1
|
Zhao X, Qiu Y, Liang L, Fu X. Interkingdom signaling between gastrointestinal hormones and the gut microbiome. Gut Microbes 2025; 17:2456592. [PMID: 39851261 PMCID: PMC11776477 DOI: 10.1080/19490976.2025.2456592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/12/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The interplay between the gut microbiota and gastrointestinal hormones plays a pivotal role in the health of the host and the development of diseases. As a vital component of the intestinal microecosystem, the gut microbiota influences the synthesis and release of many gastrointestinal hormones through mechanisms such as modulating the intestinal environment, producing metabolites, impacting mucosal barriers, generating immune and inflammatory responses, and releasing neurotransmitters. Conversely, gastrointestinal hormones exert feedback regulation on the gut microbiota by modulating the intestinal environment, nutrient absorption and utilization, and the bacterial biological behavior and composition. The distributions of the gut microbiota and gastrointestinal hormones are anatomically intertwined, and close interactions between the gut microbiota and gastrointestinal hormones are crucial for maintaining gastrointestinal homeostasis. Interventions leveraging the interplay between the gut microbiota and gastrointestinal hormones have been employed in the clinical management of metabolic diseases and inflammatory bowel diseases, such as bariatric surgery and fecal microbiota transplantation, offering promising targets for the treatment of dysbiosis-related diseases.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ye Qiu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Chen Z, Zeng L, Cai W, Song X, Xu Q, Xu J, Zhao L, Zeng Y, Zhang X, Wu X, Zhou R, Ying H, Ying K, Chen Y, Yu F. Predictive value of three nutritional indexes for disease activity in patients with inflammatory bowel disease. Ann Med 2025; 57:2443256. [PMID: 39705015 DOI: 10.1080/07853890.2024.2443256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/27/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Malnutrition is prevalent in patients with inflammatory bowel disease (IBD); however, its ability to predict the disease activity in IBD remains unexplored. Therefore, this study aimed to explore the association between malnutrition and disease activity in IBD. METHODS In this retrospective study, we enrolled 1006 patients diagnosed with IBD from the First Affiliated Hospital of Wenzhou Medical University from 2011 to 2022. Malnutrition was assessed based on the prognostic nutritional index (PNI), geriatric nutritional risk index (GNRI), and controlling nutritional status (CONUT) scores. Logistic regression analyses were performed to identify predictors for disease activity. Restricted cubic spline analysis was performed to evaluate the possible nonlinear relations, and subgroup analysis was performed to explore potential interactions. Additionally, prediction performances were compared through receiver operating characteristic curves, net reclassification improvement, and integrated discrimination improvement. RESULTS The prevalence of malnutrition calculated by the PNI, GNRI, and CONUT scores in IBD was 16.9%, 72.1%, and 75.6%, respectively and significant correlations were observed among them. Multivariate logistic regression analysis showed that PNI, GNRI, and CONUT were independent risk factors for disease activity, and no significant nonlinear relationship was observed between disease activity and all three indexes. No statistically significant interactive effect was found in nearly all the subgroups. GNRI showed the highest predictive value compared with PNI and CONUT. Additionally, combining any of the three indexes improved the ability of C-reactive protein to predict IBD activity. CONCLUSIONS All three nutritional indexes evaluated malnutrition to be an independent risk factor for IBD activity.
Collapse
Affiliation(s)
- Zhuoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Liuwei Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Weimin Cai
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Xian Song
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Qian Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Luying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Xiangting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Xiao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Ruoru Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Huiya Ying
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Kanglei Ying
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yuhao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
3
|
Li XL, Megdadi M, Quadri HS. Interaction between gut virome and microbiota on inflammatory bowel disease. World J Methodol 2025; 15:100332. [DOI: 10.5662/wjm.v15.i3.100332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 03/06/2025] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a chronic condition marked by recurring gastrointestinal inflammation. While immune, genetic, and environmental factors are well-studied, the gut virome has received less attention. This editorial highlights the work which investigates the gut virome’s role in IBD and its interactions with the bacterial microbiome and host immune system. The gut virome consists of bacteriophages, eukaryotic viruses, and endogenous retroviruses. Among these, Caudovirales bacteriophages are predominant and influence bacterial communities via lysogenic and lytic cycles. Eukaryotic viruses infect host cells directly, while endogenous retroviruses impact gene regulation and immune responses. In IBD, the virome shows distinct alterations, including an increased abundance of Caudovirales phages and reduced Microviridae diversity, suggesting a pro-inflammatory viral environment. Dysbiosis, chronic inflammation, and aberrant immune responses contribute to these changes by disrupting microbial communities and modifying virome composition. Phages affect bacterial dynamics through lysis, lysogeny, and horizontal gene transfer, shaping microbial adaptability and resilience. Understanding these interactions is crucial for identifying novel therapeutic targets and restoring microbial balance in IBD.
Collapse
Affiliation(s)
- Xiao-Long Li
- Department of Surgery, Ascension St Agnes Hospital, Baltimore, MD 21009, United States
| | - Mueen Megdadi
- Department of Surgery, Ascension St Agnes Hospital, Baltimore, MD 21009, United States
| | - Humair S Quadri
- Department of Surgery, Ascension St Agnes Hospital, Baltimore, MD 21009, United States
| |
Collapse
|
4
|
Wu B, Yan W, Lu Y, Xiao Y. Diagnostic values of CD27, CD20 and MPO in pediatric ulcerative colitis. Gene 2025; 952:149415. [PMID: 40089083 DOI: 10.1016/j.gene.2025.149415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC), is a chronic inflammatory disorder with a rising incidence in pediatric populations. Immune factors play important roles in the pathogenesis of UC. This study aimed to explore the relationships of intestinal immune molecules CD27, CD20 and myeloperoxidase (MPO) with pediatric UC and their diagnostic values. In this study, gene expression data of 206 new-onset UC children and 20 non-IBD controls obtained from the NCBI Gene Expression Omnibus public database and immunohistochemistry analysis were used to evaluate CD27, CD20 and MPO expression in diseased intestinal tissues of UC children. And the diagnostic potentials of them for UC were analyzed using receiver operating characteristic curve and area under the curve (AUC). We found that CD27, CD20 and MPO mRNA and protein expressions were increased in the diseased intestinal tissues of UC children. CD27, CD20 and MPO showed good diagnostic potential for UC in children, with an AUC of 0.95 for CD27, 0.79 for CD20 and 0.92 for MPO, and combination of them had better diagnostic performance with an AUC of 0.98. Besides, they were associated with immune-related biological processes and pathways, and correlated with genes related to immune factors, intestinal epithelial barrier function, and intestinal fibrosis. In conclusion, our findings demonstrated that CD27, CD20 and MPO were increased in diseased intestinal tissues of UC children, and had good diagnostic performance for UC in children.
Collapse
Affiliation(s)
- Bo Wu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihui Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China.
| |
Collapse
|
5
|
Mahdy RNE, Nader MA, Helal MG, Abu-Risha SE, Abdelmageed ME. Protective effect of Dulaglutide, a GLP1 agonist, on acetic acid-induced ulcerative colitis in rats: involvement of GLP-1, TFF-3, and TGF-β/PI3K/NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5611-5628. [PMID: 39579211 DOI: 10.1007/s00210-024-03631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
A chronic inflammatory condition of the colon called ulcerative colitis (UC) is characterized by mucosal surface irritation that extends from the rectum to the near proximal colon portions. The rationale of this work was to conclude if dulaglutide (Dula) could protect rats from developing colitis caused by exposure to acetic acid (AA). Rats were randomly divided into seven groups (each with eight rats): Normal control, Dula control, AA (received 2 milliliters of 3% v/v AA through the rectum), Sulfasalazine (SLZ); given SLZ (100 mg/kg) orally from day 11 to day 21 then AA intrarectally on day 22 and Dula groups ( pretreated with 50, 100 or 150 μg/kg subcutaneous injection of Dula - once weekly for three weeks and AA on day 22 to induce ulcerative colitis, colon tissues and blood samples were taken on day 23. By generating colonic histological deviations such as inflammatory processes, goblet cell death, glandular hyperplasia, and mucosa ulcers, Dula dropped AA-induced colitis. Additionally, these modifications diminished blood lactate dehydrogenase (LDH), C-reactive protein (CRP), colon weight, and the weight/length ratio of the colon. In addition, Dula decreased the oxidative stress biomarker malondialdehyde (MDA) and increased the antioxidant enzymes (total antioxidant capacity (TAC), reduced glutathione (GSH), and superoxide dismutase (SOD) concentrations). Dula also significantly reduced the expression of transforming growth factor-1 (TGF-β1), phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT) signaling pathway, and the inflammatory cytokines: nuclear factor kappa B (NF-κB), interleukin-6 (IL-6), and interferon-γ (IFN-γ) in colonic cellular structures. In addition, Dula enforced the levels of glucagon-like peptide-1 (GLP-1) and trefoil factor-3 (TFF-3) that were crucial to intestinal mucosa regeneration and healing of wounds. By modulating TGF-β1 in conjunction with other inflammatory pathways like PI3K/AKT and NF-κB, regulating the oxidant/antioxidant balance, and improving the integrity of the intestinal barrier, Dula prevented AA-induced colitis in rats.
Collapse
Affiliation(s)
- Raghda N El Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Sinai University- Kantra Branch, Ismailia, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sally E Abu-Risha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
6
|
Chen J, Sun Y, Dan L, Wellens J, Yuan S, Yang H, Tong TY, Cross AJ, Papadimitriou N, Meyer A, Dahm CC, Larsson SC, Wolk A, Ludvigsson JF, Tsilidis K, Giovannucci E, Satsangi J, Wang X, Theodoratou E, Chan SS, Li X. Composition of plant-based diets and the incidence and prognosis of inflammatory bowel disease: a multinational retrospective cohort study. THE LANCET REGIONAL HEALTH. EUROPE 2025; 52:101264. [PMID: 40166364 PMCID: PMC11957509 DOI: 10.1016/j.lanepe.2025.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025]
Abstract
Background Many currently proposed diets for inflammatory bowel disease (IBD) focus on increasing plant-based foods, although a vegetarian diet can still contain products such as emulsifiers and refined grains that are believed to negatively impact IBD incidence and progression. To better inform dietary management in IBD, we investigated the association between plant-based diets and the incidence and complications of IBD. Methods We leveraged data from the UK Biobank (UKB, 2009-2022) including 187,888 participants free of IBD at baseline and the European Prospective Investigation into Cancer and Nutrition (EPIC, 1991-2010) cohort including 341,539 individuals free of IBD across centres among Denmark, France, Germany, Greece, Italy, the Netherlands, Sweden and UK. Healthy and unhealthy diets were characterised using plant-based diet indexes (PDIs); in individual participants, these were based on the 24-h dietary recalls for UKB and food frequency questionnaires for EPIC. The primary outcome was the incidence of IBD; secondary outcomes evaluated endpoints of disease prognosis (IBD-related surgery, diabetes, cardiovascular diease, and all-cause mortality). Cox regression was applied to estimate hazard ratios (HRs). Findings In the UKB (925 incident IBD, median follow-up 11.6 years, IQR 1.3 years), higher adherence to healthy PDI was associated with a lower IBD risk (HR 0.75, 95% CI 0.60-0.94), while higher alignment to an unhealthy PDI associated with an increased risk (HR 1.48, 95% CI 1.21-1.82) when comparing extreme quintiles of PDIs. Among individuals with established IBD, healthy PDI was inversely associated (HR 0.50, 95% CI 0.30-0.83) and unhealthy PDI was positively associated (HR 2.12, 95% CI 1.30-3.44) with need for IBD-related surgery. We did not observe significant associations between PDIs and risk of cardiovascular disease, diabetes mellitus or mortality. In the EPIC study (548 incident IBD, median follow-up 14.5 years, IQR 7.0 years), the HR of incident IBD for healthy PDI was 0.71 (95% CI 0.59-0.85) and for unhealthy PDI was 1.54 (95% CI 1.30-1.84). Interpretation We provide evidence that the composition of a plant-based diet may be an important determinant of the risk of developing IBD, and of disease course after diagnosis. Further research is needed to explore the mechanistic pathways linking plant-based diets and IBD incidence and prognosis. Funding National Natural Science Foundation of China, Natural Science Fund for Distinguished Young Scholars of Zhejiang Province, National Undergraduate Training Program for Innovation and Entrepreneurship, CRUK Career Development Fellowship, The "Co-PI" project, Natural Science Fund for Excellent Young Scholars of Hunan Province.
Collapse
Affiliation(s)
- Jie Chen
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Big Data in Health Science School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhao Sun
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lintao Dan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Judith Wellens
- Department of Gastroenterology and Hepatology, Leuven University Hostpital, Leuven, Belgium
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Tammy Y.N. Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, UK
| | - Amanda J. Cross
- School of Public Health and Department of Surgery and Cancer, Imperial College London, London, UK
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Antoine Meyer
- INSERM, Centre for Research in Epidemiology and Population Health, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
- Department of Gastroenterology, University Hospital of Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Christina C. Dahm
- Department of Public Health, Aarhus University, Bartholins Allé 2, 8000, Aarhus, Denmark
| | - Susanna C. Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F. Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Orebro University Hospital, Orebro, Sweden
| | - Kostas Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jack Satsangi
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Xiaoyan Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Simon S.M. Chan
- Department of Gastroenterology, Norfolk and Norwich University Hospital NHS Trust, Norwich, UK
- Department of Medicine, Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Xue Li
- Department of Big Data in Health Science School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Zhao Z, Lu H, Wang J, Wu T, Xu S, Ge Y, You Q, Jiang Z, Lu M. Discovery of β-amino acid substituted naphthalene sulfonamide derivatives as potent Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) protein-protein interaction inhibitors for ulcerative colitis management. Eur J Med Chem 2025; 288:117384. [PMID: 39965408 DOI: 10.1016/j.ejmech.2025.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator of cellular defense system against oxidative insults. Directly inhibiting the Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 protein-protein interaction (PPI) has emerged as a promising approach to activate Nrf2 for the treatment of diseases associated with oxidative stress. Herein, we identified β-amino acids as privileged structural fragments for designing novel naphthalene sulfonamide-based Keap1-Nrf2 PPI inhibitors. Comprehensive structure-activity relationship (SAR) exploration identified compound 19 as the optimal inhibitor with an IC50 of 0.55 μM for disrupting the Keap1-Nrf2 interaction and a Kd of 0.50 μM for binding to Keap1. Further studies demonstrated that 19 effectively activated the Nrf2-regulated cytoprotective system and provided protective effects against dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in both in vitro and in vivo models. These findings highlight the potential of β-amino acid substituted naphthalene sulfonamide Keap1-Nrf2 inhibitor 19 as a prospective therapeutic agent for UC via Keap1 targeting.
Collapse
Affiliation(s)
- Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongjin Lu
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junjie Wang
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shicheng Xu
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxin Ge
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, 215123, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Mengchen Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, 215123, China.
| |
Collapse
|
8
|
Guo HX, Ji ZH, Wang BB, Xiao Y, Hu JP, Zheng Y, Gao W, Yuan B. Luteolin Modulate Endoplasmic Reticulum Stress by Targeting SIRT1 to Ameliorate DSS-Induced Ulcerative Colitis in Mice. FASEB J 2025; 39:e70529. [PMID: 40205885 DOI: 10.1096/fj.202403418r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
Ulcerative colitis (UC) is a recurrent, chronic disease whose main symptoms include weight loss, diarrhea, and blood in the stool. In recent years, the incidence of UC has been increasing year by year, which seriously affects the daily life of patients. Luteolin (Lut), as a flavonoid, is widely found in a variety of vegetables and fruits and has been shown to have a variety of pharmacological activities. This work investigated the effects of Lut on dextrose sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice, with a special focus on the role of endoplasmic reticulum (ER) stress in this. The outcomes demonstrated that colitis symptoms, including disease phenotype, elevated inflammatory factor levels, intestinal barrier damage, and gut microbiota disruption, were considerably alleviated in UC model mice treated with luteolin. Also, Lut alleviated ER stress and apoptosis in UC mice. We then explored the effects of Lut on ER stress and apoptosis induced by thapsigargin (TG) and tunicamycin (TM) in HT29 cells in vitro. It was found that Lut treatment inhibited TM/TG-induced ER stress and apoptosis. However, these inhibitory effects of Lut were attenuated by SIRT1 silencing in TM-treated HT29 cells. In conclusion, our results suggest that Lut supplementation in a mouse model of colitis improves the symptoms of colitis in mice, which provides a theoretical basis for further application of Lut in the prevention of inflammation-related diseases in humans.
Collapse
Affiliation(s)
- Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| | - Bing-Bing Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Yu Xiao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Jin-Ping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
9
|
Huang Y, Guo H, Liu Y, Jin W, Palanisamy CP, Pei J, Oz F, Abd El-Aty AM. Effects of Natural Polysaccharides on the Gut Microbiota Related to Human Metabolic Health. Mol Nutr Food Res 2025:e202400792. [PMID: 40207751 DOI: 10.1002/mnfr.202400792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 04/11/2025]
Abstract
Natural polysaccharides (NPs) are sugar chains bound by glycosidic bonds that are composed of at least 10 monosaccharides and have broad biological activity. The human body microbiome is a complex ecosystem that plays a role in host metabolism, immunity, and other important life activities. Numerous studies have demonstrated an obvious relationship between the gut flora and the occurrence of many human diseases. Many studies have reviewed and investigated the effects of polysaccharides on the microbiome, but the underlying mechanisms remain unclear. Most of these studies have focused on the effects of NPs on microbes, as they are important "foods" for the intestinal flora. However, polysaccharides can also affect microbes by improving gut homeostasis. Therefore, the purpose of this review is to introduce recent research that looks at how NPs affect microbiomes by directly acting as fermentation substrates and enhancing gut homeostasis. In addition, this study provides a succinct summary of NP extraction, purification, and structural characteristics, as well as a discussion of their structure‒activity correlations. This study also sheds light on future directions and obstacles in the use of NPs with protective properties, with the aim of providing insights into their potential applications in disease treatment.
Collapse
Affiliation(s)
- Yigang Huang
- Shaanxi Province Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Hongfei Guo
- Shaanxi Province Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Yuchen Liu
- Shaanxi Province Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Wengang Jin
- Shaanxi Province Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Chella Perumal Palanisamy
- Center for Global Health Research, Saveetha Medical College and Hospital (SMCH), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai-602105, Tamil Nadu, India
| | - Jinjin Pei
- Shaanxi Province Key Laboratory of Bioresources, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
- College of Food Science and Technology, Guangdong Ocean University, ZhanJiang, China
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
10
|
Jia K, Wu L, Li Z, Wei T, Fan T, Xiao G. Thymoquinone Ameliorates Gut Epithelial Injury by Suppressing the JNK Signaling Pathway Based on Its Anti-Oxidant Property. Food Sci Nutr 2025; 13:e70113. [PMID: 40129997 PMCID: PMC11932059 DOI: 10.1002/fsn3.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Ulcerative colitis is one of the most common sorts of inflammatory bowel disease. This study investigates the protective effects of thymoquinone against sodium dodecyl sulfate (SDS)-induced intestinal damage and elucidates the underlying mechanisms using the Drosophila melanogaster model of ulcerative colitis. We found that Drosophila fed thymoquinone from larval to adult stages were resistant to SDS injury in adulthood. Thymoquinone pretreatment significantly restored the abnormal behaviors and intestinal morphological defects in Drosophila exposed to SDS. Moreover, thymoquinone protected the intestinal barrier function by inhibiting the overactivated c-Jun N-terminal kinase (JNK) pathway in the intestine induced by SDS. Further studies indicated that thymoquinone inhibits the JNK pathway by reducing intestinal reactive oxygen species (ROS) levels. This research provides novel pathological and mechanistic insights into the potential application of thymoquinone in developing functional foods or natural medicines, highlighting its significance in treating ulcerative colitis.
Collapse
Affiliation(s)
- Kaitong Jia
- China Light Industry Key Laboratory of Meat Microbial Control and UtilizationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Lei Wu
- China Light Industry Key Laboratory of Meat Microbial Control and UtilizationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Ziru Li
- China Light Industry Key Laboratory of Meat Microbial Control and UtilizationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Tian Wei
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional InterventionsHefei University of TechnologyHefeiChina
| | - Tingting Fan
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
- Engineering Research Center of Bio‐ProcessMinistry of Education, Hefei University of TechnologyHefeiChina
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and UtilizationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional InterventionsHefei University of TechnologyHefeiChina
- Engineering Research Center of Bio‐ProcessMinistry of Education, Hefei University of TechnologyHefeiChina
| |
Collapse
|
11
|
Wang L, Shao L, Gao YC, Liu J, Li XD, Zhou J, Li SF, Song YL, Liu B, Zhang W, Huang WH. Panax notoginseng Saponins Alleviate Inflammatory Bowel Disease via Alteration of Gut Microbiota-Bile Acid Metabolism. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:567-596. [PMID: 40165428 DOI: 10.1142/s0192415x25500223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Bile acid metabolism mediated by gut microbiota is significantly related to immunity regulation that plays an important role in the development and treatment of inflammatory bowel disease (IBD). Our previous study has demonstrated that Panax notoginseng saponins (PNS) alleviate colitis due to the regulation of T helper 17/Regulatory T cells (Th17/Treg) balance via gut microbiota. However, the effects and mechanism of PNS on colitis pertinent to bile acid metabolism mediated by gut microbiota remain elusive. This study aims to investigate the anti-colitis mechanism of PNS by regulating the Th17/Treg balance pertinent to gut microbiota-bile acid metabolism. Results showed that PNS significantly decreased the relative abundance of Allobaculum, Dubosiella, Muribaculum, and Alistipes, and up-regulated the relative contents of conjugated bile acids, such as TCA and TCDCA. Fecal microbiota transplantation (FMT) showed that the gut microbiota remodeled by PNS had a regulatory effect on bile acid metabolism, and up-regulated the relative contents of TCA and TCDCA, which alleviated IBD and promoted Treg cell expression in vivo and in vitro. Taken together, PNS could reshape the profiling of gut microbiota to generate more TCA and TCDCA, which improve the balance of Th17/Treg to exert anti-IBD effects.
Collapse
Affiliation(s)
- Lin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410128, P. R. China
| | - Yong-Chao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Jing Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Xu-Dong Li
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Jie Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Shuang-Feng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Yue-Lin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| |
Collapse
|
12
|
Fernández-Veledo S, Grau-Bové C, Notararigo S, Huber-Ruano I. The role of microbial succinate in the pathophysiology of inflammatory bowel disease: mechanisms and therapeutic potential. Curr Opin Microbiol 2025; 85:102599. [PMID: 40132355 DOI: 10.1016/j.mib.2025.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition linked to gut microbiota dysbiosis and altered production of bacterial metabolites, including succinate, which is also a key intermediate in human mitochondrial energy metabolism in human cells. Succinate levels in the gut are influenced by microbial community dynamics and cross-feeding interactions, highlighting its dual metabolic and ecological importance. Extracellular succinate acts as a key signaling metabolite linking microbial metabolism to host physiology, with transient rises supporting metabolic regulation but chronic elevations contributing to metabolic disorders and disease progression. Succinate signals through its cognate receptor SUCNR1, which mediates adaptive metabolic responses under normal conditions but drives inflammation and fibrosis when dysregulated. IBD patients display a dysbiotic gut microbiota characterized by an increased prevalence of succinate-producing bacteria, contributing to elevated succinate levels in the gut and circulation. This imbalance drives inflammation, worsens IBD severity, and contributes to complications like Clostridioides difficile infection and fibrosis. Emerging evidence highlights the potential of intestinal and systemic succinate levels as indicators of microbial dysbiosis, with a bidirectional relationship between microbial composition and succinate metabolism. Understanding the factors influencing succinate levels and their interaction with dysbiosis shows promise in the development of therapeutic strategies to restore microbial balance. Approaches such as dietary fiber enrichment, prebiotics, and probiotics to enhance succinate-consuming bacteria, combined with targeted modulation of succinate pathways (e.g. SDH inhibitors, SUCNR1 antagonists), hold promise for mitigating inflammation and improving gut health in IBD.
Collapse
Affiliation(s)
- Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Department de Ciències Mèdiques Bàsiques, University Rovira i Virgili, Tarragona, Spain.
| | - Carme Grau-Bové
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; SucciPro, S.L, Barcelona, Spain
| | - Sara Notararigo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; SucciPro, S.L, Barcelona, Spain
| | - Isabel Huber-Ruano
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; SucciPro, S.L, Barcelona, Spain.
| |
Collapse
|
13
|
Wang Q, Zhang W, Liu J, Qin W, Cai J. Exopolysaccharide of Levilactobacillus brevis M-10 Improved Physiological and Biochemical Indicators and Gut Microbiota in DSS-Induced Colitis Mice. Curr Microbiol 2025; 82:204. [PMID: 40126646 DOI: 10.1007/s00284-025-04190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Ulcerative colitis (UC) is a typical type of inflammatory bowel disease, which is often recurrent and directly related with colorectal cancer. Therefore, early prevention and treatment for UC is very necessary. Therefore, it is necessary to find efficient substances to treat the UC with less side effects than drugs. Exopolysaccharides (EPSs) are important bioactive constituents of lactic acid bacteria. The study evaluated the effects of EPS1 produced by Levilactobacillus brevis M-10 on UC by determining the weight, the disease activity index (DAI) and the physiological and biochemical indexes. The pathological structures of colon were observed. The gut microbiota and the short-chain fatty acids were analyzed. The results demonstrated high dose (HD) of EPS1 (400 mg/kg-BW) that had the best effects on UC mice. The HD group restored body weight, decreased DAI and alleviated shortening of the length of the colon, recovered liver tissue, declined lipopolysaccharide, and myeloperoxidase. Also the HD group showed that the expression of tight junction proteins increased, IL-10 up-regulated, IL-6, IL-1β, and TNF-α down-regulated, and the gut microbiota dysbiosis balanced. The HD group markedly elevated the relative abundance of Lachnospiraceae_NK4A136_group, Unclassified-Lachnospiraceae, and Unclassified- Muribaculaceae. Acetic acid, propionic acid, and n-butyric acid were significantly increased in the HD group (P < 0.05). The study could provide a theoretical basis and material support for the exploration of safe functional food in alleviating and preventing UC.
Collapse
Affiliation(s)
- Qi Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
| | - Wenwen Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Jiaqin Liu
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, 010110, Inner Mongolia, China
| | - Wenjun Qin
- Nutritional department, Shanxi Hospital of Traditional Chinese Medicine, Taiyuan, 030012, Shanxi, China
| | - Jin Cai
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China
| |
Collapse
|
14
|
Gabryel M, Zakerska-Banaszak O, Ladziak K, Hubert KA, Baturo A, Suszynska-Zajczyk J, Hryhorowicz M, Dobrowolska A, Skrzypczak-Zielinska M. Is a rare CXCL8 gene variant a new possible cause or curse factor of inflammatory bowel disease? Front Immunol 2025; 16:1562618. [PMID: 40176809 PMCID: PMC11961448 DOI: 10.3389/fimmu.2025.1562618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
Introduction The pathogenesis of inflammatory bowel diseases (IBD) involves genetic, environmental, immunological, and microbial factors; however, it remains unclear. Pro-inflammatory interleukin 8 (IL-8), encoded by the CXCL8 gene, assumes a crucial chemotactic role in leukocyte migration. Methods This study aimed to investigate whether an association exists between IBD and two CXCL8 variants, namely, c.-251A>T (rs4073) and c.91G>T (rs188378669), and IL-8 concentration. We analyzed the distribution of both variants among 353 Polish IBD patients and 200 population subjects using pyrosequencing, competitive allele-specific PCR and Sanger sequencing. Results The c.91T stop-gained allele was significantly more frequent in IBD patients (2.12%) than in controls (0.25%) (p = 0.0121), while the c.-251T allele frequencies were similar (54% vs. 51.5%, p = 0.4955). Serum IL-8 concentrations, measured using ELISA, were higher in IBD patients with the c.91 GG genotype compared to healthy controls (mean, 70.02 vs. 51.5 pg/ml, p<0.01) and patients with c.91 GT (mean, 61.73 pg/ml). Moreover, clinical data indicated that carriers of the c.91T variant need more often corticosteroids and surgical treatment of the disease than GG homozygous IBD patients. Conclusion This suggest that the CXCL8 c.91T allele may influence IBD manifestation and the course of the disorders in Polish patients, potentially serving as a novel target for future studies and therapeutic approaches.
Collapse
Affiliation(s)
- Marcin Gabryel
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Karolina Ladziak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Alina Baturo
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Suszynska-Zajczyk
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| | - Magdalena Hryhorowicz
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
15
|
Li JH, Xu J, Hu JX, Xu HM, Guo X, Zhang Y, Xu JK, Huang C, Nie YQ, Zhou YL. PPARγ/β/δ Agonists Can Ameliorate Dextran Sodium Sulfate-Induced Colitis and Modulate Gut Microbiota. J Gastroenterol Hepatol 2025. [PMID: 40103411 DOI: 10.1111/jgh.16929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/09/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND AND AIM Peroxisome proliferator-activated receptors (PPARs), as nuclear receptors, modulate both lipid metabolism and inflammatory/immune processes. This study examines the impact of modulating the activities of the PPAR subtypes PPARβ/ð and PPARγ on the gut microbiota in inflammatory bowel disease (IBD). METHODS Mice with dextran sulfate sodium (DSS)-induced acute colitis were treated with the PPARγ agonist pioglitazone, PPARβ/δ agonist GW0742, or their respective antagonists (GW9662, GSK3787). Weight loss, diarrhea severity, hematochezia, and disease activity index were assessed daily. Upon study completion, colon length, histopathology, and mRNA levels of the intestinal barrier and inflammatory markers were measured. Occludin and E-cadherin levels were assessed via immunofluorescence analysis, and cecal samples underwent 16S rRNA sequencing for gut microbiota analysis. RESULTS Our findings revealed that the agonists pioglitazone and GW0742 effectively suppressed DSS-induced colitis, improved clinical symptoms, reversed colon shortening, and mitigated histological damage. Conversely, their antagonists, GW9662 and GSK3787, failed to alleviate inflammation and sometimes exacerbated disease indicators. Both agonists modulated DSS-induced dysbiosis by reducing the abundance of proinflammatory cytokine-associated microbiota, including Bacteroides, Enterococcus, and Escherichia-Shigella, while enhancing both α-diversity and β-diversity of the gut microbiome, to restore equilibrium. CONCLUSION Our findings reveal that activation of PPARγ and PPARβ/δ can balance the gut microbiota in mice and ameliorate experimental colitis in mice. Thus, PPARγ and PPARβ/δ have protective effects against IBD and could serve as novel therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Jian-Hong Li
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jin-Xia Hu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xue Guo
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Yan Zhang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jing-Kui Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - You-Lian Zhou
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Lu H, Zhou Q, Li J, Xu S, Yu L, Zhu Y, Zhang H, Shi C, Zuo T, Xu M, Su M, Zhang Y, Hu R, Shubhra QTH, Deng H, Hu X, Cai X. CO-Releasing Polyoxometalates Nanozyme with Gut Mucosal Immunity and Microbiota Homeostasis Remodeling Effects for Restoring Intestinal Barrier Integrity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500116. [PMID: 40079617 DOI: 10.1002/advs.202500116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/16/2025] [Indexed: 03/15/2025]
Abstract
Disruption of the intestinal epithelial barrier, driven by imbalances in gut mucosal immunity and microbial homeostasis, is central to the onset and progression of inflammatory bowel disease (IBD). This study introduces a CO-releasing polyoxometalates (POMs) nanozyme (PMC), synthesized by coordinating pentacarbonyl manganese bromide with molybdenum-based POM nanoclusters. PMC demonstrates targeted accumulation at IBD-affected sites, efficient scavenging of reactive oxygen species (ROS), and responsive CO release, resulting in multiple therapeutic effects. Extensive in vitro and in vivo studies have validated the exceptional capacity of PMC to repair intestinal barrier, attributed to their potent antioxidant and anti-inflammatory properties, thereby achieving significant therapeutic efficacy in ulcerative colitis treatment. 16S rRNA sequencing indicated that PMC efficiently remodeled the gut microbiota composition. Single-cell RNA sequencing indicates a reduction in pro-inflammatory M1 macrophages, alongside suppressed ROS and inflammatory signaling pathways. Concurrently, an increase in reparative M2 macrophages and intestinal stem cells is observed, in addition to significant activation of the VEGF signaling pathway in macrophages and the NOTCH pathway in stem cells, underscoring the potential of PMC to restore immune balance and promote tissue repair. This study positions PMC as a promising, multifunctional therapeutic agent for IBD treatment owing to its robust intestinal barrier-restoring capability.
Collapse
Affiliation(s)
- Hongyang Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiang Zhou
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, China
| | - Jiayu Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shengming Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Li Yu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinci Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - He Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chengge Shi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tianci Zuo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengzhu Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mingli Su
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yanmei Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Rongdang Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Quazi T H Shubhra
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, Katowice, 40-006, Poland
| | - Hui Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaowen Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaojun Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
17
|
White B, Svolos V, Gervais L, Jatkowska A, Nichols B, MacDonald J, Seenan JP, Hansen R, Russell RK, Milling S, Gerasimidis K. Inflammation-related Proteins Support Diagnosis of Inflammatory Bowel Disease and Are Modified by Exclusive Enteral Nutrition in Children With Crohn's Disease, Especially of Ileal Phenotype. Inflamm Bowel Dis 2025; 31:733-745. [PMID: 38920313 PMCID: PMC11879199 DOI: 10.1093/ibd/izae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND The immunological effects of treatment with exclusive enteral nutrition (EEN) in Crohn's disease (CD) remain unknown. We characterized the plasma levels of inflammation-related proteins (IRPs) in children with CD and ulcerative colitis (UC) compared with noninflammatory controls (non-IBD) and explored the effect of EEN in CD. METHODS Ninety-two IRPs were quantified using Olink proteomics in children with CD (n = 53), UC (n = 11), and non-IBD (n = 19). For 18 children with active CD, IRPs were measured before and after 8 weeks of EEN. Relationships with disease phenotype and response to EEN were studied. RESULTS Compared with non-IBD, patients with active UC and CD had different levels of 27 (24 raised, 3 decreased) and 29 (26 raised, 3 decreased) IRPs, respectively. Exclusive enteral nutrition modified the levels of 19 IRPs (13 increased, 6 decreased including CCL23, interleukin-24, interleukin-6, and MMP-1). More pronounced changes in IRP profile were observed in patients with ileal involvement and a ≥50% decrease in fecal calprotectin during EEN compared with those with colonic involvement and a <50% decrease in fecal calprotectin, respectively. A machine-learning model utilizing baseline IRP profile predicted response to EEN with a sensitivity of 89%, specificity of 57%, and accuracy of 73%. Thymic stromal lymphopoietin was the most important IRP in the model, this being higher in responders. CONCLUSIONS Inflammation-related proteins may be useful in the differential diagnosis of IBD. Exclusive enteral nutrition extensively modulated IRPs levels in children with active CD with more pronounced effects observed in patients who showed a reduction in FC and had ileal disease involvement.
Collapse
Affiliation(s)
- Bernadette White
- Department of Human Nutrition, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Vaios Svolos
- Department of Human Nutrition, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Lisa Gervais
- Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Aleksandra Jatkowska
- Department of Human Nutrition, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Ben Nichols
- Department of Human Nutrition, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Jonathan MacDonald
- Department of Gastroenterology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - John Paul Seenan
- Department of Gastroenterology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Richard Hansen
- Division of Clinical and Molecular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Richard K Russell
- Department of Paediatric Gastroenterology, Royal Hospital for Children & Young People, Edinburgh, United Kingdom
| | - Simon Milling
- School of Infection & Immunity, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Konstantinos Gerasimidis
- Department of Human Nutrition, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| |
Collapse
|
18
|
Otsuki A, Inoue R, Imai T, Miura H, Nishida A, Inatomi O, Andoh A. Characterization of the gut phageome of Japanese patients with ulcerative colitis under endoscopic remission. J Clin Biochem Nutr 2025; 76:202-209. [PMID: 40151403 PMCID: PMC11936741 DOI: 10.3164/jcbn.24-173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/01/2024] [Indexed: 03/29/2025] Open
Abstract
This study aimed to analyze the gut phageome in Japanese patients with ulcerative colitis (UC) in endoscopic remission. Fecal samples were collected from 35 UC patients and 22 healthy controls. The gut microbiome was analyzed using 16S rRNA amplicon sequencing, and the phageome was profiled through shotgun metagenomic sequencing. Compared to healthy controls, UC patients showed a significant reduction in phageome richness (observed species and Chao1 index). Principal coordinate analysis revealed a significant difference in beta-diversity between UC and healthy controls (p = 0.001). The abundance of temperate phages was higher in UC (15.2%) compared to healthy controls (5.9%), although this was not statistically significant (p = 0.088). Temperate phages associated with Coprococcus sp., Bacteroides sp. KFT8, and Faecalibacterium prausnitzii, as well as virulent phages associated with Ruminococcus gnavus and Lactobacillus farciminis, were increased in UC patients. Conversely, phages associated with Thermosipho affectus, Bacteroides sp. OF03-11BH, and Odoribacter splanchnicus were decreased in UC patients. Phages associated with the genera Odoribacter (p = 0.0004), Ruminococcus (p = 0.009), and Veillonella (p = 0.013) were significantly reduced in UC patients. The gut phageome of inactive UC patients exhibited notable alterations in viral composition compared to healthy controls. These results suggest that changes in the gut phageome might be involved in the pathogenesis of UC.
Collapse
Affiliation(s)
- Akinori Otsuki
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Ryo Inoue
- Department of Applied Biological Science, Faculty of Agriculture, Setsunan University, Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan
| | - Takayuki Imai
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Hiroto Miura
- Department of Applied Biological Science, Faculty of Agriculture, Setsunan University, Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
19
|
Mikhail ME, Pascoe LA, Burt SA, Culbert KM, Klump KL. Preliminary Evidence That Shared Genetic Influences Underlie Comorbidity Between Self-Reported Eating and Internalizing Disorders and Gastrointestinal Disease in Adult Women and Men. Int J Eat Disord 2025; 58:564-582. [PMID: 39722530 DOI: 10.1002/eat.24360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Accumulating research suggests both eating disorders (EDs) and internalizing disorders (e.g., anxiety, depression) are associated with gastrointestinal disease (e.g., irritable bowel syndrome, inflammatory bowel disease). However, the mechanisms underlying comorbidity with gastrointestinal disease-and whether they may differ for eating and internalizing disorders-remain poorly understood. Addressing these gaps is a critical first step to refining etiologic models of comorbidity and identifying potential targets for intervention. METHOD Participants included female and male twins ages 18-65 from the population-based MSU Twin Registry (N = 5883). Lifetime history of EDs, internalizing disorders, and gastrointestinal disease was assessed via questionnaire. We first examined whether EDs and internalizing disorders were independently associated with gastrointestinal disease phenotypically. We then used trivariate Cholesky decomposition twin models to investigate whether EDs and internalizing disorders were related to gastrointestinal disease through overlapping or distinct genetic/environmental pathways. RESULTS Eating (OR = 2.54, p = 0.009) and internalizing (OR = 2.14, p < 0.001) disorders were independently associated with gastrointestinal disease. Conclusions were unchanged after adjusting for important covariates (e.g., body mass index, age) and did not significantly differ across sex. Twin models suggested genetic influences shared by all three conditions explained their co-occurrence, with 31% of the variance in EDs and 12% of the variance in gastrointestinal disease attributable to genetic influences shared with internalizing disorders. CONCLUSION Shared genetic mechanisms may contribute to comorbidity between EDs, internalizing disorders, and gastrointestinal disease. Identifying overlapping molecular pathways could potentially lead to novel interventions that simultaneously address all three conditions.
Collapse
Affiliation(s)
- Megan E Mikhail
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California, USA
| | - Laura A Pascoe
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Kristen M Culbert
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
20
|
Yu Y, Ba X, Li T, Xu W, Zhao J, Zhang N, Zhao Y, Wang T, Zhang X, Wang X, Bai B, Wang B. PTPN22 and the pathogenesis of ulcerative colitis: Insights into T cell differentiation and the JAK/STAT signaling pathway. Cell Signal 2025; 127:111551. [PMID: 39643025 DOI: 10.1016/j.cellsig.2024.111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/20/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
70 % of the ulcerative colitis (UC) linked gene loci are associated with other autoimmune or immunodeficient diseases. The phosphatase activity of PTPN22 can regulate the development of T cells and contribute to regulate the level of inflammation in autoimmune diseases. We produced PTPN22-CS thymus-specific transgenic mice, which suppressed PTPN22 enzyme activity in the thymocytes. Overexpressed PTPN22-CS facilitated the development of the thymocytes towards CD4+T cells and resulted in an increased proportion of the Th1 and Treg cells in the UC mesenteric lymph nodes. PTPN22-CS promoted the activation of the JAK/STAT signaling pathway in the Th1 and Treg cells that localized in the colon, resulting in an excessive production of inflammatory mediators such as IL-2 and IFN-γ. Consequently, PTPN22-CS contributes to the inflammatory response of ulcerative colitis. In summary, the tyrosine phosphatase activity of PTPN22 plays a role in modulating UC by regulating T cell differentiation and modulating the JAK/STAT signaling pathway, thereby influencing the inflammatory response in colonic. These findings provide new insight into the association between PTPN22 and the pathogenesis of UC.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Xinlei Ba
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Tong Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Wenying Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Jiahui Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China
| | - Na Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Yanjiao Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China
| | - Tao Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Xiaonan Zhang
- Department of Pathophysiology, Bengbu Medical University, Longzihu, Bengbu, 233030, Anhui, PR China..
| | - Xipeng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China
| | - Bin Bai
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Bing Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| |
Collapse
|
21
|
Hu CH, Chen Y, Jin TY, Wang Z, Jin B, Liao J, Ding CY, Zhang A, Tang WY, Zhang LX, Xu LY, Ning FM, Liang G, Wei XH, Wang Y. A derivative of tanshinone IIA and salviadione, 15a, inhibits inflammation and alleviates DSS-induced colitis in mice by direct binding and inhibition of RIPK2. Acta Pharmacol Sin 2025; 46:672-686. [PMID: 39443729 PMCID: PMC11845706 DOI: 10.1038/s41401-024-01399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions primarily affecting the gastrointestinal tract. Previous studies established the role of the NF-κB signaling pathway in the development of IBDs, suggesting that anti-inflammatory therapies might offer a viable treatment strategy. Tanshinone IIA and salviadione, both derived from Salviae Miltiorrhizae Radix et Rhizoma, possess anti-inflammatory and anti-oxidative activities. A series of new compounds were synthesized by hybridizing salviadione with tanshinone. Among these compounds, 15a showed beneficial effects in LPS-induced acute lung injury and diabetes-induced renal injury mouse models. The current study explored the therapeutic efficacy of 15a using both acute and chronic colitis models and elucidated the underlying mechanisms. DSS-induced colitis models were established in mice, where acute colitis was treated with compound 15a (5 or 10 mg·kg-1·d-1) for 8 days, while chronic colitis mice received compound 15a (5 or 10 mg·kg-1·d-1, i.g.) during 2.5% DSS administration. The 15a treatment significantly alleviated DSS-induced pathological and inflammatory damages in both acute and chronic colitis mouse models. In mouse intestinal epithelial cell line MODE-K, pretreatment with compound 15a (5 or 10 μM) significantly suppressed LPS + L18-MDP-induced inflammatory responses. The receptor-interacting serine/threonine kinase 2 (RIPK2) was identified as a direct binding target of compound 15a using microarrays and recombinant human proteins. Moreover, 15a could directly bind to and inhibit the phosphorylation of RIPK2, leading to the suppression of the NF-κB and MAPK signaling pathways. Furthermore, LEU153 and VAL32 were identified within the KD domain of RIPK2 as critical amino residues for the binding of 15a. Briefly, the current findings demonstrate that compound 15a holds promise as a therapeutic agent for managing acute and chronic colitis.
Collapse
Affiliation(s)
- Cheng-Hong Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yue Chen
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Tian-Yang Jin
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Zhe Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bo Jin
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Jing Liao
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Chun-Yong Ding
- Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ao Zhang
- Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei-Yang Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ling-Xi Zhang
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Lei-Yu Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fang-Min Ning
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310051, China
| | - Xiao-Hong Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yi Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
22
|
Li T, Chen J, Xu Y, Ji W, Yang S, Wang X. Hawthorn Pectin Alleviates DSS-Induced Colitis in Mice by Ameliorating Intestinal Barrier Function and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40011195 DOI: 10.1021/acs.jafc.4c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Pectin, as a kind of soluble dietary fiber in hawthorns, exhibits a wide range of biological activities. Nevertheless, its role and mechanism in ulcerative colitis (UC) remain unclear. In this study, the effect of hawthorn pectin (HP) against dextran sulfate sodium (DSS)-induced UC in mice and its underlying mechanism were evaluated. HP dramatically alleviated the pathological symptoms related to colitis in mice, displaying an increase in body weight and colon length and inhibition in colon damage. Importantly, HP inhibited the serum levels of inflammation-related factors including tumor necrosis factor-α, IL-1β, and IL-6 as well as decreased the number of F4/80-positive macrophages in the colon. Moreover, the expression levels of ZO-1 and occludin proteins related to intestinal permeability were increased. A significant decrease in a dose-dependent manner at the gut bacterial genus level (such as Alistipes, Colidextribacter, and Blautia) was observed after HP treatment. HP improved the metabolic pathways of gut microbiota and increased the concentrations of short-chain fatty acids in cecal contents of UC mice. Intriguingly, fecal microbiota transplantation intervention with an HP-derived microbiome notably increased the length and relieved histopathological changes of colon in UC mice. Conclusively, our study provided valuable insights into the potential of HP as a prebiotic for maintaining intestinal health and confirmed that HP could ameliorate UC in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Tao Li
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Junbo Chen
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuncong Xu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenhua Ji
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiao Wang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
23
|
Du X, Yu W, Chen F, Jin X, Xue L, Zhang Y, Wu Q, Tong H. HDAC inhibitors and IBD: Charting new approaches in disease management. Int Immunopharmacol 2025; 148:114193. [PMID: 39892171 DOI: 10.1016/j.intimp.2025.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/14/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Inflammatory bowel disease (IBD) represents a group of chronic inflammatory disorders of the gastrointestinal tract. Despite substantial advances in our understanding of IBD pathogenesis, the currently available therapeutic options remain limited in their efficacy and often come with significant side effects. Therefore, there is an urgent need to explore novel approaches for the management of IBD. One promising avenue of investigation revolves around the use of histone deacetylase (HDAC) inhibitors, which have garnered considerable attention for their potential in modulating gene expression and curbing inflammatory responses. This review emphasizes the pressing need for innovative drugs in the treatment of IBD, and drawing from a wealth of preclinical studies and clinical trials, we underscore the multifaceted roles and the therapeutic effects of HDAC inhibitors in IBD models and patients. This review aims to contribute significantly to the understanding of HDAC inhibitors' importance and prospects in the management of IBD, ultimately paving the way for improved therapeutic strategies in this challenging clinical landscape.
Collapse
Affiliation(s)
- Xueting Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Weilai Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Fangyu Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liwei Xue
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| |
Collapse
|
24
|
Liu Y, Zhang JT, Sun M, Song J, Sun HM, Wang MY, Wang CM, Liu W. Targeting ferroptosis in the treatment of ulcerative colitis by traditional Chinese medicine: A novel therapeutic strategies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156539. [PMID: 39987602 DOI: 10.1016/j.phymed.2025.156539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND The incidence of ulcerative colitis (UC) has been rising rapidly in recent years, and there is currently no effective method to prevent its recurrence. Owing to its long treatment duration, difficulty in treatment, prolonged remission, and high costs, it has attracted global attention. Exploring safe, effective, and sustainable treatment regimens has become an urgent global issue. Traditional Chinese medicine (TCM) has unique advantages such as low cost, low drug resistance, and fewer side effects, and has accumulated rich experience in the treatment of UC. PURPOSE Ferroptosis, as a new form of non-apoptotic cell death, is characterized by iron homeostatic imbalance and lipid peroxidation in the redox system. Studies have shown that inhibited ferroptosis in intestinal epithelial cells can protect the intestinal mucosa. Targeted intervention in ferroptosis may be a new direction for the treatment of UC. METHODS We conducted a systematic literature search with Google Scholar, PubMed, Web of Science, ScienceDirect and X-mol databases have been utilized to retrieve relevant literature up to October 2024, using keywords included ferroptosis, Inflammatory bowel disease (IBD), UC, Crohn's disease and TCM, Chinese traditional prescription, Chinese medicine extract and active ingredients. The existing literature was comprehensively studied and sorted out. RESULTS Currently, UC is mainly treated with drugs, including corticosteroids, amino salicylates, biologics, and immunomodulators, but drug resistance and adverse reactions are common. Increasing evidence suggests that TCM may treat UC by interfering with ferroptosis. Scholars have confirmed that TCM can inhibit ferroptosis, and recent studies have shown that TCM can not only inhibit iron dependent lipid peroxidation in intestinal cells but also enhance the antioxidant and anti-inflammatory abilities of intestinal mucosa, thus playing a role in the treatment of UC. This review explores the relevance of TCM intervention in ferroptosis and the treatment of UC, discusses the possible mechanisms of ferroptosis in UC, and aims to provide a basis for the diagnosis and treatment of UC. CONCLUSION It is revealed that TCM targeted ferroptosis has a good application prospect in the treatment of UC, providing a theoretical basis for elucidating the pathogenesis of UC and the study of TCM targeting ferroptosis regulating lipid metabolism in the treatment of UC, and providing a new perspective for the treatment of IBD in the future.
Collapse
Affiliation(s)
- Ying Liu
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Meng Sun
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Jian Song
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Meng-Yang Wang
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Chun-Mei Wang
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Wei Liu
- College of Pharmacy, Beihua University, jilin 132013, China.
| |
Collapse
|
25
|
Xu X, Lv X, Zeng R, Huang Z, Huang Z, Han B, Lin G, Lin J, Li S, Fan J, Lv X. Elevated levels of IRF1 and CASP1 as pyroptosis-related biomarkers for intestinal epithelial cells in Crohn's disease. Front Immunol 2025; 16:1551547. [PMID: 40018047 PMCID: PMC11865233 DOI: 10.3389/fimmu.2025.1551547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Crohn's disease (CD) is a complex inflammatory condition with the potential for severe complications. Pyroptosis is an inflammatory form of programmed cell death, and the role of pyroptosis in intestinal epithelial cells of CD remains unclear. Methods In this study, pyroptosis-related hub genes were identified using datasets from the Gene Expression Omnibus database through differential expression analysis, machine learning algorithms, and single-cell sequencing analysis. Hub gene expression was validated using clinical samples and a trinitrobenzene sulfonic acid (TNBS)-induced colitis rat model. Results Six pyroptosis-related hub genes (CASP1, IRF1, ZBP1, MLKL, MMP1, HTRA1) were identified. IRF1 and CASP1 exhibited significant upregulation in CD, including both colonic and ileal subtypes, with good diagnostic value across different CD subtypes. Additionally, these two genes were not elevated in any other intestinal disorders, except for ulcerative colitis. Single-cell sequencing analysis revealed a significant interaction between intestinal epithelial cells (IECs) and monocytes. The clinical samples further confirmed that the mRNA levels of IRF1 and CASP1 were significantly higher in CD patients compared to healthy controls. Additionally, the colitis rat model validated the upregulation of Irf1 and Casp1 at both mRNA and protein levels. Conclusion Our findings identified IRF1 and CASP1 as critical pyroptosis-related biomarkers for IECs in CD, contributing to the understanding of pyroptosis in CD pathogenesis.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruizhi Zeng
- Department of Gastroenterology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhixi Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziqian Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bing Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangfu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianing Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junhua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
26
|
Liu J, Niu D, Tang Y, Zheng R, Qin Y, Cheng X, Pan S, Yuan J, Shi X, Yang J. Beta-hydroxy-beta-methylbutyrate (HMB) ameliorates DSS-induced colitis by inhibiting ERK/NF-κB activation in macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156492. [PMID: 39978274 DOI: 10.1016/j.phymed.2025.156492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/20/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND β-Hydroxy β-Methylbutyrate (HMB), derived from leucine, is known for its role in anti-oxidation and anti-inflammation. But, the application of HMB in IBD treatment is not fully understood, highlighting the requirement for further research. PURPOSE We aimed to examine the effects of HMB treatment on DSS-induced chronic colitis in mice and explore its underlying mechanisms. METHODS To simulate colonic inflammation, a murine colitis model was generated by using DSS induction. Critical indicators such as body weight, colon length, disease activity index (DAI), and gross pathology were thoroughly monitored. Immunohistochemistry assay was conducted to assess the expression of Occludin and F4/80. Flow cytometry was employed to evaluate the expression levels of CD80 and CD86. qPCR was performed to measure cytokine expression (IL-6, IL-1β, TNF-α, IL-22, CXCL2, iNOS). RNA sequencing was carried out using bone-marrow derived dendritic macrophage cells (BMDMs). RESULTS Our study indicates that HMB treatment substantially mitigated colonic damage in murine models of DSS-induced colitis, highlighting its anti-inflammatory potential. Notably, HMB significantly enhanced the expression of Occludin in these mice. Furthermore, HMB downregulated proinflammatory markers such as IL-6, IL-1β, and TNF-α as well as CXCL2 in the colon tissue. In vitro experiments also revealed that HMB reduced production of proinflammatory cytokines induced by DSS and suppressed the expression levels of CD80 and CD86 in macrophage cells. On a mechanistic level, we demonstrated the anti-inflammatory effects of HMB by reducing the phosphorylation of p-ERK and p-p65, thereby limiting cytokine production in both in vivo and in vitro settings. CONCLUSION These findings indicate that HMB possesses anti-inflammation against intestinal inflammation and may hold promise as a potential therapeutic candidate for IBD treatment. There's growing interest in combining traditional anti-inflammatory agents with supplements like HMB to improve outcomes in complex IBD cases. HMB's role in established muscle preservation and reduction of systemic inflammation as described in this study could make it a valuable adjunct in IBD therapy.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Clinical Nutrition, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, PR China
| | - Danye Niu
- Department of Clinical Nutrition, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, PR China
| | - Yu Tang
- Department of Clinical Nutrition, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, PR China
| | - Ruoheng Zheng
- Institute of Clinical Medicine Research, Suzhou Hospital, The Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, PR China
| | - Yinyin Qin
- Institute of Clinical Medicine Research, Suzhou Hospital, The Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, PR China
| | - Xiuqin Cheng
- Department of Gastroenterology, Suzhou Hospital, The Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, PR China
| | - Shubo Pan
- Department of Gastroenterology, Suzhou Hospital, The Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, PR China
| | - Jinfei Yuan
- Institute of Clinical Medicine Research, Suzhou Hospital, The Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, PR China
| | - Xiaohua Shi
- Department of Gastroenterology, Suzhou Hospital, The Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, PR China
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Hospital, The Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, PR China; Department of Gastroenterology, Suzhou Hospital, The Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, PR China.
| |
Collapse
|
27
|
Jin Y, Liu H, Wang Y, Zhang R, Wang Q, Wang Y, Cui H, Wang X, Bian Y. Pathogenesis and treatment of colitis-associated colorectal cancer: Insights from Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119096. [PMID: 39532222 DOI: 10.1016/j.jep.2024.119096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/11/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory Bowel Disease (IBD) is an inflammatory intestinal disease, and with prolonged illness duration, the annual risk of IBD progressing to colitis-associated colorectal cancer (CAC) gradually increases. In recent years, there has been a noticeable trend towards the application of traditional Chinese medicine (TCM) in the treatment of CAC. AIM OF THIS REVIEW This comprehensive review summarizes the pathogenesis of CAC and details the therapeutic benefits of TCM in treating CAC, including various TCM prescriptions and ingredients, establishing the theoretical foundation for the application of TCM in CAC treatment. METHODS We assessed literature published before March 24, 2024, from several databases, including Web of Science, PubMed, Scopus and Google Scholar. The keywords used include "traditional Chinese medicine", "traditional Chinese medicine prescriptions", "traditional Chinese medicine ingredients", "herbal medicine", "colitis-associated colorectal cancer", "inflammatory bowel disease", "colorectal cancer" and "colitis-cancer transformation". We conducted a comprehensive collection and collation of pertinent scientific articles from various databases, focusing on the efficacy of TCM in the prevention and treatment of "colitis-cancer transformation". RESULTS This paper provides a concise summary and thorough analysis of twenty-eight prescriptions and ingredients of TCM for the prevention and treatment of CAC, based on existing experimental and clinical research. There are positive signs that TCM can effectively prevent and treat the "colitis-cancer transformation" through repairing the intestinal mucosal barrier, correcting intestinal flora imbalance, and regulating intestinal immune responses. CONCLUSION TCM possesses comprehensive regulatory advantages that are multifaceted, multilevel, and multitarget. It has a definite curative effect in the prevention and treatment of CAC. It is essential to enhance the clinical efficacy of TCM in the prevention and treatment of CAC based on syndrome differentiation and treatment, with the assistance of modern medicine.
Collapse
Affiliation(s)
- Yutong Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haizhao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Yuhui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruixuan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiaochu Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300073, China
| | - Yao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangling Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
28
|
Zhong H, Luo X, Abdullah, Liu X, Hussain M, Guan R. Nano-targeted delivery system: a promising strategy of anthocyanin encapsulation for treating intestinal inflammation. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39919822 DOI: 10.1080/10408398.2025.2458741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Anthocyanins are natural flavonoids derived from plants, widely recognized for their health-promoting effects, specifically to treat inflammatory bowel disease (Crohn's disease and ulcerative colitis). However, certain limitations are associated with their use, including instability, low solubility and permeability, poor gastrointestinal digestion, and low bioavailability. In this review, nano-carriers (e.g., liposome, polymersome, exosome, halloysite nanotubes, dendrimer, and nano-niosome, etc.) were summarized as anthocyanins delivery vehicles to treat inflammatory bowel disease. Recent progress on emerging strategies involved surface functionalization, responsive release, magnetic orientation, and self-assembly aggregation to address intestinal inflammation through nano-carriers and potential mechanisms were discussed. Anthocyanins, water-soluble pigments linked by glycoside bonds have attracted attention to alleviate intestinal inflammation related diseases. Anthocyanins can address intestinal inflammation by exerting their health beneficial effects such as anti-oxidative, anti-inflammatory, regulating the intestinal flora, and promoting apoptosis. Moreover, nano-carriers were discussed as oral delivery system for maximized bioefficacy of anthocyanins and to address concerns related to their low solubility and permeability, poor gastrointestinal metabolism, and low bioavailability were discussed. A future perspective is proposed concerning anthocyanin-loaded nano-carriers, different strategies to improve their efficacy, and developing functional food to treat intestinal inflammation.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xin Luo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
29
|
Si W, Zhao X, Li R, Li Y, Ma C, Zhao X, Bugno J, Qin Y, Zhang J, Liu H, Wang L. Lactobacillus rhamnosus GG induces STING-dependent IL-10 in intestinal monocytes and alleviates inflammatory colitis in mice. J Clin Invest 2025; 135:e174910. [PMID: 39895628 PMCID: PMC11785918 DOI: 10.1172/jci174910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2024] [Indexed: 02/04/2025] Open
Abstract
Preclinical and clinical observations indicate that the probiotic Lactobacillus rhamnosus GG (LGG) can modulate colonic inflammation. However, the underlying mechanisms have not been explored in depth. Here, we demonstrate that oral administration of live LGG alleviated inflammatory colitis by increasing IL-10 expression in intestinal Ly6C+ monocytes. Mechanistically, LGG induced IL-10 production via the stimulator of IFN genes (STING)/TBK1/NF-κB (RELA) signaling pathway in intestinal Ly6C+ monocytes, enhancing their immune-suppressive function. Elevated IL-10 subsequently activated IL-10 signaling in Ly6C+ monocytes, resulting in an IL-10-based autocrine regulatory loop and inhibition of proinflammatory cytokine production. Furthermore, LGG shifted the gut microbial community and its metabolic functions, leading to intestinal immune responses against colitis. Fecal microbiota transplantation from LGG-colonized mice alleviated immune checkpoint blockade-associated colitis. Our findings highlight the importance of STING signaling in IL-10-dependent antiinflammatory immunity and establish an empirical basis for developing oral administration of live LGG as an efficient and safe therapeutic strategy against inflammatory colitis.
Collapse
Affiliation(s)
- Wei Si
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Ruitong Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaopeng Li
- Pritzker School of Molecular Engineering and
| | - Cui Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohan Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongwei Liu
- The Laboratory of Microbiome and Microecological Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liangliang Wang
- The Laboratory of Microbiome and Microecological Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Wang X, Zhang G, Bian Z, Chow V, Grimaldi M, Carivenc C, Sirounian S, Li H, Sladekova L, Motta S, Luperi Y, Gong Y, Costello C, Li L, Jachimowicz M, Guo M, Hu S, Wilson D, Balaguer P, Bourguet W, Mani S, Bonati L, Peng H, March J, Wang H, Wang S, Krause HM, Liu J. An abundant ginger compound furanodienone alleviates gut inflammation via the xenobiotic nuclear receptor PXR in mice. Nat Commun 2025; 16:1280. [PMID: 39900639 PMCID: PMC11791082 DOI: 10.1038/s41467-025-56624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
The literature documenting the value of drug-like molecules found in natural products is vast. Although many dietary and herbal remedies have been found to be effective for treating intestinal inflammation, the identification of their active components has lagged behind. In this study, we find that a major ginger component, furanodienone (FDN), is a selective pregnane X receptor (PXR) ligand with agonistic transcriptional outcomes. We show that FDN binds within a sub-pocket of the PXR ligand binding domain (LBD), with subsequent alterations in LBD structure. Using male mice, we show that orally provided FDN has potent PXR-dependant anti-inflammatory outcomes that are colon-specific. Increased affinity and target gene activation in the presence of synergistically acting agonists indicates further opportunities for augmenting FDN activity, efficacy and safety. Collectively, these results support the translational potential of FDN as a therapeutic agent for the treatment and prevention of colonic diseases.
Collapse
Affiliation(s)
- Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Guohui Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Zhiwei Bian
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Vimanda Chow
- Department of Chemistry, York University, Toronto, ON, Canada
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Coralie Carivenc
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Savannah Sirounian
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Hao Li
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lucia Sladekova
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Yulia Luperi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Cait Costello
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Matthew Jachimowicz
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Miao Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Shian Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Derek Wilson
- Department of Chemistry, York University, Toronto, ON, Canada
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - William Bourguet
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Sridhar Mani
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| | - John March
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China.
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Xin J, He L, Li Y, Pu Q, Du X, Ban F, Han D. Sanguinarine chloride hydrate mitigates colitis symptoms in mice through the regulation of the intestinal microbiome and metabolism of short-chain fatty acids. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167579. [PMID: 39561858 DOI: 10.1016/j.bbadis.2024.167579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Sanguinarine constitutes the main components of Macleaya cordata, and exhibits diverse biological and pharmacological activities. This study investigated the effects of sanguinarine chloride hydrate (SGCH) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. Five groups were designed to investigate the effects of SGCH on the pathological symptoms, the mRNA expression levels of inflammatory cytokines, colonic mucosal barrier damage, microbiota composition, and SCFAs metabolism in UC mice. The administration of SGCH in DSS-induced UC mice resulted in the amelioration of pathological symptoms, as evidenced by an increase in body weight, a decrease in disease activity index score, elongation of colon length, reduction in spleen index, and improvement in colon injury. SGCH can regulate the expression of inflammatory cytokines (IL-6, TNF-α, IL-1β and IL-10) and tight junction proteins (ZO-1 and Occludin) associated with UC. SGCH exhibited a significant decrease in NF-κB P65 mRNA expression levels, accompanied by a significantly reduced protein level of NF-κB P-P65/P65. Further studies revealed SGCH effectively reversed the decrease in intestinal microbiota diversity induced by UC, thereby promoting the growth of beneficial bacteria such as Akkermansia, Alistipes, and norank_o_Clostridia_UCG-014. Correlation analysis demonstrated a positive association between butanoic acid, propanoic acid, isobutyric acid, isovaleric acid, valeric acid, hexanoic acid with Colidextribacter, while Coriobacteriaceae_UCG-002 exhibited a negative correlation with butanoic acid, acetic acid and propanoic acid. In conclusion, the administration of SGCH can ameliorate clinical symptoms in UC mice, regulate the expression of inflammatory cytokines and tight junction proteins, modulate intestinal microbiota metabolism and SCFAs production.
Collapse
Affiliation(s)
- Jige Xin
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Lin He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yanlin Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Qiqi Pu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Xuan Du
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Fuze Ban
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Diangang Han
- Technology Center of Kunming Customs, Kunming 650200, China.
| |
Collapse
|
32
|
Khan A, Azzam MA. Inflammatory Bowel Disease and Stroke: Exploring Hidden Vascular Risks. Cureus 2025; 17:e79304. [PMID: 40125129 PMCID: PMC11927930 DOI: 10.7759/cureus.79304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is primarily known for its gastrointestinal manifestations. However, emerging evidence suggests a potential link between IBD and an increased risk of stroke, likely mediated by chronic systemic inflammation, endothelial dysfunction, and a prothrombotic state. Despite this growing recognition, the exact mechanisms and extent of this association remain unclear, highlighting a critical knowledge gap. This review aims to systematically analyze the association between IBD and stroke, exploring the underlying vascular mechanisms and identifying potential risk factors contributing to cerebrovascular events in IBD patients. A comprehensive literature search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines across PubMed, Scopus, and Google Scholar using keywords such as "IBD," "Stroke," "Chronic inflammation," "Cerebrovascular risk," and "Gut-brain axis." After screening 150 studies and applying inclusion and exclusion criteria, six studies were included in the final synthesis. The findings suggest that chronic inflammation in IBD plays a key role in increasing stroke risk through endothelial dysfunction and a heightened prothrombotic state, with additional risk factors such as atrial fibrillation during active IBD flares further contributing to cerebrovascular events. While biologic therapies, including tumor necrosis factor (TNF)-alpha inhibitors, are effective in reducing systemic inflammation, their impact on mitigating stroke risk remains inconclusive. Given the potential role of IBD as an independent risk factor for stroke, a multidisciplinary approach to management is crucial. Addressing modifiable risk factors through pharmacologic interventions such as biologics, statins, and antiplatelet agents, alongside lifestyle modifications, could help reduce cerebrovascular complications in IBD patients. Further research is needed to explore personalized therapeutic strategies and establish clearer preventive guidelines for this at-risk population.
Collapse
Affiliation(s)
- Abdallah Khan
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Maysoon A Azzam
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| |
Collapse
|
33
|
Tu HJ, Chen QQ, Chen X, Tu JC, Cao JT, Zhu F, Hu CH. Quantitative assessment of transmural remission in Crohn's disease using low dose computed tomography (CT) enterography perfusion imaging: a single-centre study based on intestinal microcirculation. Clin Radiol 2025; 81:106786. [PMID: 39799835 DOI: 10.1016/j.crad.2024.106786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 11/01/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025]
Abstract
AIM To assess transmural remission in patients with Crohn's disease using low-dose small bowel computed tomography (CT) perfusion scans. MATERIALS AND METHODS Forty six patients were divided into active and remission phases based on Crohn's Disease Activity Index (CDAI) and C-reactive protein (CRP). Dual-source CT enterography with low-dose perfusion scans was conducted to generate perfusion parameter maps, including blood flow (BF), blood volume (BV), time to peak (TTP), mean transit time (MTT), and permeability of surface (PS). We compared differences in perfusion parameter values of intestinal walls, mesenteric fat, and lymph nodes between two groups. Receiver operating characteristic (ROC) curves were plotted, and area under the curve (AUC), sensitivity, specificity, and cutoff values were calculated. RESULTS The BF, BV, TTP, MTT, and PS values of the intestinal wall were significantly higher in the active phase (P0.05). Additionally, lymph node BF and TTP displayed significant differences (P<0.01). CONCLUSION Dual-source CT enterography with low-dose perfusion scans enables quantitative assessment of Crohn's disease microcirculation in intestinal walls, mesenteric fat, and lymph nodes. These quantitative indicators provide strong diagnostic efficacy and offer insights into whether the disease is in transmural remission.
Collapse
Affiliation(s)
- H-J Tu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Department of Radiology, Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, 215300, China
| | - Q-Q Chen
- Department of Radiology, Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, 215300, China
| | - X Chen
- Department of Radiology, The First People's Hospital of Kunshan, Suzhou, Jiangsu, 215300, China
| | - J-C Tu
- Department of Radiology, Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, 215300, China
| | - J-T Cao
- Department of Radiology, Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, 215300, China
| | - F Zhu
- Department of Radiology, Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, 215300, China
| | - C-H Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
34
|
Song S, Zhang X, Zheng H, Liao Y, Tang P, Liu Y, Tang A, Ran P, Sun X, Yang P. Intermittent Fasting Reduces Intestinal Inflammation in Dextran Sulfate Sodium-Induced Colitis of Mice. Food Sci Nutr 2025; 13:e70014. [PMID: 39898122 PMCID: PMC11787962 DOI: 10.1002/fsn3.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Inflammatory bowel disease (IBD), comprising ulcerative colitis (UC) and Crohn's disease (CD), is a chronic condition impacting both the gastrointestinal tract and the immune system. Intestinal inflammation and epithelial injury are the pathological features of IBD. Recent studies have reported that some strategies of dietary restriction (DR) can regulate immune system, correct the immune disorders, and improve some immune-associated diseases such as IBD. However, as a form of DR, the effect of intermittent fasting (IF) on the IBD remains unknown. In this study, we investigated the therapeutic efficacy of two cycles of IF on the IBD mouse model induced by dextran sulfate sodium (DSS). It was found that two cycles of IF significantly decreased the score of the disease activity index (DAI) and alleviated the IBD-related symptoms. In addition, IF reversed the shortening of colon length mediated by DSS, significantly increased the number of colonic crypts, and decreased the colonic histological score. Furthermore, the proportion of CD4+ T cells in both the spleen and mesenteric lymph node was reduced by IF treatment. The expression of serum pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 was restrained by IF intervention. Moreover, IF administration significantly reduced the number of leukocytes and macrophages infiltrating around the crypt base in the colon. In conclusion, these results demonstrated that IF administration can alleviate the symptoms and pathology of IBD in the DSS-induced IBD mouse model by reducing the intestinal inflammation.
Collapse
Affiliation(s)
- Shuo Song
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
- Institute of Allergy & ImmunologyShenzhen University School of Medicine and State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen UniversityShenzhenChina
| | - Xiwen Zhang
- Shenzhen Clinical School of MedicineGuangzhou University of Chinese MedicineShenzhenChina
| | - Haoyue Zheng
- Shenzhen Clinical School of MedicineGuangzhou University of Chinese MedicineShenzhenChina
| | - Yun Liao
- Shenzhen Clinical School of MedicineGuangzhou University of Chinese MedicineShenzhenChina
| | - Ping Tang
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Yu Liu
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Aifa Tang
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthGuangzhou Medical UniversityGuangzhouChina
| | - Xizhuo Sun
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Pingchang Yang
- Institute of Allergy & ImmunologyShenzhen University School of Medicine and State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen UniversityShenzhenChina
| |
Collapse
|
35
|
Peng X, Yang Y, Zhong R, Yang Y, Yan F, Liang N, Yuan S. Zinc and Inflammatory Bowel Disease: From Clinical Study to Animal Experiment. Biol Trace Elem Res 2025; 203:624-634. [PMID: 38805169 DOI: 10.1007/s12011-024-04193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract (GI) with a high incidence rate globally, and IBD patients are often accompanied by zinc deficiency. This review aims to summarize the potential therapeutic value of zinc supplementation in IBD clinical patients and animal models. Zinc supplementation can relieve the severity of IBD especially in patients with zinc deficiency. The clinical severity of IBD were mainly evaluated through some scoring methods involving clinical performance, endoscopic observation, blood biochemistry, and pathologic biopsy. Through conducting animal experiments, it has been found that zinc plays an important role in alleviating clinical symptoms and improving pathological lesions. In both clinical observation and animal experiment of IBD, the therapeutic mechanisms of zinc interventions have been found to be related to immunomodulation, intestinal epithelial repair, and gut microbiota's balance. Furthermore, the antioxidant activity of zinc was clarified in animal experiment. Appropriate zinc supplementation is beneficial for IBD therapy, and the present evidence highlights that alleviating zinc-deficient status can effectively improve the severity of clinical symptoms in IBD patients and animal models.
Collapse
Affiliation(s)
- Xi Peng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Yingxiang Yang
- School of Life Sciences, China West Normal University, Nanchong, 637001, Sichuan, China
| | - Rao Zhong
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Yuexuan Yang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital, Chengdu, China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Shibin Yuan
- School of Life Sciences, China West Normal University, Nanchong, 637001, Sichuan, China.
| |
Collapse
|
36
|
Zarei P, Sedeh PA, Vaez A, Keshteli AH. Using metabolomics to investigate the relationship between the metabolomic profile of the intestinal microbiota derivatives and mental disorders in inflammatory bowel diseases: a narrative review. Res Pharm Sci 2025; 20:1-24. [PMID: 40190827 PMCID: PMC11972020 DOI: 10.4103/rps.rps_273_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 04/09/2025] Open
Abstract
Individuals with inflammatory bowel disease (IBD) are at a higher risk of developing mental disorders, such as anxiety and depression. The imbalance between the intestinal microbiota and its host, known as dysbiosis, is one of the factors, disrupting the balance of metabolite production and their signaling pathways, leading to disease progression. A metabolomics approach can help identify the role of gut microbiota in mental disorders associated with IBD by evaluating metabolites and their signaling comprehensively. This narrative review focuses on metabolomics studies that have comprehensively elucidated the altered gut microbial metabolites and their signaling pathways underlying mental disorders in IBD patients. The information was compiled by searching PubMed, Web of Science, Scopus, and Google Scholar from 2005 to 2023. The findings indicated that intestinal microbial dysbiosis in IBD patients leads to mental disorders such as anxiety and depression through disturbances in the metabolism of carbohydrates, sphingolipids, bile acids, neurotransmitters, neuroprotective, inflammatory factors, and amino acids. Furthermore, the reduction in the production of neuroprotective factors and the increase in inflammation observed in these patients can also contribute to the worsening of psychological symptoms. Analyzing the metabolite profile of the patients and comparing it with that of healthy individuals using advanced technologies like metabolomics, aids in the early diagnosis and prevention of mental disorders. This approach allows for the more precise identification of the microbes responsible for metabolite production, enabling the development of tailored dietary and pharmaceutical interventions or targeted manipulation of microbiota.
Collapse
Affiliation(s)
- Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi Sedeh
- Isfahan Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Vaez
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
37
|
Li X, Duan W, Zhu Y, Ji R, Feng K, Kathuria Y, Xiao H, Yu Y, Cao Y. Transcriptomics and metabolomics reveal the alleviation effect of pectic polysaccharide on dextran sodium sulfate-induced colitis mice. Int J Biol Macromol 2025; 288:138755. [PMID: 39674473 DOI: 10.1016/j.ijbiomac.2024.138755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Ulcerative colitis (UC) is a relapsing disease with an increasing morbidity and prevalence. Dietary polysaccharides have recently become a research hotspot because of their therapeutic effects and safety on UC. Our previous research elucidated that pectic polysaccharide from Phyllanthus emblica L. (PEP-1) could alleviate dextran sodium sulfate-induced UC mice. Herein, metabolomics and transcriptomics were further applied to disclose the underlying mechanisms behind PEP-1's anti-inflammatory effects. PEP-1 intervention altered the serum metabolite contents and pathways represented by decreasing xanthine and sphinganine levels. Changes in gene expressions correlated with metabolite variations led by the suppression of the expression of the inflammatory factors, colorectal cancer promoter, and NF-κB pathway as well as the enhancement of tight junctions. This study demonstrated that the ameliorating effect of chronic UC was partially ascribed to the alteration of the serum metabolites and changes in gene expression.
Collapse
Affiliation(s)
- Xiaoqing Li
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Wen Duan
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yi Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ruya Ji
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Foshan University, Foshan 528000, China
| | - Yukti Kathuria
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Yigang Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
38
|
Marzaban R, Mohamed Samy R, Ahmed Kassem M, Atef M. Multidrug resistance Gene-1 polymorphisms (C3435T and G2677T) and the risk of inflammatory bowel disease in Egyptian patients. Arab J Gastroenterol 2025; 26:3-8. [PMID: 38413324 DOI: 10.1016/j.ajg.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/23/2023] [Accepted: 12/30/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND STUDY AIMS The multidrug resistance 1 (MDR1) gene is a gene involved in the pathogenesis of inflammatory bowel disease (IBD).The aim of the study is to investigate the association of MDR-1 gene polymorphisms (C2345T and G2677T) and IBD incidence in Egyptian patients, and its relation with disease severity. PATIENTS AND METHODS This is a case-control study where genotyping of MDR-1 gene C3435T and G2677T single nucleotide polymorphisms (SNPs) were assayed. RESULTS Forty naïve IBD patients, who were composed of 25 UC and 15CD, were compared to 60 healthy controls. They were young aged with significant female predominance, particularly in CD (P = 0.004). UC was mainly (48 %) presented in moderate severity while CD was mainly (53.3 %) presented with mild severity. MDR-1 gene C3435T SNP was not statistically related to IBD, whether in terms of genotypes or alleles, yet its T allele was significantly related to moderate cases of UC (P = 0.014). However, GG genotype of G2677T SNP was significantly low in IBD (P = 0.013), while TT genotype and T allele were significantly related to CD (P = 0.011, and 0.012 respectively). Moreover, G allele proved to be associated significantly with moderate cases of UC (P = 0.001) and mild cases of CD (P = 0.002). CONCLUSIONS MDR-I gene G2677T SNP GG genotype proved to be protective against IBD, thus may be considered in diagnostic workup of IBD including its severity.
Collapse
Affiliation(s)
- Raghda Marzaban
- Endemic Medicine Department-Faculty of Medicine-Cairo University, Egypt
| | - Rania Mohamed Samy
- Clinical pathology department-Faculty of Medicine-Cairo University, Egypt
| | - Mona Ahmed Kassem
- Department of Hepatology-Students᾿ hospital-Ministry of Health, Giza, Egypt
| | - Mira Atef
- Endemic Medicine Department-Faculty of Medicine-Cairo University, Egypt.
| |
Collapse
|
39
|
Sun R, Chao C, Yu J, Copeland L, Wang S. Type 5 Resistant Starch Can Effectively Alleviate Experimentally Induced Colitis in Mice by Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2103-2113. [PMID: 39639478 DOI: 10.1021/acs.jafc.4c07046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Resistant starch (RS) has been shown to modulate intestinal microbiota in animal models in ways that could reduce the effects of dysbiosis-related diseases. However, the mechanism of how this is achieved is not understood. The present study aimed to reveal the mechanism of how RS mitigates dextran sulfate sodium (DSS)-induced colitis in mice by using a starch-lipid complex (RS type 5), with an RS type 2 from high-amylose maize starch as a comparison. Both RS5 and RS2 induced changes in the diversity and composition of the gut bacteria, leading to the alleviation of the induced colitis symptoms including decreasing the loss in body weight, disease activity index score, and colonic shortening. The levels of inflammatory cytokines were modulated and accompanied by an increase in goblet cell numbers and thickening of the intestinal mucus layer. RS5 was more effective, compared to RS2, in alleviating all of the colitis symptoms, mainly through improving the gut microflora dysbiosis and stimulating the generation of short-chain fatty acids (SCFAs). Our study shows that RS5 could effectively alleviate the symptoms of colitis, highlighting a potential use for RS5, particularly in relieving inflammatory bowel disease.
Collapse
Affiliation(s)
- Rong Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
40
|
Qi Z, Li Q, Yang S, Fu C, Hu B. Mendelian Randomization Reveals Potential Causal Relationships Between DNA Damage Repair-Related Genes and Inflammatory Bowel Disease. Biomedicines 2025; 13:231. [PMID: 39857814 PMCID: PMC11761251 DOI: 10.3390/biomedicines13010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
DNA damage repair (DDR) plays a key role in maintaining genomic stability and developing inflammatory bowel disease (IBD). However, no report about the causal association between DDR and IBD exists. Whether DDR-related genes are the precise causal association to IBD in etiology remains unclear. Herein, we employed a multi-omics summary data-based Mendelian randomization (SMR) approach to ascertain the potential causal effects of DDR-related genes in IBD. Methods: Summary statistics from expression quantitative trait loci (eQTL), DNA methylation QTL (mQTL), and protein QTL (pQTL) on European descent were included. The GWAS summarized data for IBD and its two subtypes, Crohn's disease (CD) and ulcerative colitis (UC), were acquired from the FinnGen study. We elected from genetic variants located within or near 2000 DDR-related genes in cis, which are closely associated with DDR-related gene changes. Variants were selected as instrumental variables (IVs) and assessed for causality with IBD and its subtypes using both SMR and two-sample MR (TSMR) approaches. Colocalization analysis was employed to evaluate whether a single genetic variant simultaneously influences two traits, thereby validating the pleiotropy hypothesis. Results: We identified seven DDR-related genes (Arid5b, Cox5a, Erbb2, Ube2l3, Gpx1, H2bcl2, and Mapk3), 33 DNA methylation genes, and two DDR-related proteins (CD274 and FCGR2A) which were all causally associated with IBD and its subtypes. Beyond causality, we integrated the multi-omics data between mQTL-eQTL and conducted druggability values. We found that DNA methylation of Erbb2 and Gpx1 significantly impacted their gene expression levels offering insights into the potential regulatory mechanisms of risk variants on IBD. Meanwhile, CD247 and FCGR2A could serve as targets for potential pharmacological interventions in IBD. Conclusions: Our study demonstrates the causal role of DDR in IBD based on the data-driven MR. Moreover, we found potential regulatory mechanisms of risk variants on IBD and potential pharmacological targets.
Collapse
Affiliation(s)
- Zhihao Qi
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
| | - Quan Li
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
| | - Shuhua Yang
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
| | - Chun Fu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
| | - Burong Hu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
41
|
Liu Z, Wang M, Hu Y, Li J, Gong W, Guo X, Song S, Zhu B. Ulva lactuca polysaccharides combined with fecal microbiota transplantation ameliorated dextran sodium sulfate-induced colitis in C57BL/6J mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:422-432. [PMID: 39212113 DOI: 10.1002/jsfa.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) of healthy donors improves ulcerative colitis (UC) patients by restoring the balance of the gut microbiota. However, donors vary in microbial diversity and composition, often resulting in weak or even ineffective FMT. Improving the efficacy of FMT through combination treatment has become a promising strategy. Ulva lactuca polysaccharides (ULP) have been found to benefit host health by regulating gut microbiota. The effect of the combination of ULP and FMT in ameliorating UC has not yet been evaluated. RESULTS The present study found that supplementation with ULP combined with FMT showed better effects in ameliorating UC than supplementation with FMT alone. Results suggested that FMT or ULP combined with FMT alleviated the symptoms of UC in mice, as evidenced by prevention of body weight loss, improvement of disease activity index and protection of the intestinal mucus. Notably, ULP in combination with FMT was more effective than FMT in reducing levels of cytokines and related inflammatory enzymes. In addition, ULP combined with FMT effectively restored the dysbiosis induced by dextran sulfate sodium (DSS) and further enriched probiotics (such as Bifidobacterium). The production of short-chain fatty acids, especially acetic acid, was also significantly enriched by ULP combined with FMT. CONCLUSION Supplementation of ULP combined with FMT could significantly ameliorate DSS-induced colitis in mice by inhibiting inflammation and restoring dysbiosis of gut microbiota. These results suggested that ULP combined with FMT has potential application in ameliorating UC. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
- National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Shuang Song
- National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
- National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| |
Collapse
|
42
|
Sugiyama Y, Konishi H, Dokoshi T, Tanaka H, Kobayashi Y, Sasaki T, Yamamoto K, Sakatani A, Takahashi K, Ando K, Ueno N, Kashima S, Moriichi K, Tanabe H, Okumura T, Fujiya M. hsa_circ_0015388 Reduces Macrophage Derived Reactive Oxygen Species in Crohn's Disease. Inflamm Bowel Dis 2025:izae317. [PMID: 39807080 DOI: 10.1093/ibd/izae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Crohn's disease (CD) is a refractory inflammatory bowel disease with an unclear etiology. CircularRNA (circRNA) has been highlighted as a novel class of functional noncoding RNAs associated with the pathogenesis of various diseases. However, the functions of circRNA in CD remain unclear. METHODS Biopsies were obtained from noninflammatory sites in the terminal ileum of the CD group (n = 4) and non-CD group (n = 4) and analyzed for circRNA expression using RNA sequencing. The significantly altered circRNAs were validated in the CD group (n = 45) and non-CD group (n = 15) using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Transcriptome analysis was conducted using circRNA-downregulated macrophage-like THP-1 cells. Reactive oxygen species (ROS) levels, cytokine mRNA expression, phagocytosis, and migration were evaluated in circRNA-downregulated THP-1 cells. RESULTS CircularRNA sequencing analysis revealed significant differences in 31 circRNAs between the CD group and non-CD group. Quantitative reverse transcriptase-polymerase chain reaction analysis for each circRNA demonstrated significant upregulation of hsa_circ_0015388 in the CD group. Hsa_circ_0015388 was expressed in THP-1 cells, but not in HCEC-1CT and Caco-2/bbe. Transcriptome analysis in THP-1 cells transfected with scramble or hsa_circ_0015388 siRNA (small interfering RNA) showed a significant alteration in innate immune response related pathway. Reactive oxygen species production was significantly increased in the hsa_circ_0015388 downregulated THP-1 cells. Reactive oxygen species induction in the hsa_circ_0015388 knocked down THP-1 was diminished by the inhibition of TNFSF10. CONCLUSION A comprehensive analysis of circRNA expression revealed that 31 circRNAs were dysregulated in the CD group. Hsa_circ_0015388 is expressed in macrophages and negatively regulates ROS function inhibiting the TNFSF10 pathway. This study first revealed that hsa_circ_0015388 plays a role in the pathogenesis of CD by suppressing ROS production in macrophages.
Collapse
Affiliation(s)
- Yuya Sugiyama
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Hiroaki Konishi
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Yu Kobayashi
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Takahiro Sasaki
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Koji Yamamoto
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Aki Sakatani
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Keitaro Takahashi
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Katsuyoshi Ando
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Nobuhiro Ueno
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Shin Kashima
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Kentaro Moriichi
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Hiroki Tanabe
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Mikihiro Fujiya
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| |
Collapse
|
43
|
Ren XJ, Zhang ML, Shi ZH, Zhu PP. SLC6A14 as a Key Diagnostic Biomarker for Ulcerative Colitis: An Integrative Bioinformatics and Machine Learning Approach. Biochem Genet 2025:10.1007/s10528-025-11027-0. [PMID: 39806040 DOI: 10.1007/s10528-025-11027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by intestinal inflammation and autoimmune responses. This study aimed to identify diagnostic biomarkers for UC through bioinformatics analysis and machine learning, and to validate these findings through immunofluorescence staining of clinical samples. Differential expression analysis was conducted on expression profile datasets from 4 UC samples. Key biomarkers were selected using LASSO logistic regression, SVM-RFE, and Random Forest algorithms. The diagnostic performance of these biomarkers was evaluated using receiver operating characteristic (ROC) curves. Functional enrichment analysis assessed the biological functions of these biomarkers. The CIBERSORT algorithm was used to analyze immune cell infiltration. Regulatory networks for diagnostic markers were constructed. Additionally, immunofluorescence staining was performed on clinical samples to validate the expression levels of key biomarkers. Differential analysis identified 199 significantly differentially expressed genes. SLC6A14 was selected as a key diagnostic biomarker, demonstrating excellent diagnostic performance in training and validation sets (AUC values: 0.973, 0.984, and 0.970). Immune cell infiltration analysis revealed significant increases in Neutrophils and activated Mast cells in UC samples, whereas resting Mast cells were relatively downregulated. Furthermore, SLC6A14 showed strong correlations with various immune cells. The ceRNA network identified 22 lncRNAs and 10 miRNAs associated with SLC6A14. Immunofluorescence staining of clinical samples confirmed that SLC6A14 expression is significantly higher in UC patients compared to normal intestinal mucosa, and its expression increases with UC activity. SLC6A14 has been confirmed as a key diagnostic marker for UC, validated both through bioinformatics analysis and immunofluorescence staining of clinical samples. It maintains regulatory relationships with various non-coding RNAs and plays a significant role in the pathogenesis of UC through its interactions with immune cells.
Collapse
Affiliation(s)
- Xiao-Jun Ren
- Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan, 430000, Hubei, China.
| | - Man-Ling Zhang
- Department of Gastroenterology, Wuhan No.1 Hospital, Wuhan, 430065, Hubei, China
| | - Zhao-Hong Shi
- Department of Gastroenterology, Wuhan No.1 Hospital, Wuhan, 430065, Hubei, China
| | - Pei-Pei Zhu
- Department of Gastroenterology & Hepatology, Dazhou Integrated TCM and Western Medicine Hospital: Dazhou Second People's Hospital, Dazhou, 635000, Sichuan, China.
| |
Collapse
|
44
|
Buoso E, Masi M, Limosani RV, Fagiani F, Oliviero C, Colombo G, Cari L, Gentili M, Lusenti E, Rosati L, Pisati F, Pasini A, Lenti MV, Di Sabatino A, Mobbs CL, Przyborski S, Ronchetti S, Travelli C, Racchi M. Disruption of Epithelial Barrier Integrity via Altered GILZ/c-Rel/RACK1 Signaling in Inflammatory Bowel Disease. J Crohns Colitis 2025; 19:jjae191. [PMID: 39693354 DOI: 10.1093/ecco-jcc/jjae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND AND AIMS Given the role of Receptor for Activated C Kinase 1 (RACK1) in both immune cell activation and in the maintenance of the intestinal epithelial barrier integrity, we investigated whether it was involved in inflammatory bowel disease (IBD). METHODS RACK1 expression was analyzed in intestinal mucosal samples of healthy and IBD patients, in mice with chemically induced colitis, and in diseased in vitro 2D and 3D coculture models by luciferase assay, reverse transcription-quantitative PCR, Western blotting, immunofluorescence, and immunohistochemistry. Based on our finding that glucocorticoid-induced leucine zipper (GILZ or tsc22d3) positively correlates with RACK1 expression in IBD patients, GILZ knockout mice and cell silencing experiments were performed. RESULTS RACK1 was significantly decreased in IBD, especially in ulcerative colitis. This was associated with an NF-κB/c-Rel-related mechanism, correlating with decreased GILZ protein expression. GILZ depletion confirmed a decrease in RACK1 expression, which favored SRC activation and led to a significant reduction in E-cadherin, resulting in impaired epithelial barrier integrity. Finally, our data highlighted that this novel mechanism could be considered to develop new therapies since dexamethasone, the first line of treatment in IBD, restored RACK1 expression through the glucocorticoid receptor in a c-Rel/GILZ-independent manner. CONCLUSIONS We provide the first evidence that an alteration of RACK1/SRC/E-cadherin regulatory mechanism, correlating with decreased GILZ protein expression, is involved in epithelial barrier disruption. The clinical relevance is based on the fact that this mechanism involving GILZ/c-Rel-related RACK1 expression could be considered to improve IBD therapies, particularly in patients with low or no response to glucocorticoid treatment.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 700 Albany St W302 Boston, MA 02215, USA
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
- University School of Advanced Studies IUSS, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy
| | | | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Chiara Oliviero
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2/3, 28100 Novara, Italy
| | - Luigi Cari
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Marco Gentili
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Eleonora Lusenti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Lucrezia Rosati
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Federica Pisati
- Cogentech Ltd. Benefit Corporation With a Sole Shareholder, via Adamello 16, 20139 Milan, Italy
| | - Alessandra Pasini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Campus della Salute, presso Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
| | - Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Campus della Salute, presso Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Campus della Salute, presso Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, viale Camillo Golgi 19, 27100 Pavia, Italy
| | | | - Stefan Przyborski
- Department of Biosciences, Durham University, South Rd, Durham DH1 3LE, UK
| | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Cristina Travelli
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12/14, 27100 Pavia, Italy
| |
Collapse
|
45
|
Chen F, Zhao Y, Dai Y, Sun N, Gao X, Yin J, Zhou Z, Wu KJ. Chick Early Amniotic Fluid Alleviates Dextran-Sulfate-Sodium-Induced Colitis in Mice via T-Cell Receptor Pathway. Antioxidants (Basel) 2025; 14:51. [PMID: 39857385 PMCID: PMC11762673 DOI: 10.3390/antiox14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic immune disease that is difficult to cure. We recently found that chick early amniotic fluid (ceAF) has notable anti-inflammatory and antioxidative properties, through its active components. This study demonstrates the potential of ceAF as a protective agent against UC. UPLC-MS mass spectrometry identified key components of ceAF, including various fatty acids and nucleosides. In vitro, ceAF improved viability in DSS-induced Caco-2 cells, reduced pro-inflammatory cytokines IL-1β and TNF-α, and increased the anti-inflammatory cytokine IL-10. It also upregulated the tight junction proteins ZO-1 and occludin. In DSS-induced UC mice, ceAF treatment alleviated weight loss, colon shortening, and disease activity, while improving histopathology, crypt depth, and colonic fibrosis. Mechanistically, ceAF's anti-inflammatory effects are mediated by inhibiting the overactivation of TCR signaling through the LCK/ZAP70/LAT pathway. Our findings suggest that ceAF could be a valuable nutritional intervention for UC, potentially enhancing existing functional foods aimed at managing this condition.
Collapse
Affiliation(s)
- Fan Chen
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| | - Yining Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| | - Yanfa Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| | - Xuezheng Gao
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
| | - Jiajun Yin
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
| | - Zhenhe Zhou
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
| | - Ke-jia Wu
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi 214151, China; (F.C.); (X.G.); (J.Y.)
- Wuxi School of Medicine, Jiangnan University, Wuxi 214082, China; (Y.Z.); (Y.D.); (N.S.)
| |
Collapse
|
46
|
Zhou Q, Luo WH, Zhang B, Xue ZH, Huang QH, Feng LL, Wu Y, Zhang C. Design, synthesis, and evaluation of quinolin-2(1H)-ones as PDE1 inhibitors for the treatment of inflammatory bowel disease. Bioorg Chem 2025; 154:107979. [PMID: 39603073 DOI: 10.1016/j.bioorg.2024.107979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/03/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease that affects the entire gastrointestinal tract. The complex etiology of IBD made it difficult to cure. Phosphodiesterases (PDEs) have garnered significant attention due to their involvement in immune and inflammatory responses in IBD. Most recently, we have reported a novel PDE1 inhibitor 1 with quinolin-2(1H)-one scaffold, demonstrating anti-IBD effects. However, its short half-life (t1/2) in the rat liver microsomes (RLMs) is relatively short. In this study, structural optimization of compound 1 was performed to improve metabolic stability. Combined with molecular docking and dynamics simulations, a series of quinolin-2(1H)-one derivatives were synthesized. Among them, compound 7a showed an excellent IC50 value of 11 nM, high selectivity to PDE1 compared to other PDEs, and good metabolic stability with RLM t1/2 of 67.3 min. The binding pattern between 7a and PDE1 revealed an additional hydrogen bond with Cys410, which could enhance the inhibitory activity. Furthermore, compound 7a demonstrated anti-inflammatory properties by reducing cytokine production and antioxidant activity in LPS-induced Raw264.7 cells, which contributed to its effectiveness against IBD. We believe that compound 7a could serve as an ideal tool for further pharmacological research on IBD.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, PR China
| | - Wei-Hao Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Bei Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Jiangmen Central Hospital, Jiangmen 529030, PR China
| | - Zhao-Hang Xue
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Qing-Hua Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ling-Ling Feng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yinuo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Chen Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, PR China.
| |
Collapse
|
47
|
Cai H, Li T, Feng W, Wu X, Zhao Y, Wang T. Triple probiotics attenuate colitis via inhibiting macrophage glycolysis dependent pro-inflammatory response. Biochem Biophys Res Commun 2025; 742:151128. [PMID: 39644601 DOI: 10.1016/j.bbrc.2024.151128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Probiotics, a class of live microorganisms, play an important role in anti-inflammation, regulating immunity and optimizing intestinal microecological environment. In this study, we constructed a combination of three strains - Lactobacillus acidophilus, Bacillus bulgaricus, and Bacillus subtilis - to ferment triple probiotics Bornlisy. Our findings indicate that Bornlisy has a significant therapeutic effect in alleviating colitis in mice, further proofing its ability to suppress inflammation in colon, enhance intestinal barrier function and restore imbalanced intestinal microbiome. Then we found Bornlisy could modulate immune response by inhibiting macrophage glycolysis and ultimately attenuated the progression of colitis in mice. Our investigation into the therapeutic efficacy of Bornlisy in colitis revealed that triple probiotics offer a promising approach for the management of intestinal inflammation.
Collapse
Affiliation(s)
- Hantao Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Tianxin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Wanting Feng
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xian Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yue Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
48
|
Dan L, Xie Y, Fu T, Sun Y, Chen X, Wang X, Wu C, Chen J, Li X. Increased Risk of Chronic Respiratory Disease among Individuals with Inflammatory Bowel Disease in a Prospective Cohort Study. Am J Med 2025; 138:42-50.e5. [PMID: 39370033 DOI: 10.1016/j.amjmed.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 08/13/2024] [Accepted: 09/01/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Cross-sectional evidence suggests a higher burden of chronic respiratory diseases in people with inflammatory bowel disease, but there is a lack of prospective evidence to clarify the direction of their associations. We aimed to investigate the association of inflammatory bowel disease with the risk of 2 major chronic respiratory diseases, chronic obstructive pulmonary disease, and asthma. METHODS We included 430,414 participants from UK Biobank and followed them from recruitment (2006-2010) to 2021. Chronic obstructive pulmonary disease and asthma cases were obtained from inpatient data and death register. Using Cox proportional hazards models, we estimated the multivariable-adjusted hazard ratios (HR) of developing chronic obstructive pulmonary disease and asthma in participants with inflammatory bowel disease compared with inflammatory bowel disease-free groups. We also investigated the association among Crohn's disease and ulcerative colitis with the risk of chronic obstructive pulmonary disease and asthma. RESULTS Over a median follow-up of 11.9 years, there were 11,196 incidents of chronic obstructive pulmonary disease and 9831 asthma cases. The adjusted HRs of developing chronic obstructive pulmonary disease (HR 1.54; 95% confidence interval [CI], 1.33-1.79) and asthma (HR 1.52; 95% CI, 1.29-1.79) were higher for those with inflammatory bowel disease when compared with inflammatory bowel disease-free participants. Participants with Crohn's disease and ulcerative colitis were also found to have a higher risk of chronic obstructive pulmonary disease (Crohn's disease: HR 1.71; 95% CI, 1.36-2.15; ulcerative colitis: HR 1.45; 95% CI, 1.20-1.75) and asthma (Crohn's disease: HR 1.73; 95% CI, 1.33-2.25; ulcerative colitis: HR 1.41; 95% CI, 1.15-1.73) when compared with those free of inflammatory bowel disease. CONCLUSIONS This study suggested that individuals with inflammatory bowel disease have a higher risk of developing chronic obstructive pulmonary disease and asthma, highlighting the importance of preventing chronic respiratory diseases among inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Lintao Dan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Xie
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Tian Fu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yuhao Sun
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Chenkai Wu
- Global Health Research Center, Duke Kunshan University, Kunshan, China
| | - Jie Chen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
49
|
Genaro LM, Carron J, de Castro MM, Franceschini APMDF, Lourenço GJ, da Cruz CKNV, Reis GFSR, Pascoal LB, Mello JDC, Pereira IM, Nascimento ML, Oliveira PDSP, Corona LP, Ayrizono MDLS, Lima CSP, Leal RF. Therapeutic drug monitoring and immunogenetic factors associated with the use of adalimumab in Crohn's disease patients. Int J Immunopathol Pharmacol 2025; 39:3946320251319379. [PMID: 39959979 PMCID: PMC11831650 DOI: 10.1177/03946320251319379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Crohn's disease (CD) involves immune system interactions with intestinal tissue, driven by pro-inflammatory cytokines like Tumor Necrosis Factor (TNF-α). Adalimumab, targeting TNF-α, regulates associated inflammatory responses. Despite being humanized, it may induce immunogenic processes, affecting treatment effectiveness. Thus, monitoring serum adalimumab and anti-drug antibody (ADA) levels can optimize therapy. Understanding genetic factors influencing adalimumab response can enhance personalized treatment and improve patient quality of life. We aimed to quantify adalimumab serum levels, assess test interchangeability, detect ADA, examine immune complex formation, and investigate genetic phenotypes related to immunogenicity in CD patients. Seventy CD patients in the maintenance phase with adalimumab were classified into active (CDA) and remission (CDR) groups. Adalimumab concentration was determined via enzyme-linked immunosorbent assay (ELISA-Promonitor) and lateral flow assay (Quantum Blue), with assay interchangeability assessed statistically. ADA and immune complex formation were quantified using ELISA assays. DNA was genotyped for the genes ATG16L1, CD96, and CD155. No significant differences in adalimumab serum concentrations were observed between groups, regardless of the assay. However, a statistical difference between the tests indicated measurement disparity (P = 0.003), with moderate agreement (Lin's correlation of 0.247). ADA was detected in 4 of 27 of the patients with infratherapeutic levels, 3 in the CDA group and 1 in the CDR group. Analysis of immune complexes revealed significantly higher concentrations in the CDA group (P = 0.0125). The genotypic evaluation revealed significant associations for the CD96 CC (wild-type) genotype with higher CRP levels, colonic involvement, and infratherapeutic levels of adalimumab. ATG16L1 CC genotype was associated with higher CDEIS and fecal calprotectin values, while the variant (TT) genotype had lower platelet counts. The effectiveness of treatment with adalimumab was not directly related to higher medication levels in this cohort. The disparity between tests indicates the need to use only one test in patient follow-up to ensure accuracy in therapeutic monitoring. Genotypic differences highlight the correlation between the wild genotype for CD96 and ATG16L1 with unfavorable laboratory and endoscopic response to adalimumab. Finally, the more significant levels of immune complexes in the CDA group indicate an association with a worse response to adalimumab.
Collapse
Affiliation(s)
- Livia Moreira Genaro
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Juliana Carron
- Laboratory of Cancer Genetics (Lageca), School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Marina Moreira de Castro
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Ana Paula Menezes de Freitas Franceschini
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics (Lageca), School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | | | | | - Livia Bitencourt Pascoal
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Juliana Delgado Campos Mello
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Isabela Machado Pereira
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Millene Leal Nascimento
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Priscilla De Sene Portel Oliveira
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Ligiana Pires Corona
- Nutritional Epidemiology Laboratory, School of Applied Sciences, University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Maria de Lourdes Setsuko Ayrizono
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics (Lageca), School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Raquel Franco Leal
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
50
|
Sawahashi M, Moroi R, Kakuta Y, Nagai H, Shimoyama Y, Naito T, Shiga H, Masamune A. Differences in Clinical Practice and Disease Course Between Elderly-Onset and Long-Standing Elderly Ulcerative Colitis: A Single-Center Study in Japan. TOHOKU J EXP MED 2024; 264:109-116. [PMID: 38987210 DOI: 10.1620/tjem.2024.j063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The optimal immunosuppressive therapy for elderly patients with ulcerative colitis (UC) remains unclear. We aimed to evaluate clinical practice and prognosis in elderly patients with UC through comparing between those with elderly-onset UC (EOUC) and those with long-standing elderly UC (LEUC). In this retrospective single-center cohort study, we evaluated elderly patients with UC aged ≥ 60 in August 2022 through collecting medical record data from the time of diagnosis of UC until August 2022. The patients were divided into two groups based on age at disease onset: EOUC (age at onset, ≥ 60 years) and LEUC (age at onset, < 60 years). We assessed the cumulative rates of systemic steroid and molecular targeted drug (MTD) initiation, and colectomy. We enrolled 97 eligible patients (EOUC group, n = 30; LEUC group, n = 67). The cumulative rates of initiating systemic steroid (46% vs. 22% at 1 year, respectively; P = 0.002) and MTD (17% vs. 5% at 1 year, respectively; P = 0.002) were higher in the EOUC group than in the LEUC group. In multivariate analysis, elderly onset was significantly associated with systemic steroid (hazard ratio [HR] 2.74, 95% confidence interval [CI] 1.43-5.29; P = 0.003) and MTD (HR 2.76, 95% CI 1.30-5.87; P = 0.008) initiation. Cumulative colectomy rates did not differ significantly between the two groups. Patients with EOUC were initiated on systemic steroids and MTDs sooner following disease onset than patients with LEUC. Our findings suggest rapid progression and refractoriness in patients with EOUC.
Collapse
Affiliation(s)
- Motoi Sawahashi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Rintaro Moroi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Hiroshi Nagai
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Yusuke Shimoyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| |
Collapse
|