients, and gastric adenocarcinoma in one patient. Genetic and microsatellite instability analyses were performed in selected cases, revealing high microsatellite instability in one patient. We suggest that the Wnt/APC/β-catenin pathway might play a key role in the pathogenesis of both HCC and gastrointestinal malignancies. CONCLUSIONS Synchronous HCC and gastrointestinal adenocarcinoma may be increasingly identified due to prolonged survival in cirrhotic patients. Alterations in the Wnt/APC/β-catenin pathway could represent a shared pathogenic mechanism. Regular surveillance through ultrasound and endoscopy is essential for early diagnosis in this high-risk population. Future research is needed to confirm these findings and explore targeted treatments.
Collapse
Affiliation(s)
- Fabrizio Bronte
- Gastroenterology UnitOspedali Riuniti Villa Sofia – V. CervelloPalermoItaly
| | - Fabio D'Amato
- Interventional Radiology and Neuroradiology UnitOspedali Riuniti Villa Sofia – V. CervelloPalermoItaly
| | | | - Giuseppe Bronte
- Department of Translational MedicineUniversity of FerraraFerraraItaly
- Department of OncologyUniversity Hospital of FerraraFerraraItaly
| | - Giuseppe Malizia
- Gastroenterology UnitOspedali Riuniti Villa Sofia – V. CervelloPalermoItaly
| | - Salvatore Ialuna
- Nuclear Medicine UnitOspedali Riuniti Villa Sofia – V. CervelloPalermoItaly
| | - Giorgio Fusco
- HepatOncology UnitOspedali Riuniti Villa Sofia – V. CervelloPalermoItaly
| | | | - Enrico Bronte
- Oncology UnitOspedali Riuniti Villa Sofia – V. CervelloPalermoItaly
| | | |
Collapse
|
8
|
Jiang J, Wu Q, Rajasekaran S, Wu R. MMP3 at the crossroads: Linking molecular pathways to disease diagnosis and therapy. Pharmacol Res 2025; 216:107750. [PMID: 40311957 DOI: 10.1016/j.phrs.2025.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Matrix metalloproteinase 3 (MMP-3) is a multifaceted enzyme that plays a critical role in the regulation of extracellular matrix (ECM) dynamics, influencing both normal physiological and pathological processes. In addition to its established role in ECM degradation, MMP-3 is gaining recognition for modulating cellular behaviors such as inflammation, migration, and proliferation. Recent research has uncovered its capacity to activate latent signaling molecules, release growth factors from the ECM and interact with various cell surface receptors, linking MMP-3 to the progression of various diseases, including inflammatory diseases, infection diseases, cardiovascular diseases, neurodegenerative disorders, and cancer. The review provides an overview of MMP-3's molecular regulation, emphasizing the mechanisms controlling its expression and activity. We discuss MMP3's involvement in both ECM-dependent and independent pathways, and its potential as a diagnostic, prognostic biomarker in various diseases. Additionally, we explore therapeutic strategies targeting MMP-3, summarizing ongoing efforts to develop specific inhibitors and modulate its activity in different pathologic conditions. Through this review, we aim to consolidate the diverse functions of MMP-3 and provide new insights into future research directions, particularly in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jing Jiang
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Binzhou Medical University, Yantai, China
| | - Qiong Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Snekha Rajasekaran
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
9
|
Koch MS, Deo M, Schmitt LM, Hoetker MS, Turcan Ş. GSK3 acts as a switch for transcriptional programs in a model of low-grade gliomagenesis. Acta Neuropathol Commun 2025; 13:87. [PMID: 40307935 PMCID: PMC12042597 DOI: 10.1186/s40478-025-02006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH)1/2 are defining drivers of low-grade gliomagenesis. However, mutant IDH alone is not sufficient for malignant transformation, and additional events are required for the development of low-grade glioma. While specific genetic lesions have been identified to contribute to low-grade gliomagenesis, less is known about the signaling pathways involved in the acquisition of malignancy. To identify prerequisites of IDH mutant tumorigenesis, we modulated pathways previously implicated in glioma initiation using a tractable in vitro model system for early IDH1R132H-dependent gliomagenesis. Through the use of chemical compounds, we targeted WNT/GSK3, TGF-β and NOTCH-signaling, assessing their functional, transcriptional, and translational impacts. Expression of LGG-related marker L1CAM was affected by perturbation of all pathways, though only modulation of WNT/GSK3-signaling resulted in profound molecular transformation, including glioma-associated genes and programs regulating cellular architecture and cell replication. This was accompanied by altered cell morphology, migration capacity, and enhanced proliferation. Transcription factor RUNX2 was identified as a potential downstream effector, whose inhibition abrogated cell proliferation. Disrupted WNT/GSK3 signaling in a model system of early low-grade gliomagenesis fundamentally impacted cell fate, as demonstrated by a reshaped transcriptional landscape, aberrant transcription factor activity, extracellular matrix restructuring, and altered proliferation capacity. Our data suggests that GSK3 may play a central role during low-grade gliomagenesis, warranting further investigation.
Collapse
Affiliation(s)
- Marilin S Koch
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology, University Hospital Heidelberg and National Center for Tumor Diseases, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Minh Deo
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology, University Hospital Heidelberg and National Center for Tumor Diseases, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Lena-Marie Schmitt
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology, University Hospital Heidelberg and National Center for Tumor Diseases, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Michael S Hoetker
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Şevin Turcan
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Neurology and Neurooncology, University Hospital Heidelberg and National Center for Tumor Diseases, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Ren F, Yi Y, Lu T, Liu X, Cui G, Huang S, Parada LF, Chen J. Synthetic lethality through Gsk3β inhibition in glioma stem cells via the WNT-WWC1-YAP axis. Oncogene 2025:10.1038/s41388-025-03418-9. [PMID: 40269262 DOI: 10.1038/s41388-025-03418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor driven by glioma stem cells (GSCs), which contribute to tumor growth and therapeutic resistance. This study investigates the effects of Gsk3β inhibition on GSC viability, focusing on the role of the canonical WNT signaling pathway. We found that Gsk3β inhibition activates the WNT pathway, leading to upregulation of Wwc1, which downregulates Yap via Lats1 phosphorylation. This reduces GSC proliferation, self-renewal, and enhances chemosensitivity. Analysis of clinical datasets revealed that WNT pathway activation correlates with improved prognosis in proneural gliomas, particularly in IDH1-mutated tumors. Our findings suggest that targeting the WNT-WWC1-YAP axis, particularly through Gsk3β inhibition, could induce synthetic lethality in GSCs and provide a promising therapeutic strategy for gliomas. These results highlight the potential of exploiting WNT-induced synthetic lethality as a novel approach for glioma treatment.
Collapse
Affiliation(s)
- Fangfang Ren
- National Institute of Biological Sciences, Beijing, China
| | - Yulan Yi
- Institute of Functional Nano and Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Ting Lu
- Department of Neurosurgery, First affiliated Hospital of Soochow University, Suzhou, China
| | - Xinze Liu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, Beijing, China
| | - Gang Cui
- Department of Neurosurgery, First affiliated Hospital of Soochow University, Suzhou, China
| | - Song Huang
- National Institute of Biological Sciences, Beijing, China
| | - Luis F Parada
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China.
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Chinese Institute for Brain Research, Beijing, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
11
|
Bai P, Wang P, Ren T, Tang Q, Zhang N, Zhao L, Zhong R, Sun G. Discovery of a novel Wnt inhibitor DK419: Reversing temozolomide resistance in glioblastoma by switching off Wnt/β-catenin signaling pathway to inhibit MGMT expression. Eur J Med Chem 2025; 288:117411. [PMID: 39978109 DOI: 10.1016/j.ejmech.2025.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Temozolomide (TMZ) remains the primary oral chemotherapeutic agent for glioblastoma, but its efficacy is hampered by resistance mechanisms involving O6-methylguanine-DNA methyltransferase (MGMT). MGMT repairs the TMZ-induced lethal O6-methylguanine (O6-MeG) lesions, leading to treatment resistance. Current small molecule covalent MGMT inhibitors have limited clinical application due to severe hematological toxicity when used with TMZ. Therefore, alternative strategies to overcome MGMT-mediated resistance are critically needed. Targeting the Wnt/β-catenin signaling pathway to suppress MGMT expression presents a promising approach. We synthesized and discovered that a novel Wnt inhibitor, DK419 (6-chloro-2-(trifluoromethyl)-N-(4-(trifluoromethyl)phenyl)-1H -benzimidazole-4-carboxamide), effectively suppressed MGMT expression within 12 h in TMZ-resistant SF763 and SF767 cell lines. DK419 demonstrated synergistic cytotoxic effects with TMZ in these cell lines, while only an additive effect was observed in MGMT-negative SF126 cells. Furthermore, DK419 significantly enhanced TMZ's inhibitory effects on cell proliferation, colony formation, invasion, and migration, while also promoting apoptosis. In a resistant mouse tumor xenograft model, DK419 significantly boosted TMZ's tumor growth suppression, maintaining good biosafety. Western blot analysis revealed that DK419 markedly inhibited the nuclear translocation of β-catenin and decreased the expression of its downstream targets, Cyclin D1 and MGMT. The addition of the Wnt activator LiCl reversed DK419-induced effects on β-catenin nuclear translocation and Cyclin D1 and MGMT expression. For the first time, our findings demonstrate that DK419 can significantly enhance glioblastoma sensitivity to TMZ by modulating the Wnt/β-catenin pathway to downregulate MGMT expression.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
12
|
Bagheri L, Javanbakht M, Malekian S, Ghahderijani BH, Taghipour S, Tanha FD, Ranjkesh M, Cegolon L, Zhao S. Antifibrotic therapeutic strategies in systemic sclerosis: Critical role of the Wnt/β-catenin and TGF-β signal transduction pathways as potential targets. Eur J Pharmacol 2025; 999:177607. [PMID: 40209848 DOI: 10.1016/j.ejphar.2025.177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrosing disorder characterized by widespread fibrosis and immune dysregulation. Current evidence highlights the intricate cross-talk between the canonical Wnt/β-catenin signaling pathway and transforming growth factor-beta (TGF-β) signaling, both of which play fundamental roles in the pathogenesis of fibrosis. This review aims to elucidate the central role of the Wnt/β-catenin-TGF-β pathway and TGF-β signal transduction pathway in fibrotic diseases, focusing on SSc. We summarized evidence from cellular biology studies, animal model investigations and clinical observations to provide a comprehensive view of the mechanisms causing pathological fibrosis. In addition, we explore the possibilities of antifibrotic therapeutic strategies against Wnt/β-catenin-TGF-β signaling to counteract fibrosis, delineating approaches for treatment of SSc patients by targeting these interconnected signaling pathways.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sheida Malekian
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sadra Taghipour
- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Davari Tanha
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Luca Cegolon
- Department of Medical, Surgical & Health Sciences, University of Trieste, 34128, Trieste, Italy; Public Health Unit, University Health Agency Giuliano-Isontina (ASUGI), 34148, Trieste, Italy
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
13
|
Vinaixa J, Martínez-Bosch N, Gibert J, Manero-Rupérez N, Santofimia-Castaño P, Baudou FG, Vera RE, Pease DR, Iglesias M, Sen S, Wang X, Almada LL, Marks DL, Moreno M, Iovanna JL, Rabinovich GA, Fernandez-Zapico ME, Navarro P. Nuclear Galectin-1 promotes KRAS-dependent activation of pancreatic cancer stellate cells. Proc Natl Acad Sci U S A 2025; 122:e2424051122. [PMID: 40172967 PMCID: PMC12002210 DOI: 10.1073/pnas.2424051122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, primarily due to its complex tumor microenvironment (TME), which drives both disease progression and therapy resistance. Understanding the molecular mechanisms governing TME dynamics is essential for developing new treatment strategies for this devastating disease. In this study, we uncover an oncogenic role for Galectin-1 (Gal1), a glycan-binding protein abundantly expressed by activated pancreatic stellate cells (PSCs), a key component of the PDAC TME that orchestrates tumor progression. Our findings reveal that Gal1 expression is elevated in the nucleus of human PSCs in both tissue samples and cultured cell lines. Using chromatin immunoprecipitation followed by sequencing analysis (ChIP-seq), we identify Gal1 occupancy at the promoters of several cancer-associated genes, including KRAS, a pivotal oncogene involved in PDAC pathogenesis. We demonstrate that Gal1 binds to the KRAS promoter, sustaining KRAS expression in PSCs, which, in turn, maintains PSC activation and promotes the secretion of protumorigenic cytokines. Mechanistically, Gal1 is required to preserve histone H3 lysine 4 monomethylation levels and to recruit the histone methyltransferase MLL1 to target promoters. Collectively, our findings define a nuclear function of Gal1 in modulating the transcriptional landscape of cancer-associated genes in PSCs within the PDAC TME, mediated through an epigenetic mechanism. These insights enhance our understanding of PDAC pathology and open potential avenues for therapeutic interventions targeting intracellular Gal1.
Collapse
Affiliation(s)
- Judith Vinaixa
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
- Cancer Research Program, Hospital del Mar Research Institute, Associated Unit Hospital del Mar Research Institute/Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08003, Spain
| | - Joan Gibert
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Noemí Manero-Rupérez
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Patricia Santofimia-Castaño
- Translational Research and Innovative Therapies Department, Cancer Research Center of Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, UMR 7258, Marseille13273, France
| | - Federico G. Baudou
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires1428, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján6700, Provincia de Buenos Aires, Argentina
| | - Renzo E. Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - David R. Pease
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Mar Iglesias
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
- Departament of Pathology, Hospital del Mar, Barcelona08003, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid28029, Spain
| | - Sandhya Sen
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Xiyin Wang
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - David L. Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Mireia Moreno
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Juan L. Iovanna
- Translational Research and Innovative Therapies Department, Cancer Research Center of Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, UMR 7258, Marseille13273, France
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires1428, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires1428, Argentina
- Caixa Research Institute, Barcelona08022, Spain
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Research Institute, Associated Unit Hospital del Mar Research Institute/Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08003, Spain
- Department of Molecular and Cellular Biomedicine, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08036, Spain
- Institut d’Investigacions Biomediques August Pi Sunyer, Barcelona08036, Spain
| |
Collapse
|
14
|
Matsumoto K, Matsumoto Y, Wada J. PARylation-mediated post-transcriptional modifications in cancer immunity and immunotherapy. Front Immunol 2025; 16:1537615. [PMID: 40134437 PMCID: PMC11933034 DOI: 10.3389/fimmu.2025.1537615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Poly-ADP-ribosylation (PARylation) is a post-translational modification in which ADP-ribose is added to substrate proteins. PARylation is mediated by a superfamily of ADP-ribosyl transferases known as PARPs and influences a wide range of cellular functions, including genome integrity maintenance, and the regulation of proliferation and differentiation. We and others have recently reported that PARylation of SH3 domain-binding protein 2 (3BP2) plays a role in bone metabolism, immune system regulation, and cytokine production. Additionally, PARylation has recently gained attention as a target for cancer treatment. In this review, we provide an overview of PARylation, its involvement in several signaling pathways related to cancer immunity, and the potential of combination therapies with PARP inhibitors and immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | |
Collapse
|
15
|
Ge S, Cen J, Liu X, Hong Y, Tang Y, Yu Y, Li H, Xie T, Wang C, Cai M, Qiu Y, Zeng X, Peng T, Li Q, Li Q, Wu X, Song XL, Zhao SC. TGFβ-activated Asporin interacts with STMN1 to promote prostate cancer docetaxel chemoresistance and metastasis by upregulating the Wnt/β-catenin signaling pathway. Drug Resist Updat 2025; 81:101227. [PMID: 40073743 DOI: 10.1016/j.drup.2025.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
AIMS Prostate cancer (PCa) remains a significant challenge in oncology due to high rates of drug resistance following standard treatment with docetaxel-based chemotherapy. Asporin (ASPN) has been regarded as an oncogene and its upregulation is closely associated with malignant behavior and poor prognosis in multiple cancers. Studies indicated that abnormal activation of the Wnt/β-catenin signaling pathway is prevalent in PCa. This study investigated the important role of ASPN in regulating Wnt/β-catenin signaling pathway in docetaxel resistance and metastasis of PCa. METHODS The impacts of ASPN on the docetaxel chemoresistance and metastasis of PCa cells were investigated in vitro and in vivo assays. Lastly, the underlying mechanism of ASPN was revealed by Western blot, protein immunocoprecipitation, Immunofluorescence, Immunohistochemical staining, liquid chromatography-mass spectrometry, and rescue experiments. RESULTS In present study, we reported that ASPN is highly expressed in PCa cells and tissues. Functional and molecular analyses showed that ASPN is activated by TGFβ and interacts with STMN1. ASPN increases the expression of β-catenin and promotes its nuclear accumulation by mediating the activation of the Wnt/β-catenin signaling pathway, thereby enhancing the stemness and epithelial-mesenchymal transition (EMT) of PCa cells, ultimately facilitating the docetaxel resistance and metastasis of PCa cells. CONCLUSIONS Our findings identify ASPN as a novel upstream regulatory factor of Wnt/β-catenin signaling pathway, suggesting that targeting the ASPN/STMN1/β-catenin axis could be a promising strategy for PCa intervention.
Collapse
Affiliation(s)
- Shengdong Ge
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Jinpeng Cen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Xiaofeng Liu
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Yaying Hong
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361101, PR China
| | - Yuting Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Yuzhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Haolin Li
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, PR China
| | - Tao Xie
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Chong Wang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Maoping Cai
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, PR China
| | - Yang Qiu
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Xianzi Zeng
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Tianming Peng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Qu Li
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Qianyi Li
- First Clinical Medical College, Southern Medical University, Guangzhou, China Contact Information, PR China
| | - Xingcheng Wu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100720, PR China.
| | - Xian-Lu Song
- Department of Radiotherapy, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510095, PR China.
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| |
Collapse
|
16
|
Liu T, Zhang F, Feng Y, Han P, Gao Y. Alcohol-Metabolizing Enzymes, Liver Diseases and Cancer. Semin Liver Dis 2025; 45:99-113. [PMID: 40157374 PMCID: PMC12031026 DOI: 10.1055/a-2551-3320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Alcohol is generally believed to be metabolized in the liver by alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and to a much lesser extent cytochrome P450 2E1 (CYP2E1) and other enzymes. Recent studies suggest that gut also play important roles in the promotion of alcohol metabolism. ADH, ALDH, and CYP2E1 have several polymorphisms that markedly impact alcohol metabolism. These alcohol-metabolizing enzymes not only affect alcohol-associated liver disease (ALD), but may also modulate the pathogenesis of other liver diseases and cancer in the absence of alcohol consumption. In this review, we discuss alcohol metabolism and the roles of alcohol-metabolizing enzymes in the pathogenesis of ALD, metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction and alcohol-associated liver disease, viral hepatitis, and liver cancer. We also discuss how alcohol-metabolizing enzymes may affect endogenous ethanol production, and how ethanol metabolism in the gut affects liver disease and cancer. Directions for future research on the roles of alcohol-metabolizing enzymes in liver disease and cancer are also elaborated.
Collapse
Affiliation(s)
- Tao Liu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - FeiYu Zhang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - Yue Feng
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - PanShiLi Han
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - YanHang Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| |
Collapse
|
17
|
Zhai M, Peng B, Zhu H, Xiao J, Xu L, Song XJ. Wnt5a/Ryk signaling contributes to bone cancer pain by sensitizing the peripheral nociceptors through JNK-mediated TRPV1 pathway in rats. Pain 2025; 166:680-692. [PMID: 39382316 DOI: 10.1097/j.pain.0000000000003426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT Treating bone cancer pain (BCP) continues to be a clinical challenge, and the underlying mechanisms of BCP remain elusive. This study reports that Wnt5a/Ryk signaling in the dorsal root ganglion neurons is critical to the development of BCP. Tibia bone cavity tumor cell implantation produces spontaneous and evoked behaviorally expressed pain as well as ectopic sprouting and activity of Wnt5a/Ryk signaling in the neural soma and peripheral terminals and the tumor-affected bone tissues. Intraplantar, intratibial, or intrathecal injection of Wnt5a/Ryk signaling blockers significantly suppresses the painful symptoms. Peripheral injection of exogenous Wnt5a in naïve rats produces pain, and the dorsal root ganglion neurons become more sensitive to Wnt5a. Wnt5a/Ryk signaling activation increases intracellular calcium response and expression of transient receptors potential vanilloid type-1 and regulates capsaicin-induced intracellular calcium response. Blocking Ryk receptor activation suppresses Wnt5a-induced mechanical allodynia and thermal hyperalgesia. Wnt5a facilitation of transient receptors potential vanilloid type-1 sensitization is blocked by inhibiting c-Jun N-terminal kinase activation. These findings indicate a critical peripheral mechanism of Wnt5a/Ryk signaling underlying the pathogenesis of BCP and suggest that targeting Wnt5a/Ryk in the primary sensory neurons and the tumor-invasive area may be an effective approach for the prevention and treatment of BCP.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
- Center for Medical Experiments, Shenzhen Guangming District People's Hospital, Shenzhen, China
| | - Bo Peng
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hanxu Zhu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Xiao
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lihong Xu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xue-Jun Song
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
18
|
Fang Z, Wu Z, Yu C, Xie Q, Zeng L, Chen R. EIF4E-mediated biogenesis of circPHF14 promotes the growth and metastasis of pancreatic ductal adenocarcinoma via Wnt/β-catenin pathway. Mol Cancer 2025; 24:56. [PMID: 40001070 PMCID: PMC11863466 DOI: 10.1186/s12943-025-02262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND CircRNAs are critically involved in the development and progression of various cancers. However, their functions and mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain largely unknown. METHODS CircPHF14 (hsa_circ_0079440) was identified through the analysis of RNA sequencing data from PDAC and normal adjacent tissues. The biological functions of circPHF14 were then evaluated using CCK8, EdU, transwell, colony formation, wound healing assays, as well as pancreatic orthotopic xenograft and liver metastasis models. The interaction mechanisms between circPHF14 and PABPC1, which enhance the stability of WNT7A mRNA, were investigated through RNA pull-down, mass spectrometry, RNA Immunoprecipitation (RIP), and actinomycin D assays. The role of EIF4E in promoting circPHF14 biogenesis was examined using RIP, and western blotting. RESULTS In this study, we observed a significant upregulation of circPHF14 in both clinical PDAC samples and cell lines. Functionally, circPHF14 enhanced PDAC proliferation and metastasis both in vitro and in vivo. Mechanistically, circPHF14 interacted with PABPC1 to stabilize WNT7A mRNA, thereby activating the Wnt/β-catenin pathway, which subsequently upregulated SNAI2 and initiated Epithelial-Mesenchymal Transition (EMT) in PDAC. Additionally, EIF4E was found to bind PHF14 pre-mRNA, facilitating circPHF14 biogenesis. Finally, we developed a lipid nanoparticle (LNP) formulation encapsulating sh-circPHF14 plasmids and confirmed its anti-tumor efficacy in a patient-derived xenograft (PDX) model. CONCLUSION EIF4E-mediated biogenesis of circPHF14 stabilizes WNT7A mRNA via interaction with PABPC1, which subsequently activates the Wnt/β-catenin pathway, promoting the growth and metastasis of PDAC. These findings indicate that circPHF14 holds promise as a biomarker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhuo Wu
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chao Yu
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qingyu Xie
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liangtang Zeng
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rufu Chen
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
19
|
An P, Tong Y, Mu R, Han L. Wnt-Regulated Therapeutics for Blood-Brain Barrier Modulation and Cancer Therapy. Bioconjug Chem 2025; 36:136-145. [PMID: 39680846 DOI: 10.1021/acs.bioconjchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The Wnt signaling pathway has a significant regulatory part in tissue development and homeostasis. Dysregulation of the Wnt signaling pathway has been associated with many diseases including cancers and various brain diseases, making this signaling pathway a promising therapeutic target for these diseases. In this review, we describe the roles of the Wnt signaling pathway in the blood-brain barrier (BBB) in intracranial tumors and peripheral tumors, from preclinical and clinical perspectives, introduce Wnt-regulated therapeutics including various types of drugs and nanomedicines as BBB modulators for brain-oriented drug delivery and as therapeutic drugs for cancer treatments, and finally discuss limitations and future perspectives for Wnt-regulated therapeutics.
Collapse
Affiliation(s)
- Pei An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yang Tong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Mu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Zhong C, Wang S, Jiang WJ, Li Z, Wang X, Fan S, Huang J, Wu HJ, Sheng R, Fei T. Chemoresistance mechanisms to 5-Fluorouracil and reversal strategies in lung and breast cancer. Sci Rep 2025; 15:6074. [PMID: 39972013 PMCID: PMC11840071 DOI: 10.1038/s41598-025-90532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Chemotherapy drug 5-Fluorouracil (5-FU) is a major treatment for many cancers; however, its efficacy is limited by chemoresistance. Here, we investigate the resistance mechanisms to 5-FU and reversal strategies in lung and breast cancer cells. Using multiple 5-FU-resistant lung cancer and breast cancer cell models, we reveal differential cellular and molecular features of 5-FU resistance between different cancer types. We further unravel the implications of immune-related processes, NOTCH and WNT signaling with 5-FU resistance. In lung cancer, the activation of WNT/β-catenin signaling promotes the resistance and blocking this signaling re-sensitizes resistant cells to 5-FU treatment. Our study not only reveals differential features and mechanisms underlying 5-FU resistance across different cancers, but also suggests potential strategies against such resistance.
Collapse
Affiliation(s)
- Chunge Zhong
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Shengnan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Wen-Jie Jiang
- Peking University Third Hospital, Beijing, 100191, China
| | - Zexu Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Xiaofeng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Shuangshuang Fan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China
| | - Jun Huang
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Jun Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Center for Precision Medicine Multi-Omics Research, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Ren Sheng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Teng Fei
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, China.
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China.
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China.
| |
Collapse
|
21
|
Armstrong R, Marks NJ, Geary TG, Harrington J, Selzer PM, Maule AG. Wnt/β-catenin signalling underpins juvenile Fasciola hepatica growth and development. PLoS Pathog 2025; 21:e1012562. [PMID: 39919127 PMCID: PMC11805424 DOI: 10.1371/journal.ppat.1012562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
Infection by the liver fluke, Fasciola hepatica, places a substantial burden on the global agri-food industry and poses a significant threat to human health in endemic regions. Widespread resistance to a limited arsenal of chemotherapeutics, including the frontline flukicide triclabendazole (TCBZ), renders F. hepatica control unsustainable and accentuates the need for novel therapeutic target discovery. A key facet of F. hepatica biology is a population of specialised stem cells which drive growth and development - their dysregulation is hypothesised to represent an appealing avenue for control. The exploitation of this system as a therapeutic target is impeded by a lack of understanding of the molecular mechanisms underpinning F. hepatica growth and development. Wnt signalling pathways govern a myriad of stem cell processes during embryogenesis and drive tumorigenesis in adult tissues in animals. Here, we identify five putative Wnt ligands and five Frizzled receptors in liver fluke transcriptomic datasets and find that Wnt/β-catenin signalling is most active in juveniles, the most pathogenic life stage. FISH-mediated transcript localisation revealed partitioning of the five Wnt ligands, with each displaying a distinct expression pattern, consistent with each Wnt regulating the development of different cell/tissue types. The silencing of each individual Wnt or Frizzled gene yielded significant reductions in juvenile worm growth and, in select cases, blunted the proliferation of neoblast-like cells. Notably, silencing FhCTNNB1, the key effector of the Wnt/β-catenin signal cascade led to aberrant development of the neuromuscular system which ultimately proved lethal - the first report of a lethal RNAi-induced phenotype in F. hepatica. The absence of any discernible phenotypes following the silencing of the inhibitory Wnt/β-catenin destruction complex components is consistent with low destruction complex activity in rapidly developing juvenile worms, corroborates transcriptomic expression profiles and underscores the importance of Wnt signalling as a key molecular driver of growth and development in early-stage juvenile fluke. The putative pharmacological inhibition of Wnt/β-catenin signalling using commercially available inhibitors phenocopied RNAi results and provides impetus for drug repurposing. Taken together, these data functionally and chemically validate the targeting of Wnt signalling as a novel strategy to undermine the pathogenicity of juvenile F. hepatica.
Collapse
Affiliation(s)
- Rebecca Armstrong
- Understanding Health and Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Nikki J. Marks
- Understanding Health and Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Timothy G. Geary
- Understanding Health and Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - John Harrington
- Parasitology, Boehringer Ingelheim Animal Health, Duluth, Georgia, United States of America
| | - Paul M. Selzer
- Parasitology, Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany
| | - Aaron G. Maule
- Understanding Health and Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
22
|
Hong W, Wang X, Huang X, Chen P, Liu Y, Zheng Z, You X, Chen Y, Xie Z, Zhan G, Huang H. CSNK1E is involved in TGF-β1 induced epithelial mesenchymal transformationas and related to melanoma immune heterogeneity. Front Pharmacol 2025; 15:1501849. [PMID: 39872053 PMCID: PMC11771321 DOI: 10.3389/fphar.2024.1501849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/28/2024] [Indexed: 01/29/2025] Open
Abstract
Introduction Melanoma (MM), the deadliest form of skin cancer, originates from melanocytes. Despite advances in immunotherapy that have somewhat improved the prognosis for MM patients, high levels of resistance to treatment continue to result in poor clinical outcomes. Identifying novel biomarkers and therapeutic targets is critical for improving the prognosis and treatment of MM. Methods In this study, we analyzed the expression patterns of WNT signaling pathway genes in MM and explored their potential mechanisms. Using Cox regression analysis, we identified 19 prognostic-related genes. Consistency clustering was performed to evaluate the potential of these genes as classifiers for prognosis. The Least Absolute Shrinkage and Selection Operator (LASSO) algorithm was then applied to refine the gene set and construct a 13-gene prognostic model. We validated the model at multiple time points to assess its predictive performance. Additionally, correlation analyses were performed to investigate the relationships between key genes and processes, including epithelial-to-mesenchymal transition (EMT) and immune responses. Results We identified that CSNK1E and RAC3 were significantly positively correlated with the EMT process, with CSNK1E showing a similar expression trend to EMT-related genes. Both genes were also negatively correlated with multiple immune cell types and immune checkpoint genes. The 13-gene prognostic model demonstrated excellent predictive performance in MM prognosis. Pan-cancer analysis further revealed heterogeneous expression patterns and prognostic potential of CSNK1E across various cancers. Wet experiments confirmed that CSNK1E promotes MM cell proliferation, invasion, and migration, and enhances malignant progression through the TGF-β signaling pathway. Discussion Our findings suggest that CSNK1E plays a crucial role in MM progression and could serve as a potential therapeutic target. The WNT and TGF-β pathways may work synergistically in regulating the EMT process in MM, highlighting their potential as novel therapeutic targets. These insights may contribute to the development of more effective treatments for MM, particularly for overcoming resistance to current therapies.
Collapse
Affiliation(s)
- Wangbing Hong
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Xin Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinyu Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Pengfei Chen
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yifan Liu
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Ziying Zheng
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Xin You
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yinghua Chen
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Zengxin Xie
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Gongnan Zhan
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Heping Huang
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
23
|
Sokoli L, Takáč P, Budovská M, Michalková R, Kello M, Nosálová N, Balážová Ľ, Salanci Š, Mojžiš J. The Proapoptotic Effect of MB-653 Is Associated with the Modulation of Metastasis and Invasiveness-Related Signalling Pathways in Human Colorectal Cancer Cells. Biomolecules 2025; 15:72. [PMID: 39858466 PMCID: PMC11762530 DOI: 10.3390/biom15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide and has a high mortality rate. In this study, we investigated the cytotoxic, proapoptotic, and anti-invasive effects of the synthetic indole phytoalexin MB-653. The antiproliferative effect was determined using an MTT assay, showing IC50 values of 5.8 ± 0.3 μmol/L for HCT116 cells and 6.1 ± 2.1 μmol/L for Caco2 cells. Flow cytometry and Western blot analysis were employed to investigate the molecular mechanisms underlying cytotoxicity, proapoptotic action, and anti-invasion effects. The proapoptotic activity was evidenced by the activation of caspases 3 and 7, mitochondrial dysfunction, and an increased number of apoptotic cells, confirmed by annexin V/PI and AO/PI staining. Additionally, MB-653 induces dose-dependent G2/M phase cell cycle arrest, the cause of which could be cyclin B1/CDC2 complex dysfunction and/or a decrease in α-tubulin protein expression. Another important observation was that MB-653 modulated several signalling pathways associated with various cellular activities, including survival, proliferation, tumour invasiveness, metastasis, and epithelial-mesenchymal transition (EMT). We further demonstrated its safety for topical and parenteral application. To sum up, our results indicate the real potential of MB-653 in treating colorectal cancer.
Collapse
Affiliation(s)
- Libor Sokoli
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| | - Peter Takáč
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Mariana Budovská
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| | - Natália Nosálová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Ľudmila Balážová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia;
| | - Šimon Salanci
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| |
Collapse
|
24
|
Azhdari M, Zur Hausen A. Wnt/β-catenin and notch signaling pathways in cardiovascular disease: Mechanisms and therapeutics approaches. Pharmacol Res 2025; 211:107565. [PMID: 39725339 DOI: 10.1016/j.phrs.2024.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Wnt and Notch signaling pathways play crucial roles in the development and homeostasis of the cardiovascular system. These pathways regulate important cellular processes in cardiomyocytes, endothelial cells, and smooth muscle cells, which are the key cell types involved in the structure and function of the heart and vasculature. During embryonic development, Wnt and Notch signaling coordinate cell fate specification, proliferation, differentiation, and morphogenesis of the heart and blood vessels. In the adult cardiovascular system, these pathways continue to maintain tissue homeostasis and arrange adaptive responses to various physiological and pathological stimuli. Dysregulation of Wnt and Notch signaling has been involved in the pathogenesis of numerous cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and heart failure. Abnormal activation or suppression of these pathways in specific cell types can contribute to endothelial dysfunction, vascular remodeling, cardiomyocyte hypertrophy, impaired cardiac contractility and dead. Understanding the complex interplay between Wnt and Notch signaling in the cardiovascular system has led to the investigation of these pathways as potential therapeutic targets in clinical trials. In conclusion, this review summarizes the current knowledge on the roles of Wnt and Notch signaling in the development and homeostasis of cardiomyocytes, endothelial cells, and smooth muscle cells. It further discusses the dysregulation of these pathways in the context of major cardiovascular diseases and the ongoing clinical investigations targeting Wnt and Notch signaling for therapeutic intervention.
Collapse
Affiliation(s)
- Manizheh Azhdari
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| | - Axel Zur Hausen
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| |
Collapse
|
25
|
Din ZU, Cui B, Wang C, Zhang X, Mehmood A, Peng F, Liu Q. Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy. Mol Cell Biochem 2025; 480:103-118. [PMID: 38622439 DOI: 10.1007/s11010-024-04995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Lipids are the key component of all membranes composed of a variety of molecules that transduce intracellular signaling and provide energy to the cells in the absence of nutrients. Alteration in lipid metabolism is a major factor for cancer heterogeneity and a newly identified cancer hallmark. Reprogramming of lipid metabolism affects the diverse cancer phenotypes, especially epithelial-mesenchymal transition (EMT). EMT activation is considered to be an essential step for tumor metastasis, which exhibits a crucial role in the biological processes including development, wound healing, and stem cell maintenance, and has been widely reported to contribute pathologically to cancer progression. Altered lipid metabolism triggers EMT and activates multiple EMT-associated oncogenic pathways. Although the role of lipid metabolism-induced EMT in tumorigenesis is an attractive field of research, there are still significant gaps in understanding the underlying mechanisms and the precise contributions of this interplay. Further study is needed to clarify the specific molecular mechanisms driving the crosstalk between lipid metabolism and EMT, as well as to determine the potential therapeutic implications. The increased dependency of tumor cells on lipid metabolism represents a novel therapeutic target, and targeting altered lipid metabolism holds promise as a strategy to suppress EMT and ultimately inhibit metastasis.
Collapse
Affiliation(s)
- Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
26
|
Adeerjiang Y, Sidike A, Gan XX, Li QT, Jiang S. The Role of Wnt3a/β-Catenin/TCF7L2 Pathway in Diabetes and Cardiorenal Complications. Cardiorenal Med 2024; 15:72-82. [PMID: 39709946 PMCID: PMC11844670 DOI: 10.1159/000543145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Diabetes mellitus is a prevalent chronic disease that is becoming increasingly common worldwide and can lead to a number of dangerous complications. The Wnt signaling pathway is important for the onset and progression of diabetes. Wnt3a is a typical Wnt ligand that can increase the stability of β-catenin, control TCF7L2 expression, promote β-cell proliferation, and reduce apoptosis. SUMMARY The involvement of the Wnt3a/β-catenin/TCF7L2 signaling pathway in the development of diabetes and associated problems related to the kidneys is reviewed in this article. KEY MESSAGE We believe that a thorough comprehension of the molecular connections between diabetes and signaling pathways will eventually lead to improved diabetes management.
Collapse
Affiliation(s)
- Yilinuer Adeerjiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China,
- Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,
| | - Abudulimu Sidike
- Department of Endocrinology, The First People's Hospital of Kashgar Region, Kashgar, China
| | - Xiao-Xue Gan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qin-Tian Li
- First Clinical Medical College of Xinjiang Medical University, Urumqi, China
| | - Sheng Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
27
|
Tal A, Gunawardana-Zeigler S, Peng D, Tan Y, Perez NM, Offenbacher R, Kastner L, Ciero P, Randolph ME, Gong Y, Deng HW, Cahan P, Loeb DM. Inhibition of DKK-1 by WAY262611 Inhibits Osteosarcoma Metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627181. [PMID: 39713389 PMCID: PMC11661202 DOI: 10.1101/2024.12.10.627181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis. DKK-1 inhibits the canonical Wnt signaling pathway, causing inhibition of osteoblast differentiation and disordered bone repair. Our lab previously demonstrated that a monoclonal antibody against DKK-1 prevented metastatic disease in a mouse model. This study expands upon those findings by demonstrating similar results with a small molecule inhibitor of DKK-1, WAY262611, both in vitro and in vivo . WAY262611 was evaluated in vitro on osteosarcoma cell lines, including proliferation, caspase activation, cell cycle analysis, and signaling pathway activation. We utilized our orthotopic implantation-amputation model of osteosarcoma metastasis in vivo to determine the impact of WAY262611 on primary tumor progression and metastatic outgrowth of disseminated tumor cells. Differentiation status was determined using single cell RNA sequencing. We show here that WAY262611 activates canonical Wnt signaling, enhances nuclear localization and transcriptional activity of beta-catenin, and slows proliferation of OS cell lines. We also show that WAY262611 induces osteoblastic differentiation of an OS patient-derived xenograft in vivo , as well as inhibiting metastasis. This work credentials DKK-1 as a therapeutic target in OS, allowing for manipulation of the Wnt signaling pathway and providing preclinical justification for the development of new biologics for prevention of osteosarcoma metastasis.
Collapse
|
28
|
Fujita M, Demizu Y. Advances in the development of Wnt/β-catenin signaling inhibitors. RSC Med Chem 2024:d4md00749b. [PMID: 39691403 PMCID: PMC11647577 DOI: 10.1039/d4md00749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays a critical role in various biological processes, including cell proliferation, differentiation, and tissue homeostasis. Aberrant activation of this pathway is strongly associated with the development of various cancers, including colorectal, pancreatic, and gastric cancers, making it a promising therapeutic target. In recent years, inhibitors targeting different components of the Wnt/β-catenin pathway, including small molecules, peptides, and nucleic acid-based therapies, have been developed to suppress cancer cell growth. These inhibitors work by disrupting key interactions within the pathway, thereby preventing tumor progression. Antibody-based therapies have also emerged as potential strategies to block ligand-receptor interactions within this pathway. Despite these advancements, challenges such as the complexity of the pathway and toxicity concerns remain. Innovative approaches, including allosteric inhibitors, proteolysis-targeting chimeras (PROTACs), and peptide-based inhibitors, offer new opportunities to address these challenges. This review provides an overview of the latest progress in the development of Wnt/β-catenin pathway inhibitors and explores future directions in cancer therapy.
Collapse
Affiliation(s)
- Minami Fujita
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University 1-1-1 Tsushimanaka Kita Okayama 700-8530 Japan
| |
Collapse
|
29
|
Liang Y, Xie Y, Dang Z, Li M, Yu L, Wang X, Wang P, Yang Z. Yiqi Liangxue Jiedu Prescription Inhibited the Canonical Wnt Pathway to Prevent Hepatocellular Precancerous Lesions. J Hepatocell Carcinoma 2024; 11:2293-2308. [PMID: 39582813 PMCID: PMC11585997 DOI: 10.2147/jhc.s485257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Yiqi Liangxue Jiedu prescription (YLJP), a Chinese medicine that is commonly used to prevent liver cancer and is authorized by a national patent (patent No. ZL202110889980.5) has a therapeutic effect on precancerous lesions; however, the underlying mechanism remains unclear. This study is aimed at determining the clinical therapeutic efficacy of YLJP in patients with precancerous liver lesions and to explore and validate its possible effector mechanism. Patients and Methods The 1-year incidence of hepatocellular carcinoma (HCC) was retrospectively analyzed in 241 patients with cirrhosis complicated by abnormal alpha-fetoprotein precancer. Network pharmacological analysis, molecular docking, and molecular dynamics simulation were used to explore the key targets and compounds of YLJP in treating HCC. Immunohistochemical methods were used to detect the expression of key proteins in tumor and cirrhotic tissues. Finally, the mechanism underlying the effects of YLJP was verified in rats with precancerous lesions. Results The 1-year incidence of HCC was lower in the YLJP group than in the Western medicine group. The Wnt pathway protein, CTNNB1, is a key target of YLJP in preventing and treating HCC, and the canonical Wnt pathway is the key signaling pathway and is overexpressed in human liver tumors. In vivo experiments showed that YLJP significantly inhibited the canonical Wnt pathway and reduced the abnormal differentiation of hepatic oval cells. The binding of CTNNB1 to oleanolic acid, stigmasterol, and beta-sitosterol was found to be stable, indicating the action of these compounds in treating HCC. Conclusion YLJP reduces the 1-year incidence of HCC, with its mechanism likely due to oleanolic acid, beta-sitosterol, and stigmasterol inhibition of the CTNNB1 activation of the β-catenin protein, which in turn regulates the Wnt signaling pathway and prevents the abnormal differentiation of hepatic oval cells into cancer cells, thus delaying the occurrence and progression of the disease.
Collapse
Affiliation(s)
- Yuling Liang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhibo Dang
- Ethics Committee Office, Henan Province Hospital of TCM, Henan, People’s Republic of China
| | - Mengge Li
- Department of Hepatobiliary Spleen and Stomach, Henan Province Hospital of TCM, Henan, People’s Republic of China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xinhui Wang
- Beijing Children’s Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Peng Wang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
30
|
Shen S, Wang P, Wu P, Huang P, Chi T, Xu W, Xi Y. CasRx-based Wnt activation promotes alveolar regeneration while ameliorating pulmonary fibrosis in a mouse model of lung injury. Mol Ther 2024; 32:3974-3989. [PMID: 39245939 PMCID: PMC11573616 DOI: 10.1016/j.ymthe.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Wnt/β-catenin signaling is an attractive target for regenerative medicine. A powerful driver of stem cell activity and hence tissue regeneration, Wnt signaling can promote fibroblast proliferation and activation, leading to fibrosis, while prolonged Wnt signaling is potentially carcinogenic. Thus, to harness its therapeutic potential, the activation of Wnt signaling must be transient, reversible, and tissue specific. In the lung, Wnt signaling is essential for alveolar stem cell activity and alveolar regeneration, which is impaired in lung fibrosis. Activation of Wnt/β-catenin signaling in lung epithelium may have anti-fibrotic effects. Here, we used intratracheal adeno-associated virus 6 injection to selectively deliver CasRx into the lung epithelium, where it reversibly activates Wnt signaling by simultaneously degrading mRNAs encoding Axin1 and Axin2, negative regulators of Wnt/β-catenin signaling. Interestingly, CasRx-mediated Wnt activation specifically in lung epithelium not only promotes alveolar type II cell proliferation and alveolar regeneration but also inhibits lung fibrosis resulted from bleomycin-induced injury, relevant in both preventive and therapeutic settings. Our study offers an attractive strategy for treating pulmonary fibrosis, with general implications for regenerative medicine.
Collapse
Affiliation(s)
- Shengxi Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Ping Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Pei Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Tian Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying Xi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
31
|
Chen Y, Xiao M, Mo Y, Ma J, Han Y, Li Q, Zeng Q, Boohaker RJ, Fried J, Li Y, Wang H, Xu B. Nuclear porcupine mediates XRCC6/Ku70 S-palmitoylation in the DNA damage response. Exp Hematol Oncol 2024; 13:109. [PMID: 39497152 PMCID: PMC11536954 DOI: 10.1186/s40164-024-00572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The activation of the DNA damage response (DDR) heavily relies on post-translational modifications (PTMs) of proteins, which play a crucial role in the prevention of genetic instability and tumorigenesis. Among these PTMs, palmitoylation is a highly conserved process that is dysregulated in numerous cancer types. However, its direct involvement in the DDR and the underlying mechanisms remain unclear. METHODS CRISPR-Cas9 technology was used to generate the PORCN KO and PORCN NLS KO cell lines. The effects of PORCN NLS in the DDR were verified by colony formation assays, MTT assays, the DR/EJ5 homologous recombination/non-homologous end-joining reporter system, xenograft tumor growth and immunofluorescence. Mechanisms were explored by mass spectrometry, acyl-biotin exchange (ABE) palmitoylation assay, Click-iT assay, cell subcellular fractionation assay, Western blot analysis, and in vivo and in vitro co-immunoprecipitation. RESULTS In this study, we introduce evidence that Porcupine (PORCN) is an integral component of and plays a critical role in the DDR. PORCN deficiency hampers nonhomologous end joining (NHEJ) and highly sensitizes cells to ionizing radiation (IR) both in vitro and in vivo. We also provide evidence that PORCN possesses a nuclear fraction (nPORCN) with S-acyltransferase activity, unlike its membrane-bound O-acyltransferase in the endoplasmic reticulum. Furthermore, we show that nPORCN is necessary for the successful activation of NHEJ. Using mass spectrometry, we reveal the existence of an nPORCN complex and show that nPORCN mediates the S-palmitoylation of XRCC6/Ku70 at five specific cysteine sites in response to IR. Mutation of these sites causes a substantial increase in radiosensitivity and delays NHEJ. Additionally, we present evidence that nPORCN-dependent Ku70 palmitoylation is required for DNA-PKcs/Ku70/Ku80 complex formation. CONCLUSION Our findings underscore the crucial role of nPORCN-dependent Ku70 S-palmitoylation in the DDR.
Collapse
Affiliation(s)
- Yang Chen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Mingming Xiao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yaqi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yamei Han
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Qing Li
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Qinghua Zeng
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA
- Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Rebecca J Boohaker
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA
- Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Joshua Fried
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA
- Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Yonghe Li
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA
- Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Han Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China.
| |
Collapse
|
32
|
Li Y, Huang L, Hu Q, Zheng K, Yan Y, Lan T, Zheng D, Lu Y. WNT7B promotes cancer progression via WNT/β-catenin signaling pathway and predicts a poor prognosis in oral squamous cell carcinoma. BMC Oral Health 2024; 24:1335. [PMID: 39487430 PMCID: PMC11529306 DOI: 10.1186/s12903-024-05113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND WNT7B is a glycoprotein that plays a crucial role in tumorigenesis. This study aimed to investigate the role of WNT7B in oral squamous cell carcinoma (OSCC). METHODS Bioinformatic databases, immunohistochemistry, a real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay were used to detect WNT7B expression in OSCC. The clinical and prognostic importance of WNT7B expression was evaluated. WNT7B expression was examined in oral leukoplakia and carcinoma induced by 4-nitroquinoline 1-oxide in mice. Loss- and gain-of-function analyses were performed to elucidate the role of WNT7B in OSCC cells. Subcutaneous tumor model was established to observe the effects of WNT7B on tumor growth. Co-Immunoprecipitation was used to explore the Frizzled receptors that WNT7B may bind to. RESULTS WNT7B upregulated in OSCC and associated with lymph node metastasis, perineural invasion, and an unfavorable prognosis in patients with OSCC. A gradual increased in WNT7B expression during the malignant progression of OSCC. WNT7B promoted cell proliferation, migration, invasion, while silencing WNT7B abolished these effects. Knocking down the expression of WNT7B inhibits tumor growth in vivo. WNT7B functions by binding to the Frizzled 7 receptor and facilitates the nuclear translocation of β-catenin. CONCLUSIONS WNT7B contributes to the progression of OSCC by modulating the WNT/β-catenin signaling pathway. These findings highlight the potential of WNT7B as a novel prognostic biomarker and promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yang Li
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou, 350000, China
- Department of Oral Pathology, College of Stomatology, Ningxia Medical University, South Sheng Li Street 804, Yinchuan, 750004, China
| | - Li Huang
- Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Qi Hu
- College of Humanities and Management, Ningxia Medical University, South Sheng Li Street 1160, Yinchuan, 750004, China
| | - Ke Zheng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou, 350000, China
| | - Ting Lan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China.
- Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China.
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China.
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou, 350000, China.
| |
Collapse
|
33
|
Xin Z, Hu C, Zhang C, Liu M, Li J, Sun X, Hu Y, Liu X, Wang K. LncRNA-HMG incites colorectal cancer cells to chemoresistance via repressing p53-mediated ferroptosis. Redox Biol 2024; 77:103362. [PMID: 39307047 PMCID: PMC11447409 DOI: 10.1016/j.redox.2024.103362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Upon chemotherapy, excessive reactive oxygen species (ROS) often lead to the production of massive lipid peroxides in cancer cells and induce cell death, namely ferroptosis. The elimination of ROS is pivotal for tumor cells to escape from ferroptosis and acquire drug resistance. Nevertheless, the precise functions of long non-coding RNAs (lncRNAs) in ROS metabolism and tumor drug-resistance remain elusive. In this study, we identify LncRNA-HMG as a chemoresistance-related lncRNA in colorectal cancer (CRC) by high-throughput screening. Abnormally high expression of LncRNA-HMG predicts poorer prognosis in CRC patients. Concurrently, we found that LncRNA-HMG protects CRC cells from ferroptosis upon chemotherapy, thus enhancing drug resistance of CRC cells. LncRNA-HMG binds to p53 and facilitates MDM2-mediated degradation of p53. Decreased p53 induces upregulation of SLC7A11 and VKORC1L1, which contribute to increase the supply of reducing agents and eliminate excessive ROS. Consequently, CRC cells escape from ferroptosis and acquire chemoresistance. Importantly, inhibition of LncRNA-HMG by anti-sense oligo (ASO) dramatically sensitizes CRC cells to chemotherapy in patient-derived xenograft (PDX) model. LncRNA-HMG is also a transcriptional target of β-catenin/TCF and activated Wnt signals trigger the marked upregulation of LncRNA-HMG. Collectively, these findings demonstrate that LncRNA-HMG promotes CRC chemoresistance and might be a prognostic or therapeutic target for CRC.
Collapse
Affiliation(s)
- Zechang Xin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chenyu Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ming Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Juan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyan Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yang Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaofeng Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Kun Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
34
|
Ghareghomi S, Arghavani P, Mahdavi M, Khatibi A, García-Jiménez C, Moosavi-Movahedi AA. Hyperglycemia-driven signaling bridges between diabetes and cancer. Biochem Pharmacol 2024; 229:116450. [PMID: 39059774 DOI: 10.1016/j.bcp.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Growing epidemiological evidence indicates an association between obesity, type 2 diabetes, and certain cancers, suggesting the existence of common underlying mechanisms in these diseases. Frequent hyperglycemias in type 2 diabetes promote pro-inflammatory responses and stimulate intracellular metabolic flux which rewires signaling pathways and influences the onset and advancement of different types of cancers. Here, we review the provocative impact of hyperglycemia on a subset of interconnected signalling pathways that regulate (i) cell growth and survival, (ii) metabolism adjustments, (iii) protein function modulation in response to nutrient availability (iv) and cell fate and proliferation and which are driven respectively by PI3K (Phosphoinositide 3-kinase), AMPK (AMP-activated protein kinase), O-GlcNAc (O-linked N-acetylglucosamine) and Wnt/β-catenin. Specifically, we will elaborate on their involvement in glucose metabolism, inflammation, and cell proliferation, highlighting their interplay in the pathogenesis of diabetes and cancer. Furthermore, the influence of antineoplastic and antidiabetic drugs on the unbridled cellular pathways will be examined. This review aims to inspire the next molecular studies to understand how type 2 diabetes may lead to certain cancers. This will contribute to personalized medicine and direct better prevention strategies.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos. Alcorcón, Madrid, Spain.
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran, Iran.
| |
Collapse
|
35
|
Winnard PT, Vesuna F, Bol GM, Gabrielson KL, Chenevix-Trench G, Ter Hoeve ND, van Diest PJ, Raman V. Targeting RNA helicase DDX3X with a small molecule inhibitor for breast cancer bone metastasis treatment. Cancer Lett 2024; 604:217260. [PMID: 39306228 DOI: 10.1016/j.canlet.2024.217260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024]
Abstract
Patients who present with breast cancer bone metastasis only have limited palliative treatment strategies and efficacious drug treatments are needed. In breast cancer patient data, high levels of the RNA helicase DDX3 are associated with poor overall survival and bone metastasis. Consequently, our objective was to target DDX3 in a mouse breast cancer bone metastasis model using a small molecule inhibitor of DDX3, RK-33. Histologically confirmed live imaging indicated no bone metastases in the RK-33 treated cohort, as opposed to placebo-treated mice. We generated a cell line from a bone metastatic lesion in mouse and found that it along with a patient-derived bone metastasis cell line gained resistance to conventional chemotherapeutics but not to RK-33. Finally, differential levels of DDX3 were observed in breast cancer patient metastatic bone samples. Overall, this study indicates that DDX3 is a relevant clinical target in breast cancer bone metastasis and that RK-33 can be a safe and effective treatment for these patients.
Collapse
Affiliation(s)
- Paul T Winnard
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guus M Bol
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Medical Oncology, University Medical Center Utrecht Cancer Center, GA, Utrecht, the Netherlands
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Brisbane, QLD, 4029, Australia
| | - Natalie D Ter Hoeve
- Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, the Netherlands
| | - Venu Raman
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, the Netherlands; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
36
|
Lan T, Quan W, Yu DH, Chen X, Wang ZF, Li ZQ. High expression of LncRNA HOTAIR is a risk factor for temozolomide resistance in glioblastoma via activation of the miR-214/β-catenin/MGMT pathway. Sci Rep 2024; 14:26224. [PMID: 39482401 PMCID: PMC11528118 DOI: 10.1038/s41598-024-77348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
HOX transcript antisense RNA (HOTAIR) is upregulated in glioblastoma (GBM) and associated with temozolomide (TMZ) resistance. However, the mechanisms underlying HOTAIR-mediated TMZ resistance remains poorly understood. HOTAIR expression in glioma-related public datasets and drug response estimation were analyzed using bioinformatics. These findings were verified by overexpressing HOTAIR in TMZ-sensitive U251 cells and/or silencing HOTAIR in resistant U251 cells (U251R). The cytotoxic effects were evaluated using cell viability assay and flow cytometry analysis of cell cycle and apoptosis. In this study, we found that HOTAIR was upregulated in TMZ-resistant GBM cell lines and patients with high HOTAIR expression responded poorly to TMZ therapy. HOTAIR knockdown restored TMZ sensitivity in U251R cells, while HOTAIR overexpression conferred TMZ resistance in U251 cells. Wnt/β-catenin signaling was enriched in patients with high HOTAIR expression; consistently, HOTAIR positively regulated β-catenin expression in U251 cells. Moreover, HOTAIR-mediated TMZ resistance was associated with increased MGMT protein level, which resulted from the HOTAIR/miR-214-3p/β-catenin network. Besides, GBM with high HOTAIR expression exhibited sensitivity to methotrexate. Methotrexate enhanced TMZ sensitivity in U251R cells, accompanied by reduced expression of HOTAIR and β-catenin. Thus, we conlcude that HOTAIR is a risk factor for TMZ resistance and methotrexate may represent a potential therapeutic drug for patients with high HOTAIR expression level.
Collapse
Affiliation(s)
- Tian Lan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Quan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Hu Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xi Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
37
|
Luo D, Zheng J, Lv S, Sheng R, Chen M, He X, Zhang X. Wnt specifically induces FZD5/8 endocytosis and degradation and the involvement of RSPO-ZNRF3/RNF43 and DVL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619000. [PMID: 39463927 PMCID: PMC11507892 DOI: 10.1101/2024.10.18.619000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Frizzled (FZD) proteins are the principal receptors of the Wnt signaling pathway. However, whether Wnt ligands induce FZD endocytosis and degradation remains elusive. The transmembrane E3 ubiquitin ligases ZNRF3 and RNF43 promote the endocytosis and degradation of FZD receptors to inhibit Wnt signaling, and their function is antagonized by R-spondin (RSPO) proteins. However, the dependency of RSPO-ZNRF3/RNF43-mediated FZD endocytosis and degradation on Wnt stimulation, as well as the specificity of this degradation for different FZD, remains unclear. Here, we demonstrated that Wnt specifically induces FZD5/8 endocytosis and degradation in a ZNRF3/RNF43-dependent manner. ZNRF3/RNF43 selectively targets FZD5/8 for degradation upon Wnt stimulation. RSPO1 enhances Wnt signaling by specifically stabilizing FZD5/8. Wnt promotes the interaction between FZD5 and RNF43. We further demonstrated that DVL proteins promote ligand-independent endocytosis of FZD but are dispensable for Wnt-induced FZD5/8 endocytosis and degradation. Our results reveal a novel negative regulatory mechanism of Wnt signaling at the receptor level and illuminate the mechanism by which RSPO-ZNRF3/RNF43 regulates Wnt signaling, which may provide new insights into regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Dong Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Jing Zheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Shuning Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ren Sheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Maorong Chen
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xi He
- The F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
38
|
Hao K, Barrett M, Samadi Z, Zarezadeh A, McGrath Y, Askary A. Reconstructing signaling history of single cells with imaging-based molecular recording. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617908. [PMID: 39416000 PMCID: PMC11482953 DOI: 10.1101/2024.10.11.617908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The intensity and duration of biological signals encode information that allows a few pathways to regulate a wide array of cellular behaviors. Despite the central importance of signaling in biomedical research, our ability to quantify it in individual cells over time remains limited. Here, we introduce INSCRIBE, an approach for reconstructing signaling history in single cells using endpoint fluorescence images. By regulating a CRISPR base editor, INSCRIBE generates mutations in genomic target sequences, at a rate proportional to signaling activity. The number of edits is then recovered through a novel ratiometric readout strategy, from images of two fluorescence channels. We engineered human cell lines for recording WNT and BMP pathway activity, and demonstrated that INSCRIBE faithfully recovers both the intensity and duration of signaling. Further, we used INSCRIBE to study the variability of cellular response to WNT and BMP stimulation, and test whether the magnitude of response is a stable, heritable trait. We found a persistent memory in the BMP pathway. Progeny of cells with higher BMP response levels are likely to respond more strongly to a second BMP stimulation, up to 3 weeks later. Together, our results establish a scalable platform for genetic recording and in situ readout of signaling history in single cells, advancing quantitative analysis of cell-cell communication during development and disease.
Collapse
Affiliation(s)
- Kai Hao
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Mykel Barrett
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Zainalabedin Samadi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Amirhossein Zarezadeh
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Yuka McGrath
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
40
|
Nadeem BB, Bibi A, Khan M, Sajjad GR, Adnan F, Ahmad Z, Khan D. Effects of imidazole derivatives on cellular proliferation and apoptosis in myeloid leukemia. BMC Cancer 2024; 24:1200. [PMID: 39342179 PMCID: PMC11437777 DOI: 10.1186/s12885-024-12958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Acute promyelocytic leukemia (APL) is the sub-type of Acute myeloid leukemia (AML) which is described by differentiation block at promyelocytic stage and t(15; 17) translocation with All trans retinoic acid (ATRA) and arsenic trioxide (ATO) as standard treatments. Chronic myeloid leukemia (CML) translocation t (19; 22) causes a rise in granulocytes and their immature precursors in the blood. Different mutations cause resistance to first-line tyrosine kinase therapies in CML. Beside drug resistance, leukemia stem cells (LSC) are critical resources for relapse and resistance in APL and CML. The drug toxicity and resistant profile associated with LSC and current therapeutics of APL and CML necessitate the development of new therapies. Imidazoles are heterocyclic nitrogen compounds with diverse cellular actions. The purpose of this research was to assess the anti-leukemic properties of four novel imidazole derivatives including L-4, L-7, R-35, and R-NIM04. METHODS AND RESULTS Pharmacological and biochemical approaches were used which showed that all four imidazole derivatives interfere with the NB4 cells proliferation, an APL cell line, while only L-7 exhibit anti-proliferative activity against K562 cells, a CML cell line. The anti-proliferative effect of imidazole derivatives was linked to apoptosis induction. Further real-time polymerase chain reaction (RT-PCR) analysis revealed downregulation of AXL-Receptor Tyrosine Kinase (AXL-RTK) and target genes of Wnt/beta-catenin pathway like c-Myc, Axin2 and EYA3. An additive effect was observed after combinatorial treatment of L-7 with standard drugs ATRA or Imatinib on the proliferation of NB4 and K562 cells respectively which was related to further downregulation of target genes of Wnt/beta catenin pathway. CONCLUSION Imidazole derivatives significantly reduce proliferation of NB4 and K562 cells by inducing apoptosis, down regulating of AXL-RTK and Wnt/β-catenin target genes.
Collapse
MESH Headings
- Humans
- Imidazoles/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cell Line, Tumor
- Antineoplastic Agents/pharmacology
- K562 Cells
- Axl Receptor Tyrosine Kinase
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/pathology
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/genetics
- Wnt Signaling Pathway/drug effects
Collapse
Affiliation(s)
- Bazla Binte Nadeem
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aysha Bibi
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mudassir Khan
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Gul Rukh Sajjad
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fazal Adnan
- Department of Microbiology and Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zaheer Ahmad
- Department of Chemistry, University of Wah, Wah Cantt, Pakistan
| | - Dilawar Khan
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
41
|
Grätz L, Voss JH, Schulte G. Class-Wide Analysis of Frizzled-Dishevelled Interactions Using BRET Biosensors Reveals Functional Differences among Receptor Paralogs. ACS Sens 2024; 9:4626-4636. [PMID: 39213612 PMCID: PMC11443525 DOI: 10.1021/acssensors.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wingless/Int-1 (WNT) signaling is mediated by WNT binding to 10 Frizzleds (FZD1-10), which propagate the signal inside the cell by interacting with different transducers, most prominently the phosphoprotein Dishevelled (DVL). Despite recent progress, questions about WNT/FZD selectivity and paralog-dependent differences in the FZD/DVL interaction remain unanswered. Here, we present a class-wide analysis of the FZD/DVL interaction using the DEP domain of DVL as a proxy in bioluminescence resonance energy transfer (BRET) techniques. Most FZDs engage in a constitutive high-affinity interaction with DEP. Stimulation of unimolecular FZD/DEP BRET sensors with different ligands revealed that most paralogs are dynamic in the FZD/DEP interface, showing distinct profiles in terms of ligand selectivity and signal kinetics. This study underlines mechanistic differences in terms of how allosteric communication between FZDs and their main signal transducer DVL occurs. Moreover, the unimolecular sensors represent the first receptor-focused biosensors to surpass the requirements for high-throughput screening, facilitating FZD-targeted drug discovery.
Collapse
Affiliation(s)
- Lukas Grätz
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Biomedicum, Karolinska Institutet, S-17165 Stockholm, Sweden
| | - Jan H Voss
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Biomedicum, Karolinska Institutet, S-17165 Stockholm, Sweden
| | - Gunnar Schulte
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Biomedicum, Karolinska Institutet, S-17165 Stockholm, Sweden
| |
Collapse
|
42
|
Randeni N, Xu B. New insights into signaling pathways of cancer prevention effects of polysaccharides from edible and medicinal mushrooms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155875. [PMID: 39029136 DOI: 10.1016/j.phymed.2024.155875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Despite extensive efforts, empirical techniques have yielded limited progress in finding effective anticancer medications, with chemotherapy drugs often associated with drug resistance and serious side effects. Thus, there is a pressing need for novel agents with minimal adverse effects. Natural substances, widely used in treating various illnesses, including cancer, offer promising alternatives. Among these, mushrooms, rich in low molecular weight secondary metabolites, polysaccharides, and polysaccharide-protein complexes, have gained attention for their potential anticancer properties. RESULTS Mushroom polysaccharides have been found to impede oncogenesis and tumor metastasis by directly inhibiting tumor cell growth and indirectly enhancing immune system functions. These polysaccharides engage with numerous cell signaling pathways that influence cancer development and progression. They affect pathways that control cell survival, growth, and differentiation, and they also play a role in adjusting the tumor immune microenvironment. CONCLUSION This review highlights the potential of mushroom polysaccharides as promising anticancer agents due to their ability to modulate cell signaling pathways crucial for cancer development. Understanding the mechanisms underlying their effects on these pathways is essential for harnessing their therapeutic potential and developing novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
43
|
Sanchez-Ruiz JA, Treviño-Alvarez AM, Zambrano-Lucio M, Lozano Díaz ST, Wang N, Biernacka JM, Tye SJ, Cuellar-Barboza AB. The Wnt signaling pathway in major depressive disorder: A systematic review of human studies. Psychiatry Res 2024; 339:115983. [PMID: 38870775 DOI: 10.1016/j.psychres.2024.115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
Despite uncertainty about the specific molecular mechanisms driving major depressive disorder (MDD), the Wnt signaling pathway stands out as a potentially influential factor in the pathogenesis of MDD. Known for its role in intercellular communication, cell proliferation, and fate, Wnt signaling has been implicated in diverse biological phenomena associated with MDD, spanning neurodevelopmental to neurodegenerative processes. In this systematic review, we summarize the functional differences in protein and gene expression of the Wnt signaling pathway, and targeted genetic association studies, to provide an integrated synthesis of available human data examining Wnt signaling in MDD. Thirty-three studies evaluating protein expression (n = 15), gene expression (n = 9), or genetic associations (n = 9) were included. Only fifteen demonstrated a consistently low overall risk of bias in selection, comparability, and exposure. We found conflicting observations of limited and distinct Wnt signaling components across diverse tissue sources. These data do not demonstrate involvement of Wnt signaling dysregulation in MDD. Given the well-established role of Wnt signaling in antidepressant response, we propose that a more targeted and functional assessment of Wnt signaling is needed to understand its role in depression pathophysiology. Future studies should include more components, assess multiple tissues concurrently, and follow a standardized approach.
Collapse
Affiliation(s)
- Jorge A Sanchez-Ruiz
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | - Sofía T Lozano Díaz
- Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - Ning Wang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Susannah J Tye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| |
Collapse
|
44
|
Hara Y. Search for natural products from actinomycetes of the genus Nocardia. J Nat Med 2024; 78:828-837. [PMID: 39093356 PMCID: PMC11364655 DOI: 10.1007/s11418-024-01833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
The genus Nocardia are gram-positive bacteria, many of which possess pathogenicity and infect human lungs, skin, brain, and other organs. Since research on the genus Nocardia has not progressed as rapidly as that on the genus Streptomyces, the genus Nocardia is considered a useful undeveloped resource for exploring natural products. On the other hand, when the genus Nocardia infects the human body, the strains are attacked by immune cells such as macrophages. Therefore, we suggested a new method for screening natural products by culturing the genus Nocardia in the presence of animal cells. In this review, we describe our recent results in searching for natural products from the genus Nocardia.
Collapse
Affiliation(s)
- Yasumasa Hara
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan.
| |
Collapse
|
45
|
Liu R, Zhou D, Yu B, Zhou Z. Phosphorylation of LZTS2 by PLK1 activates the Wnt pathway. Cell Signal 2024; 120:111226. [PMID: 38740232 DOI: 10.1016/j.cellsig.2024.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Lung adenocarcinoma (LUAD), responsible for nearly half of lung cancer cases, is one of the most prevalent and lethal malignant tumors globally. There is increasing evidence suggesting that the oncoprotein PLK1 plays a role in the onset and advancement of different types of cancer, including LUAD. Nonetheless, the precise mechanism by which PLK1 promotes tumorigenesis remains unclear. In this study, we demonstrate the upregulation of PLK1 in LUAD samples, which leads to a poor prognosis for LUAD patients. Intriguingly, PLK1 enables to bind to LZTS2 and promote its phosphorylation without affecting LZTS2 degradation. Furthermore, we identify that Ser451 is a key phosphorylation site in LZTS2 protein. LZTS2 exerts an anti-tumor effect by restricting the translocation of the transcription factor β-Catenin into the nucleus, thereby suppressing the Wnt pathway. PLK1 disrupts the interaction between LZTS2 and β-Catenin, resulting in the nuclear accumulation of β-Catenin and the activation of the Wnt pathway. Additionally, we reveal that LZTS2 inhibits the proliferation and migration of LUAD cells, which is rescued by PLK1. Finally, PLK1 inhibitors exhibit a dose-dependent suppression of LUAD cell proliferation and migration. Collectively, this study uncovers the pro-tumorigenic mechanism of PLK1, positioning it as a promising therapeutic target for Wnt-related LUAD.
Collapse
Affiliation(s)
- Ran Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi, 330006, China
| | - Dafa Zhou
- College of Life Sciences, Shandong Agricultural University, 271018 Tai'an, China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi, 330006, China..
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, 271018 Tai'an, China; Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
46
|
Wu X, Fu M, Ge C, Zhou H, Huang H, Zhong M, Zhang M, Xu H, Zhu G, Hua W, Lv K, Yang H. m 6A-Mediated Upregulation of lncRNA CHASERR Promotes the Progression of Glioma by Modulating the miR-6893-3p/TRIM14 Axis. Mol Neurobiol 2024; 61:5418-5440. [PMID: 38193984 DOI: 10.1007/s12035-023-03911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in tumor progression and are dysregulated in glioma. However, the functional roles of lncRNAs in glioma remain largely unknown. In this study, we utilized the TCGA (the Cancer Genome Atlas database) and GEPIA2 (Gene Expression Profiling Interactive Analysis 2) databases and observed the overexpression of lncRNA CHASERR in glioma tissues. We subsequently investigated this phenomenon in glioma cell lines. The effects of lncRNA CHASERR on glioma proliferation, migration, and invasion were analyzed using in vitro and in vivo experiments. Additionally, the regulatory mechanisms among PTEN/p-Akt/mTOR and Wnt/β-catenin, lncRNA CHASERR, Micro-RNA-6893-3p(miR-6893-3p), and tripartite motif containing14 (TRIM14) were investigated via bioinformatics analyses, quantitative real-time PCR (qRT-PCR), western blot (WB), RNA immunoprecipitation (RIP), dual luciferase reporter assay, fluorescence in situ hybridization (FISH), and RNA sequencing assays. RIP and RT-qRCR were used to analyze the regulatory effect of N6-methyladenosine(m6A) on the aberrantly expressed lncRNA CHASERR. High lncRNA CHASERR expression was observed in glioma tissues and was associated with unfavorable prognosis in glioma patients. Further functional assays showed that lncRNA CHASERR regulates glioma growth and metastasis in vitro and in vivo. Mechanistically, lncRNA CHASERR sponged miR-6893-3p to upregulate TRIM14 expression, thereby facilitating glioma progression. Additionally, the activation of PTEN/p-Akt/mTOR and Wnt/β-catenin pathways by lncRNA CHASERR, miR-6893-3p, and TRIM14 was found to regulate glioma progression. Moreover, the upregulation of lncRNA CHASERR was observed in response to N6-methyladenosine modification, which was facilitated by METTL3/YTHDF1-mediated RNA transcripts. This study elucidates the m6A/lncRNACHASERR/miR-6893-3p/TRIM14 pathway that contributes to glioma progression and underscores the potential of lncRNA CHASERR as a novel prognostic indicator and therapeutic target for glioma.
Collapse
Affiliation(s)
- Xingwei Wu
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Chang Ge
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Hanyu Zhou
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Haoyu Huang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Min Zhong
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Mengying Zhang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai, China.
| | - Kun Lv
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| | - Hui Yang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| |
Collapse
|
47
|
Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Menin signaling and therapeutic targeting in breast cancer. Curr Probl Cancer 2024; 51:101118. [PMID: 38968834 DOI: 10.1016/j.currproblcancer.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
To date, mounting evidence have shown that patients with multiple endocrine neoplasia type 1 (MEN1) may face an increased risk for breast carcinogenesis. The product of the MEN1 gene, menin, was also indicated to be an important regulator in breast cancer signaling network. Menin directly interacts with MLL, EZH2, JunD, NF-κB, PPARγ, VDR, Smad3, β-catenin and ERα to modulate gene transcriptions leading to cell proliferation inhibition. Moreover, interaction of menin-FANCD2 contributes to the enhancement of BRCA1-mediated DNA repair mechanism. Ectopic expression of menin causes Bax-, Bak- and Caspase-8-dependent apoptosis. However, despite numbers of menin inhibitors were exploited in other cancers, data on the usage of menin inhibitors in breast cancer treatment remain limited. In this review, we focused on the menin associated signaling pathways and gene transcription regulations, with the aim of elucidating its molecular mechanisms and of guiding the development of novel menin targeted drugs in breast cancer therapy.
Collapse
Affiliation(s)
- Peng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
48
|
Tang L, Xu S, Wei R, Fan G, Zhou J, Wei X, Xu X. Transcription factor 7 like 2 promotes metastasis in hepatocellular carcinoma via NEDD9-mediated activation of AKT/mTOR signaling pathway. Mol Med 2024; 30:108. [PMID: 39060928 PMCID: PMC11282612 DOI: 10.1186/s10020-024-00878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system, and the exact mechanism of HCC is still unclear. Transcription factor 7 like 2 (TCF7L2) plays a pivotal role in cell proliferation and stemness maintenance. However, the exact mechanism of TCF7L2 in HCC remains unclear. METHODS Clinical samples and public databases were used to analyze the expression and prognosis of TCF7L2 in HCC. The function of TCF7L2 in HCC was studied in vitro and in vivo. ChIP and luciferase assays were used to explore the molecular mechanism of TCF7L2. The relationship between TCF7L2 and NEDD9 was verified in HCC clinical samples by tissue microarrays. RESULTS The expression of TCF7L2 was upregulated in HCC, and high expression of TCF7L2 was associated with poor prognosis of HCC patients. Overexpression of TCF7L2 promoted the metastasis of HCC in vitro and in vivo, while Knockdown of TCF7L2 showed the opposite effect. Mechanically, TCF7L2 activated neural precursor cell expressed developmentally downregulated protein 9 (NEDD9) transcription by binding to the -1522/-1509 site of the NEDD9 promoter region, thereby increasing the phosphorylation levels of AKT and mTOR. The combination of TCF7L2 and NEDD9 could distinguish the survival of HCC patients. CONCLUSIONS This study demonstrated that TCF7L2 promotes HCC metastasis by activating AKT/mTOR pathway in a NEDD9-dependent manner, suggesting that potential of TCF7L2 and NEDD9 as prognostic markers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Linsong Tang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Shengjun Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Rongli Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Guanghan Fan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Xiao Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China.
| |
Collapse
|
49
|
Nag JK, Appasamy P, Malka H, Sedley S, Bar-Shavit R. New Target(s) for RNF43 Regulation: Implications for Therapeutic Strategies. Int J Mol Sci 2024; 25:8083. [PMID: 39125653 PMCID: PMC11311281 DOI: 10.3390/ijms25158083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer cells depend on specific oncogenic pathways or present a genetic alteration that leads to a particular disturbance. Still, personalized and targeted biological therapy remains challenging, with current efforts generally yielding disappointing results. Carefully assessing onco-target molecular pathways can, however, potently assist with such efforts for the selection of patient populations that would best respond to a given drug treatment. RNF43, an E3 ubiquitin ligase that negatively regulates Wnt/frizzled (FZD) receptors by their ubiquitination, internalization, and degradation, controls a key pathway in cancer. Recently, additional target proteins of RNF43 were described, including p85 of the PI3K/AKT/mTOR signaling pathway and protease-activated receptor 2 (PAR2), a G-protein-coupled receptor that potently induces β-catenin stabilization, independent of Wnts. RNF43 mutations with impaired E3 ligase activity were found in several types of cancers (e.g., gastrointestinal system tumors and endometrial and ovarian cancer), pointing to a high dependency on FZD receptors and possibly PAR2 and the PI3K/AKT/mTOR signaling pathway. The development of drugs toward these targets is essential for improved treatment of cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University, Jerusalem 91120, Israel; (J.K.N.); (P.A.); (H.M.); (S.S.)
| |
Collapse
|
50
|
Lotfi M, Maharati A, Hamidi AA, Taghehchian N, Moghbeli M. MicroRNA-532 as a probable diagnostic and therapeutic marker in cancer patients. Mutat Res 2024; 829:111874. [PMID: 38986233 DOI: 10.1016/j.mrfmmm.2024.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|