1
|
Su F, Su M, Wei W, Wu J, Chen L, Sun X, Liu M, Sun S, Mao R, Bourgonje AR, Hu S. Integrating multi-omics data to reveal the host-microbiota interactome in inflammatory bowel disease. Gut Microbes 2025; 17:2476570. [PMID: 40063366 PMCID: PMC11901428 DOI: 10.1080/19490976.2025.2476570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Numerous studies have accelerated the knowledge expansion on the role of gut microbiota in inflammatory bowel disease (IBD). However, the precise mechanisms behind host-microbe cross-talk remain largely undefined, due to the complexity of the human intestinal ecosystem and multiple external factors. In this review, we introduce the interactome concept to systematically summarize how intestinal dysbiosis is involved in IBD pathogenesis in terms of microbial composition, functionality, genomic structure, transcriptional activity, and downstream proteins and metabolites. Meanwhile, this review also aims to present an updated overview of the relevant mechanisms, high-throughput multi-omics methodologies, different types of multi-omics cohort resources, and computational methods used to understand host-microbiota interactions in the context of IBD. Finally, we discuss the challenges pertaining to the integration of multi-omics data in order to reveal host-microbiota cross-talk and offer insights into relevant future research directions.
Collapse
Affiliation(s)
- Fengyuan Su
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng Su
- The First Clinical Medical School, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenting Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiayun Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Leyan Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiao Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Moyan Liu
- Amsterdam UMC location Academic Medical Center, Department of Experimental Vascular Medicine, Amsterdam, The Netherlands
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Khokhar RK, Nashwan AJ. Gut virome and its emerging role in inflammatory bowel disease. World J Methodol 2025; 15:100534. [DOI: 10.5662/wjm.v15.i3.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a progressive multifactorial inflammatory disease of the gut. The cause of IBD is yet unknown. Some researchers have shown that genetic factors, environmental factors, and the gut microbiome are significant considerations. Our gut contains gut virome and gut bacteria, which vary among individuals due to some factors. The gut virome is a substantial component of the microbiome. This editorial explores the emerging role of gut virome in IBD.
Collapse
Affiliation(s)
- Rahat Khatoon Khokhar
- Department of Medicine, People’s University of Medical and Health Sciences, Nawabshah 67450, Pakistan
| | - Abdulqadir J Nashwan
- Department of Nursing & Midwifery Research, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
3
|
Wang G, Wang Y, Sheng K, Wang Y. Effect of probiotic extracellular vesicles and their applications on health and disease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3539-3549. [PMID: 39806860 DOI: 10.1002/jsfa.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/25/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Probiotics have been established to exert a positive impact on the treatment of various diseases. Indeed, these active microorganisms have garnered significant attention in recent years for their potential to prevent and treat illnesses. Their beneficial effects have been hypothesized to be linked to their released extracellular vesicles. These nanoscale structures, secreted during the growth and metabolism of probiotics, possess favorable biocompatibility and targeting properties, thereby promoting intercellular material transport and signaling. This article aimed to review the bioactive components and functions of these probiotics vesicles, highlighting their role in the treatment of various diseases and discussing their potential future applications. By exploring the mechanisms of probiotic extracellular vesicles in disease development, this review aimed to provide a theoretical reference for further research on their therapeutic potential. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangzhao Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yang Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| |
Collapse
|
4
|
Tang H, Gao X, Wu Z, Chen J, Chen L, Du X. Expression and role of CTHRC1 in inflammatory bowel disease in children. Cytotechnology 2025; 77:44. [PMID: 39867826 PMCID: PMC11759733 DOI: 10.1007/s10616-025-00705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, progressive, immune-mediated, gastrointestinal inflammatory disease with increasing occurrences in children. Collagen triple helix repeat containing 1 (CTHRC1), a migration-promoting protein, acts as a tumor-promoting factor in malignant tumors. However, functions and mechanisms of CTHRC1 in children with IBD remain unclear. This study aimed to determine the effects and mechanisms of CTHRC1 on dextran sodium sulfate (DSS)-treated HT-29 cells. HT-29 control cells were exposed to 2% DSS to develop an in vitro IBD model. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to assess CTHRC1 expression in serum of children with IBD and HT-29 cells. Cell viability and apoptosis were assessed using MTT and flow cytometry (FCM). Expressions of cleaved-Caspase3 and Caspase3 were determined by western blotting. The cytokine production (TNF-α, IL-1β and IL-6) in HT-29 cells was measured by ELISA assay. Activation or inactivation of NF-κB signaling pathway was confirmed by western blot assay. Results showed that CTHRC1 expression was upregulated in the IBD serum and HT-29 control cells. The level of CTHRC1 was lower in CTHRC1-siRNA transfected cells than in control siRNA-treated cells. Notably, silence of CTHRC1 markedly enhanced HT-29 cells viability, decreased apoptotic cells, suppressed cleaved-Caspase3 expression, inhibited cleaved-Caspase3/Caspase3 ratio, reduced the production of inflammatory cytokines, and blocked NF-κB signaling pathway induced by DSS. However, these effects were reversed following diprovocim treatment. Thus, that knockdown of CTHRC1 alleviated DSS-induced HT-29 cell injury by inhibiting the NF-κB signaling pathway in vitro, providing a new therapeutic target for IBD in children. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00705-x.
Collapse
Affiliation(s)
- Heng Tang
- Radiology Department, Hubei NO.3 People’s Hospital of Jianghan University, Wuhan, China
| | - Xiang Gao
- Radiology Department, Hubei NO.3 People’s Hospital of Jianghan University, Wuhan, China
| | - Zhaofang Wu
- Child Rehabilitation Department, Hubei NO.3 People’s Hospital of Jianghan University, No. 26 Zhongshan Avenue, Qiaokou District, Wuhan, 430033 China
| | - Jia Chen
- Child Rehabilitation Department, Hubei NO.3 People’s Hospital of Jianghan University, No. 26 Zhongshan Avenue, Qiaokou District, Wuhan, 430033 China
| | - Li Chen
- Child Rehabilitation Department, Hubei NO.3 People’s Hospital of Jianghan University, No. 26 Zhongshan Avenue, Qiaokou District, Wuhan, 430033 China
| | - Xiang Du
- Child Rehabilitation Department, Hubei NO.3 People’s Hospital of Jianghan University, No. 26 Zhongshan Avenue, Qiaokou District, Wuhan, 430033 China
| |
Collapse
|
5
|
Wu L, Zhu L, Chen J. Diverse potential of chimeric antigen receptor-engineered cell therapy: Beyond cancer. Clin Transl Med 2025; 15:e70306. [PMID: 40205818 PMCID: PMC11982526 DOI: 10.1002/ctm2.70306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-engineered cell therapies have made significant progress in haematological cancer treatment. This success has motivated researchers to investigate its potential applications in non-cancerous diseases, with substantial strides already made in this field. MAIN BODY This review summarises the latest research on CAR-engineered cell therapies, with a particular focus on CAR-T cell therapy for non-cancerous diseases, including but not limited to infectious diseases, autoimmune diseases, cardiac diseases and immune-mediated disorders in transplantation. Additionally, the review discusses the current obstacles that need to be addressed for broader clinical applications. CONCLUSION With ongoing research and continuous improvements, CAR-engineered cell therapy holds promise as a potent tool for treating various diseases in the future. KEY POINTS CAR-engineered cell therapy has expanded beyond cancer to treat autoimmune diseases, infections, cardiac diseases, and transplant-related rejection. The CAR platform is diverse, with various cell types such as CAR-T, CAR-NK, and CAR-M potentially suited for different disease contexts. The safety, efficacy, and practicality of CAR cell therapy in non-cancer diseases remain challenging, requiring further technological optimization and clinical translation.
Collapse
Affiliation(s)
- Lvying Wu
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Lingfeng Zhu
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| | - Jin Chen
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
6
|
Zhang P, Wang Z, Xu Y, Wu M. Mechanism underlying the role of the circRNA OMA1/miR-654-3p/RAF1 axis in children with inflammatory bowel disease. Cytotechnology 2025; 77:42. [PMID: 39867828 PMCID: PMC11759725 DOI: 10.1007/s10616-025-00703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, often emerges during childhood and poses significant challenges due to its adverse effects on growth, development, and psychosocial well-being. Circular RNAs (circRNAs) have been implicated in the pathogenesis of diverse diseases. However, the specific biological role and mechanisms of circRNA OMA1 in children with IBD remain largely unexplored. This study investigates the functions and mechanistic pathways of circRNA OMA1 in the progression of IBD. Quantitative real-time PCR (qRT-PCR) was employed to quantify circRNA OMA1 and miR-654-3p expression levels in the serum of children with IBD and in HT-29 cells. Downstream miRNA and mRNA targets of circRNA OMA1 were predicted using StarBase and validated via luciferase reporter assays. An in vitro IBD model was established by treating the human colonic epithelial cell line (HT-29) with 2% dextran sulfate sodium (DSS). Cell viability and apoptosis were assessed using the MTT assay and flow cytometry, respectively. Expression of the apoptosis-related protein cleaved caspase-3 was analyzed via western blotting, and proinflammatory cytokine levels (TNF-α, IL-1β, and IL-6) were measured using ELISA. The expression of circRNA OMA1 was notably lower in the serum of children with IBD and in DSS-treated HT-29 cells than in healthy controls, whereas miR-654-3p expression was upregulated. Bioinformatics analyses revealed a direct interaction between circRNA OMA1 and miR-654-3p. Overexpression of circRNA OMA1 through plasmid transfection increased circRNA OMA1 levels and suppressed miR-654-3p expression in HT-29 cells under both basal and DSS-stimulated conditions. Conversely, transfection with a miR-654-3p mimic reversed these effects. Upregulation of circRNA OMA1 ameliorated DSS-induced injury in HT-29 cells by enhancing cell viability, reducing apoptosis, and downregulating cleaved caspase-3 expression. Moreover, circRNA OMA1 overexpression inhibited the secretion of inflammatory cytokines TNF-α, IL-1β, and IL-6. However, these protective effects were partially reversed by treatment with the miR-654-3p mimic. Additionally, miR-654-3p was shown to directly target RAF1, negatively regulating its expression. The proliferation-promoting and apoptosis-suppressing effects of miR-654-3p inhibitor treatment were mitigated by RAF1-siRNA. Conclusion: Upregulation of circRNA OMA1 alleviates DSS-induced colonic cell apoptosis and inflammation by modulating the miR-654-3p/RAF1 axis. These findings suggest that circRNA OMA1 could be a promising biomarker for the diagnosis and treatment of IBD. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00703-z.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Child Health, Maternal and Child Health Hospital of Hubei Province, No. 745 Wuluo Road, Wuhan, 430070 China
| | - Zhenhui Wang
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070 China
| | - Yufen Xu
- Department of Child Health, Maternal and Child Health Hospital of Hubei Province, No. 745 Wuluo Road, Wuhan, 430070 China
| | - Meirong Wu
- Department of Child Health, Maternal and Child Health Hospital of Hubei Province, No. 745 Wuluo Road, Wuhan, 430070 China
| |
Collapse
|
7
|
Chen C, Sun B, Chen K, Bao H, Tao Y, Zhou J, Yuan X, He L, Lu Z, Chen K, Li Y, Yu C, Chen Y, Zhang Y. Atractylenolide-I restore intestinal barrier function by targeting the S100A9/AMPK/mTOR signaling pathway. Front Pharmacol 2025; 16:1530109. [PMID: 40196359 PMCID: PMC11973269 DOI: 10.3389/fphar.2025.1530109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Impaired intestinal epithelial barrier function is closely associated with the pathogenesis of ulcerative colitis (UC). Atractylenolide-I (AT-I), a major sesquiterpene derived from the herb Atractylodes macrocephala Koidz., has been reported to alleviate DSS-induced colitis in mice. This study aims to investigated the protective effects of AT-1 on intestinal epithelial barrier function and elucidate it's underlying mechanisms. In vivo, an acute colitis model was established in mice, and transcriptomic analysis to identify differentially expressed genes. In vitro, overexpression plasmids and recombinant protein were used to evaluate their effects on intestinal barrier function, and further analysis of its potential mechanisms.The study found that AT-1 ameliorate DSS-induced acute ulcerative colitis, exhibiting protective effects on the intestinal barrier. Transcriptomic analysis revealed that AT-1 significantly modulated the expression of S100A8 and S100A9. Further investigations indicated that S100A9, rather than S100A8, mediated the expression of tight junction proteins, meanwhile, AT-1 reduces neutrophil activation and subsequent release of S100A9. Mechanistically, recombinant human S100A9 protein was found to induce a decrease in intracellular Ca2+ concentration, while AT-1 regulated the expression of tight junction proteins via modulation of the AMPK/mTOR signaling pathway. AT-1 enhances the recovery of DSS-induced intestinal barrier dysfunction by regulating the recombinant human S100A9 protein-mediated AMPK/mTOR signaling pathway. This study provides new insights into the pathogenesis of ulcerative colitis and suggests potential therapeutic strategies for its treatment.
Collapse
Affiliation(s)
- Chen Chen
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingjie Sun
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Keming Chen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Bao
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Xuzhou City Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
| | - Yu Tao
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyong Zhou
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaomin Yuan
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Linhai He
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhihua Lu
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kaidi Chen
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Li
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengli Yu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yugen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinan Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Valero MS, Gómez-Rincón C, López V, Les F. Jasonia glutinosa (L.) DC.: Back in Our Pantries? A Review of Its Pharmacological Activity and Mechanisms of Action. Int J Mol Sci 2025; 26:2536. [PMID: 40141177 PMCID: PMC11942250 DOI: 10.3390/ijms26062536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Jasonia glutinosa (L.) DC., commonly known in Spain as "Rock Tea", is a medicinal plant native to the Iberian Peninsula, southern France, and Morocco. It has traditionally been used as a digestive, analgesic, antimicrobial, antidepressant, or for respiratory diseases. This narrative review aims to scientifically validate the ethnopharmacological uses of J. glutinosa as a medicinal plant, emphasizing the relationship between its traditional applications, pharmacological activities, and mechanisms of action based on experimental evidence. A comprehensive search was conducted in various electronic databases to gather information on its traditional uses, phytochemical composition, and in vitro, ex vivo, and in vivo studies related to pharmacological properties. The literature review uncovered significant findings regarding the pharmacological and molecular mechanisms of this medicinal plant in various experimental models, particularly highlighting its spasmolytic, anti-inflammatory, and antioxidant properties.
Collapse
Affiliation(s)
- Marta Sofía Valero
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense Facultad de Ciencias de la Salud, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50009 Zaragoza, Spain; (C.G.-R.); (V.L.)
| | - Carlota Gómez-Rincón
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50009 Zaragoza, Spain; (C.G.-R.); (V.L.)
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad San Jorge, 50830 Villanueva de Gállego, Spain
| | - Víctor López
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50009 Zaragoza, Spain; (C.G.-R.); (V.L.)
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad San Jorge, 50830 Villanueva de Gállego, Spain
| | - Francisco Les
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50009 Zaragoza, Spain; (C.G.-R.); (V.L.)
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad San Jorge, 50830 Villanueva de Gállego, Spain
| |
Collapse
|
9
|
Tang C, Zhou J, Song Y, Liu S. Etiologies of exocrine pancreatic insufficiency. Gastroenterol Rep (Oxf) 2025; 13:goaf019. [PMID: 40066317 PMCID: PMC11893156 DOI: 10.1093/gastro/goaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 11/12/2024] [Indexed: 04/11/2025] Open
Abstract
Exocrine pancreatic insufficiency (EPI) is a major cause of maldigestion and malnutrition, resulting from primary pancreatic diseases or other conditions. As the prevalence of EPI continues to rise, accurate identification of its etiology has become critical for the diagnosis and treatment of pancreatic secretory insufficiency. EPI can result from both pancreatic and non-pancreatic disorders. Pancreatic disorders include acute and chronic pancreatitis, pancreatic tumors, cystic fibrosis, procedures that involve pancreatic resection, and other rare causes. Non-pancreatic disorders of EPI include diabetes mellitus, celiac disease, inflammatory bowel disease, gastrointestinal and esophagectomy surgery, as well as advanced patient age. This review aims to provide a comprehensive analysis of the literature on EPI etiology, with a thorough overview to support its consideration as a potential diagnosis.
Collapse
Affiliation(s)
- Chengji Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, Hunan, P. R. China
| | - Jia Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, Hunan, P. R. China
- Central Laboratory of Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Yinghui Song
- Central Laboratory of Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, Hunan, P. R. China
- Hunan Engineering Research Center of Digital Hepatobiliary Medicine, Changsha, Hunan, P. R. China
- Hunan Key Laboratory for the Prevention and Treatment of Biliary Tract Diseases, Changsha, Hunan, P. R. China
- Research Center for Hepatobiliary and Pancreatic Diseases of Furong Laboratory, Changsha, Hunan, P. R. China
| |
Collapse
|
10
|
Gao S, Ge Y, Huang H, Wang L, Zhang W. Adipose-Derived Mesenchymal Stem Cell Exosomes Encapsulating siIL1R2 Facilitate the Repair of DSS-Induced Intestinal Mucosal Injury. Immunol Invest 2025:1-17. [PMID: 40035289 DOI: 10.1080/08820139.2025.2468959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
BACKGROUND Interleukin-1 receptor 2 (IL1R2) and C-C motif chemokine receptor 2 (CCR2) as critical mediators of immune modulation and inflammation. This study aims to evaluate their functions in dextran sulfate sodium (DSS)-induced intestinal injury. METHODS A DSS-induced intestinal injury model was established in C57BL/6 mice. Pharmacological inhibitors targeting IL1R2 or CCR2 were administered. Adipose-derived mesenchymal stem cell (ADMSC)-derived exosomes were isolated and loaded with IL1R2-siRNA, which were then administered to intestinal epithelial cells (IEC-6) or DSS-challenged mice. RESULTS IL1R2 and CCR2 were upregulated in DSS-treated colon tissues. Pharmacological inhibition of IL1R2 or CCR2 improved body weight, restored colon length, reduced serum TNF-α and IL-6 levels, and preserved epithelial integrity in mice. miR-128-3p enriched in ADMSC-derived exosomes significantly reduced CCR2 expression in IEC-6 cells. Further loading of an IL1R2 siRNA in these exosomes led to a simultaneous inhibition of IL1R2. These exosomes reduced lipopolysaccharide-induced apoptosis and inflammation in IEC-6 cells and improved histological outcomes in DSS-challenged mice. CONCLUSION IL1R2 and CCR2 are key mediators of inflammation in DSS-induced intestinal injury. Dual inhibition of IL1R2 and CCR2 holds great promise for alleviating inflammatory responses and improving histological presentations in inflammatory bowel disease.
Collapse
Affiliation(s)
- Song Gao
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yajuan Ge
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - He Huang
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Lei Wang
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Wenbin Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
11
|
Shan C, Liu T, Miao F, Guo G. Macadamia oil alleviates dextran sulfate sodium-induced ulcerative colitis in mice via activating the Nrf2/Ho-1 pathway. Food Sci Biotechnol 2025; 34:1027-1036. [PMID: 39974866 PMCID: PMC11832958 DOI: 10.1007/s10068-024-01719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 02/21/2025] Open
Abstract
Macadamia nut oil (MO) fatty acids are mainly composed of oleic acid and palmitoleic acid, which have a variety of health benefits. This study established an ulcerative colitis (UC) mouse model using dextran sulfate sodium (DSS), and the ameliorative effects of MO on UC were investigated. The results revealed that MO supplementation mitigated weight loss and colon shortening, increased goblet cell counts, and alleviated histopathologic changes in UC mice. MO significantly increased the intestinal antioxidant levels in UC mice. Moreover, Nrf2 and Ho-1 mRNA and protein expression levels were significantly upregulated in UC mice following treatment with low- and high-dose MO. In contrast, expression levels of Keap1 were significantly downregulated. Lastly, MO inhibited the inflammatory factors (TNF-α, IL-6 and IL-1β) expression in UC mice. These results indicate that MO could enhance colonic antioxidant levels, induce apoptosis, and activate the Nrf2/Ho-1 pathway, thereby ameliorating the pathological injuries associated with UC.
Collapse
Affiliation(s)
- Chunlan Shan
- College of Animal Science, Guizhou University, Guiyang, 550025 P. R. China
| | - Ting Liu
- College of Animal Science, Guizhou University, Guiyang, 550025 P. R. China
| | - Fujun Miao
- Yunnan Academy of Forestry and Grassland, Kunming, 650204 China
| | - Gangjun Guo
- Yunnan Institute of Tropical Crops, Jinghong, 666100 P. R. China
| |
Collapse
|
12
|
Camillo L, Pollastro F, Talmon M, Fresu LG. Bitter Taste Receptors 38 and 46 Regulate Intestinal Peristalsis. Int J Mol Sci 2025; 26:2092. [PMID: 40076714 PMCID: PMC11900946 DOI: 10.3390/ijms26052092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Bitter taste receptors (TAS2Rs) are expressed in extraoral tissues, exerting several functions and generating a whole-body chemosensory and protective system. TAS2Rs expression has been observed in the gastrointestinal tract, although their role is poorly understood. This study aims to investigate the role of TAS2R38 and 46 in human intestinal smooth muscle cells (HISMCs) after activation with the specific bitter ligands phenylthiocarbamide and absinthin, respectively. We found that TAS2R38 and 46 activation by phenylthiocarbamide (PTC) and absinthin, respectively, induces a rapid membrane depolarization and increase of cytosolic calcium levels due to internal storage in the IP3 pathway, resulting in an accelerated cell contraction. Overall, this study unravels, for the first time, the contractile impact of these TAS2R subtypes on intestinal smooth muscle cells, suggesting their involvement in gut peristalsis and recommending these receptors as possible targets for new therapies.
Collapse
Affiliation(s)
- Lara Camillo
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (F.P.); (M.T.)
| | - Maria Talmon
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (F.P.); (M.T.)
| | - Luigia Grazia Fresu
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
13
|
Su Q, Li J, Lu Y, Liang J, Huang S, Wu M, He Y, An Z, Ding J, Zhang Z. Spleen volume in relation to ulcerative colitis and Crohn's disease: a Mendelian randomization study. Sci Rep 2025; 15:6588. [PMID: 39994250 PMCID: PMC11850802 DOI: 10.1038/s41598-025-90104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Prior research has established the significance of spleen volume (SV) in the pathogenesis and advancement of ulcerative colitis (UC) and Crohn's disease (CD). Nevertheless, these investigations are predominantly observational, thereby leaving their causal associations ambiguous. Moreover, the breadth of existing research is constrained by various uncontrollable variables in clinical settings. This study aims to deduce the causal link between SV and the susceptibility to UC and CD through a genetic perspective. The objective of this study was to investigate the genetic association between SV and inflammatory bowel disease (IBD) risk using Mendelian randomization (MR) analysis. Single nucleotide polymorphisms (SNPs) associated with SV were used as instrumental variables. Genetic associations for UC and CD were extracted from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC), the FinnGen study, and other publicly available genome-wide association studies (GWAS). Methods such as inverse variance weighted, Bayesian weighted Mendelian randomization (BWMR), contamination mixture (ConMix), along with sensitivity analyses and the Steiger test were used in the study. A meta-analysis was conducted to synthesize the results. The study found that genetically predicted SV was associated with an increased risk of UC in the IIBDGC dataset (OR = 1. 223, 95% CI: 1. 055-1. 417, P = 0. 008), FinnGen (OR = 1. 169, 95% CI: 1. 003-1. 363, P = 0. 045), the GWAS study by Sakaue S (OR = 1. 188, 95% CI: 1. 008-1. 399, P = 0. 040), and in the meta-analysis (OR = 1. 115, 95% CI: 1. 014-1. 227, P = 0. 025). Similarly, genetically predicted SV was associated with an increased risk of CD in the IIBDGC dataset (OR = 1. 235, 95% CI: 1. 026-1. 488, P = 0. 026), FinnGen (OR = 1. 308, 95% CI: 1. 026-1. 667, P = 0. 030), the GWAS study by Zorina-Lichtenwalter K (OR = 1. 316, 95% CI: 1. 037-1. 670, P = 0. 024), and in the meta-analysis (OR = 1. 272, 95% CI: 1. 133-1. 428, P < 0. 001). According to the meta-analysis results, for each standard unit increase in SV, the risk of developing UC increases by 11. 5%, and the risk of developing CD increases by 27. 2%. This study presents findings that suggest a positive causal association between SV and the onset of IBD.
Collapse
Affiliation(s)
- Qiang Su
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jian Li
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yun Lu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Rheumatology and Hematology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jiang Liang
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
- Department of Rheumatology and Hematology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Song Huang
- Anorectal Surgery Department, Fenggang County Traditional Chinese Medicine Hospital, Zunyi, Guizhou, China
| | - Min Wu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yuanli He
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
- Department of Cadre health care, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Zhenxiang An
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
- Department of Gastroenterology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Jinbing Ding
- Dermatological department, Fenggang County Traditional Chinese Medicine Hospital, Zunyi, Guizhou, China
| | - Zhizhong Zhang
- Dermatological department, Fenggang County Traditional Chinese Medicine Hospital, Zunyi, Guizhou, China
| |
Collapse
|
14
|
Zhong M, An H, Gan H. Unraveling the causal association between inflammatory bowel diseases and uveitis through mendelian randomization analysis. Sci Rep 2025; 15:5686. [PMID: 39956872 PMCID: PMC11830775 DOI: 10.1038/s41598-025-90462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/13/2025] [Indexed: 02/18/2025] Open
Abstract
To investigate the causal relationship between inflammatory bowel disease (IBD) and uveitis, we conducted a two-sample bidirectional Mendelian randomization (MR) analysis utilizing summary data from genome-wide association studies (GWAS). The primary statistical analysis was performed using the inverse-variance weighted (IVW) method. False discovery rate (FDR) correction was used to control for false positives in multiple testing. In addition, sensitivity analyses were carried out using the MR Egger intercept test and Cochran's Q test. The MR analysis revealed that genetically determined IBD (OR = 1.141, 95% CI 1.080-1.205, P = 2.21 × 10-6, PFDR = 6.90 × 10-6), ulcerative colitis (UC) (OR = 1.113, 95% CI 1.032-1.201, P = 0.006, PFDR = 0.009), and Crohn's diseases (CD) (OR = 1.073, 95% CI 1.017-1.133, P = 0.010, PFDR = 0.011) had a causal effect on uveitis. Conversely, the reverse MR analysis did not reveal significant causal link of uveitis on IBD, including its two subtypes. Furthermore, the results of the MR-Egger and weighted median methods were consistent with the IVW method. No evidence of heterogeneity or pleiotropy was detected by sensitivity analysis. Our findings confirm that IBD and its main subtypes had a causal connection with uveitis. Further research is needed to elucidate the underlying pathophysiological mechanisms driving this association.
Collapse
Affiliation(s)
- Min Zhong
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjin An
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Huatian Gan
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Department of Gastroenterology and Laboratory of Inflammatory Bowel Disease, The Center for Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Liu F, Guo C, Liu X, Gu Z, Zou W, Tang X, Tang J. Luteolin in Inflammatory Bowel Disease and Colorectal Cancer: A Disease Continuum Perspective. Curr Issues Mol Biol 2025; 47:126. [PMID: 39996847 PMCID: PMC11853781 DOI: 10.3390/cimb47020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that may progress to colorectal cancer (CRC), presenting significant challenges to global health. With shifts in lifestyle, the incidence of both conditions continues to rise, underscoring the urgent need for effective treatments. While traditional therapies can be effective, their high recurrence rates and associated adverse reactions limit their broader application. Luteolin, a flavonoid derived from natural plants, has emerged as a promising focus in both IBD and CRC research due to its multi-target therapeutic potential. This article reviews the molecular mechanisms and signaling pathways through which luteolin regulates immune cell differentiation, mitigates inflammation and oxidative stress, modulates gut microbiota, and restores intestinal mucosal barrier function in IBD. In the context of CRC, luteolin demonstrates significant anti-tumor effects by inhibiting cancer cell proliferation, inducing apoptosis, and suppressing cell migration and invasion. Notably, luteolin has demonstrated significant improvements in IBD symptoms by influencing the differentiation of T cell subsets, decreasing the expression of inflammatory mediators, activating antioxidant pathways, and enhancing the structure of gut microbiota. Furthermore, advancements in formulation technology, such as the use of polymer micelles and responsive nanoparticles, have greatly improved the bioavailability and efficacy of luteolin. However, further investigation is needed to address the bioavailability and potential toxicity of luteolin, particularly in the critical transition from IBD to CRC. This article emphasizes the potential of luteolin in the treatment of IBD and CRC and anticipates its promising prospects for future clinical applications as a natural therapeutic agent.
Collapse
Affiliation(s)
- Fang Liu
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (F.L.); (C.G.)
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Cui Guo
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (F.L.); (C.G.)
| | - Xue Liu
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Zhili Gu
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Wenxuan Zou
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Xuegui Tang
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Jianyuan Tang
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (F.L.); (C.G.)
| |
Collapse
|
16
|
Zeng L, Liu C, Wu Y, Liu S, Zheng Y, Hao W, Wang D, Sun L. Efficacy and safety of mesenchymal stromal cell transplantation in the treatment of autoimmune and rheumatic immune diseases: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther 2025; 16:65. [PMID: 39934871 DOI: 10.1186/s13287-025-04184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVE This study aims to assess the effectiveness and safety of mesenchymal stem cell (MSC) transplantation in the treatment of autoimmune and rheumatic immune diseases through randomized controlled trials (RCTs). METHODS Two researchers conducted a comprehensive search of Chinese and English databases from their inception until Dec. 2023. The literature screening and data extraction were then performed. Statistical analysis was carried out using RevMan 5.4 software. RESULTS A total of 42 relevant RCTs, involving 2,183 participants, were ultimately included in this study. These RCTs encompassed four types of rheumatic immune and bone diseases, namely rheumatoid arthritis (RA), osteoarthritis (OA), spondyloarthritis, systemic sclerosis arthritis, systemic lupus erythematosus (SLE), inflammatory bowel disease, multiple sclerosis, primary Sjögren's syndrome (PSS). The systematic review indicates that MSC transplantation may improve spondyloarthritis, RA, PSS. The meta-analysis reveals that MSC transplantation significantly improved symptoms in patients with OA [VAS (visual analogue scale): bone marrow: SMD = - 0.95, 95% CI - 1.55 to - 0.36, P = 0.002; umbilical cord: SMD = - 1.25, 95% CI - 2.04 to - 0.46, P = 0.002; adipose tissue: SMD = -1.26, 95% CI -1.99 to - 0.52, P = 0.0009)], SLE [Systemic lupus erythematosus disease activity index (SLEDAI): SMD = - 2.32, 95% CI - 3.59 to - 1.06, P = 0.0003], inflammatory bowel disease [clinical efficacy: RR = 2.02, 95% CI 1.53 to 2.67, P < 0.00001]. However, MSC transplantation may not improve the symptoms of multiple sclerosis and systemic sclerosis (Ssc). Importantly, MSC transplantation did not increase the incidence of adverse events (OA: RR = 1.23, 95% CI 0.93 to 1.65, P = 0.15; SLE: RR = 0.83, 95% CI 0.28 to 2.51, P = 0.76; Inflammatory bowel disease: RR = 0.99, 95% CI 0.81 to 1.22, P = 0.96; Multiple sclerosis: RR = 1.12, 95% CI 0.81 to 1.53, P = 0.50), supporting its safety profile across the included studies. These findings suggest that MSC transplantation holds promise for several rheumatic and autoimmune diseases while highlighting areas where further research is warranted. CONCLUSION MSC transplantation may have the potential to treat autoimmune and rheumatic immune diseases. Moreover. MSC transplantation appears to be relatively safe and could be considered as a viable alternative treatment option for autoimmune and rheumatic immune diseases.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Chang Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Yang Wu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuman Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Yaru Zheng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
17
|
Huang Q, Zhu X, Zhang Y. Advances in engineered T cell immunotherapy for autoimmune and other non-oncological diseases. Biomark Res 2025; 13:23. [PMID: 39901288 PMCID: PMC11792665 DOI: 10.1186/s40364-025-00736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Adoptive immunotherapy using engineered T cells expressing chimeric antigen receptors has shown remarkable success in treating patients with hematological malignancies. However, realizing broader therapeutic applications of engineered T cells in other diseases requires further exploration in clinical investigations. In this review, we highlight recent advances in the engineering of T cells in non-oncology areas, including autoimmune and inflammatory diseases, infections, fibrosis, hemophilia, and aging. Chimeric antigen receptor immunotherapy has shown good outcomes in non-oncology areas, but many challenges remain in improving its safety and efficacy and and expanding its application to the treatment of non-oncological diseases.
Collapse
Affiliation(s)
- Qiaolin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
18
|
Aloisio Caruso E, De Nunzio V, Tutino V, Notarnicola M. The Endocannabinoid System: Implications in Gastrointestinal Physiology and Pathology. Int J Mol Sci 2025; 26:1306. [PMID: 39941074 PMCID: PMC11818434 DOI: 10.3390/ijms26031306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
The endocannabinoid system (ECS), composed of receptors, endocannabinoids, and enzymes that regulate biosynthesis and degradation, plays a fundamental role in the physiology and pathology of the gastrointestinal tract, particularly in the small and large intestine and liver. Specifically, cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R), located principally in the nervous system and immune cells, orchestrate processes such as intestinal motility, intestinal and hepatic inflammation, and energy metabolism, respectively. The main endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), influence appetite, body weight regulation, and inflammatory states and thus have implications in obesity, non-alcoholic fatty liver disease (NAFLD) and irritable bowel syndrome (IBS). Recent studies have highlighted the therapeutic potential of targeting the ECS to modulate gastrointestinal and metabolic diseases. In particular, peripheral CB1R antagonists and CB2R agonists have shown efficacy in treating intestinal inflammation, reducing hepatic steatosis, and controlling IBS symptoms. Moreover, the ECS is emerging as a potential target for the treatment of colorectal cancer, acting on cell proliferation and apoptosis. This review highlights the opportunity to exploit the endocannabinoid system in the search for innovative therapeutic strategies, emphasizing the importance of a targeted approach to optimize treatment efficacy and minimize side effects.
Collapse
Affiliation(s)
- Emanuela Aloisio Caruso
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| | - Valeria Tutino
- Laboratory of Clinical Pathology, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy;
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Bari, Italy; (E.A.C.); (V.D.N.)
| |
Collapse
|
19
|
Zhang P, Pei B, Yi C, Akanyibah FA, Mao F. The role of suppressor of cytokine signaling 3 in inflammatory bowel disease and its associated colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167578. [PMID: 39571630 DOI: 10.1016/j.bbadis.2024.167578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Inflammatory bowel disease (IBD) and colorectal cancer (CRC), as two of the major human intestinal diseases, provide challenges for the medical field. Suppressor of cytokine signaling 3 (SOCS3), a protein molecule that negatively regulates cytokine signaling through multiple pathways, is involved in the regulation of various inflammatory diseases and tumors. In IBD, SOCS3 acts on a variety of cells to repair mucosal damage and balance the immune response, including epithelial cells, macrophages, dendritic cells, neutrophils, and T cells. In CRC, SOCS3 is inextricably linked to tumor cell proliferation, invasion, metastasis, and drug resistance. Therefore, it is crucial to systematically investigate the pathogenic involvement of SOCS3 in IBD and CRC. This article reviews the mechanisms and pathways by which SOCS3 is involved in the inhibition of IBD and the mitigation of CRC, and details the therapeutic options for targeting SOCS3.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu, PR China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, PR China
| | - Francis Atim Akanyibah
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China
| | - Fei Mao
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
20
|
Ma J, Yue S, Liu Y, Gong L, He P, Yang Y, Fu Z, Han D, Hu Q, Liao F, Xu L. Fucoxanthin ameliorates ulcerative colitis by maintaining the epithelial barrier via blocking JAK2/STAT3 signaling pathway. Toxicol Appl Pharmacol 2025; 495:117213. [PMID: 39719254 DOI: 10.1016/j.taap.2024.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND The clinical efficacies of Ulcerative colitis (UC) are far from satisfactory. Fucoxanthin (FUC) is a marine carotenoid that is abundant in seaweed and microalgae. It has been reported that FUC can possess anti-inflammatory and antioxidant. However, its mechanism and role in UC is yet to be clarified. This study aimed to investigate the protective effect and potential mechanism of FUC extracted from the diatom Phaeodactylum tricornutm on dextran sodium sulfate (DSS) -induced colitis. METHODS Animal UC model was induced by DSS and cellular model was established by TNF-α. Immunohistochemical staining, Western blot, RT-qPCR, and immunofluorescence were used to assess the inflammatory responses and epithelial barrier in vivo and in vitro models. RESULTS The results showed that FUC attenuates DSS-induced colitis by ameliorating the epithelial mucosal barrier. Moreover, FUC possessed antioxidant and anti-inflammatory effects on NCM460 cells. JAK/STAT activator RO8191 could reverse these changes. CONCLUSION FUC exerted anti-inflammatory and antioxidant effects via the JAK2/STAT3 signaling pathway, and served as a potential therapeutic agent for the treatment of UC.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Simei Yue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yinghui Liu
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lingjiao Gong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingjie Yang
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhengxin Fu
- Demeter Biotech (Zhuhai) Co. Ltd., Zhuhai, China
| | - Danxiang Han
- Demeter Biotech (Zhuhai) Co. Ltd., Zhuhai, China
| | - Qiang Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, China.
| | - Lin Xu
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Zhu Y, Liu K, Jiang J, Cheng X, Wang H, Long F, Li K, Mu C, Cui L. Structural equation modeling of the impact of disease activity on inflammatory bowel disease control: the mediating roles of self-efficacy and self-management behaviors. BMC Gastroenterol 2025; 25:30. [PMID: 39844024 PMCID: PMC11752657 DOI: 10.1186/s12876-025-03623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Maintaining effective disease control in patients with inflammatory bowel disease (IBD) is both a significant goal and challenge. Drawing on the Common-Sense Model of Self-Regulation (CSM) and related research, this study investigates how IBD activity status influences disease control through both direct and indirect pathways. METHODS A cross-sectional survey was conducted among 310 IBD patients who attended a tertiary general hospital, the leader of the IBD Alliance Group in Chongqing City, between March and August 2024. Structural equation modeling (SEM) was utilized to assess the role and magnitude of various influencing factor pathways. Relying on AMOS26 software, the path effects and magnitude of various factors in the disease control process were analyzed using structural equation modeling (SEM) to test hypothetical models. RESULTS A total of 306 valid questionnaires were collected, with a mean IBD-control score of 12.14 ± 3.665. There was a negative link between disease activity and IBD-control (P < 0.01) and a positive correlation between chronic illness management self-efficacy, IBD self-management behavior, and IBD-control (P < 0.01). Path analysis showed that IBD activity negatively predicted IBD control (β = -0.715, P = 0.01). Chronic disease management self-efficacy partially mediated this relationship (β = -0.071, P = 0.012). A significant chain-mediated pathway was identified, where IBD activity affected IBD control via self-efficacy guided by self-management behavior (β = -0.025, P = 0.007). However, the pathway where IBD activity influenced control through self-efficacy and subsequently self-management behavior showed only marginal significance (P = 0.074). CONCLUSION Effective self-management behaviors improve IBD control. High disease activity may reduce chronic disease management self-efficacy, impairing IBD control. Positive feedback loops involving self-management behaviors and enhanced self-efficacy are crucial for better disease control, as patients who perceive positive outcomes are more motivated to maintain these behaviors.
Collapse
Affiliation(s)
- Yongli Zhu
- Department of Nursing, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, Nanchong, China
- Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ke Liu
- North Sichuan Medical College, Nanchong, Nanchong, China
| | - Jinfeng Jiang
- Department of Nursing, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, Nanchong, China
| | - Xin Cheng
- North Sichuan Medical College, Nanchong, Nanchong, China
| | - Hao Wang
- Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Feiyang Long
- Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Kang Li
- Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Changping Mu
- Chongqing General Hospital, Chongqing University, Chongqing, China.
| | - Lijun Cui
- Department of Nursing, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
22
|
Zhang L, Wang J, Xu Y, Wei K, Lin W, Hu H, Liu Y. Akkermansia muciniphila relieves inflammatory response in DSS-induced ulcerative colitis in mice through regulating macrophage polarization via SCFAs-SLC52A2/FFAR2 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03787-8. [PMID: 39841217 DOI: 10.1007/s00210-025-03787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
Ulcerative colitis (UC) remains an intractable and relapsing disease featured by intestinal inflammation. The anti-UC activity of Akkermansia muciniphila (AKK), an intestinal microorganism, has been widely investigated. The current work is to explore the impacts of AKK on UC and its possible reaction mechanism. In vivo UC model was induced by dextran sulfate sodium (DSS) and phorbol-12-myristate-13-acetate (PMA)-induced THP-1-M0 and raw264.7 macrophages were treated by lipopolysaccharide (LPS). H&E staining evaluated tissue damage. Inflammatory and oxidative stress levels were assessed by relevant kits. The high-throughput analysis of fatty acids was performed by the LC/MS method. RT-qPCR and Western blot detected related gene expression. Flow cytometry measured cell apoptosis and macrophage polarization. Energy metabolism was detected by ELISA, related assay kits, JC-1 staining, and Western blot. AKK reduced the pathological damage of mice colon tissues, alleviated oxidative stress and inflammatory response, upregulated the expression of Occludin-1 and SCFAs receptors, and stimulated M1 to M2 macrophage polarization in vivo. After FFAR2 was silenced, the promoting role of AKK in the viability and M1 to M2 macrophage polarization and the inhibitory role in oxidative stress, inflammation, apoptosis, energy metabolism disorder, necroptosis, and pyroptosis were both reverted. Conclusively, AKK might mediate SCFAs-SLC52A2/FFAR2 pathways to exert protective activities against intestinal inflammatory response in UC, suggesting that AKK might represent a novel and promising candidate for UC therapy.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China
| | - Junxi Wang
- Endoscope Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ye Xu
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Kaiyan Wei
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Wei Lin
- Endoscope Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Huixiang Hu
- The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China
| | - Yijuan Liu
- The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China.
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China.
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
23
|
Centanni L, Cicerone C, Fanizzi F, D’Amico F, Furfaro F, Zilli A, Parigi TL, Peyrin-Biroulet L, Danese S, Allocca M. Advancing Therapeutic Targets in IBD: Emerging Goals and Precision Medicine Approaches. Pharmaceuticals (Basel) 2025; 18:78. [PMID: 39861141 PMCID: PMC11768140 DOI: 10.3390/ph18010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Inflammatory bowel diseases (IBD) including Crohn's disease (CD) and ulcerative colitis (UC) are chronic, relapsing conditions characterized by dysregulated immune responses and persistent intestinal inflammation. This review aims to examine new potential therapeutic targets in IBD starting from the STRIDE-II statements. Key targets now include clinical remission, endoscopic remission, and biomarker normalization (such as C-reactive protein and fecal calprotectin). Moreover, histologic remission, transmural remission, and in the future molecular targets are emerging as important indicators of sustained disease control. The treatment goals for inflammatory bowel disease are varied: to relieve symptoms, prevent permanent intestinal damage, promote inflammation remission, and minimize complications. Consequently, the therapeutic targets have evolved to become broader and more ambitious. Integrating these advanced therapeutic targets has the potential to redefine IBD management by promoting deeper disease control and improved patient outcomes. Further research is essential to validate these strategies and optimize their clinical implementation.
Collapse
Affiliation(s)
- Lucia Centanni
- Gastroenterology and Endoscopy, IRCCS Hospital San Raffaele, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Clelia Cicerone
- Gastroenterology and Endoscopy, IRCCS Hospital San Raffaele, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Fabrizio Fanizzi
- Gastroenterology and Endoscopy, IRCCS Hospital San Raffaele, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Ferdinando D’Amico
- Gastroenterology and Endoscopy, IRCCS Hospital San Raffaele, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS Hospital San Raffaele, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS Hospital San Raffaele, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Tommaso Lorenzo Parigi
- Gastroenterology and Endoscopy, IRCCS Hospital San Raffaele, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, INFINY Institute, INSERM NGERE, CHRU de Nancy, Université de Lorraine, F-54500 Vandœuvre-lès-Nancy, France
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Hospital San Raffaele, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS Hospital San Raffaele, University Vita-Salute San Raffaele, 20132 Milan, Italy
| |
Collapse
|
24
|
Wu Y, Yan Y, Qi J, Liu Y, Wang T, Chen H, Guan X, Zheng C, Zeng P. Mendelian randomization and genetic pleiotropy analysis for the connection between inflammatory bowel disease and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111203. [PMID: 39579960 DOI: 10.1016/j.pnpbp.2024.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND The gut-microbiome-brain axis (GMBA) implies the connection between inflammatory bowel disease (IBD) and Alzheimer's disease (AD). We aimed to comprehensively explore the relation between IBD (and its subtypes) and AD, early-onset AD (EOAD) and late-onset AD (LOAD) from a genetic pleiotropy perspective. METHODS Relying on summary statistics (N = 472,868 for AD, 185,204 for EOAD, 191,061 for LOAD, 59,957 for IBD, 45,975 for CD, and 40,266 for UC), we first performed Mendelian Randomization to examine the causal association between IBD and AD by leveraging vertical pleiotropy. Then, we estimated global and local genetic correlations, followed by cross-trait association analysis to identify SNPs and genes with horizontal pleiotropy. Particularly, we utilized multi-trait colocalization analysis to assess the role of microbes in the common genetic etiology underlying the two types of diseases. Finally, we conducted functional enrichment analysis for pleiotropic genes. RESULTS We discovered suggestively causal relations between IBD (and its subtypes) and EOAD (ORIBD = 1.06 [1.01-1.11], ORCD = 1.05 [1.01-1.10], ORUC = 1.08 [1.01-1.15]) as well as between UC and LOAD (OR = 1.04 [1.01-1.08]), and discovered 44 local regions showing suggestively significant genetic correlations between IBD (and its subtypes) and AD (and EODA and LOAD). We further detected substantial genetic overlap, as characterized by 182 AD-associated, 3 EOAD-associated and 51 LOAD-associated pleiotropic SNPs as well as 291 pleiotropic genes. Pleiotropic genes more likely enriched in the GMBA-relevant tissues such as brain, intestine and esophagus. Moreover, we identified three microorganisms related to these disease pairs, including the Catenibacterium, Clostridia, and Prevotella species. CONCLUSION The suggestively causal associations and shared genetic basis between IBD and its subtypes with AD, EOAD and LOAD may commonly drive their co-occurrence, and gut microbes might partly explain the shared genetic etiology. Further studies are warranted to elaborate the possibly biological mechanisms underlying the two types of diseases.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu Yan
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jike Qi
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuxin Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hao Chen
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Xinying Guan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222002, China
| | - Chu Zheng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
25
|
Zhou W, Yi Y, Cao W, Zhong X, Chen L. Functions of METTL1/WDR4 and QKI as m7G modification - related enzymes in digestive diseases. Front Pharmacol 2025; 15:1491763. [PMID: 39850560 PMCID: PMC11754259 DOI: 10.3389/fphar.2024.1491763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
N7-methylguanosine (m7G) modification is one of the most prevalent forms of chemical modification in RNA molecules, which plays an important role in biological processes such as RNA stability, translation regulation and ribosome recognition. Methyl-transferation of m7G modification is catalyzed by the enzyme complex of methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4), and Quaking (QKI) recognizes internal m7G methylated mRNA and regulates mRNA translation and stabilization. Recent studies have found that m7G modification - related enzymes are associated with the onset and progression of digestive cancer, such as colorectal cancer, liver cancer, and other digestive diseases such as ulcerative colitis. This review will focus on the latest research progress on the roles of m7G methyltransferase METTL1/WDR4 and recognized enzyme QKI in digestive diseases.
Collapse
Affiliation(s)
- Wenyan Zhou
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan Yi
- Institute Center of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenyu Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
26
|
Su Q, Lu Y, He S, Liang J, Huang S, He Y, An Z. Assessing inflammatory protein factors in inflammatory bowel Disease using multivariable mendelian randomization. Sci Rep 2025; 15:210. [PMID: 39747981 PMCID: PMC11696058 DOI: 10.1038/s41598-024-84447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), decreases quality of life and causes disability. The underlying processes are not fully understood. This study uses Mendelian randomization (MR) analysis to identify cytokines that may be associated with UC and CD, aiding in early diagnosis and treatment decisions. Methods Genome-wide association study (GWAS) data for inflammatory cytokine levels were obtained from a cohort of 14,824 individuals of European descent. The outcome data were then analyzed using summary-level GWAS data for UC and CD from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). The analysis was primarily conducted using inverse-variance weighted (IVW) methods, with MR-Egger and weighted median serving as supplementary analyses. Sensitivity analyses included Cochran's Q test, MR-Egger intercept test, MR-PRESSO, and leave-one-out analysis.The inflammatory cytokines were subjected to additional scrutiny through the application of the Steiger test and reverse Mendelian randomization analysis. Subsequently, multivariable Mendelian randomization (MVMR) was employed to examine the associations of metabolites on UC and CD, in conjunction with linkage disequilibrium score regression (LDSC) and colocalization analysis. After FDR correction, we identified significant genetic associations of two inflammatory proteins (CXCL5 and CXCL9) with UC, and CXCL5 and IL-18R1 with CD. These findings were further validated by MVMR. Colocalization analyses demonstrated substantial genetic overlap between inflammatory proteins and IBD, with CXCL5 showing strong evidence of shared genetic variants with UC, and CXCL9 exhibiting genetic colocalization with CD, suggesting common genetic determinants underlying these inflammatory protein-IBD relationships. The current work presents evidence that presents evidence of significant associations between seven inflammatory protein factors and UC, as well as three inflammatory protein factors and CD. These findings provide novel insights into the biological mechanisms of IBD, and have implications for the screening, prevention, and treatment of IBD.
Collapse
Affiliation(s)
- Qiang Su
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yun Lu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Rheumatology and Hematology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Song He
- Department of Gastroenterology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jiang Liang
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
- Department of Rheumatology and Hematology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Song Huang
- Anorectal Surgery Department, Fenggang County Traditional Chinese Medicine Hospital, Zunyi, Guizhou, China
| | - Yuanli He
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
- Department of Geriatry, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Zhenxiang An
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
- Department of Gastroenterology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| |
Collapse
|
27
|
Zou ZP, Cai Z, Zhang XP, Zhang D, Xu CY, Zhou Y, Liu R, Ye BC. Delivery of Encapsulated Intelligent Engineered Probiotic for Inflammatory Bowel Disease Therapy. Adv Healthc Mater 2025; 14:e2403704. [PMID: 39629555 DOI: 10.1002/adhm.202403704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Indexed: 01/29/2025]
Abstract
Engineered bacterial therapy holds enormous potential for treating intestinal diseases, employing synthetic biology techniques to achieve localized drug delivery within intestines. However, effective delivery of engineered bacteria to lesion sites and ensuring sustained colonization remain challenging. Here, a mucus encapsulated microsphere gel (MM) delivery system is developed to encapsulate genetically engineered bacteria capable of detecting and treating enteritis. The MM delivery system features an external mucosal coating composed of hyaluronic acid and epigallocatechin gallate, along with internal microspheres of highly biocompatible polyserine modified alginates encapsulating with the engineered probiotics. The MM delivery system effectively protects engineered bacteria harsh environment in stomach and significantly improves intestinal adhesion of the probiotics, extending colonization up to 24 h, and does not affect the entry of biomarker or release of Avcystatin. It exhibits notable diagnostic and therapeutic efficacy in inflammatory bowel disease models, thus facilitating the advancement of live biotherapeutic products toward clinical application.
Collapse
Affiliation(s)
- Zhen-Ping Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhihao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiao-Peng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chu-Ying Xu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ying Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
28
|
Itoh T, Miyazono D, Sugata H, Mori C, Takahata M. Anti-inflammatory effects of heat-killed Lactiplantibacillus argentoratensis BBLB001 on a gut inflammation co-culture cell model and dextran sulfate sodium-induced colitis mouse model. Int Immunopharmacol 2024; 143:113408. [PMID: 39461236 DOI: 10.1016/j.intimp.2024.113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Dysbiosis caused by dietary changes can alter the intestinal bacterial species and is closely associated with inflammatory bowel disease (IBD). Among the possible treatment options, postbiotics, which act to balance the constituent intestinal microflora, have gained substantial attention. Herein, we investigated the anti-inflammatory effects of heat-killed Lactiplantibacillus argentoratensis (hk-LA) BBLB001 isolated from a marine environment using both cell (Caco2/RAW264.7 cell co-culture) and animal (dextran sodium sulfate [DSS]-induced colitis in mice) models. hk-LA BBLB001 markedly reduced IL-8 secretion in Caco-2 cell culture medium after lipopolysaccharide-mediated stimulation of RAW264.7 cells by enhancing the expression of cell adhesion factors.The body weight loss, reduced inflammatory cytokine levels in the serum and colon tissues, colon shortening, and myeloperoxidase activation caused by DSS in mice were alleviated by hk-LA BBLB001. Similar to that in the intestinal cell model, the gene and protein expressions of cell adhesion molecules in the colon tissue were increased upon hk-LA BBLB001 treatment in DSS-induced colitis mice. We observed increased mucin expression and secretory IgA concentration in colon tissues, suggesting that hk-LA BBLB001 intake may benefit pathogen defense and the regulation of intestinal commensal bacteria. Thus, hk-LA BBLB001 may serve as an instrumental postbiotic material in IBD treatment.
Collapse
Affiliation(s)
- Tomohiro Itoh
- Laboratory for Molecular Chemistry of Aquatic Materials, Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan.
| | - Daiki Miyazono
- Laboratory for Molecular Chemistry of Aquatic Materials, Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| | - Hayato Sugata
- BIOBANK Co., Ltd., 388-1 Hirata, Kita, Okayama 700-0952, Japan
| | - Chizuru Mori
- BIOBANK Co., Ltd., 388-1 Hirata, Kita, Okayama 700-0952, Japan
| | | |
Collapse
|
29
|
González MB, Olmedo Martín RV, Morales Bermúdez AI, Jiménez Pérez M. Characterization of Inflammatory Bowel Disease in the Elderly According to Age of Onset. J Clin Med 2024; 13:7581. [PMID: 39768503 PMCID: PMC11728034 DOI: 10.3390/jcm13247581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Elderly populations are under-represented in inflammatory bowel disease (IBD) clinical trials, with limited data on phenotype, treatment patterns, outcomes, and comorbidities. The main objective of this study was to evaluate, in an elderly cohort with IBD, demographic and disease characteristics, comorbidity, polypharmacy, and treatment patterns according to the development of IBD at or before old age. Secondarily, the same analysis was performed based on the type of IBD: ulcerative colitis (UC) or Crohn's disease (CD). Materials and Methods: Observational, single-center, retrospective study including patients diagnosed with IBD and aged 65 years or older seen at the IBD office of the Regional University Hospital of Malaga between September and November 2022. Data were recorded on demographic, disease-related, and IBD treatment-related variables, comorbidities, and polypharmacy. A descriptive and analytical study was undertaken according to the age of IBD onset and type of IBD. Results: Of the patients included, 50.8% were male, 55.1% had CD, and 44.9% UC. IBD onset was before age 65 years in 69.5% and ≥65 years in 30.5%. Elderly with IBD who debuted <65 presented longer disease duration (19.67 ± 9.82 years) and required more IBD-related surgeries (37.8%); elderly with IBD who debuted ≥65 were older (77.69 ± 6.26 years), with no differences in the other variables. According to the type of IBD, elderly UC patients were older (74.55 ± 6.9 years), used more aminosalicylates (77.4%), and had higher rates of polypharmacy (90.6%). Elderly patients with CD had higher IBD activity (moderate/severe in 72.3%), used more biologic drugs (58.5%), and required more IBD-related surgeries (44.6%). Conclusions: Elderly patients who develop IBD before or after the age of 65 years are overall very similar in baseline and disease-related characteristics. Elderly with CD have higher IBD activity and require more biologic drugs and IBD-related surgeries. Elderly with UC are older and have higher rates of polypharmacy and aminosalicylate use.
Collapse
Affiliation(s)
| | | | | | - Miguel Jiménez Pérez
- UGC de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA) Plataforma BIONAD, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; (M.B.G.); (R.V.O.M.); (A.I.M.B.)
| |
Collapse
|
30
|
Wang Z, Zhou L, Zhong X, Jiang Y, Zhang Z, Li W. Liquid-liquid separation in gut immunity. Front Immunol 2024; 15:1505123. [PMID: 39720729 PMCID: PMC11666445 DOI: 10.3389/fimmu.2024.1505123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Gut immunity is essential for maintaining intestinal health. Recent studies have identified that intracellular liquid-liquid phase separation (LLPS) may play a significant role in regulating gut immunity, however, the underlying mechanisms remain unclear. LLPS refers to droplet condensates formed through intracellular molecular interactions, which are crucial for the formation of membraneless organelles and biomolecules. LLPS can contribute to the formation of tight junctions between intestinal epithelial cells and influence the colonization of probiotics in the intestine, thereby protecting the intestinal immune system by maintaining the integrity of the intestinal barrier and the stability of the microbiota. Additionally, LLPS can affect the microclusters on the plasma membrane of T cells, resulting in increased density and reduced mobility, which in turn influences T cell functionality. The occurrence of intracellular LLPS is intricately associated with the initiation and progression of gut immunity. This review introduces the mechanism of LLPS in gut immunity and analyzes future research directions and potential applications of this phenomenon.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Department of Gastrointestinal Surgery, Huadu District People’s Hospital, Guangzhou, China
- Biology, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Lili Zhou
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xiaolan Zhong
- Department of Gastroenterology, Huadu District People’s Hospital, Guangzhou, China
| | - Yiguo Jiang
- Biology, School of Public Health, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Xinzao, Guangzhou, China
| | - Zhentao Zhang
- Obstetrics and Gynecology Department, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wanglin Li
- Department of Gastrointestinal Surgery, Huadu District People’s Hospital, Guangzhou, China
- Department of Gastroenterology, Huadu District People’s Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Peng J, Tang S, Huang L, Fang Y. Protective role of TRPM7 knockdown in ulcerative colitis via blocking NLRP3 inflammasome-mediated pyroptosis. Prostaglandins Other Lipid Mediat 2024; 175:106904. [PMID: 39260818 DOI: 10.1016/j.prostaglandins.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Transient receptor potential melastatin 7 (TRPM7) has been emerged as a potent drug target for immunomodulation with ion conductance and kinase activities. The research is projected to characterize the influences of TRPM7 on the course of ulcerative colitis (UC) and dissect the latent response mechanisms. The in vivo murine model and in vitro cell model of UC were both stimulated by DSS. RT-qPCR and western blotting tested the abundance of TRPM7. Colonic damage was estimated by Hematoxylin-eosin staining, calculation of colon length, measurement of DAI and MPO assay kit. CCK-8 method and TUNEL staining severally ascertained cell activity and apoptosis. ELISA method assayed the inflammatory levels and relevant assay kits determined oxidative stress levels. FITC-dextran flux, immunohistochemistry, TEER as well as western blotting evaluated intestinal barrier function. Immunofluorescence staining and western blotting appraised NLR family pyrin domain containing 3 (NLRP3)-dependent pyroptosis. Depleted TRPM7 retarded inflammation, oxidative damage as well as intestinal barrier damage both in vitro and in vivo. TRPM7 reduction repressed the pyroptosis mediated by NLRP3 inflammasome. NLRP3 agonist nigericin partly abolished the protection elicited by TRPM7 silencing against inflammation, oxidative damage as well as intestinal barrier damage in vitro. Collectively, TRPM7 deletion might possess the therapeutic potential in UC, the working mechanism of which might involve the inactivation of NLRP3-dependent pyroptosis.
Collapse
Affiliation(s)
- Jinzhen Peng
- Department of gastroenterology, Shaoguan First People's Hospital, Shaoguan 512000, PR China
| | - Shuai Tang
- Department of gastroenterology, Shaoguan First People's Hospital, Shaoguan 512000, PR China
| | - Lifang Huang
- Department of Blood Transfusion, Shaoguan First People's Hospital, Shaoguan 512000, PR China
| | - Ye Fang
- Department of Spinal Bone Disease Surgery, Shaoguan First People's Hospital, Shaoguan 512000, PR China.
| |
Collapse
|
32
|
Gao X, Feng X, Hou T, Huang W, Ma Z, Zhang D. The roles of flavonoids in the treatment of inflammatory bowel disease and extraintestinal manifestations: A review. FOOD BIOSCI 2024; 62:105431. [DOI: 10.1016/j.fbio.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Zou ZP, Zhang XP, Zhang Q, Yin BC, Zhou Y, Ye BC. Genetically engineered bacteria as inflammatory bowel disease therapeutics. ENGINEERING MICROBIOLOGY 2024; 4:100167. [PMID: 39628589 PMCID: PMC11611042 DOI: 10.1016/j.engmic.2024.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 12/06/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent disease caused by immune response disorders that disrupt the intestinal lumen symbiotic ecosystem and dysregulate mucosal immune functions. Current therapies available for IBD primarily focus on symptom management, making early diagnosis and prompt intervention challenging. The development of genetically engineered bacteria using synthetic biology presents a new strategy for addressing these challenges. In this review, we present recent breakthroughs in the field of engineered bacteria for the treatment and detection of IBD and describe how bacteria can be genetically modified to produce therapeutic molecules or execute diagnostic functions. In particular, we discuss the challenges faced in translating live bacterial therapeutics from bacterial design to delivery strategies for further clinical applications.
Collapse
Affiliation(s)
| | | | - Qian Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
34
|
Yang Y, Qiao Y, Liu G, Chen W, Zhang T, Liu J, Fan W, Tong M. A Novel Synbiotic Protects Against DSS-Induced Colitis in Mice via Anti-inflammatory and Microbiota-Balancing Properties. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10393-2. [PMID: 39508961 DOI: 10.1007/s12602-024-10393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-inflammatory disease. Gut microbes, intestinal immunity, and gut barrier function play a critical role in IBD. Growing evidence suggests that synbiotic may offer therapeutic benefits for individuals with colitis, suggesting an alternative therapy against colitis. With this in mind, we creatively prepared a new synbiotic combination consisting of a probiotic strain (Limosilactobacillus reuteri) along with one prebiotic chitooligosaccharides (COS). The protective effects of the synbiotic on DSS-induced colitis and the underlying mechanisms were investigated. We demonstrated that the synbiotic ameliorated colitis in mice, as evidenced by a significant remission in body weight loss and colon shortening, and a decreased disease activity index (DAI). Notably, synbiotic reduced the intestinal inflammation and injury by synergistically decreasing inflammatory factors, inhibiting TLR4/Myd88/NF-κB/NLRP3 signaling, preventing macrophage infiltration, and enhancing the integrity of the intestinal barrier. Moreover, synbiotic selectively promoted the growth of beneficial bacteria (e.g., Akkermansia, Lactobacillus) but decreased the pathogenic bacteria (e.g., Helicobacter). BugBase's analysis supported its ameliorated role in reducing pathogenic bacteria. Collectively, our findings revealed the novel synbiotic had a potential to treat colitis, which was associated with its anti-inflammatory and microbiota-balancing properties. This study will contribute to the development of functional synbiotic products for IBD therapy and will provide valuable insights into their mechanisms.
Collapse
Affiliation(s)
- Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and, Shanxi Key Laboratory of Cellular Physiology , Taiyuan, 030001, China
| | - Yuyu Qiao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and, Shanxi Key Laboratory of Cellular Physiology , Taiyuan, 030001, China
| | - Ge Liu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and, Shanxi Key Laboratory of Cellular Physiology , Taiyuan, 030001, China
| | - Weihao Chen
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and, Shanxi Key Laboratory of Cellular Physiology , Taiyuan, 030001, China
| | - Ting Zhang
- Department of Ruminant Nutrition, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jing Liu
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Weiping Fan
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China.
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and, Shanxi Key Laboratory of Cellular Physiology , Taiyuan, 030001, China.
| | - Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China.
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and, Shanxi Key Laboratory of Cellular Physiology , Taiyuan, 030001, China.
| |
Collapse
|
35
|
Han J, Song HJ, Kang MS, Jun H, Kim HU, Kang KS, Lee D. Micronutrient Deficiency and Muscular Status in Inflammatory Bowel Disease. Nutrients 2024; 16:3763. [PMID: 39519597 PMCID: PMC11547367 DOI: 10.3390/nu16213763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/04/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Micronutrient deficiencies are common in inflammatory bowel disease (IBD). The aim of this study was to evaluate micronutrient deficiencies and identify muscular status of patients with IBD. From June 2019 to October 2021, a total of 105 patients with IBD were enrolled prospectively. To obtain objective data, micronutrients were measured in the patients' serum, and body composition analysis was performed using bioelectrical impedance analysis. There were 51 patients with ulcerative colitis (UC) and 54 with Crohn's disease (CD), while the gender ratio (M: F) was 54:51. The average age was 37 ± 18 years, which was significantly lower in patients with CD than UC (29 ± 16 vs. 45 ± 16, p < 0.001). Iron and magnesium were lower in patients with CD compared to UC, respectively (63.3 ± 42.5 vs. 82.8 ± 44.0 µg/dL, p = 0.024, 2.08 ± 0.15 vs. 2.15 ± 0.19 mg/dL, p = 0.036). Vitamin D levels showed insufficiency in patients with UC and deficiency (below 20 ng/mL) in patients with CD (20.1 ± 10.6 vs. 19.0 ± 9.9 ng/mL, p = 0.567). In the UC and CD patient groups, skeletal muscle index (SMI) and adjusted skeletal muscle mass were lower in patients with CD compared to UC (SMI: 32.8 ± 4.7 vs. 35.8 ± 5.5%, p < 0.004, adjusted skeletal muscle: 7.0 ± 1.5 vs. 8.2 ± 1.9 kg/m2, p < 0.001). In conclusion, decreased trace elements, specifically iron, magnesium, and vitamin D, as well as skeletal muscle mass were observed to be prominent in patients with CD as compared to UC.
Collapse
Affiliation(s)
- Joonhee Han
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University College of Medicine, Jeju 63241, Republic of Korea; (J.H.); (H.J.); (H.U.K.)
| | - Hyun Joo Song
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University College of Medicine, Jeju 63241, Republic of Korea; (J.H.); (H.J.); (H.U.K.)
| | - Min Sook Kang
- Department of Food & Nutrition Service Team, Jeju National University Hospital, Jeju 63241, Republic of Korea;
| | - Hogyung Jun
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University College of Medicine, Jeju 63241, Republic of Korea; (J.H.); (H.J.); (H.U.K.)
| | - Heung Up Kim
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University College of Medicine, Jeju 63241, Republic of Korea; (J.H.); (H.J.); (H.U.K.)
| | - Ki Soo Kang
- Department of Pediatrics, Jeju National University Hospital, Jeju National University College of Medicine, Jeju 63241, Republic of Korea;
| | - Donghyoun Lee
- Department of Surgery, Jeju National University Hospital, Jeju National University College of Medicine, Jeju 63241, Republic of Korea;
| |
Collapse
|
36
|
Cui Y, Li J, Zhao B, Liu J. Helicobacter pylori infection and inflammatory bowel disease: a 2-sample Mendelian randomization study. Front Microbiol 2024; 15:1384285. [PMID: 39498131 PMCID: PMC11533727 DOI: 10.3389/fmicb.2024.1384285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction Observational studies have discovered a contradictory phenomenon between Helicobacter pylori (H. pylori) infection and inflammatory bowel disease (IBD). The study aimed to confirm the causal association between H. pylori and IBD, including ulcerative colitis (UC) and Crohn's disease (CD). Methods We conducted a Mendelian randomization (MR) study with two sample Genome-Wide Association Studies (GWAS) to determine whether there is a causal relationship between H. pylori infection and IBD, as well as the possible pathogenic factors that may be involved. The reliability of the main MR assumptions was examined through a series of sensitivity analyses. Results Two genetic variants (SNPs) previously identified were employed as instrumental variables (IVs) for H. pylori infection. GWAS data for IBD, UC, and CD were obtained from the recent DF10 release10 of the FinnGen study. Our findings indicated a significant association between H. pylori seropositivity and an increased risk of IBD and UC (IBD: OR: 1.16, 95% CI, 1.03-1.31, P < 0.05; UC: OR: 1.22, 95% CI, 1.08-1.37, P < 0.001) while no causal relationship with CD (P > 0.05). Analysis of the main virulence pathogenic factors revealed a causal relationship between cytotoxin-associated protein A (CagA) and IBD and UC (IBD: OR: 1. 06, 95% CI, 1.001-1.11, P < 0.05; UC: OR: 1.07, 95% CI, 1.004-1.14, P < 0.05), while no correlation was found for vacuolar cytotoxin A (VacA) (P > 0.05). After applying the False Discovery Rate (FDR) correction, the causal relationship between CagA and the risk of IBD or UC was no longer statistically significant. Conclusion This study suggests a potential causal relationship between H. pylori infection and IBD, particularly UC. The effect may be more pronounced in individuals with previous H. pylori infections.
Collapse
Affiliation(s)
- Yurong Cui
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinxin Li
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Bing Zhao
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junying Liu
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
37
|
Wahnou H, Hmimid F, Errami A, Nait Irahal I, Limami Y, Oudghiri M. Integrating ADMET, enrichment analysis, and molecular docking approach to elucidate the mechanism of Artemisia herba alba for the treatment of inflammatory bowel disease-associated arthritis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:836-854. [PMID: 39028276 DOI: 10.1080/15287394.2024.2379856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Inflammatory Bowel Disease-Associated Arthritis (IBD-associated arthritis) poses a significant challenge, intertwining the complexities of both inflammatory bowel disease (IBD) and arthritis, significantly compromising patient quality of life. While existing medications offer relief, these drugs often initiate adverse effects, necessitating the requirement for safer therapeutic alternatives. Artemisia herba-alba, a traditional medicinal plant known for its anti-inflammatory properties, emerges as a potential candidate. Our computational study focused on examining 20 bioactive compounds derived from A. herba-alba for potential treatment of IBD-associated arthritis. These compounds detected in A. herba-alba include camphor, alpha-thujone, eucalyptol, cis-chrysanthenyl acetate, vicenin-2, 4,5-di-O-caffeoylquinic acid, chlorogenic acid, hispidulin, isoschaftoside, isovitexin, patuletin-3-glucoside, vanillic acid, rutin, schaftoside, lopinavir, nelfinavir, quercetin, artemisinin, gallic acid, and cinnamic acid. Following rigorous analysis encompassing pharmacokinetics, toxicity profiles, and therapeutic targets, compounds with favorable, beneficial characteristics were identified. In addition, comparative analysis with disease-gene associations demonstrated the interconnectedness of inflammatory pathways across diseases. Molecular docking studies provided mechanistic insights indicating this natural plant components potential to modulate critical inflammatory pathways. Overall, our findings indicate that A. herba-alba-derived compounds may be considered as therapeutic agents for IBD-associated arthritis, warranting further experimental validation and clinical exploration.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Fouzia Hmimid
- Laboratoire Santé et Environnement, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, Casablanca, Morocco
- Équipe de Biotechnologie, Environnement et Santé, Faculté des Sciences El Jadida, Université Chouaïb Doukkali, El Jadida, Morocco
| | - Ahmed Errami
- Laboratoire de Génie des Procédés et de l'Environnement, École Supérieure de Technologie, Université Hassan II de Casablanca, El Jadida, Morocco
| | - Imane Nait Irahal
- Laboratoire Santé et Environnement, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, Casablanca, Morocco
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| |
Collapse
|
38
|
Li L, Huang J, Feng L, Xu L, Lin H, Liu K, Li X, Wang R. Altechromone A Ameliorates Inflammatory Bowel Disease by Inhibiting NF-κB and NLRP3 Pathways. Mar Drugs 2024; 22:410. [PMID: 39330291 PMCID: PMC11432983 DOI: 10.3390/md22090410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Altechromone A, also known as 2,5-dimethyl-7-hydroxychromone, is a hydroxyketone containing one hydroxyl and one ketone group. In this study, we isolated Altechromone A from the marine-derived fungus Penicillium Chrysogenum (XY-14-0-4). Previous reports show that Altechromone A has various activities including tumor suppression, antibacterial, and antiviral activities. However, there is no study about its anti-inflammatory activity in inflammatory bowel disease (IBD). Here, we assess the anti-inflammatory activity, especially in IBD, and its potential mechanism using the zebrafish model. Our results indicated that Altechromone A has anti-inflammatory activity in a CuSO4-, tail-cutting-, and LPS-induced inflammatory model in zebrafish, respectively. In addition, Altechromone A greatly reduced the number of neutrophils, improved intestinal motility and efflux efficiency, alleviated intestinal damage, and reduced reactive oxygen species production in the TNBS-induced IBD zebrafish model. The transcriptomics sequencing and real-time qPCR indicated that Altechromone A inhibited the expression of pro-inflammatory genes including TNF-α, NF-κB, IL-1, IL-1β, IL-6, and NLRP3. Therefore, these data indicate that Altechromone A exhibits therapeutic effects in IBD by inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Lei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Jing Huang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Lixin Feng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Liyan Xu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Houwen Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Medical Decision and Economic Group, Department of Pharmacy, Ren Ji Hospital, South Campus, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| |
Collapse
|
39
|
Jauregui W, Abarca YA, Ahmadi Y, Menon VB, Zumárraga DA, Rojas Gomez MC, Basri A, Madala RS, Girgis P, Nazir Z. Shared Pathophysiology of Inflammatory Bowel Disease and Psoriasis: Unraveling the Connection. Cureus 2024; 16:e68569. [PMID: 39364475 PMCID: PMC11449469 DOI: 10.7759/cureus.68569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Psoriasis (PS) and inflammatory bowel disease (IBD) are immune-mediated chronic conditions that share pathophysiological processes, including immune system dysfunction, microbiome dysbiosis, and inflammatory pathways. These pathways result in increased turnover of epithelial cells and compromised barrier function. The assessment of the literature suggests that immunopathogenic mechanisms, such as tumor necrosis factor (TNF)-α signaling and IL-23/IL-17 axis dysregulation, are shared by PS and IBD. Clinical characteristics and diagnostic approaches overlap significantly, and advances in biomarker identification benefit both conditions. Current treatments, namely biologics that target TNF-α, IL-17, and IL-23, show promising results in decreasing inflammation and controlling symptoms. Precision medicine approaches are prioritized in prospective therapeutic procedures to tailor pharmaceuticals based on specific biomarkers, perhaps improving outcomes and minimizing side effects. This study thoroughly examines and evaluates the body of research on PS and IBD. Several papers were examined to compile data on clinical features, diagnosis, therapies, pathophysiology, epidemiology, and potential future therapeutic developments. The selection of articles was based on three methodological qualities: relevance and addition to the knowledge of IBD and PS. The retrieved data were combined to provide a coherent summary of the state of the knowledge and to spot new trends. The overview of the latest studies demonstrates that both PS and IBD share pathophysiological foundations and therapeutic approaches. With a spotlight on particular biomarkers, advances in precision medicine provide a promising path toward enhancing therapeutic effectiveness and minimizing side effects.
Collapse
Affiliation(s)
- Walter Jauregui
- General Medicine, Universidad Nacional Autónoma de Honduras, Tegucigalpa, HND
| | - Yozahandy A Abarca
- Internal Medicine, Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, MEX
| | - Yasmin Ahmadi
- School of Medicine, Royal College of Surgeons in Ireland - Medical University of Bahrain, Muharraq, BHR
| | - Vaishnavi B Menon
- Internal Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | | | | | - Aleeza Basri
- Internal Medicine, Liaquat University of Medical and Health Sciences, Hyderabad, PAK
| | | | - Peter Girgis
- Internal Medicine, Ross University School of Medicine, Bridgetown, BRB
| | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, PAK
| |
Collapse
|
40
|
Schoefs E, Vermeire S, Ferrante M, Sabino J, Verstockt B, Avedano L, De Rocchis MS, Sajak-Szczerba M, Saldaña R, Straetemans N, Vandebroek M, Janssens R, Huys I. Patient preferences for inflammatory bowel disease treatments: protocol development of a global preference survey using a discrete choice experiment. Front Med (Lausanne) 2024; 11:1418874. [PMID: 39206174 PMCID: PMC11349669 DOI: 10.3389/fmed.2024.1418874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Background As the therapeutic landscape for inflammatory bowel disease (IBD) continues to expand, a need exists to understand how patients perceive and value different attributes associated with their disease as well as with current and emerging treatments. These insights can inform the development and regulation of effective interventions for IBD, benefiting various stakeholders including healthcare professionals, drug developers, regulators, Health Technology Assessment bodies, payers, and ultimately patients suffering from IBD. In response to this, the present patient preference study was developed with the aim to (1) determine the relative preference weights for IBD treatment and disease related attributes, and (2) explain how preferences may differ across patients with different characteristics (preference heterogeneity). Methods The patient preference study (PPS) was developed through an 8-step process, with each step being informed by an advisory board. This process included: (1) stated preference method selection, (2) attribute and level development (including a scoping literature review, focus group discussions, and advisory board meetings), (3) choice task construction, (4) sample size estimation, (5) survey implementation, (6) piloting, (7) translation, and (8) pre-testing. The resulting discrete choice experiment (DCE) survey comprises 14 attributes with between two and five varying levels. Participants will answer 15 DCE questions with a partial profile design, where each of the choice questions encompasses two hypothetical treatment profiles showing four attributes. Additionally, questions about patients' socio-demographic and clinical characteristics, as well as contextual factors are implemented. The survey is available in 15 different languages and aims to minimally recruit 700 patients globally. Discussion This protocol gives valuable insights toward preference researchers and decision-makers on how PPS design can be transparently reported, demonstrating solutions to remaining gaps in preference research. Results of the PPS will provide evidence regarding the disease and treatment related characteristics that are most important for IBD patients, and how these may differ across patients with different characteristics. These findings will yield valuable insights applicable to preference research, drug development, regulatory approval, and reimbursement processes, enabling decision making across the medicinal product life cycle that is aligned with the true needs of IBD patients.
Collapse
Affiliation(s)
- Elise Schoefs
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - João Sabino
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Luisa Avedano
- European Federation of Crohn's & Ulcerative Colitis Associations (EFCCA), Brussels, Belgium
| | | | | | - Roberto Saldaña
- European Federation of Crohn's & Ulcerative Colitis Associations (EFCCA), Brussels, Belgium
| | - Noortje Straetemans
- Department of Gastroenterology, AZ Vesalius, Tongeren, Belgium
- Belgian IBD Nurses and Study Coordinators Association (BINAStoria), Brussels, Belgium
| | | | - Rosanne Janssens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Isabelle Huys
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
42
|
Buldukoglu OC. Factors Affecting Surgical Outcomes in Patients With IBD. Dis Colon Rectum 2024; 67:e1509. [PMID: 38772019 DOI: 10.1097/dcr.0000000000003392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Affiliation(s)
- Osman Cagin Buldukoglu
- Department of Gastroenterology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey
| |
Collapse
|
43
|
Zhong M, An H, Gan H. The causal relationship between inflammatory bowel diseases and erythema nodosum: a bidirectional two-sample mendelian randomization study. BMC Gastroenterol 2024; 24:231. [PMID: 39044191 PMCID: PMC11267788 DOI: 10.1186/s12876-024-03330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Individuals with inflammatory bowel disease (IBD) exhibit a heightened likelihood of developing erythema nodosum (EN), but the presence of causal link is unknown. The purpose of the present research was to investigate this connection using a bidirectional two-sample Mendelian randomization (MR) analysis. METHODS Summarized statistics for EN were sourced from the FinnGen consortium of European ancestry. The International Inflammatory Bowel Disease Genetic Consortium (IBDGC) was used to extract summary data for IBD. The inverse variance weighted (IVW) technique was the major method used to determine the causative link between them. RESULTS The study evaluated the reciprocal causal link between IBD and EN. The IVW technique confirmed a positive causal link between IBD and EN (OR = 1.237, 95% CI: 1.109-1.37, p = 1.43 × 10- 8), as well as a strong causality connection between Crohn's disease (CD) and EN (OR = 1.248, 95% CI: 1.156-1.348, p = 1.00 × 10- 4). Nevertheless, a causal connection between ulcerative colitis (UC) and EN could not be established by the data. The reverse MR research findings indicated that analysis indicated that an increase in EN risks decreased the likelihood of UC (OR = 0.927, 95% CI: 0.861-0.997, p = 0.041), but the causal association of EN to IBD and CD could not be established. CONCLUSION This investigation confirmed that IBD and CD had a causal connection with EN, whereas UC did not. In addition, EN may decrease the likelihood of UC. Further study must be performed to uncover the underlying pathophysiological mechanisms producing that connection.
Collapse
Affiliation(s)
- Min Zhong
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Wuhou District, Chengdu, 332001, Sichuan, China
| | - Hongjin An
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Wuhou District, Chengdu, 332001, Sichuan, China
| | - Huatian Gan
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Department of Gastroenterology and Laboratory of Inflammatory Bowel Disease, the Center for Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital , Sichuan University, Chengdu, China.
| |
Collapse
|
44
|
Gao J, Li J, Luo Z, Wang H, Ma Z. Nanoparticle-Based Drug Delivery Systems for Inflammatory Bowel Disease Treatment. Drug Des Devel Ther 2024; 18:2921-2949. [PMID: 39055164 PMCID: PMC11269238 DOI: 10.2147/dddt.s461977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory condition characterized by recurring inflammation of the intestinal mucosa. However, the existing IBD treatments are ineffective and have serious side effects. The etiology of IBD is multifactorial and encompasses immune, genetic, environmental, dietary, and microbial factors. The nanoparticles (NPs) developed based on specific targeting methodologies exhibit great potential as nanotechnology advances. Nanoparticles are defined as particles between 1 and 100 nm in size. Depending on their size and surface functionality, NPs exhibit different properties. A variety of nanoparticle types have been employed as drug carriers for the treatment of inflammatory bowel disease (IBD), with encouraging outcomes observed in experimental models. They increase the bioavailability of drugs and enable targeted drug delivery, promoting localized treatment and thus enhancing efficacy. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines.
Collapse
Affiliation(s)
- Jian Gao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zengyou Luo
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hongyong Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
45
|
Bosselaar S, Dhelin L, Dautel E, Titecat M, Duthoy S, Stelmaszczyk M, Delory N, De Sousa Violante M, Machuron F, Ait-Abderrahim H, Desreumaux P, Foligné B, Monnet C. Taxonomic and phenotypic analysis of bifidobacteria isolated from IBD patients as potential probiotic strains. BMC Microbiol 2024; 24:233. [PMID: 38951788 PMCID: PMC11218132 DOI: 10.1186/s12866-024-03368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Inflammatory Bowel Diseases (IBD) are a major public health issue with unclear aetiology. Changes in the composition and functionality of the intestinal microbiota are associated with these pathologies, including the depletion of strict anaerobes such as Feacalibacterium prausnitzii. Less evidence is observed for depletion in other anaerobes, among which bifidobacteria. This study characterized the taxonomic and functional diversity of bifidobacteria isolated from the human intestinal microbiota in active and non-active IBD patients by a culturomics approach and evaluated if these bifidobacteria might be used as probiotics for gut health. RESULTS A total of 341 bifidobacteria were isolated from the intestinal microbiota of IBD patients (52 Crohn's disease and 26 ulcerative colitis patients), with a high proportion of Bifidobacterium dentium strains (28% of isolated bifidobacteria). In ulcerative colitis, the major species identified was B. dentium (39% of isolated bifidobacteria), in active and non-active ulcerative colitis. In Crohn's disease, B. adolescentis was the major species isolated from non-active patients (40%), while similar amounts of B. dentium and B. adolescentis were found in active Crohn's disease patients. The relative abundance of B. dentium was increased with age, both in Crohn's disease and ulcerative colitis and active and non-active IBD patients. Antibacterial capacities of bifidobacteria isolated from non-active ulcerative colitis against Escherichia coli LF82 and Salmonella enterica ATCC 14028 were observed more often compared to strains isolated from active ulcerative colitis. Finally, B. longum were retained as strains with the highest probiotic potential as they were the major strains presenting exopolysaccharide synthesis, antibacterial activity, and anti-inflammatory capacities. Antimicrobial activity and EPS synthesis were further correlated to the presence of antimicrobial and EPS gene clusters by in silico analysis. CONCLUSIONS Different bifidobacterial taxonomic profiles were identified in the microbiota of IBD patients. The most abundant species were B. dentium, mainly associated to the microbiota of ulcerative colitis patients and B. adolescentis, in the intestinal microbiota of Crohn's disease patients. Additionally, the relative abundance of B. dentium significantly increased with age. Furthermore, this study evidenced that bifidobacteria with probiotic potential (antipathogenic activity, exopolysaccharide production and anti-inflammatory activity), especially B. longum strains, can be isolated from the intestinal microbiota of both active and non-active Crohn's disease and ulcerative colitis patients.
Collapse
Affiliation(s)
- Sabine Bosselaar
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France.
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France.
| | - Lucile Dhelin
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Ellena Dautel
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Marie Titecat
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Stéphanie Duthoy
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Marie Stelmaszczyk
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Nathan Delory
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Madeleine De Sousa Violante
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - François Machuron
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Hassina Ait-Abderrahim
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Pierre Desreumaux
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037, Lille, France
| | - Benoit Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Céline Monnet
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| |
Collapse
|
46
|
Jarmakiewicz-Czaja S, Gruszecka J, Filip R. The Diagnosis of Intestinal Fibrosis in Crohn's Disease-Present and Future. Int J Mol Sci 2024; 25:6935. [PMID: 39000043 PMCID: PMC11241173 DOI: 10.3390/ijms25136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Crohn's disease (CD) progresses with periods of remission and exacerbations. During exacerbations, chronic inflammation leads to tissue destruction. As a result, intestinal fibrosis may develop in response to the ongoing inflammatory process. Fibrosis in CD should be considered the result of the response of the intestinal wall (over) to the presence of inflammation in the deep structures of the intestinal wall. In the absence of ideal noninvasive methods, endoscopic evaluation in combination with biopsy, histopathological analysis, stool analysis, and blood analysis remains the gold standard for assessing both inflammation and fibrosis in CD. On the contrary, the ability to identify markers of intestinal fibrosis would help to develop new diagnostic and therapeutic methods to detect early stages of fibrosis. It is speculated that miRNAs may, in the future, become biomarkers for early noninvasive diagnosis in the treatment of intestinal fibrosis. The purpose of this review is to summarise existing diagnostic methods for Crohn's disease and present recent scientific reports on molecular testing.
Collapse
Affiliation(s)
| | - Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Clinical Microbiology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
47
|
Semenova N, Garashchenko N, Kolesnikov S, Darenskaya M, Kolesnikova L. Gut Microbiome Interactions with Oxidative Stress: Mechanisms and Consequences for Health. PATHOPHYSIOLOGY 2024; 31:309-330. [PMID: 39051221 PMCID: PMC11270257 DOI: 10.3390/pathophysiology31030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Understanding how gut flora interacts with oxidative stress has been the subject of significant research in recent years. There is much evidence demonstrating the existence of the microbiome-oxidative stress interaction. However, the biochemical basis of this interaction is still unclear. In this narrative review, possible pathways of the gut microbiota and oxidative stress interaction are presented, among which genetic underpinnings play an important role. Trimethylamine-N-oxide, mitochondria, short-chain fatty acids, and melatonin also appear to play roles. Moreover, the relationship between oxidative stress and the gut microbiome in obesity, metabolic syndrome, chronic ethanol consumption, dietary supplements, and medications is considered. An investigation of the correlation between bacterial community features and OS parameter changes under normal and pathological conditions might provide information for the determination of new research methods. Furthermore, such research could contribute to establishing a foundation for determining the linkers in the microbiome-OS association.
Collapse
Affiliation(s)
- Natalya Semenova
- Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia; (N.G.); (S.K.); (M.D.); (L.K.)
| | | | | | | | | |
Collapse
|
48
|
Yang F, Zhang M, Xu R, Yu Y, Feng H, Li D, Li L, Zhang B, Liu G, Wang Y, Xie Q, Chen Z, Cao Y, Li Y. SDH, a novel diarylheptane compound, alleviates dextran sulfate sodium (DSS)-induced colitis by reducing Th1/Th2/Th17 induction and regulating the gut microbiota in mice. Int Immunopharmacol 2024; 134:112234. [PMID: 38739976 DOI: 10.1016/j.intimp.2024.112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Ulcerative colitis, a chronic inflammatory condition affecting the rectum and colon to varying degrees, is linked to a dysregulated immune response and the microbiota. Sodium (aS,9R)-3-hydroxy-16,17-dimethoxy-15-oxidotricyclo[12.3.1.12,6]nonadeca-1(18),2,4,6(19),14,16-hexene-9-yl sulfate hydrate (SDH) emerges as a novel diarylheptane compound aimed at treating inflammatory bowel diseases. However, the mechanisms by which SDH modulates these conditions remain largely unknown. In this study, we assessed SDH's impact on the clinical progression of dextran sodium sulfate (DSS)-induced ulcerative colitis. Our results demonstrated that SDH significantly mitigated the symptoms of DSS-induced colitis, reflected in reduced disease activity index scores, alleviation of weight loss, shortening of the colorectum, and reduction in spleen swelling. Notably, SDH decreased the proportion of Th1/Th2/Th17 cells and normalized inflammatory cytokine levels in the colon. Furthermore, SDH treatment modified the gut microbial composition in mice with colitis, notably decreasing Bacteroidetes and Proteobacteria populations while substantially increasing Firmicutes, Actinobacteria, and Patescibacteria. In conclusion, our findings suggest that SDH may protect the colon from DSS-induced colitis through the regulation of Th1/Th2/Th17 cells and gut microbiota, offering novel insights into SDH's therapeutic potential.
Collapse
Affiliation(s)
- Fei Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou Pharmavan Co.,Ltd, Suzhou, Jiangsu 215127, China
| | - Minjie Zhang
- Suzhou Pharmavan Co.,Ltd, Suzhou, Jiangsu 215127, China
| | - Ruyi Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yunhui Yu
- Suzhou Pharmavan Co.,Ltd, Suzhou, Jiangsu 215127, China
| | - Haimei Feng
- Suzhou Pharmavan Co.,Ltd, Suzhou, Jiangsu 215127, China
| | - Dong Li
- Suzhou Pharmavan Co.,Ltd, Suzhou, Jiangsu 215127, China
| | - Ling Li
- Suzhou Pharmavan Co.,Ltd, Suzhou, Jiangsu 215127, China
| | - Biyan Zhang
- Suzhou Pharmavan Co.,Ltd, Suzhou, Jiangsu 215127, China
| | - Gang Liu
- Suzhou Pharmavan Co.,Ltd, Suzhou, Jiangsu 215127, China
| | - Yanping Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qing Xie
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zijun Chen
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yu Cao
- Suzhou Pharmavan Co.,Ltd, Suzhou, Jiangsu 215127, China.
| | - Yunsen Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
49
|
Wei F, Li D, Chen X, Li Y, Zeng Y, Cai Y, Zeng Y, Chen Y, Ma X, Zeng J. Therapeutic effects of epigallocatechin-3-gallate for inflammatory bowel disease: A preclinical meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155408. [PMID: 38503153 DOI: 10.1016/j.phymed.2024.155408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Epigallocatechin-3-gallate (EGCG), the primary active compound in green tea, is recognized for its significant anti-inflammatory properties and potential pharmacological effects on inflammatory bowel disease (IBD). However, comprehensive preclinical evidence supporting the use of EGCG in treating IBD is currently insufficient. PURPOSE To evaluate the efficacy of EGCG in animal models of IBD and explore potential underlying mechanisms, serving as a groundwork for future clinical investigations. METHODS A systematic review of pertinent preclinical studies published until September 1, 2023, in databases such as PubMed, Embase, Web of Science, and Cochrane Library was conducted, adhering to stringent quality criteria. The potential mechanisms via which EGCG may address IBD were summarized. STATA v16.0 was used to perform a meta-analysis to assess IBD pathology, inflammation, and indicators of oxidative stress. Additionally, dose-response analysis and machine learning models were utilized to evaluate the dose-effect relationship and determine the optimal dosage of EGCG for IBD treatment. RESULTS The analysis included 19 studies involving 309 animals. The findings suggest that EGCG can ameliorate IBD-related pathology in animals, with a reduction in inflammatory and oxidative stress indicators. These effects were observed through significant changes in histological scores, Disease Activity Index, Colitis Macroscopic Damage Index and colon length; a decrease in markers such as interleukin (IL)-1β, IL-6 and interferon-γ; and alterations in malondialdehyde, superoxide dismutase, glutathione, and catalase levels. Subgroup analysis indicated that the oral administration route of EGCG exhibited superior efficacy over other administration routes. Dose-response analysis and machine learning outcomes highlighted an optimal EGCG dosage range of 32-62 mg/kg/day, with an intervention duration of 4.8-13.6 days. CONCLUSIONS EGCG exhibits positive effects on IBD, particularly when administered at the dose range of 32 - 62 mg/kg/day, primarily attributed to its ability to regulate inflammation and oxidative stress levels.
Collapse
Affiliation(s)
- Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Delin Li
- School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Xiaodong Chen
- Department of Gastric Surgery, Sichuan Clinical Research Centre for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Centre Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuting Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Chinese Medicine, Chengdu 610075, China
| | - Youtao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
50
|
He L, Deng T, Huang Y, Yang W, Yang J, Song G. Association between 23 drugs and inflammatory bowel disease: a two-sample Mendelian randomization study. Front Med (Lausanne) 2024; 11:1371362. [PMID: 38835788 PMCID: PMC11149542 DOI: 10.3389/fmed.2024.1371362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is a group of diseases characterized by chronic and recurrent inflammation of the gastrointestinal tract. The etiology of IBD remains multifaceted and poorly understood, resulting in limited treatment options that primarily target disease induction and remission maintenance. Thus, the exploration of novel therapeutic options for IBD among existing medications is advantageous. Mendelian randomization analysis (MR) serves as a valuable tool in investigating the relationship between drugs and diseases. In this study, MR analysis was employed to investigate the potential causal relationship between 23 approved drugs for the treatment of various diseases and IBD. Method We performed a two-sample MR analysis using publicly available genome-wide association study (GWAS) statistics. The inverse variance weighting (IVW) method was used as the main analysis method, supplemented by the remaining four methods (weighted median, MR Egger regression, simple and weighted models), and Meta-analysis was performed to expand the sample size to obtain a more reliable composite causal effect. Finally, Cochran's Q statistic and the MR-Egger test for directed pleiotropy were applied to determine whether significant heterogeneity or directed pleiotropy existed. Results In the main MR analysis (IVW), drugs with a negative causal association with the risk of IBD were immunosuppressant {OR (95% CI) = 0.7389 [0.6311-0.8651], p = 0.0046} and diabetes drugs {OR (95% CI) = 0.9266 [0.8876-0.9674], p = 0.0058}. A positive causal association with the risk of IBD was found for salicylic acid and derivatives {OR (95% CI) = 1.2737 [1.0778-1.5053], p = 0.0345}. Negative causal associations with UC risk were identified for immunosuppressants {OR (95% CI) = 0.6660 [0.5133-0.8640], p = 0.0169} and diabetes medications {OR (95% CI) = 0.9020 [0.8508-0.9551], p = 0.0046}; positive causal associations with UC risk were found for β-receptor blockers {OR (95% CI) = 1.1893 [1.0823-1.3070], p = 0.0046}. A negative causal association with the risk of CD was found for immunosuppressants {OR (95% CI) = 0.6957 [0.5803-0.8341], p = 0.0023}. There was no statistically significant association between the remaining 19 drugs and IBD and subtypes. Conclusion This MR study provides evidence suggesting that immunosuppressants have a mitigating effect on the risk of IBD and demonstrate consistent efficacy in subtypes of ulcerative colitis (UC) and Crohn's disease (CD). Additionally, diabetes medications show potential in reducing the risk of IBD, particularly in cases of UC, while β-blockers may elevate the risk of UC. Conversely, salicylic acid and its derivatives may increase the risk of IBD, although this effect is not consistently observed in the subtypes of the disease. These findings offer new insights into the prevention and management of IBD.
Collapse
Affiliation(s)
- Lei He
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tuo Deng
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yurong Huang
- Department of Gastroenterology, Liupanshui People's Hospital, Liupanshui, Guizhou, China
| | - Wangliu Yang
- Department of Gastroenterology, Liupanshui People's Hospital, Liupanshui, Guizhou, China
| | - Jie Yang
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Gengqing Song
- Department of Gastroenterology and Hepatology, Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|