1
|
Khokhar RK, Nashwan AJ. Gut virome and its emerging role in inflammatory bowel disease. World J Methodol 2025; 15:100534. [DOI: 10.5662/wjm.v15.i3.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a progressive multifactorial inflammatory disease of the gut. The cause of IBD is yet unknown. Some researchers have shown that genetic factors, environmental factors, and the gut microbiome are significant considerations. Our gut contains gut virome and gut bacteria, which vary among individuals due to some factors. The gut virome is a substantial component of the microbiome. This editorial explores the emerging role of gut virome in IBD.
Collapse
Affiliation(s)
- Rahat Khatoon Khokhar
- Department of Medicine, People’s University of Medical and Health Sciences, Nawabshah 67450, Pakistan
| | - Abdulqadir J Nashwan
- Department of Nursing & Midwifery Research, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
2
|
Wu B, Yan W, Lu Y, Xiao Y. Diagnostic values of CD27, CD20 and MPO in pediatric ulcerative colitis. Gene 2025; 952:149415. [PMID: 40089083 DOI: 10.1016/j.gene.2025.149415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC), is a chronic inflammatory disorder with a rising incidence in pediatric populations. Immune factors play important roles in the pathogenesis of UC. This study aimed to explore the relationships of intestinal immune molecules CD27, CD20 and myeloperoxidase (MPO) with pediatric UC and their diagnostic values. In this study, gene expression data of 206 new-onset UC children and 20 non-IBD controls obtained from the NCBI Gene Expression Omnibus public database and immunohistochemistry analysis were used to evaluate CD27, CD20 and MPO expression in diseased intestinal tissues of UC children. And the diagnostic potentials of them for UC were analyzed using receiver operating characteristic curve and area under the curve (AUC). We found that CD27, CD20 and MPO mRNA and protein expressions were increased in the diseased intestinal tissues of UC children. CD27, CD20 and MPO showed good diagnostic potential for UC in children, with an AUC of 0.95 for CD27, 0.79 for CD20 and 0.92 for MPO, and combination of them had better diagnostic performance with an AUC of 0.98. Besides, they were associated with immune-related biological processes and pathways, and correlated with genes related to immune factors, intestinal epithelial barrier function, and intestinal fibrosis. In conclusion, our findings demonstrated that CD27, CD20 and MPO were increased in diseased intestinal tissues of UC children, and had good diagnostic performance for UC in children.
Collapse
Affiliation(s)
- Bo Wu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihui Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China.
| |
Collapse
|
3
|
Mandal A, Banerjee S, Ghosh S, Biswas S, Bagchi A, Sil PC. α-ketoglutarate ameliorates colitis through modulation of inflammation, ER stress, and apoptosis. Toxicol Rep 2025; 14:101897. [PMID: 39886045 PMCID: PMC11780160 DOI: 10.1016/j.toxrep.2025.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/01/2025] Open
Abstract
Colitis is an inflammatory disorder of the gastrointestinal tract. A widely consumed dietary nutrient, α-ketoglutarate (α-KG) is known to play a crucial role in cellular metabolism and provide protection to intestinal epithelium under various pathophysiological conditions. In this study, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used to induce colitis in Wistar rats. After 36 hours of TNBS administration, the rats were orally treated with a solution of α-KG at 1 g/kg body weight for 5 days. Development of colitis was confirmed by observable physical symptoms of repeated loose blood-mixed stool, apathy for food and weight loss. Macroscopic inspection revealed an inflamed colonic surface with ulcerations. Histopathological observations included alterations in crypts-structure and disruption in both epithelial and mucosal layers of colon in colitis induced rats. Colitis resulted in elevated levels of pro-inflammatory cytokines, ER stress-mediated cell death and intrinsic apoptosis pathway. The ameliorative effects of α-KG against TNBS-mediated toxicity were confirmed through molecular technics and docking analysis. Additionally, there were no instances of toxicity of α-KG. Therefore, α-KG can be considered as a valuable therapeutic agent for further comprehensive research.
Collapse
Affiliation(s)
- Ankita Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054, India
| | - Sharmistha Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054, India
| | - Sima Biswas
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054, India
| |
Collapse
|
4
|
Lei H, Liu Y, Li J, Chen J, Chen L, Liu Y, Liu H, Li W, Jiang Z, Li Z, Su X. Colon-targeted dual-coating MOF nanoparticles for the delivery of curcumin with anti-inflammatory properties in the treatment of ulcerative colitis. Colloids Surf B Biointerfaces 2025; 250:114545. [PMID: 39908958 DOI: 10.1016/j.colsurfb.2025.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
The inflammatory response is the core mechanism of the pathogenesis and symptoms of ulcerative colitis (UC), and inhibiting inflammation is a promising therapeutic approach to improving UC. Curcumin is considered a potential treatment for UC due to its significant anti-inflammatory and antioxidant effects. However, its bioavailability in the post-oral administration is limited. Therefore, the stability, sustained release, and colon targeting of curcumin in the treatment of UC have become a challenge. Herein, curcumin was efficiently filled in the porous structure of University of Oslo 66 (UiO-66). Amino-functionalized UiO-66 (MOF) was bound to hyaluronic acid (HA) via chemical crosslinking and electrostatic interactions. Polydopamine (PDA) layer was then applied to form Cur@MOF@HA-PDA NPs for colon targeting for UC treatment. Cur@MOF@HA-PDA NPs not only enhanced the stability of curcumin but also possessed acid resistance and reactive oxygen species (ROS) responsive properties, enabling it to be effectively delivered to the UC lesion site for curcumin release after oral administration, thereby enhancing the therapeutic effect. In vitro studies revealed that Cur@MOF@HA-PDA NPs possessed the ability to eliminate intracellular ROS, inhibit inflammatory (M1) polarization, and promote anti-inflammatory (M2) polarization. Additionally, in vivo experiments demonstrated that Cur@MOF@HA-PDA NPs could effectively alleviate the intestinal inflammatory symptoms of UC mice, promoting intestinal tissue repair. Furthermore, it was also confirmed that Cur@MOF@HA-PDA NPs achieved the treatment of UC by inhibiting inflammatory responses, modulating intestinal immune functions, and promoting the polarization of M2 macrophages. In short, Cur@MOF@HA-PDA NPs, as colon-targeted drug delivery nanosystems, offer a promising therapeutic strategy for the treatment of UC.
Collapse
Affiliation(s)
- Haoqiang Lei
- Huangpu People's Hospital of Zhongshan, Zhongshan, Guangdong 528429, PR China
| | - Yipeng Liu
- The Second People's Hospital of Foshan, Foshan, Guangdong 528000, PR China
| | - Jing Li
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong 523871, PR China
| | - Junyuan Chen
- Huangpu People's Hospital of Zhongshan, Zhongshan, Guangdong 528429, PR China
| | - Liji Chen
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong 523710, PR China
| | - Ying Liu
- Guangdong Huayi Biomedical Science and Technology Center, Guangzhou, Guangdong 511450, PR China
| | - Hongsheng Liu
- Guangdong Huayi Biomedical Science and Technology Center, Guangzhou, Guangdong 511450, PR China
| | - Wenqiang Li
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Zhuofei Jiang
- Dong Guan Maternal and Child Health Care Hospital, Dongguan, Guangdong 523808, PR China.
| | - Zhidong Li
- Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| | - Xiaohua Su
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong 523710, PR China; Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| |
Collapse
|
5
|
Guo M, Zou Y, Dong K, Huang N, Chen Z, Sun C, Chen P, Chen Q, Zhu L, Lv Y, Zhang K, Jiang M, Gao Y, Cho YC, Tang Q, Liang G, Wu D. Anti-inflammatory agents design via the fragment hybrid strategy in the discovery of compound c1 for treating ALI and UC. Eur J Med Chem 2025; 289:117431. [PMID: 40037062 DOI: 10.1016/j.ejmech.2025.117431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Acute lung injury (ALI) and ulcerative colitis (UC) are common inflammatory diseases with high mortality rates and unsatisfactory cure rates. Studies have indicated that inhibiting the expression and release of inflammatory factors holds potential for the treatment of inflammatory diseases. In this study, we designed and synthesized 28 derivatives of 6,7-disubstituted-4-cis-cyclohexanequinazoline and assessed their anti-inflammatory activities in mouse macrophages RAW264.7, J774A.1, and human monocyte THP-1 cell lines. Among them, derivative c1 was found to significantly inhibit the expression and release of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) induced by lipopolysaccharide (LPS) in the three cells mentioned above. It was also demonstrated that c1 could bind to IRAK4 and affect the expression of these two inflammatory factors by inhibiting the activation of the MAPK pathway. Furthermore, in vivo experiments revealed that c1 effectively ameliorated LPS-induced ALI and dextran sulfate sodium (DSS)-induced UC. Additionally, we evaluated the pharmacokinetic properties and in vivo safety of c1. Therefore, our research has identified the 6,7-disubstituted-4-cis-cyclohexanequinazoline derivative c1 exhibiting promising anti-inflammatory effects as a prospective anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Ke Dong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nan Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenhui Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Luxiao Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuehua Lv
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Kaixin Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Miao Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Di Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Feng X, Zhang M, Zhao T, Cui J, Ye H, Zhou C, Ye L, Zhou L. Polystyrene microplastics trigger colonic inflammation in rats via the TLR4/NF-κB/COX-2 pathway and modulation of intestinal microbiota. Toxicology 2025; 513:154090. [PMID: 39971085 DOI: 10.1016/j.tox.2025.154090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Polystyrene microplastics (PS-MPs) are common microplastics that pose significant health hazards to humans. Due to multifunctionality in the gut system, MP-associated damage and mechanisms require further exploration. This study was undertaken with the objective of elucidating the impact of PS-MP exposure on colonic inflammation in rats, and to explore its potential mechanisms. Forty-eight specific-pathogen-free Wistar male rats were administered 0, 0.5, 5, and 50 mg/kg/d of PS-MPs for 90 days, after which intestinal flora distribution, inflammatory factor levels in the colon, and TLR4/NF-κB/COX-2 gene levels were examined. To clarify whether PS-MPs directly infiltrate intestinal epithelial cells and induce cytotoxicity, human intestinal epithelial cells (HIECs) were exposed to a range of PS-MP concentrations (0 ∼ 100 μg/mL) for 48 h, and CCK-8 assays were conducted to assess the cell survival rates. In the colon tissue of rats exposed to PS-MP, goblet cells decreased, muscular layer arrangements were disordered, and disrupted and discontinuous crypt structures appeared in colon tissue, while high numbers of inflammatory cells infiltrated the colonic mucosa and submucosa. PS-MPs could accumulate in HIECs, and cell survival rates were decreased. In the colons of rats exposed to PS-MPs, the levels of Interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were found to be elevated. Additionally, the mRNA and protein levels of TLR4/MyD88 in the colons of PS-MP-exposed rats exhibited a significant increase. Furthermore, the TLR4/NF-κB/COX-2 signaling pathway in rat colons was activated after MP exposure. When the TLR4/NF-κB/COX-2 signaling pathway was inhibited, the significant increases in IL-6 and TNF-α levels caused by PS-MPs were significantly reversed. PS-MP exposure also altered intestinal flora abundance in rats. Compared with the control group, the proportion of Firmicutes, Proteobacteria and Actinobacteria in PS-MPs exposed group was increased. In contrast, the proportion of Bacteroidetes and Verrucomicrobia decreased. Taken together, our results suggest that PS-MP could exert adverse effects on the gastrointestinal health of rats. Pro-inflammatory cytokine (IL-6, IL-1β and TNF-α) levels increased, and the TLR4/NF-κB/COX-2 signaling pathway was triggered. Thus, flora changes and increased intestinal inflammation may interact with each other.
Collapse
Affiliation(s)
- Xuemin Feng
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Meng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Hui Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Chunkui Zhou
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Huang L, Liu W, Lv X, Ge X, He Z, Yang Y, Tang Y, Wang L, Zeng J, Cheng P. Rational design, synthesis and anti-inflammatory activity of 6-substituted dihydrobenzophenanthridine derivatives. Bioorg Med Chem 2025; 122:118145. [PMID: 40056889 DOI: 10.1016/j.bmc.2025.118145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
a series of 6-substituted dihydrobenzophenanthridine alkaloids were synthesized by introduction of different functional groups to C-6 of dihydrobenzophenanthridine backbone. The preliminary anti-inflammatory activities of all compounds were screened by investigating the inhibitory ability on NO production in LPS-stimulated RAW 264.7 cells. Among synthesized compounds, 6-(N-phenyl)-aminocarbonyl methyl dihydrochelerythrine (compound 12b) showed increased anti-inflammatory ability and decreased cytotoxicity and could inhibit the expression of pro-inflammatory factors TNF-α and IL-6 in RAW 264.7 macrophages. The anti-inflammatory ability of compound 12b was further evaluated using DSS-induced mice colitis models based on colonic tissue damage assessment, histopathological assessment and immunohistochemical analysis. In vivoexperiment revealed that compound 12b had good alleviating effect on acute colitis in mice. In conclusion, compound 12b may be a promising anti-inflammatory lead compound.
Collapse
Affiliation(s)
- Lei Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Wei Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Xinye Lv
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Xiaomei Ge
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Zhehao He
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Yingxue Yang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Yuhui Tang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Lin Wang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China.
| | - Pi Cheng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China.
| |
Collapse
|
8
|
Liu C, Yang L, Wang Z, Zhu H, Luo Q, Wu D, Wang T, Hu M, Wang C, Shao J. Qi-Huang decoction alleviates DSS-induced colitis with Candida albicans dysbiosis by enhancing innate immune response through Dectin-1-associated signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156613. [PMID: 40056633 DOI: 10.1016/j.phymed.2025.156613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/21/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disease of the gastrointestinal tract. Candida albicans, a common commensal fungus in the human gut, has been increasingly implicated in UC pathogenesis. Qi-Huang decoction (QHD), a traditional Chinese herbal formula known for its spleen-invigorating and purgative properties, is commonly used to restore gastrointestinal function. PURPOSE This study investigates the therapeutic potential of QHD in treating colitis exacerbated by C. albicans and explores the underlying mechanisms of action. METHODS A mouse model of colitis was induced using dextran sulfate sodium combined with gavage of C. albicans. Following QHD treatment, colitis severity was evaluated by measuring survival rate, body weight, disease activity index, colon length, and fungal burden, and through histopathological analysis using hematoxylin-eosin staining. The expression of proinflammatory genes IL-1β and TNF-α was quantified, alongside protein levels of key molecules involved in Dectin-1 signaling, including Syk, CARD-9, NLRP-3, Raf-1, and NF-κB. Barrier integrity markers, such as Occludin and Claudin-1, were also examined. To further elucidate QHD's mechanisms, Dectin-1 was inhibited using laminarin. In vitro experiments assessed QHD's antifungal activity against three Candida strains through microdilution, spot assays, and time-kill tests. RAW 264.7 macrophages were employed to study the exposure of fungal cell wall β-glucan and subsequent phagocytosis. Molecular docking simulations predicted interactions between QHD's active compounds and the Dectin-1 receptor. RESULTS QHD significantly mitigated colitis severity and reduced fungal burden in vivo. QHD enhanced β-glucan exposure on the fungal cell wall, thereby stimulating phagocytosis by RAW264.7 macrophages. QHD effectively activated Dectin-1-mediated signaling pathways and increased proinflammatory levels in RAW 264.7 cells. In colitis mice, QHD treatment markedly reduced inflammation and Dectin-1 signaling following fungal clearance. However, Dectin-1 inhibition with LAM neutralized QHD's therapeutic effects, highlighting the pathway's importance in mediating QHD's efficacy. Interestingly, QHD alone elevated Dectin-1, NF-κB, TGF-β, and IL-10 levels, whereas reduced IL-1β and TNF-α expression, suggesting a dual modulatory role in inflammation. Molecular docking confirmed a potential direct interaction between QHD's bioactive components and the Dectin-1 receptor. CONCLUSION QHD demonstrates promising therapeutic potential for managing Candida colitis by modulating immune responses and targeting Dectin-1 signaling pathways in clinical settings.
Collapse
Affiliation(s)
- Chengcheng Liu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Zixu Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Hanyu Zhu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Qinai Luo
- Department of Pathology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University o Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Daqiang Wu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Tianming Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Min Hu
- Department of Pathology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University o Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China.
| | - Changzhong Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China.
| |
Collapse
|
9
|
Li N, Shang X, Shi L, Li Y, Mao T, Wang Q, Li J, Peng G. Effects of three Chinese herbal therapies on gut microbiota and short-chain fatty acid metabolism in patients with mild, moderate, and severe ulcerative colitis: Multi-center, randomized, controlled trials. Int Immunopharmacol 2025; 152:114444. [PMID: 40088871 DOI: 10.1016/j.intimp.2025.114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Traditional Chinese medicines, as a burgeoning field of medication, significantly alleviate ulcerative colitis (UC) by improving intestinal microbiota-metabolism. Our previous studies demonstrated the significant efficacy of Hudi Enteric-coated capsules (HDEC), Qingchang Wenzhong decoction (QCWZ), and Modified Wumei pill (MWMP) using a mouse model of colitis. However, the mechanism of these therapies through the modulation of microbiota-metabolism remains uncertain. OBJECTIVE Three multicenter randomized controlled trials were designed to explore the effects of three therapies on the microbiota-metabolism of UC patients with different severity. METHODS A total of 143 patients with different severities of UC were recruited from 10 hospitals. The clinical efficacy of HDEC for mild UC, QCWZ for moderate UC, and MWMP for severe UC (SUCs) was evaluated by colorectal Mayo scores and systemic inflammatory indicators. The 16S rRNA sequencing and metabolomics were used to analyze intestinal microbiota and metabolite profiles. RESULTS Three therapies used alone or combined with mesalazine (MS) were comparable to MS alone in improving Mayo scores and hematic inflammatory parameters. Microbial diversities and architectures of SUCs showed the greatest response to MWMP+MS than other medications, as reflected by the enriched Ruminococcus and Anaerostipes together with the reduced Enterococcus, Streptococcus, and Streptococcus anginosus. Furthermore, MWMP+MS boosted the production of the microbiota-derived short-chain fatty acids (SCFAs) of SUCs. These differential microbes and metabolites further displayed significant statistical relationships with clinical parameters. CONCLUSION Herbal therapies, especially MWMP+MS, effectively improve microbiota composition and SCFA metabolism, which correlates with the improvements of serum inflammatory markers and endoscopic findings in patients.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xuekai Shang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Shi
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yalan Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tangyou Mao
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Guiying Peng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
10
|
Liang L, Dang B, Ouyang X, Zhao X, Huang Y, Lin Y, Cheng X, Xie G, Lin J, Mi P, Ye Z, Guleng B, Cheng SC. Dietary succinate supplementation alleviates DSS-induced colitis via the IL-4Rα/Hif-1α Axis. Int Immunopharmacol 2025; 152:114408. [PMID: 40086056 DOI: 10.1016/j.intimp.2025.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/22/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
Inflammatory bowel disease (IBD) remains a pressing global health challenge, necessitating novel therapeutic strategies. Succinate, a metabolite known for its role in type 2 immunity and tuft cell activation in the small intestine, presents its potential in IBD management. However, its impact on colonic inflammation has not been explored. Here, we demonstrate that succinate administration induces a type 2 immune response, significantly alleviating dextran sulfate sodium (DSS)-induced colonic inflammation. Succinate enhances antibacterial capacity, reduces intestinal permeability, and reshapes the colonic cytokine milieu. Mechanistically, succinate promotes myeloid cell expansion in peripheral blood, mesenteric lymph nodes, and the colonic lamina propria. The protective effects of succinate were abolished in Ccr2-/- mice, confirming the role of monocyte recruitment, but persisted in Rag1-/- mice, indicating independence from adaptive immunity. Adoptive transfer of monocytes from succinate-treated donors mitigated intestinal inflammation in recipient mice. Transcriptomic analysis revealed heightened expression of Il1b and Il6, and higher lactate production in monocytes upon lipopolysaccharide (LPS) stimulation, highlighting a reprogrammed pro-inflammatory trained immunity phenotype. Finally, we identify the IL-4Rα/Hif-1α axis is critical for succinate-mediated protection. These findings reveal the ability of succinate to reprogram monocytes into protective intestinal macrophages via induction of type 2 response, restoring homeostasis through enhanced barrier function and immune modulation. Our study positions thus uncover succinate as a promising therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Laiying Liang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China; Department of Laboratory Medicine, West China Xiamen Hospital of Sichuan University, Xiamen 361000, China
| | - Buyun Dang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China; State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaomei Ouyang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xianling Zhao
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Yongdong Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Ying Lin
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xiaoshen Cheng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Guijing Xie
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Junhui Lin
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Peng Mi
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Zhenyu Ye
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China.
| | - Shih-Chin Cheng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China; State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
Pletsch EA, Dawson HD, Cheung L, Ragonese JS, Chen CT, Smith AD. A type 4 resistant potato starch alters the cecal microbiome, gene expression and resistance to colitis in mice fed a Western diet based on NHANES data. Food Funct 2025. [PMID: 40207550 DOI: 10.1039/d4fo04697h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Four major types of resistant starch (RS1-4) are present in foods and can be fermented to produce short-chain fatty acids (SCFAs), alter the microbiome and modulate post-prandial glucose metabolism. While studies in rodents have examined the effects of RS4 consumption on the microbiome, fewer have examined its effect on gene expression in the cecum or colon or resistance to bacterial-induced colitis, and those that have, use diets that do not reflect what is typically consumed by humans. Here we fed mice a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data for 6-7 weeks and then supplemented their diet with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch. After three weeks, mice were infected with Citrobacter rodentium (Cr) to induce colitis. Infected mice fed the 10% VF diet had the highest levels of Cr fecal excretion at days 4, 7 and 11 post-infection. Infected mice fed the 5% and 10%VF diets had increased hyperplasia and colonic damage compared with the control. Changes in bacterial genera relative abundance, and alpha and beta diversity due to diet were most evident in mice fed 10% VF. Cr infection also resulted in specific changes to the microbiome and gene expression both in the cecum and the colon compared with diet alone, including the expression of multiple antimicrobial genes, Reg3b, Reg3g, NOS2 and Ifng. These results demonstrate that VF, a RS4, alters cecal and colonic gene expression, the microbiome composition and resistance to bacterial-induced colitis.
Collapse
Affiliation(s)
- Elizabeth A Pletsch
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Harry D Dawson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Lumei Cheung
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Jack S Ragonese
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Celine T Chen
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Allen D Smith
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
12
|
Quan X, Miao Z, Han R, Deng R, Cao Y, Tian J, Lu Y, Wang G, Yu X, Wu Y, Dai C. Proteomic analysis reveals that Acalypha australis L. mitigates chronic colitis by modulating the FABP4/PPARγ/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119585. [PMID: 40049341 DOI: 10.1016/j.jep.2025.119585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acalypha australis L. (AAL), a traditional medicinal herb from the Euphorbiaceae family, has been widely used in Chinese medicine for its heat-clearing, detoxifying, and diuretic properties, as well as for treating gastrointestinal disorders such as diarrhea and dysentery. Its reported anti-inflammatory and hemostatic effects are closely linked to inflammatory pathways. While previous studies have demonstrated AAL's efficacy in acute colitis, its therapeutic potential in chronic colitis and the underlying mechanisms remain largely unexplored. AIM OF THE STUDY This study aims to investigate the therapeutic efficacy of AAL in dextran sulfate sodium (DSS)-induced chronic colitis and elucidate its anti-inflammatory and barrier-protective mechanisms, with a specific focus on the FABP4/PPARγ/NF-κB signaling pathway. MATERIALS AND METHODS The chemical composition of AAL was characterized using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Chronic colitis was induced in mice through three cycles of DSS administration, and the therapeutic effects of AAL were evaluated by assessing body weight, Disease Activity Index (DAI), colon length, and pathological alterations. Enzyme-linked immunosorbent assay (ELISA) was used to quantify inflammatory cytokine levels. Immunohistochemistry and Western blotting were performed to assess mucosal barrier proteins, including Mucin 2 (MUC2), zonula occludens-1 (ZO-1), and Occludin, as well as key signaling proteins such as fatty acid-binding protein 4 (FABP4), peroxisome proliferator-activated receptor gamma (PPARγ), and phosphorylated P65 (p-P65). Proteomic analysis combined with Gene Set Enrichment Analysis (GSEA) was conducted to identify differentially expressed proteins and enriched pathways. The role of the FABP4/PPARγ/NF-κB axis was further validated using the PPARγ antagonist GW9662. Additionally, molecular docking and molecular dynamics simulations were employed to identify bioactive components in AAL and their interactions with FABP4 and PPARγ. RESULTS UPLC-QTOF-MS analysis identified 47 compounds in AAL, including flavonoids, terpenoids, and polyphenols. Bergaptol and corilagin were identified as major constituents with potential anti-inflammatory properties. AAL treatment significantly alleviated chronic colitis symptoms, as evidenced by reduced DAI scores, restoration of body weight, and improved colon length. Pathological and immunohistochemical analyses demonstrated that AAL preserved intestinal mucosal integrity by upregulating MUC2, ZO-1, and Occludin expression. Proteomic and GSEA analyses identified the FABP4/PPARγ/NF-κB pathway as a key target of AAL. Western blotting confirmed that AAL suppressed FABP4 expression, enhanced PPARγ levels, and reduced p-P65 expression, indicating inhibition of NF-κB activation. Notably, the therapeutic effects of AAL were abolished by GW9662, further validating the involvement of PPARγ signaling. Molecular docking and molecular dynamics simulations demonstrated strong binding affinities of bergaptol and corilagin to FABP4 and PPARγ, suggesting their role as active compounds responsible for AAL's therapeutic effects. CONCLUSIONS AAL effectively mitigates chronic colitis by preserving intestinal barrier integrity, suppressing inflammatory responses, and modulating the FABP4/PPARγ/NF-κB pathway. The bioactive compounds bergaptol and corilagin may contribute to these therapeutic effects, highlighting AAL as a promising natural therapeutic agent for ulcerative colitis.
Collapse
Affiliation(s)
- Xiaoyu Quan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Runxi Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Deng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaqi Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingshan Tian
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaping Lu
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoxiang Wang
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingjian Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, 95817, CA, USA
| | - Yi Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Dai
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Hammerhøj AD, Boye TL, Yao J, Hausmann A, Kellermann L, Maciag GJ, Sandelin A, Steenholdt C, Jensen KB, Nielsen OH. Inflamed intestinal epithelial cells from patients with ulcerative colitis restore a non-inflamed transcriptional profile upon in vitro expansion. J Transl Med 2025:104172. [PMID: 40210167 DOI: 10.1016/j.labinv.2025.104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic relapsing inflammation starting from the rectum and distal colon, which in severe disease cases may affect the entire colon. Intestinal stem cells (ISCs) directly isolated from inflamed UC colonic tissue specimens have been found to present an inflammatory gene expression profile. However, a critical issue is whether these cells retain memory of exposure to inflammation and/or therapeutics. Here, we aimed to investigate whether human intestinal epithelial cells retain the inflammatory state observed in vivo when expanded in vitro as 3D cultured organoids to assess their suitability for therapeutic transplantation. ISCs were isolated from non-inflammatory bowel disease controls (non-inflamed; n = 18), as well as from colonoscopy-obtained biopsies of the sigmoid colon from individuals diagnosed with UC (inflamed), who were glucocorticoid-naïve (n = 19). Moreover, ISCs were collected from all patients with inflammatory bowel disease following prednisolone treatment. Epithelial cells were cultured as 3D intestinal organoids in media to support stem cell maintenance and differentiation. Subsequently, the 3D intestinal organoids were harvested at the end of passage two for bulk RNA sequencing. The data revealed that the cellular phenotype of in vitro-cultured epithelial cells isolated from inflamed tissue did not maintain the hallmarks of inflammation observed in the ulcerated environment from which the cells were initially obtained. Our findings indicate that the autologous reinsertion of in vitro-expanded ISCs in active stages of UC may aid in intestinal healing, which calls for future clinical studies. Additionally, a link between organoid morphology and the inflammatory state of the tissue of origin was identified, as organoids derived from inflamed colon exhibited a lower degree of circularity.
Collapse
Affiliation(s)
| | - Theresa Louise Boye
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark
| | - Jiayi Yao
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Annika Hausmann
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Food, Nutrition and Health (D-HEST), ETH Zurich, Switzerland
| | - Lauge Kellermann
- Department of Pathology, Herlev Hospital, University of Copenhagen, Denmark
| | - Grzegorz Jerzy Maciag
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Casper Steenholdt
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark; Department of Medical Gastroenterology, Odense University Hospital, Denmark
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark.
| |
Collapse
|
14
|
Lu G, Lu S, Dai H, Zhang F, Wang X, Li W, Mei L, Tan H. Engineered Turmeric-Derived Nanovesicles for Ulcerative Colitis Therapy by Attenuating Oxidative Stress and Alleviating Inflammation. Mol Pharm 2025; 22:2159-2167. [PMID: 40134348 DOI: 10.1021/acs.molpharmaceut.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Inflammation and oxidative stress are important features of traumatic ulcerative colitis (UC). Turmeric has been used as a dietary and functional ingredient for its potent anti-inflammatory effects in UC therapy. However, its practical effectiveness is hindered by limited reactive oxygen species (ROS) elimination properties. To address this, we constructed a unique treatment agent by growing cerium oxide (CeO2) nanocrystals on the membranes of turmeric-derived nanovesicles (TNVs), named as TNV-Ce. The resulted TNV-Ce could suppress inflammation and exhibit exceptional ROS-scavenging activity, which was validated both in lipopolysaccharide-induced macrophages and dextran sulfate sodium salt-induced chronic colitis mouse model. Following oral administration, TNV-Ce significantly accumulated at inflamed sites, effectively eliminating ROS and inhibiting pro-inflammatory cytokines for synergistic action against UC.
Collapse
Affiliation(s)
- Guihong Lu
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Shanming Lu
- Department of Pathology, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Haibing Dai
- Department of Pathology, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Fan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Department of Pathology, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Xiaotian Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, Zhejiang 313201, China
| | - Weiqun Li
- Department of Pathology, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China
| |
Collapse
|
15
|
Wang J, Zhang C, Qin J, An N, Bai M, Du RH, Shen Y, Wu XD, Cheng JC, Wu XF, Xu Q. Direct inhibition of the TXNIP-NLRP3-GSDMD pathway reduces pyroptosis in colonocytes and alleviates ulcerative colitis in mice by the small compound PEITC. Acta Pharmacol Sin 2025:10.1038/s41401-025-01549-z. [PMID: 40195510 DOI: 10.1038/s41401-025-01549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease. The etiology of UC is multifaceted, and the underlying pathogenesis remains incompletely understood. Pyroptosis, programmed cell death mediated by the gasdermins, is a pivotal driver of UC pathology due to its dual role in epithelial barrier disruption and inflammatory amplification. We previously showed that phenethyl isothiocyanate (PEITC), an isothiocyanate derived from cruciferous vegetables, alleviated acute liver injury in mice by suppressing hepatocyte pyroptosis. In this study we evaluated the therapeutic potential of PEITC in the treatment of UC and the underlying mechanisms. UC mouse models were established by administration of 2.5% (w/v) dextran sulfate sodium (DSS) daily for 7 days. PEITC (5, 10, or 20 mg·kg-1·d-1, i.g.) was given 2 days before the start of modeling, and the dosing lasted for a total of 10 days. We showed that during the progression of DSS-induced UC, the pyroptosis pathway was activated accompanied by elevated expression levels of thioredoxin-interacting protein (TXNIP) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3), as well as the activation of caspase-1, gasdermin D (GSDMD) and interleukin-1β (IL-1β). Treatment with PEITC dose-dependently reduced TXNIP and NLRP3 expression while inhibiting the cleavage of proteins associated with the pyroptosis pathway such as caspase-1, GSDMD, and IL-1β. We confirmed the inhibitory effect of PEITC on colonocyte pyroptosis in an in vitro model established in HT29 cells, where PEITC (0.2, 1, 5 µM) dose-dependently inhibited TXNIP and NLRP3 expression and the activation of pro-caspase-1, GSDMD and pro-IL-1β. We revealed that PEITC is directly bound to TXNIP and disrupted the interaction between TXNIP and NLRP3, leading to diminished cellular inflammation and oxidative stress levels. In conclusion, this study demonstrates that PEITC disrupts the interaction of TXNIP and NLRP3 by binding to TXNIP, inhibits NLRP3 activation and colonocyte pyroptosis, and thus effectively alleviates UC symptoms in mice. This study offers novel drug targets along with potential therapeutic candidates for the clinical prevention and treatment of UC.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, 210000, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, China
| | - Cui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, 210000, China
| | - Jia Qin
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, 210000, China
| | - Ning An
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, 210000, China
| | - Mei Bai
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, 210000, China
| | - Rong-Hui Du
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, 210000, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, 210000, China
| | - Xu-Dong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, 210000, China
| | - Jing-Cai Cheng
- Drug R&D Institute, JC (Wuxi) Company, Inc., Wuxi, 214000, China
| | - Xue-Feng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, 210000, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, 210000, China.
| |
Collapse
|
16
|
Manoria P, Noor MT. Correlation of serum vitamin D levels with serum interleukin-23 levels in patients of ulcerative colitis. Hum Immunol 2025; 86:111305. [PMID: 40199019 DOI: 10.1016/j.humimm.2025.111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory condition resulting from an abnormal immune response to gut microbiota, leading to cytokine dysregulation, including elevated interleukin-23 (IL-23) levels. Emerging evidence suggests that vitamin D (VD) plays a crucial role in immune modulation. However, its correlation with IL-23 in UC is not well addressed. This study aims to elucidate the relationship between serum VD and IL-23 levels in UC patients. We included forty-four UC patients and forty-four healthy controls. VD insufficiency was more common in UC patients (n = 14) compared to controls (n = 5). Significant increases in IL-23 levels were observed from remission (46.6 ± 4.3 pg/mL) to severe stages (218.5 ± 62.41 pg/mL), while VD levels did not show a similar trend. IL-23 levels also rose significantly with disease extent, from proctitis to pancolitis. A significant negative correlation was found between VD and IL-23 levels (r = -0.3175; P = 0.035). IL-23 and pulse rate were significant predictors of UC in our cohort. Our findings highlight VD insufficiency to be prevalent in UC patients, with VD levels negatively correlating with IL-23 levels, which increase with disease severity and extent. Further, understanding the interplay between VD and IL-23 will help design therapeutic interventions to modulate immune response and disease progression.
Collapse
Affiliation(s)
- Piyush Manoria
- Department of Gastroenterology and Hepatology, Manoria Hospital, Bhopal, Madhya Pradesh, India.
| | - Mohd T Noor
- Department of Gastroenterology, Sri Aurobindo Medical College and PG Institute, Indore, Madhya Pradesh, India.
| |
Collapse
|
17
|
Lin Q, Zhang S, Zhang J, Jin Y, Chen T, Lin R, Lv J, Xu W, Wu T, Tian S, Ying L, Li X, Huang Z, Niu J. Colonic epithelial-derived FGF1 drives intestinal stem cell commitment toward goblet cells to suppress inflammatory bowel disease. Nat Commun 2025; 16:3264. [PMID: 40188210 PMCID: PMC11972292 DOI: 10.1038/s41467-025-58644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
Understanding the molecular mechanisms that regulate intestinal epithelial cell (IEC) renewal provides potential targets for inflammatory bowel disease (IBD). Growing evidence has highlighted the importance of epithelial signals in regulating intestinal stem cell (ISC) differentiation. However, it remains unclear which IEC-derived cytokines can precisely regulate ISC commitment toward specific mature cells. Here we systematically analyze all fibroblast growth factors (FGFs) expression and find that colonic FGF1 levels are inversely correlated with the severity of IBD in mouse models and patients. IEC-specific Fgf1 deletion leads to impaired goblet cell differentiation and exacerbated colitis, while pharmacological administration of recombinant FGF1 (rFGF1) alleviates colitis by enhancing goblet cell differentiation and improving colonic epithelial integrity. Mechanistic studies reveal that rFGF1 directs ISC differentiation toward goblet cells via FGFR2-TCF4-ATOH1 signaling axis. In conclusion, our study identifies an epithelial niche-derived FGF1 that regulates ISC commitment toward goblet cells, shedding light on strategies for treating IBD.
Collapse
Affiliation(s)
- Qian Lin
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Sudan Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaren Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi Jin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Taoli Chen
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Ruoyu Lin
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaxuan Lv
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenjing Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tianzhen Wu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shenyu Tian
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lei Ying
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhifeng Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jianlou Niu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
18
|
Kasai S, Karmacharya A, Mukai Y, Sato S. Bangle (Zingiber purpureum Rosc.) Extract Ameliorates Colonic Inflammation and Upregulates Autophagy via the Modulation of the AMPK/mTOR/NFκB Pathway in a Mouse Colitis Model. Mol Nutr Food Res 2025:e70034. [PMID: 40177841 DOI: 10.1002/mnfr.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Bangle, a perennial herb belonging to the ginger family with antiinflammatory properties, has been under-researched in ulcerative colitis. This study aimed to investigate the effects of Bangle extract (BaE) on inflammation and autophagy in the colons of mice with dextran sulfate sodium (DSS)-induced colitis. Male C57BL/6J mice were assigned to four groups: control, DSS + 0% BaE, DSS + 1% BaE, and DSS + 3% BaE. The BaE groups were fed BaE diets for 3 weeks, followed by an additional week of BaE diets and 3% DSS in the water. The control group received a standard chow diet and water for 4 weeks. Plasma leucine-rich α2-glycoprotein (LRG) levels, macrophage count, and the levels of nuclear factor kappa B (NFκB) p65, tumor necrosis factor-α (TNF-α), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), mechanistic target of rapamycin (mTOR), and autophagy markers were analyzed. In the DSS + 0% BaE group, LRG levels, macrophage count, NFκB p65 protein, and TNF-α mRNA levels were significantly higher compared to the control group. However, in the DSS + 3% BaE group, these levels were significantly reduced. Additionally, PGC-1α and phosphorylated AMPK levels were increased, while phosphorylated mTOR levels decreased, and autophagy marker microtubule-associated protein 1 light chain 3B (LC3B)-II levels were increased in the DSS + 3% BaE group. BaE may ameliorate colonic inflammation and upregulate autophagy via the modulation of the AMPK/mTOR/NFκB pathway in DSS-induced colitis.
Collapse
Affiliation(s)
- Shiho Kasai
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Anishma Karmacharya
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Yuuka Mukai
- School of Nutrition and Dietetics, Faculty of Health and Social Work, Kanagawa University of Human Services, Kanagawa, Japan
| | - Shin Sato
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| |
Collapse
|
19
|
Zhang Z, Wang Z, Wan W, Li S, Yang W, Shi X. KunMingShanHaiTang formula reprograms macrophage metabolism and promotes M2 polarization via the HIF-1α pathway to alleviate ulcerative colitis symptoms in a rat model. J Bioenerg Biomembr 2025:10.1007/s10863-025-10056-z. [PMID: 40172736 DOI: 10.1007/s10863-025-10056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/18/2025] [Indexed: 04/04/2025]
Abstract
The KunMingShanHaiTang Formula (KMSHTF), adjusted by Professor Zhong Chuanhua for the treatment of ulcerative colitis (UC), is the work of a renowned veteran practitioner of Chinese medicine. However, its specific mechanism remains unknown. Consequently, it is intriguing to investigate the molecular mechanism by which KMSHTF treats UC. To elucidate the mechanism of KMSHTF in the treatment of UC in rats. Initially, the active ingredients and key target genes of KMSHTF in treating UC were analyzed using network pharmacology. Protein-Protein interaction and gene enrichment analyses were performed to predict key targets and pathways. Subsequently, UC rats were treated with KMSHTF, and the expression proteins in intestinal tissue were detected. Finally, the active compounds of KMSHTF intreating ulcerative colitis were further screened using Molecular Docking, and their pharmacological effects were validated through cell experiments. A total of 47 active compounds and 365 key target genes of KMSHTF for UC treatment were identified through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,along with the GeneCards database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis revealed that KMSHTF exerted its therapeutic effects on UC through regulating multiple pathways. In this study, the HIF-1α pathway was selected as the main molecular pathway of KMSHTF treating UC, and further validation was conducted through in vivo and in vitro experiments.Animal studies revealed that KMSHTF significantly ameliorated UC symptoms in rats, including diarrhea,rectal bleeding and specific pathological alterations in the intestinal wall. Furthermore, KMSHTF reduced pro-inflammatory cytokines IL-6 and TNF-α, up-regulated IL-4 of M2 macrophages and down-regulated iNOS and IL-1β of M1 macrophages. Additionally, it decreased the expression levels of HKII and GLUT1 related HIF-1α pathway. The three active compounds of KMSHTF, Baicalein, Palmatine and Triptonide-were selected based on their strong binding affinity with HIF-1α and HKII through computational molecular docking. Cellular experiments demonstrated that each of these compounds downregulated the protein expression levels of HIF-1α, HKII, GLUT1 and IL-6 in an intestinal wall cell model. Of Note, Baicalein exhibited the most pronounced effect. However, the overexpression of HIF-1α reversed the Baicalein-induced downregulation of HKII, GLUT1 and IL-6 at the protein level in vitro. KMSHTF may modulate macrophage metabolism to promote M2 polarization through the HIF-1α pathway, thereby contributing to its therapeutic efficacy in ulcerative colitis (UC). Baicalein, Palmatine, and Triptonide are the three core active compounds of KMSHTF that primarily contribute to this hypothesis.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Department of Anorectal, the Third Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Zhen Wang
- Department of Anorectal, the Third Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Weiping Wan
- Department of Anorectal, the Third Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Shumin Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Wenzhi Yang
- Department of Anorectal, the Third Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - XiNan Shi
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
20
|
Zhao C, Wen S, Xu R, Wang K, Zhong Y, Huang D, Zhao B, Chen W. Oral delivery of ultra-small zwitterionic nanoparticles to overcome mucus and epithelial barriers for macrophage modulation and colitis therapy. Acta Biomater 2025; 196:399-409. [PMID: 39983856 DOI: 10.1016/j.actbio.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the colon that poses significant therapeutic challenges due to the intestinal mucus and epithelial barriers. In this study, ultra-small zwitterionic nanoparticles (HC-CB NPs) is developed based on glutathione (GSH)-responsive hyperbranched polycarbonate to enhance the oral delivery of drugs and overcome these physiological barriers. HC-CB NPs demonstrate high colloidal stability across a wide range of pH environments and physiological fluids, preventing premature drug release within the gastrointestinal tract. The ultra-small sized HC-CB NPs demonstrate minimal mucin adsorption and effectively penetrate through the mucus layer, and the zwitterion surface further facilitate epithelial barrier crossing via the proton-assisted amino acid transporter 1 (PAT1) pathway. HC-CB NPs mediate enhanced macrophage uptake via monocarboxylate transporters (MCTs) pathway and ultimately improved therapy efficacy on colitis. The in vivo results reveal that FK506-loaded HC-CB NPs (HC-CB NPs@FK506) significantly reduce inflammatory markers (TNF-α, IL-6) and myeloperoxidase (MPO) levels, while promoting epithelial integrity by increasing E-cadherin expression. This study offers a promising approach to overcoming intestinal barriers in oral UC treatment, offering biocompatibility and potential for clinical translation. STATEMENT OF SIGNIFICANCE: Ulcerative colitis (UC) is a chronic inflammatory disease of the colon that poses significant therapeutic challenges due to the intestinal mucus and epithelial barriers. This study explores an oral UC therapy using ultra-small zwitterionic nanoparticles (HC-CB NPs) constructed from GSH-responsive hyperbranched polycarbonate. Compared to existing strategies, HC-CB NPs demonstrate minimal mucin adsorption and effectively penetrate through the mucus layer, and the zwitterion surface further facilitate epithelial barrier crossing via the proton-assisted amino acid transporter 1 (PAT1) pathway. Additionally, HC-CB NPs mediate enhanced macrophage uptake via monocarboxylate transporters (MCTs) pathway, resulting in improved therapeutic efficacy. These findings underscore the potential of HC-CB NPs as a transformative platform for overcoming intestinal barriers in UC treatment.
Collapse
Affiliation(s)
- Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Suchen Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Rui Xu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
21
|
Dermine S, Bazin T, Hassan FA, Bettolo J, Billiauws L, Bourdillel J, Bresteau C, Corcos O, El Khatib M, Gouse AM, Hutinet C, Nuzzo A, Joly F. Prevalence and impact of sarcopenia in patients with inflammatory bowel diseases: A prospective cohort study. Clin Res Hepatol Gastroenterol 2025; 49:102555. [PMID: 40021084 DOI: 10.1016/j.clinre.2025.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/04/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) patients with sarcopenia are at increased morbidity risk. The aim of this study was to assess the prevalence of sarcopenia in IBD outpatients using both morphological and functional criteria. METHODS In this prospective cohort study, all IBD patients admitted to the day hospital unit between March 01 and 31, 2023 were included. Muscle mass and function were evaluated using bioelectrical impedance analysis and handgrip strength measurement, respectively. Probable sarcopenia was defined as reduced handgrip strength (<16-27 kg). Myopenia was defined by a low appendicular muscle mass index (<5.5-7 kg/m²). Sarcopenia was diagnosed based on the coexistence of reduced muscle strength and muscle mass. Disease activity, therapeutic changes, hospitalizations, and IBD-related surgeries were assessed at month 6. RESULTS Sixty patients with either Crohn's disease (CD, 52 %) or ulcerative colitis (48 %), with a median age of 37 years (interquartile range [IQR]: 28-54), were included. Fifty-five percent were women. Most patients were in remission (67 %, n = 40). In CD patients, the involvement was ileocolic (48 %), ileal (35 %), or colonic (16 %). A history of IBD-related digestive surgery was noted in 30 % of cases. The median body mass index [BMI] was 24 (IQR: 21-27). The prevalence of sarcopenia, probable sarcopenia, and myopenia was 10 %, 18 %, and 20 %, respectively. Sarcopenic patients were significantly older (59 vs 36 years, p = 0.01), had a longer disease duration (20 vs 8 years, p = 0.003), were more likely to have associated joint inflammation (27 % vs 6 %, p = 0.01) and CD (80 % vs 49 %, p = 0.36). Myopenia was significantly associated with a history of surgery (67 % vs 21 %, p = 0.004) and a lower BMI (21 vs 24, p = 0.001). CONCLUSION In this prospective cohort of IBD outpatients, 10 % and 20 % of patients had sarcopenia and myopenia, respectively. Screening for sarcopenia therefore seems essential in this population, including in stable outpatients in remission who do not meet malnutrition criteria and in overweight patients, as according to the literature, sarcopenia is associated with poorer clinical outcomes and increased postoperative complications. Interventional studies are needed to assess the impact of multidisciplinary treatment of sarcopenia on quality of life and disease progression.
Collapse
Affiliation(s)
- Solène Dermine
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre for Rare Disease MarDI, AP-HP Beaujon Hospital, University Paris, France.
| | - Thomas Bazin
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre for Rare Disease MarDI, AP-HP Beaujon Hospital, University Paris, France; Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Fatimé Adam Hassan
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de Biochimie-Pharmacologie-Biologie Moléculaire-Génétique Médicale, Créteil, France
| | - Johanna Bettolo
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre for Rare Disease MarDI, AP-HP Beaujon Hospital, University Paris, France
| | - Lore Billiauws
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre for Rare Disease MarDI, AP-HP Beaujon Hospital, University Paris, France; Hôpital Bichat, Laboratory for Vascular Translational Science, Paris, France
| | - Justine Bourdillel
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre for Rare Disease MarDI, AP-HP Beaujon Hospital, University Paris, France
| | - Clément Bresteau
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre for Rare Disease MarDI, AP-HP Beaujon Hospital, University Paris, France
| | - Olivier Corcos
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre for Rare Disease MarDI, AP-HP Beaujon Hospital, University Paris, France; Hôpital Bichat, Laboratory for Vascular Translational Science, Paris, France
| | - Myriam El Khatib
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre for Rare Disease MarDI, AP-HP Beaujon Hospital, University Paris, France
| | - Ashiq Mohamed Gouse
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre for Rare Disease MarDI, AP-HP Beaujon Hospital, University Paris, France
| | - Coralie Hutinet
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre for Rare Disease MarDI, AP-HP Beaujon Hospital, University Paris, France
| | - Alexandre Nuzzo
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre for Rare Disease MarDI, AP-HP Beaujon Hospital, University Paris, France; Hôpital Bichat, Laboratory for Vascular Translational Science, Paris, France
| | - Francisca Joly
- Department of Gastroenterology and Nutritional Support, Center for Intestinal Failure, Reference Centre for Rare Disease MarDI, AP-HP Beaujon Hospital, University Paris, France; Hôpital Bichat, Laboratory for Vascular Translational Science, Paris, France
| |
Collapse
|
22
|
Rao MS, Gaur A, Bharadwaj HR, Imran S, Tan JK, Abbas S, Fuad M, Abuhashem S, Shah MH, Dalal P, Al Khatib AN, Abbasher Hussien Mohamed Ahmed K. The current state of pediatric gastroenterology in under-resourced nations. Ann Med Surg (Lond) 2025; 87:2218-2228. [PMID: 40212147 PMCID: PMC11981426 DOI: 10.1097/ms9.0000000000003141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/25/2025] [Indexed: 04/13/2025] Open
Abstract
Background Pediatric gastroenterology (GI) care in low- and middle-income countries (LMICs) faces substantial challenges due to limited healthcare infrastructure, inadequate resources, and a shortage of specialized healthcare professionals. These challenges lead to delayed diagnoses and treatment, exacerbating the morbidity and mortality associated with pediatric GI diseases, which include both infectious conditions like diarrhea and chronic conditions such as inflammatory bowel disease (IBD) and liver diseases. Aim The aim of this review is to examine the current state of pediatric GI care in LMICs, identify the key challenges these regions face, and propose strategies to improve healthcare outcomes for children affected by GI disorders. Methods This review synthesizes existing literature from a range of LMICs, analyzing factors such as the economic burden of healthcare, barriers to access, the availability of diagnostic and therapeutic services, and the state of pediatric hepatology and endoscopy. Studies included in the review were sourced from countries in sub-Saharan Africa, South Asia, and other LMIC regions, focusing on pediatric GI disorders and healthcare delivery. Results Economic burden: Families in LMICs face significant economic barriers in accessing pediatric GI care, with treatment costs often exceeding household income, especially in private healthcare settings. Healthcare access: Limited access to healthcare facilities, especially in rural areas, coupled with the shortage of trained pediatric gastroenterologists and necessary medical equipment, leads to delayed diagnoses and inadequate care for conditions like Helicobacter pylori infections and chronic liver diseases. Sanitation and infectious diseases: Poor sanitation and lack of access to clean water contribute to the high prevalence of diarrheal diseases, which can be reduced through better hygiene practices and improved infrastructure. Training gaps: The shortage of trained healthcare workers, particularly pediatric specialists, hinders effective care delivery, with healthcare workers often overburdened due to workforce migration and low salaries. Hepatology and endoscopy: Pediatric hepatology, especially in the context of viral hepatitis, and the availability of pediatric GI endoscopy are severely limited in LMICs, further complicating the management of liver diseases and GI conditions in children. Conclusion Improving pediatric GI care in LMICs requires addressing systemic challenges such as inadequate healthcare infrastructure, limited financial resources, and a shortage of trained professionals. Prevention strategies like vaccination, sanitation improvements, and public health education campaigns are crucial for reducing the prevalence of pediatric GI diseases. In addition, enhancing access to specialized training, healthcare services, and diagnostic tools will improve outcomes for children in resource-limited settings. Continued international collaboration and investment in local healthcare systems are essential for creating sustainable solutions and bridging the gap in pediatric GI care.
Collapse
Affiliation(s)
- Medha Sridhar Rao
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Aditya Gaur
- Yeovil District Hospital, Somerset NHS Foundation Trust, Higher Kingston, Yeovil, United Kingdom
| | | | - Shahzeb Imran
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Joecelyn Kirani Tan
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Saad Abbas
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Muhtasim Fuad
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Muhammad Hamza Shah
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Priyal Dalal
- School of Medicine and Dentistry, University of Central Lancashire, Preston, United Kingdom
| | | | | |
Collapse
|
23
|
Westfall KM, Charles R, Steinhagen E. Diagnosis and Differentiation of Inflammatory Bowel Disease. Surg Clin North Am 2025; 105:217-232. [PMID: 40015813 DOI: 10.1016/j.suc.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Differentiating Crohn's disease from ulcerative colitis may be a diagnostic challenge for clinicians due to overlapping features. However, the correct diagnosis may guide treatment options and considerations regarding surgery. This study reviews the common components of diagnostic evaluation of inflammatory bowel disease. Additionally, this article provides a basis of understanding for the more complex aspects of the disease to be discussed in subsequent studies.
Collapse
Affiliation(s)
- Kristen M Westfall
- Department of Surgery, Division of Colorectal Surgery, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ronald Charles
- Department of Surgery, Division of Colorectal Surgery, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Emily Steinhagen
- Department of Surgery, Division of Colorectal Surgery, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
24
|
Nishioka K, Ogino H, Ihara E, Chinen T, Kimura Y, Esaki M, Bai X, Minoda Y, Tanaka Y, Wada M, Hata Y, Ambrosini YM, Ogawa Y. Importance of rectal over colon status in ulcerative colitis remission: the role of microinflammation and mucosal barrier dysfunction in relapse. J Gastroenterol 2025; 60:416-429. [PMID: 39672976 DOI: 10.1007/s00535-024-02199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a refractory inflammatory disease that affects the rectum and colon, with pivotal involvement of the rectal environment in relapse initiation. This study was conducted in two phases to examine the differences in gene expression between the rectum and colon and to identify relapse factors. METHODS In ***Study 1, RNA sequencing was performed on biopsies from the colon and rectum of patients with active UC, those with remission UC, and controls. In Study 2, the mucosal impedance (MI) values reflecting mucosal barrier function and the mRNA expression of tight junction proteins and inflammatory cytokines were examined in 32 patients with remission UC and 22 controls. Relapse was monitored prospectively. RESULTS In Study 1, comprehensive genetic analysis using RNA sequencing revealed distinct gene profiles in the rectum and sigmoid colon of patients with remission UC. The rectum of these patients exhibited an enriched immune response and apical junction phenotype with persistent upregulation of CLDN2 gene expression. In Study 2, even in patients with remission UC, the MI values in the rectum, but not in the sigmoid colon, were significantly decreased, whereas they were negatively correlated with CLDN2, IL-1β, and IL-6 expressions. CONCLUSION The status of the rectum in patients with remission UC differs from that of the colon, with microinflammation and impaired mucosal barrier function, which are associated with the upregulation of CLDN2, playing a role in relapse.
Collapse
Affiliation(s)
- Kei Nishioka
- Department of Gastroenterology, Saiseikai Futsukaichi Hospital, Chikushino, Japan
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Haruei Ogino
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takatoshi Chinen
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Kimura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Esaki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, USA
| | - Xiaopeng Bai
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yosuke Minoda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshimasa Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Wada
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Hata
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoko M Ambrosini
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, USA
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Jairath V, Raine T, Leahy TP, Potluri R, Wosik K, Gruben D, Cappelleri JC, Hur P, Bartolome L. Matching-adjusted indirect comparisons of efficacy outcomes between etrasimod and ozanimod for moderately to severely active ulcerative colitis. J Comp Eff Res 2025; 14:e240193. [PMID: 39989343 PMCID: PMC11963346 DOI: 10.57264/cer-2024-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/07/2025] [Indexed: 02/25/2025] Open
Abstract
Aim: Etrasimod and ozanimod are selective sphingosine 1-phosphate receptor modulators targeting the S1P1,4,5, and S1P1,5 receptors, respectively, for the treatment of patients with moderately to severely active ulcerative colitis (UC). No head-to-head trial data exist between the two treatments. We compared these treatments indirectly using key efficacy outcomes from pivotal trials with induction and maintenance phase data adjusting for differences in clinical trial design and populations. Materials & methods: Individual patient data for etrasimod were matched to published aggregate data of ozanimod by key baseline characteristics. An anchored matching-adjusted indirect comparison (MAIC) was conducted for the induction period. An unanchored MAIC was utilized during the maintenance period due to differences in placebo arms between trials as a result of differing trial designs. Matching characteristics measured at baseline were age, sex, corticosteroid use, duration of UC, biologic exposure, modified Mayo score, and presence of left-sided colitis. Outcomes were clinical response and clinical remission for the induction period, and clinical response and clinical remission among induction phase responders for the maintenance period. Two sensitivity analyses were conducted. The first matched on prior TNFi exposure rather than biologic exposure, the second sensitivity analysis included an induction only etrasimod trial (ELEVATE UC 12). Results: There were no significant differences between etrasimod and ozanimod at the end of the induction period for clinical response and clinical remission, respectively (relative risk [RR] 0.98 [95% confidence interval (CI): 0.76-1.33], RR: 1.25 [95% CI: 0.71-2.92]). At the end of maintenance, etrasimod demonstrated improved outcomes compared with ozanimod for both clinical response (RR: 1.18 [95% CI: 1.05-1.30]) and clinical remission among induction phase responders (RR: 1.33 [95% CI: 1.12-1.55]). In the sensitivity analysis that matched on prior TNFi exposure rather than biologic exposure, there were no notable differences compared with the primary analyses. In the sensitivity analysis pooling ELEVATE UC 12 and ELEVATE UC 52 data, results were similar for clinical response (RR: 0.90 [95% CI: 0.75-1.10]) but etrasimod showed reduced efficacy for clinical remission (RR: 0.72 [95% CI: 0.50-1.12]) compared with the primary analysis, though overall remained not significantly different from ozanimod. Conclusion: MAIC results suggest that patients receiving etrasimod have similar induction results but are more likely to have clinical response and clinical remission at the end of the maintenance phase compared with patients receiving ozanimod. Despite the approach to ensure similarity between the trials by weighting, residual imbalance is possible, and results should be interpreted in the context of the assumptions.
Collapse
Affiliation(s)
- Vipul Jairath
- Department of Medicine & Department of Epidemiology & Biostatistics, Western University, London, ON, N6G 2M1, Canada
| | - Tim Raine
- Department of Gastroenterology, Addenbrooke’s Hospital, Cambridge University Teaching Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang XQ, Li JM, Wang FQ, Ren YH, Wu SX, Wu Y, Tang Y. The clinical significance and biological function of tropomyosin 3 in ulcerative colitis. Tissue Cell 2025; 93:102770. [PMID: 39938429 DOI: 10.1016/j.tice.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a lifelong chronic inflammatory disease that is characterized by the absence of specific markers for diagnosis and prognosis. TPM3 is an integral component of the thin filament, responsible for the structural stability of actin filaments and modulation of cytoskeletal function. This study investigated the regulatory role of TPM3 in UC and its potential mechanisms. METHODS At the clinical level, TPM3 levels were assessed in serum and mucosal tissues of UC and other enteric disease. At the cellular level, the effects of TMP3 overexpressing lentivirus on Caco-2 cell phenotype and the barrier of IL-1β-induced UC model were explored. At the animal level, the effects of TMP3 overexpressing lentivirus on symptoms and colonic damage in a DSS-induced UC model were explored. RESULTS TPM3 expression in serum of UC patients was significantly lower than that of other enteric disease, and TPM3 levels in the intestinal mucosa showed a negative correlation with the Mayo score of UC patients. TPM3 overexpression alleviates IL-1β-induced apoptosis and inhibition of invasion and migration in UC model in vitro. In monolayer Caco-2 cells, TPM3 overexpression rescued the IL-1β-induced decrease in transepithelial electrical resistance and tight junction markers (ZO-1 and Occludin) and increase in permeability. In animal experiments, TPM3 overexpression increased body weight and colon length and decreased disease activity index in a DSS-induced UC model. In tissue staining, it alleviated pathological damage and upregulated Occuludin and TPM3 levels in the colon. CONCLUSION TPM3 levels correlated with UC disease course and TPM3 overexpression alleviated symptoms/phenotypes and barrier damage in UC models in vivo and in vitro. TPM3 may serve as a potential novel biomarker for UC diagnosis and prognosis.
Collapse
Affiliation(s)
- Xue-Qin Zhang
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Jian-Mei Li
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Feng-Qian Wang
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Yan-Hui Ren
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Shi-Xian Wu
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Yao Wu
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Yuan Tang
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China.
| |
Collapse
|
27
|
Wu X, Yu W, Luo R, Lin J, Yang Q, Zeng S, Dai B, Wang D. Modified Shi Hui San decoction ameliorates murine experimental colitis through multiple mechanisms. Fitoterapia 2025; 182:106485. [PMID: 40112896 DOI: 10.1016/j.fitote.2025.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Modified Shi Hui San (MSHS) has shown excellent therapeutic effects on ulcerative colitis (UC) patients clinically in China. However, the exact mechanism underlying its effect remains unclear and needs to further investigation. AIMS This study aimed to investigate the therapeutic effects of modified Shi Hui San decoction (MSHSD) in murine experimental colitis and explore its underlying mechanisms. METHODS To examine the effects of MSHSD on UC, a murine model of colitis was induced using 2.5 % dextran sodium sulfate (DSS). The mice were then treated with MSHSD at the doses of 6.25 or 25 g/kg for 10 days. The progression of colitis was evaluated through clinical symptoms, histopathological analysis, evaluation of mucosal barrier integrity, biochemical assays, and analysis of the gut microbiota composition. RESULTS MSHSD administration markedly ameliorated experimental colitis in DSS-treated mice by suppressing inflammation, restoring the intestinal mucus barrier, alleviating oxidative stress, and reestablishing immunity. More importantly, it transformed the gut microbiota structure from an imbalanced state to a normal state. CONCLUSIONS These findings for the first time extend our understanding of the mechanisms, by which MSHSD ameliorates murine experimental colitis, and support the clinical use of MSHS for UC treatment.
Collapse
Affiliation(s)
- Xinyi Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenwen Yu
- Department of Pharmacy, Yuyao Hospital of Traditional Chinese Medicine, Ningbo 315400, China
| | - Ruichang Luo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Lin
- Department of Medical Experiment, Ningbo No.2 Hospital, Ningbo 315410, China
| | - Qiujie Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuchun Zeng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Binbin Dai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
28
|
Honap S, Caron B, Ollech JE, Fischman M, Papamichael K, De Jong D, Gecse KB, Centritto A, Samaan MA, Irving PM, Sparrow MP, Karmiris K, Chateau T, Dotan I, Peyrin-Biroulet L. Anti-tumor Necrosis Factor Drug Concentration Is Not Associated with Disease Outcomes in Pouchitis: A Retrospective, International Study. Dig Dis Sci 2025; 70:1320-1327. [PMID: 39869163 DOI: 10.1007/s10620-024-08821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Therapeutic drug monitoring is important for optimizing anti-tumor necrosis factor-α (TNF-α) therapy in inflammatory bowel disease. However, the exposure-response relationship has never been assessed in pouchitis. AIMS To explore associations between anti-TNF-α drug concentration and pouchitis disease activity in patients with a background of ulcerative colitis. METHODS A retrospective, multicenter, cross-sectional study was conducted in adult patients with pouchitis requiring anti-TNF-α treatment. Rates of clinical and endoscopic remission were calculated, and drug concentrations during maintenance therapy were compared between remission and non-remission cohorts. RESULTS Sixty-three patients were included: median age, 48 years (IQR 36-59) and median time since pouchitis diagnosis, 7 years (IQR 2-13). Patients received infliximab, n = 27 (43%), adalimumab, n = 29 (46%), or both n = 7 (11%). Thirty-two (51%) patients received concomitant immunomodulation. Median infliximab trough concentrations (mg/ml) were similar between patients in clinical remission (n = 21) vs non-remission (n = 11), 5.3 vs. 4.4, p = 0.73. For adalimumab, median drug concentrations did not significantly differ between remission/non-remission groups based on clinical (n = 18/18), 11.4 vs 7.6, p = 0.32, or endoscopic assessment, (n = 7/29), 9.0 vs. 7.8, p = 0.78. Four patients had positive anti-drug antibodies with undetectable drug concentration. CONCLUSION In a cohort of patients with pouchitis, higher anti-TNF-α drug concentrations were not associated with more clinical or endoscopic remission.
Collapse
Affiliation(s)
- Sailish Honap
- School of Immunology and Microbial Sciences, King's College London, London, UK.
- Department of Gastroenterology, St George's University Hospitals NHS Foundation Trust, London, UK.
| | - Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, Nancy, France
| | - Jacob E Ollech
- Department of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
- The Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Maya Fischman
- Department of Military Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Konstantinos Papamichael
- Department of Gastroenterology, Center for Inflammatory Bowel Diseases, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Djuna De Jong
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Krisztina B Gecse
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
- IBD Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andrea Centritto
- IBD Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mark A Samaan
- IBD Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Peter M Irving
- School of Immunology and Microbial Sciences, King's College London, London, UK
- IBD Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Miles P Sparrow
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Department of Gastroenterology, Alfred Health, Melbourne, Australia
| | - Konstantinos Karmiris
- Department of Gastroenterology, Venizeleio General Hospital, Heraklion, Crete, Greece
| | - Thomas Chateau
- Department of Gastroenterology and Digestive Oncology, Grenoble Alpes University Hospital, Grenoble, France
| | - Iris Dotan
- Department of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
- The Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Laurent Peyrin-Biroulet
- INFINY Institute, Department of Gastroenterology, CHRU Nancy, INSERM NGERE, Université de Lorraine, 54500 , Vandœuvre-lès-Nancy, France
| |
Collapse
|
29
|
Gao B, Huang X, Fu J, Chen L, Deng Z, Wang S, Zhu Y, Xu C, Zhang Y, Zhang M, Chen L, Cui M, Zhang M. Oral administration of Momordica charantia-derived extracellular vesicles alleviates ulcerative colitis through comprehensive renovation of the intestinal microenvironment. J Nanobiotechnology 2025; 23:261. [PMID: 40170075 PMCID: PMC11959773 DOI: 10.1186/s12951-025-03346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/23/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease (IBD), accompanied by intense inflammation, oxidative stress, and intestinal microbiota dysbiosis. Current treatments using chemotherapeutic drugs or immunosuppressants have limited effectiveness and side effects. Therefore, the development of safe, effective, and multi-targeting therapies for IBD is of great importance. Momordica charantia exhibits antioxidant, anti-inflammatory, and intestinal microbiota-regulating properties, suggesting that Momordica charantia-derived extracellular vesicles (MCEVs) have the potential for UC management. RESULTS We extracted MCEVs using differential centrifugation and density gradient centrifugation. The results showed that MCEVs possessed high purity, even particle size, and excellent stability. In vitro, MCEVs were shown to inhibit macrophage inflammatory responses, scavenge reactive oxygen species (ROS), and protect cells from oxidative damage. Transcriptomics analysis revealed that MCEVs may alleviate mitochondria-dependent apoptosis by safeguarding the integrity of the mitochondrial structure and regulating the expression of apoptosis-related proteins. Furthermore, all components of MCEVs contributed to their pharmacological activity. In vivo, MCEVs had better retention in the inflamed colon and significantly alleviated UC through a comprehensive renovation of the intestinal microenvironment. CONCLUSION These findings suggested that MCEVs own considerable potential as natural nanotherapeutics for UC treatment.
Collapse
Affiliation(s)
- Bowen Gao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoling Huang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Junlong Fu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liyuan Chen
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Shuhui Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chenxi Xu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Lina Chen
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
30
|
Fu W, Huang Z, Li W, Xu L, Yang M, Ma Y, Liu H, Qian H, Wang W. Copper-luteolin nanocomplexes for Mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease. Bioact Mater 2025; 46:118-133. [PMID: 39760067 PMCID: PMC11697280 DOI: 10.1016/j.bioactmat.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS). It can effectively modulate the inflammatory microenvironment including facilitating the efficient reduction of pro-inflammatory cytokine levels, protecting intestinal epithelial cells, promoting mucosal barrier repair and regulating intestinal microbiota. In addition, CuL NCs have been found to enhance cellular antioxidant and anti-inflammatory capacities by regulating the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) oxidative stress pathway and nuclear factor kappa B (NF-κB) signaling pathway, respectively. Notably, CuL NCs demonstrate significant prophylactic and therapeutic efficacy in mouse models with typical IBD, including ulcerative colitis (UC) and Crohn's disease (CD). This study provides a new approach for building multifaceted therapeutic platforms for natural products to treat IBD.
Collapse
Affiliation(s)
- Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China
| | - Zhongshi Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, PR China
| | - Weiqi Li
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China
| | - Miaomiao Yang
- The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, 230012, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China
| | - Hanghang Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, PR China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China
| |
Collapse
|
31
|
Li X, Xiang Z, Wang X, He H, Xu M, Tan C, Wu X, Zhang J, Dong W. Metformin attenuates colitis via blocking STAT3 acetylation by reducing acetyl-CoA production. J Adv Res 2025:S2090-1232(25)00218-8. [PMID: 40174640 DOI: 10.1016/j.jare.2025.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND AND AIMS While metformin has been shown to alleviate dextran sulfate sodium (DSS)-induced colitis in murine models, the mechanisms underlying its anti-inflammatory and barrier-restorative effects remain poorly defined. This study investigates the role of acetyl coenzyme A (acetyl-CoA)-dependent STAT3 acetylation in mediating metformin's therapeutic actions, with the goal of identifying novel molecular targets for ulcerative colitis (UC) treatment. METHODS Acute colitis was induced in wild-type C57BL/6J mice via oral DSS administration, followed by daily intraperitoneal metformin treatment. Intestinal inflammation, barrier integrity, and STAT3 signaling were assessed using histopathology, western blotting, and transmission electron microscopy. To validate STAT3's critical role in colitis pathogenesis, intestinal epithelium-specific STAT3 knockout mice were employed, enabling targeted investigation of STAT3 acetylation and its regulation by metformin. RESULTS Metformin attenuated DSS-induced colitis by suppressing pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), reducing epithelial apoptosis, and restoring tight junction proteins (ZO-1, E-cadherin, Occludin). Mechanistically, metformin reduced acetyl-CoA levels, thereby inhibiting STAT3 acetylation and downstream pathway activation. The pivotal role of STAT3 in colitis progression was confirmed using STAT3 knockout mice, as the therapeutic effects of metformin were significantly diminished in the absence of STAT3-mediated inflammatory signaling. CONCLUSION This study identifies acetyl-CoA-dependent STAT3 acetylation as a novel mechanism through which metformin ameliorates intestinal inflammation and barrier dysfunction. These findings not only advance our understanding of metformin's immunomodulatory properties but also highlight the therapeutic potential of targeting acetyl-CoA metabolism in UC.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zixuan Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoli Wang
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Haodong He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Miao Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Cheng Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaohan Wu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
32
|
Gao C, Yang Z, Song R, Sheng H, Zhu L. Nanotechnology-based drug delivery system for targeted therapy of ulcerative colitis from traditional Chinese medicine: A review. Int J Pharm 2025; 673:125375. [PMID: 39965734 DOI: 10.1016/j.ijpharm.2025.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disease and seriously affects the normal life of patients. Conventional therapeutic drugs are difficult to meet clinical needs. Traditional Chinese medicine (TCM) ingredients could effectively alleviate the symptoms of UC by anti-inflammatory, anti-oxidative, regulating the gut microbiota, and repairing the colonic epithelial barrier, but their low solubility and bioavailability severely limit their clinical application. Nano-drug delivery systems (NDDS) combined with TCM ingredients is a promising option for treating UC, and they could significantly enhance the stability, solubility, and bioavailability of TCM ingredients. The review describes the anti-UC mechanisms of TCM ingredients, systematically summarizes various kinds of NDDS for TCM ingredients according to different routes of administration, and highlights the advantages of NDDS for TCM ingredients in the treatmentof UC. In addition, we discuss the limitations of existing NDDS for TCM ingredients and the development direction in the future. This review will provide a basis for the future development of anti-UC NDDS for TCM ingredients.
Collapse
Affiliation(s)
- Chengcheng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zerun Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruirui Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
33
|
Marín-Jiménez I, Aguirregabiria I, Díaz-Cerezo S, Moyano S, Gabilondo H, Knight H, Harvey N, Gibble TH, Nos P. Unmet needs in adult patients with ulcerative colitis in Spain: a real-world Adelphi Disease Specific Programme study. Therap Adv Gastroenterol 2025; 18:17562848251325190. [PMID: 40166589 PMCID: PMC11956514 DOI: 10.1177/17562848251325190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) characterized by chronic inflammation of the colonic mucosal lining. Objectives This study aimed to examine unmet needs among patients with UC in Spain. Design Data were analyzed from the Adelphi Real World IBD Disease Specific Programme™, a cross-sectional survey of physicians and patients with IBD in Spain between October 2020 and March 2021. Methods Physicians reported patient clinical characteristics, disease severity, treatment patterns and satisfaction, symptoms, and flare and remission status. Patients were then invited to voluntarily self-complete a form reporting health-related quality of life (HRQoL) and work productivity/activity impairment. Analyses were descriptive. Results Overall, 57 physicians reported data for 410 patients with UC presenting a high disease severity profile. The mean (standard deviation) patient age was 45 (15) years, with 88% presenting with moderate-to-severe UC at diagnosis. In the survey, 75% and 63% of patients were treated with conventional therapy and biologics, respectively. After treatment initiation, patients had lower disease severity, but 29% of patients had moderate-to-severe disease despite receiving biologics or Janus kinase inhibitors. Overall, 81% of patients and 86% of physicians were satisfied with treatment. Among patients classified as having moderate-to-severe UC, commonly reported symptoms included abdominal pain (41%), bowel urgency (37%), and bloody diarrhea (37%). The mean number of flares experienced in the past year was 1.7, lasting on average >30 days. Consequently, the HRQoL of these patients was impaired. Conclusion While disease severity appeared to be lower after the initiation of current treatment, and despite the high prevalence of treatment satisfaction, almost a third of patients remained classified as moderate-to-severe, experiencing symptoms, flares, and impaired HRQoL. Therefore, there is a need for new therapeutic alternatives to target patient unmet needs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pilar Nos
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| |
Collapse
|
34
|
Li L, Chen X, Li T, Sun B, Zhang B, Zhang W, Wu J, Cui M, Wu G. Integrated analysis and single-cell sequencing of mitochondrial metabolism related gene molecular subtype and diagnostic model in ulcerative colitis. PLoS One 2025; 20:e0320010. [PMID: 40153427 PMCID: PMC11952253 DOI: 10.1371/journal.pone.0320010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/11/2025] [Indexed: 03/30/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease that seriously affects the life expectancy of patients. Although increasingly sophisticated combinations of drugs can alleviate symptoms, 10-20% of patients still do not respond well. Therefore, it is necessary to further explore the pathogenesis and potential biomarkers of UC. Many clues have suggested the important value of mitochondrial metabolism in UC, but its role and related targets need to be further explored. By public database data, we identified differentially expressed mitochondrial metabolism related genes (MMRG) in UC. Subsequently, we identified biomarkers associated with MMRG based on a machine learning approach. After classifying the MMRG-associated molecular subtypes of UC, we comprehensively analyzed the MMRG biomarkers and the relationship between the MMRG molecular subtypes and immune infiltration characteristics. Single-cell sequencing analysis showed significant expression pattern of MMRG signatures in different cell subtypes. qRT-PCR and western blot further confirmed the abnormal expressions of selected genes in vitro. Our findings provided a new perspective on the role of MMRG in UC.
Collapse
Affiliation(s)
- Li Li
- Department of Endocrinology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyao Chen
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tao Li
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Bing Sun
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Bo Zhang
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Weifeng Zhang
- Department of Anorectal Section, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junbo Wu
- Department of Colorectal Surgery, Hengyang Central Hospital, Hengyang, China
| | - Meng Cui
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guoliang Wu
- Department of Anorectal Section, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
35
|
Zhao YE, He XF, Zhu XQ, Chen F, Guo QZ. Mediating effect of self-efficacy between family resilience and psychological resilience in inflammatory bowel disease patients. Shijie Huaren Xiaohua Zazhi 2025; 33:207-214. [DOI: 10.11569/wcjd.v33.i3.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) often experience various negative emotions. Psychological resilience, as an individual's ability to recover from adversity or successfully cope, can help him/her to fight against diseases. Under the hypothesis that multiple external factors can promote the growth of psychological resilience, this study used mediation analysis to explore the external factors that enhance psychological resilience in IBD patients.
AIM To explore the mediating effect of self-efficacy in patients with IBD on family resilience and psychological resilience.
METHODS One hundred and thirty IBD patients hospitalized in the Department of Gastroenterology, Tongji Hospital, Wuhan City from January 2021 to June 2021 were selected as questionnaire respondents by convenient sampling. The patients were investigated by using the family resilience index (FHI), the IBD self-efficacy scale (IBD-SES), and the Connor Davidson Resilience Scale (CD-RISC). The data were analyzed by correlation and regression analyses, and the mediating effect of self-efficacy was tested by the intermediary effect test program proposed by Wen Zhonglin, etc.
RESULTS The family resilience of IBD patients was positively correlated with self-efficacy (r = 0.176, P < 0.05) and psychological resilience (r = 0.359, P < 0.01). There was a positive correlation between self-efficacy and resilience (r = 0.693, P < 0.01). Self-efficacy has a certain mediating effect between family resilience and psychological resilience, and the contribution rate of this mediating effect is 42.32%.
CONCLUSION The resilience of IBD patients is at a low level. Self-efficacy plays an intermediary role between family resilience and psychological resilience. Nursing workers can improve patients' psychological resilience by improving their self-efficacy and family resilience.
Collapse
Affiliation(s)
- Yu-E Zhao
- Nursing Department of Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Xi-Fei He
- Nursing Department of Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Xiu-Qin Zhu
- Nursing Department of Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Fan Chen
- Nursing Department of Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Qiao-Zhen Guo
- Nursing Department of Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| |
Collapse
|
36
|
Chen KH, Xu R, Ye HJ, Xu B, Cao SL, Chen HX, Chen YL, Cai YP, Xie XQ, Zhao M, Zhou L, Luo X. Evaluating the efficacy and safety of emodin, luteolin, and paeonol combination from Dahuang Mudan decoction in ameliorating ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119692. [PMID: 40157404 DOI: 10.1016/j.jep.2025.119692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/11/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dahuang Mudan Decoction is a classic Chinese medicine prescription for treating ulcerative colitis (UC). Previous studies have shown that Dahuang Mudan Decoction has preventive and therapeutic effects on mice with dextran sulfate sodium (DSS) induced colitis. AIM OF THE STUDY The objective of this research endeavor was to ascertain the most efficacious synergistic blend of Emodin, Luteolin, and Paeonol, the main active ingredients in Dahuang Mudan Decoction, in alleviating UC. Additionally, it sought to elucidate the underlying therapeutic mechanisms and evaluate the safety of the combined components. MATERIALS AND METHODS Employing Emodin, Luteolin, and Paeonol as starting materials, the optimal combination was selected by orthogonal design. Basic pharmacodynamics was observed in mouse model of UC induced by DSS. The pathological changes of the colon were observed using hematoxylin and eosin (H&E) staining. The changes of cytokines and proteins related to inflammation and intestinal barrier function were detected by WB, Alcian blue staining, immunofluorescence, immunohistochemistry and related kits. Subsequently, 16S rRNA sequencing was used to observe changes in the intestinal flora. To evaluate the therapeutic effect and potential mechanism of the optimal monomer composition on UC mouse model. Finally, we performed toxicity tests as part of the safety assessment of the combination of the three monomers. RESULTS The different combinations of Emodin, Luteolin, and Paeonol alleviated DSS-induced colitis to varying degrees. The ELP5 group (Emodin 5 mg/kg + Luteolin 5 mg/kg + Paeonol 15 mg/kg) and ELP9 group (Emodin 15 mg/kg + Luteolin 15 mg/kg + Paeonol 75 mg/kg) had the most significant mitigation effect on UC mice. Mechanistically, the monomeric composition provides a comprehensive treatment for UC by addressing multiple aspects, including anti-inflammatory and antioxidant effects, repairing the damaged intestinal barrier, restoring the intestinal flora structure, and regulating short-chain fatty acid levels. In addition, the combination of Emodin, Luteolin and Paeonol exhibited a more significant effect on DSS-induced colitis compared to the individual components, indicating a synergistic effect among them. In the single-dose toxicity test, no obvious abnormalities were found in the general state or major organs of the mice. In repeated toxicity tests, it was found that the combined use of three monomers had less effect on organ index, hematology and serum biochemical indexes than that of a single compound. Pathological examination showed that the three monomers had certain toxicity to mouse liver, kidney and lung when used alone and in large doses for a long time, and the toxicity was significantly reduced after combined use. CONCLUSIONS We have determined the optimal combination of three active ingredients in Dahuang Mudan Decoction to alleviate DSS induced colitis in mice by inhibiting intestinal inflammation and oxidative stress, repairing impaired intestinal barrier function, and regulating intestinal flora disturbance. The results of single administration toxicity test proved the safety of the three monomers combined, and repeated administration toxicity test clarified the safe dose range of the combined administration, and also revealed that the combined therapy exhibited superior safety compared to monotherapy.
Collapse
Affiliation(s)
- Ke-Han Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua-Jian Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shui-Ling Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Xu Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun-Liang Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Ping Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Qian Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; StateKey Laboratory of Traditional Chinese Medicine Syndrome, China.
| |
Collapse
|
37
|
Chen S, Yi M, Yi X, Zhou Y, Song H, Zeng M. Unveiling the fungal frontier: mycological insights into inflammatory bowel disease. Front Immunol 2025; 16:1551289. [PMID: 40207229 PMCID: PMC11979276 DOI: 10.3389/fimmu.2025.1551289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal disease that seriously affects the quality of life of patients around the world. It is characterized by recurrent abdominal pain, diarrhea, and mucous bloody stools. There is an urgent need for more accurate diagnosis and effective treatment of IBD. Accumulated evidence suggests that gut microbiota plays an important role in the occurrence and development of gut inflammation. However, most studies on the role of gut microbiota in IBD have focused on bacteria, while fungal microorganisms have been neglected. Fungal dysbiosis can activate the host protective immune pathway related to the integrity of the epithelial barrier and release a variety of pro-inflammatory cytokines to trigger the inflammatory response. Dectin-1, CARD9, and IL-17 signaling pathways may be immune drivers of fungal dysbacteriosis in the development of IBD. In addition, fungal-bacterial interactions and fungal-derived metabolites also play an important role. Based on this information, we explored new strategies for IBD treatment targeting the intestinal fungal group and its metabolites, such as fungal probiotics, antifungal drugs, diet therapy, and fecal microbiota transplantation (FMT). This review aims to summarize the fungal dysbiosis and pathogenesis of IBD, and provide new insights and directions for further research in this emerging field.
Collapse
Affiliation(s)
- Silan Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meijing Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinying Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuxuan Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Houpan Song
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
38
|
He G, Sun J, Gu Y, Zheng Y, Wang L, Sun Y. Network analysis and in vivo experiments reveal the therapeutic mechanisms of total ginsenosides in a Drosophila model of ulcerative colitis. Front Pharmacol 2025; 16:1556579. [PMID: 40201696 PMCID: PMC11975919 DOI: 10.3389/fphar.2025.1556579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/06/2025] [Indexed: 04/10/2025] Open
Abstract
Gut homeostasis is critical for human health, ulcerative colitis (UC) can disrupt gut homeostasis and cause disease. Panax ginseng C.A. Meyer is a widely used traditional herbal medicine known for its anti-inflammatory, antioxidant, and immunomodulatory effects. However, the protective mechanisms of total ginsenosides (TG) in treating UC remain unclear. In this study, we employed Drosophila melanogaster as a model organism to investigate the protective effects of TG on dextran sulfate sodium (DSS)-induced intestinal injury. Our data showed that TG significantly improved survival rates in female flies, restored intestinal length, maintained intestinal barrier integrity, and alleviated oxidative stress. Additionally, TG may protect against intestinal damage by activating the PI3K/Akt signaling pathway and inhibiting the JAK/STAT signaling pathway. These findings suggest that TG alleviates UC symptoms through multi-target regulation, highlighting its potential for developing novel therapeutic strategies for UC.
Collapse
Affiliation(s)
- Gongchen He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yuexin Gu
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yanjie Zheng
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Liang Wang
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yanyan Sun
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
39
|
Chen C, Sun B, Chen K, Bao H, Tao Y, Zhou J, Yuan X, He L, Lu Z, Chen K, Li Y, Yu C, Chen Y, Zhang Y. Atractylenolide-I restore intestinal barrier function by targeting the S100A9/AMPK/mTOR signaling pathway. Front Pharmacol 2025; 16:1530109. [PMID: 40196359 PMCID: PMC11973269 DOI: 10.3389/fphar.2025.1530109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Impaired intestinal epithelial barrier function is closely associated with the pathogenesis of ulcerative colitis (UC). Atractylenolide-I (AT-I), a major sesquiterpene derived from the herb Atractylodes macrocephala Koidz., has been reported to alleviate DSS-induced colitis in mice. This study aims to investigated the protective effects of AT-1 on intestinal epithelial barrier function and elucidate it's underlying mechanisms. In vivo, an acute colitis model was established in mice, and transcriptomic analysis to identify differentially expressed genes. In vitro, overexpression plasmids and recombinant protein were used to evaluate their effects on intestinal barrier function, and further analysis of its potential mechanisms.The study found that AT-1 ameliorate DSS-induced acute ulcerative colitis, exhibiting protective effects on the intestinal barrier. Transcriptomic analysis revealed that AT-1 significantly modulated the expression of S100A8 and S100A9. Further investigations indicated that S100A9, rather than S100A8, mediated the expression of tight junction proteins, meanwhile, AT-1 reduces neutrophil activation and subsequent release of S100A9. Mechanistically, recombinant human S100A9 protein was found to induce a decrease in intracellular Ca2+ concentration, while AT-1 regulated the expression of tight junction proteins via modulation of the AMPK/mTOR signaling pathway. AT-1 enhances the recovery of DSS-induced intestinal barrier dysfunction by regulating the recombinant human S100A9 protein-mediated AMPK/mTOR signaling pathway. This study provides new insights into the pathogenesis of ulcerative colitis and suggests potential therapeutic strategies for its treatment.
Collapse
Affiliation(s)
- Chen Chen
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingjie Sun
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Keming Chen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Bao
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Xuzhou City Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
| | - Yu Tao
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyong Zhou
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaomin Yuan
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Linhai He
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhihua Lu
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kaidi Chen
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Li
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengli Yu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yugen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinan Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
40
|
Zhao D, Ge A, Yan C, Liu X, Yang K, Yan Y, Hao M, Chen J, Daga P, Dai CC, Li C, Cao H. T helper cell 17/regulatory T cell balance regulates ulcerative colitis and the therapeutic role of natural plant components: a review. Front Med (Lausanne) 2025; 11:1502849. [PMID: 40196424 PMCID: PMC11973383 DOI: 10.3389/fmed.2024.1502849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 04/09/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory disease characterized by progressive mucosal damage. The incidence rate of UC is rising rapidly, which makes the burden of medical resources aggravated. In UC, due to various pathogenic factors such as mucosal immune system disorders, gene mutations and environmental factors disrupting the mucosal barrier function, the midgut pathogenic bacteria and exogenous antigens translocate into the lamina propria, thereby aggravating the inflammatory response and further damages the mucosal barrier. During the progression of UC, Th17 populations that cause inflammation generally increase, while Tregs that suppress Th17 activity decrease. Among them, Th17 mediates immune response, Treg mediates immunosuppression, and the coordinated balance of the two plays a key role in the inflammation and immune process of UC. Natural plant components can regulate biological processes such as immune inflammation from multiple levels of proinflammatory cytokines and signaling pathways. These characteristics have unique advantages and broad prospects in the treatment of UC. In immunomodulation, there is substantial clinical and experimental evidence for the modulatory role of natural plant products in restoring balance between Th17/Treg disturbances in UC. This review summarizes the previous studies on the regulation of Th17/Treg balance in UC by natural plant active ingredients, extracts, and traditional Chinese medicine prescriptions, and provides new evidence for the development and design of lead compounds and natural new drugs for the regulation of Th17/Treg balance in the future, and then provides ideas and evidence for future clinical intervention in the treatment of UC immune disorders and clinical trials.
Collapse
Affiliation(s)
- Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Cong Yan
- Department of Urology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, China
| | - Xingci Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Yexing Yan
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Junpeng Chen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Center for Cardiometabolic Science, Division of Environmental Medicine, Christina Lee Brown Envirome Insttitute, University of Louisville, Louisville, KY, United States
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, James Clark Hall, College Park, MD, United States
| | - Changping Li
- School of Mechanical Engineering and Automation, Fuyao University of Science and Technology, Fuzhou, China
| | - Hui Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
41
|
Chen Y, Chen X, Lin S, Huang S, Li L, Hong M, Li J, Ma L, Ma J. Effects of psychological stress on inflammatory bowel disease via affecting the microbiota-gut-brain axis. Chin Med J (Engl) 2025; 138:664-677. [PMID: 39965932 PMCID: PMC11925421 DOI: 10.1097/cm9.0000000000003389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Indexed: 02/20/2025] Open
Abstract
ABSTRACT Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory condition with chronic and relapsing manifestations and is characterized by a disturbance in the interplay between the intestinal microbiota, the gut, and the brain. The microbiota-gut-brain axis involves interactions among the nervous system, the neuroendocrine system, the gut microbiota, and the host immune system. Increasing published data indicate that psychological stress exacerbates the severity of IBD due to its negative effects on the microbiota-gut-brain axis, including alterations in the stress response of the hypothalamic-pituitary-adrenal (HPA) axis, the balance between the sympathetic nervous system and vagus nerves, the homeostasis of the intestinal flora and metabolites, and normal intestinal immunity and permeability. Although the current evidence is insufficient, psychotropic agents, psychotherapies, and interventions targeting the microbiota-gut-brain axis show the potential to improve symptoms and quality of life in IBD patients. Therefore, further studies that translate recent findings into therapeutic approaches that improve both physical and psychological well-being are needed.
Collapse
Affiliation(s)
- Yuhan Chen
- Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xiaofen Chen
- Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Suqin Lin
- Medical College, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shengjun Huang
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Medical College, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijuan Li
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Medical College, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mingzhi Hong
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Medical College, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianzhou Li
- Department of Diagnosis and Treatment Center of High Altitude Digestive Disease, The Second People's Hospital of Xining, Xining, Qinghai 810003, China
| | - Lili Ma
- Department of Gastroenterology and Hepatology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, China
| | - Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Department of Diagnosis and Treatment Center of High Altitude Digestive Disease, The Second People's Hospital of Xining, Xining, Qinghai 810003, China
| |
Collapse
|
42
|
Taglieri M, Di Gregorio L, Matis S, Uras CRM, Ardy M, Casati S, Marchese M, Poggi A, Raffaghello L, Benelli R. Colorectal Organoids: Models, Imaging, Omics, Therapy, Immunology, and Ethics. Cells 2025; 14:457. [PMID: 40136707 PMCID: PMC11941511 DOI: 10.3390/cells14060457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Colorectal epithelium was the first long-term 3D organoid culture established in vitro. Identification of the key components essential for the long-term survival of the stem cell niche allowed an indefinite propagation of these cultures and the modulation of their differentiation into various lineages of mature intestinal epithelial cells. While these methods were eventually adapted to establish organoids from different organs, colorectal organoids remain a pioneering model for the development of new applications in health and disease. Several basic and applicative aspects of organoid culture, modeling, monitoring and testing are analyzed in this review. We also tackle the ethical problems of biobanking and distribution of these precious research tools, frequently confined in the laboratory of origin or condemned to destruction at the end of the project.
Collapse
Affiliation(s)
- Martina Taglieri
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Linda Di Gregorio
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Serena Matis
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Chiara Rosa Maria Uras
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Massimo Ardy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Sara Casati
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” CNR, 80131 Naples, Italy;
- Common Service ELSI, BBMRI.it (UNIMIB National Node Headquarter), 20126 Milan, Italy
| | - Monica Marchese
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Alessandro Poggi
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Lizzia Raffaghello
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Roberto Benelli
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| |
Collapse
|
43
|
He Y, Jin Z, Wang Y, Wu C, He X, Weng W, Cai X, Cheng K. Multifunctional Double-Loaded Oral Nanoplatform for Computed Tomography Imaging-Guided and Integrated Treatment of Inflammatory Bowel Disease. ACS NANO 2025. [PMID: 40106686 DOI: 10.1021/acsnano.4c18865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Excessive reactive oxygen species, disruption of the epithelial barrier, immune dysregulation, and gut microbiota imbalance are key factors driving the onset of inflammatory bowel disease (IBD) and complicating its treatment. Prompt diagnosis of diseases and precise delivery of therapeutic agents to inflamed intestinal sites offer promising targeted strategies for effectively treating IBD. Here, a barium sulfate-based nanoplatform (BaSO4@PDA@CeO2/DSP, BPCD) for synergistic delivery of nanozymes and drugs was developed. With enhanced colonic retention after oral drug delivery, this nanoplatform enables precise and effective targeting of inflammatory sites and CT imaging guidance to address multiple factors contributing to IBD. A comprehensive therapeutic effect was achieved through the synergistic action of cerium oxide with the optimized Ce3+/Ce4+ ratio and sustained release of dexamethasone sodium phosphate. Benefiting from superior gastrointestinal stability, the nanoplatform is highly effective in treating IBD by alleviating oxidative stress, modulating macrophage polarization balance, gut flora composition, and repairing the epithelial barrier. BPCD inhibits the development of IBD through multiple mechanisms and has superior biocompatibility, emerging as a practical alternative to traditional IBD therapies.
Collapse
Affiliation(s)
- Yaoting He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Ziyang Jin
- Department of General Surgery, Minimally Invasive Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - YiFan Wang
- Department of General Surgery, Minimally Invasive Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chengwei Wu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Xuzhao He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Xiujun Cai
- Department of General Surgery, Minimally Invasive Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
44
|
Yu T, Li W, Liu Y, Jin C, Wang Z, Cao H. Application of Internet Hospitals in the Disease Management of Patients With Ulcerative Colitis: Retrospective Study. J Med Internet Res 2025; 27:e60019. [PMID: 40101745 PMCID: PMC11962335 DOI: 10.2196/60019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/20/2024] [Accepted: 02/21/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic disease characterized by frequent relapses, requiring long-term management and consuming substantial medical and social resources. Effective management of UC remains challenging due to the need for sustainable remission strategies, continuity of care, and access to medical services. Intelligent diagnosis refers to the use of artificial intelligence-driven algorithms to analyze patient-reported symptoms, generate diagnostic probabilities, and provide treatment recommendations through interactive tools. This approach could potentially function as a method for UC management. OBJECTIVE This study aimed to analyze the diagnosis and treatment data of UC from both physical hospitals and internet hospitals, highlighting the potential benefits of the intelligent diagnosis and treatment service model offered by internet hospitals. METHODS We collected data on the visits of patients with UC to the Department of Gastroenterology at Tianjin Medical University General Hospital. A total of 852 patients with UC were included between July 1, 2020, and June 31, 2023. Statistical methods, including chi-square tests for categorical variables, t tests for continuous variables, and rank-sum tests for visit numbers, were used to evaluate the medical preferences and expenses of patients with UC. RESULTS We found that internet hospitals and physical hospitals presented different medical service models due to the different distribution of medical needs and patient groups. Patients who chose internet hospitals focused on disease consultation and prescription medication (3295/3528, 93.40%). Patients' medical preferences gradually shifted to web-based services provided by internet hospitals. Over time, 58.57% (270/461) of patients chose either web-based services or a combination of web-based and offline services for UC diagnosis and treatment. The number of visits in the combination of web-based and offline service modes was the highest (mean 13.83, SD 11.07), and younger patients were inclined to visit internet hospitals (49.66%>34.71%). In addition, compared with physical hospitals, there was no difference in testing fees and examination fees for patients with UC in internet hospitals, but medicine fees were lower. CONCLUSIONS The intelligent diagnosis and treatment model provided by internet hospitals demonstrates the potential benefits in managing UC, including feasibility, accessibility, convenience, and economics.
Collapse
Affiliation(s)
- Tianzhi Yu
- Internet Hospital, Tianjin Medical University General Hospital, Tian Jin, China
| | - Wanyu Li
- Department of Gastroenterology, National Key Clinical Specialty, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingchun Liu
- School of Management, Tianjin University of Traditional Chinese Medicine, Tian Jin, China
| | - Chunjie Jin
- Internet Hospital, Tianjin Medical University General Hospital, Tian Jin, China
| | - Zimin Wang
- Department of Gastroenterology, National Key Clinical Specialty, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology, National Key Clinical Specialty, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
45
|
Ryszkiewicz P, Malinowska B, Schlicker E. Polypharmacology: new drugs in 2023-2024. Pharmacol Rep 2025:10.1007/s43440-025-00715-8. [PMID: 40095348 DOI: 10.1007/s43440-025-00715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Polypharmacology is an emerging approach to drug design and development that involves the use of multi-target-directed ligands (MTDLs), agents capable of interacting with multiple biological targets simultaneously. The effective treatment of chronic and multifactorial conditions, driven by the dysregulation of multiple interconnected pathways, such as cancer, autoimmune and metabolic disorders, cardiovascular and neurodegenerative diseases, is one of the most substantial challenges in contemporary pharmacology. 'Traditional' single-target-based treatment frequently shows limited effectiveness, as resistance to therapy develops or relapses occur. The rational use of MTDLs seems therefore a promising way to address the complexity of biological systems, feedback mechanisms, crosstalk, and molecular pathways. Many MTDLs have been successfully marketed to date. Moreover, plenty of them offer an additional benefit in comparison to 'traditional' treatment approaches. To assess whether the polypharmacological trend remains prevalent, we thoroughly analysed drugs approved in the years of 2023-2024 in Germany. Among 73 newly introduced substances, 18 are in line with the polypharmacology concept, including 10 antitumor agents, 5 drugs indicated for autoimmune disorders, 1 indicated for hand eczema, 1 antidiabetic (and anti-obesity) drug, and 1 modified corticosteroid.
Collapse
Affiliation(s)
- Piotr Ryszkiewicz
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, 15-222, Poland.
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, 15-222, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
46
|
Ye ZN, Liu XT, Gu YM, Mao SX, Liang DH, Zhan K, Lei HQ, Huang SG. Risk factors for non-responsiveness to 5-aminosalicylic acid in patients with ulcerative colitis identified using retrospective clinical study and Mendelian randomization. Sci Rep 2025; 15:9182. [PMID: 40097461 PMCID: PMC11914660 DOI: 10.1038/s41598-025-89620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
This study aimed to identify risk factors and potential targets associated with non-responsiveness to 5-Aminosalicylic acid (5-ASA) in patients with ulcerative colitis (UC). Patients with mild to moderate UC were grouped based on their responsiveness to 5-ASA. Regression analysis was conducted to identify risk factors for non-responsiveness, while Mendelian randomization (MR) analysis was used to evaluate the potential targets. Among 50 patients (11 non-responders and 39 responders), non-responders exhibited higher incidences of fever, back pain, allergy history, and ankylosing spondylitis, as well as elevated monocyte count and alanine aminotransferase (ALT) level, but a lower aspartate aminotransferase-to-ALT (AST/ALT) ratio (all P < 0.05). Allergy history was a risk factor (OR 140.50, P = 0.021), while a high AST/ALT ratio was a protective factor (OR 0.001, P = 0.023) for non-responsiveness. The area under the receiver operating characteristic curve for the AST/ALT ratio was 0.80. MR analysis showed that inhibition of the inhibitor of nuclear factor kappa-B kinase subunit alpha (CHUK) by 5-ASA, targeting ALT, increased the risk of UC (OR 1.02, P = 0.002). Our findings suggested that allergy history and the AST/ALT ratio were associated with non-responsiveness to 5-ASA, and CHUK was identified as a potential target for ALT-related non-responsiveness.Trial Registration: ChiCTR2400084086|| http://www.chictr.org.cn/ , Chinese Clinical Trial Registry, 2024-05-10.
Collapse
Affiliation(s)
- Zhi-Ning Ye
- The Affiliated Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
- The Ninth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, China
| | - Xin-Tian Liu
- The Affiliated Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
- The Ninth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, China
| | - Yue-Ming Gu
- The Affiliated Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
- The Ninth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, China
| | - Shu-Xian Mao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, No. 16, Airport Road, Guangzhou, 510120, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Dan-Hong Liang
- The Affiliated Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
- The Ninth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, China
| | - Kai Zhan
- The Affiliated Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
- The Ninth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, China
| | - Hao-Qiang Lei
- Huangpu People's Hospital of Zhongshan, Zhongshan, China
| | - Shao-Gang Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, No. 16, Airport Road, Guangzhou, 510120, China.
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
47
|
Li Z, Chu T, Sun X, Zhuang S, Hou D, Zhang Z, Sun J, Liu Y, Li J, Bian Y. Polyphenols-rich Portulaca oleracea L. (purslane) alleviates ulcerative colitis through restiring the intestinal barrier, gut microbiota and metabolites. Food Chem 2025; 468:142391. [PMID: 39675274 DOI: 10.1016/j.foodchem.2024.142391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/03/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Ulcerative colitis (UC) is a recurrent intestinal disease caused by a complex of factors, and there are serious adverse effects and tolerance problems associated with the current long-term use of therapeutic drugs. The development of natural food sources and multi-targeted drugs for the treatment of UC is imminent. Portulaca oleracea L. (PO), as a vegetable, has been shown in studies to have an anti-UC effects. However, the relationship between the abundant active ingredients contained in Portulaca oleracea L. and the improvement of intestinal barrier, gut microbiota and metabolites is unclear. In the present study, Portulaca oleracea L. which was found to be rich in phenolic acid-based active ingredients, were effective in alleviating dextran sulfate sodium (DSS)-induced body weight loss, disease activity index (DAI) score and colon length in mice. It also decreased C-reactive protein (CRP) and myeloperoxidase (MPO) responses, reduced the permeation of fluorescein isothiocyanate (FITC)-dextran, lipopolysaccharide (LPS) and evans blue (EB), and improved histopathological scores. Meanwhile, in vitro and in vivo validation revealed the protective effects of purslane on the intestinal barrier indicators ZO-1, Occludin and Claudin-1, and inhibited the expression of inflammation-associated iNOS and NLRP3 proteins through the NF-κB signaling pathway. In addition, purslane increased the diversity of the intestinal flora, enhancing the proportion of the genera Butyricoccus, Dorea and Bifidobacterium and decreasing the percentage of Bacteroides, Turicibacter and Parabacteroides. Serum metabolomics analysis showed that the imbalance of 39 metabolites was significantly reversed after PO deployment. Enrichment analysis showed that Pentose phosphate pathway and Pyruvate metabolism pathway were the key pathways of PO against UC. Overall, purslane effectively improved the intestinal barrier disruption and intestinal inflammation by inhibiting the NF-κB signaling pathway, and adjusted the disorder of gut microbiota and metabolites to exert anti-UC effects.
Collapse
Affiliation(s)
- Zheng Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin Sun
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shen Zhuang
- College of Veterinary Medicine & Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dianbo Hou
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhaohan Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jialu Sun
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yifei Bian
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
48
|
Orlando A, Macaluso FS. Guselkumab in moderately to severely active ulcerative colitis: Another interleukin-23p19 subunit inhibitor or more? MED 2025; 6:100605. [PMID: 40088885 DOI: 10.1016/j.medj.2025.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 03/17/2025]
Abstract
The QUASAR clinical development program evaluated the efficacy of guselkumab-an IL-23p19 subunit inhibitor-for the treatment of moderate-to-severe ulcerative colitis.1 Guselkumab demonstrated rapid control of symptoms, as well as significant rates of objective disease remission. However, real-world evidence will be crucial to confirm these findings in patient subgroups that were not included in the QUASAR program.
Collapse
|
49
|
Li Y, Tian Y, Zhu L, Lin H, Zhao X, Liu C, Lv Y, Wang Z, Zuo Z, Wang J, Wang Z. Fuzi Lizhong Pill inhibited inflammatory response and promoted colon mucosal healing in dextran sulfate sodium-induced ulcerative colitis mice by down-regulating PI3K/AKT/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119483. [PMID: 39947366 DOI: 10.1016/j.jep.2025.119483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi Lizhong Pill (FLP), a traditional Chinese herbal formula, has been historically used for treating gastrointestinal disorders characterized by cold deficiency patterns. Its application in ulcerative colitis (UC) stems from its warming and tonifying properties. AIM OF THE STUDY To evaluate the efficacy of FLP in the treatment of UC and investigate its mechanism of action. MATERIALS AND METHODS The chemical constituents of FLP were identified using UPLC-Q-Orbitrap HRMS. By establishing a preclinical UC mouse model with DSS and treating with FLP, we evaluated the effect of FLP on UC mice in terms of clinical symptoms, physiological indices, and histopathological examination. The anti-inflammatory and mucosal repair effects of FLP were examined at three levels: cellular, organoid, and animal, using immunohistochemistry, western blotting, RT-PCR, and other techniques. RESULTS We characterized the chemical composition of FLP and identified 99 compounds, including alkaloids, coumarins, and flavonoids. In UC mice, FLP alleviated clinical symptoms such as weight loss, blood in stools, and loose stools in UC mice; significantly reduced DAI scores in UC mice; significantly reversed splenomegaly and thymic atrophy caused by DSS; improved hemorrhage and inflammation-related hematological indices. In vitro and ex vivo studies showed that FLP inhibited the expression of TNF-α and IL-6, promoted the expression of the tight junction proteins ZO-1, Occludin, and Claudin 1, and promoted the proliferation of colonic epithelial cells in vivo. FLP also inhibited the transcription levels of PI3K, Akt, and NF-κB genes, as well as the expression or phosphorylation levels of related proteins in vitro and in vivo. CONCLUSION FLP may play a role in the treatment of UC by inhibiting the inflammatory response and repairing the colonic mucosal barrier by downregulating the PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yilin Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Yingying Tian
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Lei Zhu
- China National Accreditation Service for Conformity Assessment, Beijing, 100062, China
| | - Hongsai Lin
- China National Accreditation Service for Conformity Assessment, Beijing, 100062, China
| | - Xinyue Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Chuang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Yingnan Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Zijian Wang
- Beijing Tongrentang Technology Co., LTD, Pharmaceutical Factory, Beijing, 100071, China
| | - Zeping Zuo
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Jianfang Wang
- Department of Spleen, Stomach, Liver and Gallbladder, Dongfang Hospital, Beijing University of Chinese Medicine, 100078, China.
| | - Zhibin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100105, China; Beijing Tongrentang Technology Co., LTD, Pharmaceutical Factory, Beijing, 100071, China.
| |
Collapse
|
50
|
He P, Wen C, Zhang X, Yin H. Discovery of a Novel CRBN-Recruiting cGAS PROTAC Degrader for the Treatment of Ulcerative Colitis. J Med Chem 2025; 68:5551-5572. [PMID: 40012371 DOI: 10.1021/acs.jmedchem.4c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Cyclic GMP-AMP synthase (cGAS), a critical cytosolic DNA sensor initiating innate immune responses in the presence of cytosolic DNA, is increasingly recognized as a promising therapeutic target for ulcerative colitis (UC). Here, we reported the design, synthesis, structure-activity relationship exploration and biological evaluation of a novel class of CRBN-recruiting cGAS-targeting PROTAC degraders. Among them, TH35 exhibited the most favorable degradation profile, achieving potent and selective degradation of cGAS, and markedly attenuated dsDNA-induced activation of cGAS signaling in both human and murine cells, with minimal cytotoxic effects. In vivo, TH35 demonstrated superior therapeutic efficacy in a dextran sulfate sodium (DSS)-induced mouse model of UC compared to the corresponding cGAS inhibitor, while also displaying acceptable pharmacokinetic properties. Collectively, TH35 as the first CRBN-recruiting cGAS PROTAC holds promise for augmenting anti-inflammatory responses and offers a new avenue for treating cGAS-driven inflammatory diseases.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Chengming Wen
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xinyu Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Hang Yin
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|