1
|
Marcianti A, Spampinato E, Nava S, Stella GM, Perego P, Pogliani S, Frigerio S, Mirra L, Gagni P, Moda F, Cazzaniga FA, Beretta GL, Maronati G, Paglia G, Corsico AG, Traversari C, Lisini D. Extracellular vesicles isolated from adipose tissue-derived mesenchymal stromal cells as carriers for Paclitaxel delivery. Stem Cell Res Ther 2025; 16:307. [PMID: 40518531 PMCID: PMC12168270 DOI: 10.1186/s13287-025-04435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 06/09/2025] [Indexed: 06/18/2025] Open
Abstract
BACKGROUND Mesenchymal Stromal Cells (MSC)-derived Extracellular Vesicles (EV) represent innovative tools for drug delivery systems. However, their clinical use is limited by the lack of standardized good manufacturing practice (GMP)-compliant isolation and conservation protocols. In this study, we developed a GMP-compliant protocol for the preparation of MSC-EVs and investigated the feasibility of producing EVs loaded with paclitaxel (PTX) for clinical application as drug products. METHODS Adipose tissues from 13 donors were used to obtain MSC-EVs via culture supernatant ultracentrifugation. EVs loaded with PTX were manufactured by adding the drug to the culture medium of MSCs before supernatant collection. EV identity was verified in terms of concentration/size, protein content, morphology, and expression of EV surface markers. The anti-proliferative activity, accumulation ability in tumor cells and PTX content, as well as their stability over time, were also evaluated. RESULTS High numbers of EV/EV-PTX compliant in terms of integrity/identity were obtained and can be successfully stored for up to one year at -80 °C. Cellular studies have shown that EVs are capable of accumulating in tumor cells and, when loaded with PTX, inhibiting the proliferation of a pleural mesothelioma cell line. CONCLUSIONS These results support the potential future clinical use of EVs as carriers for drug delivery to improve cancer treatment strategies.
Collapse
Affiliation(s)
- Angela Marcianti
- Cell Therapy Production Unit, Scientific Direction, IRCCS Neurologic Institute C. Besta Foundation, 20133, Milan, Italy
| | - Eleonora Spampinato
- Cell Therapy Production Unit, Scientific Direction, IRCCS Neurologic Institute C. Besta Foundation, 20133, Milan, Italy
| | - Sara Nava
- Cell Therapy Production Unit, Scientific Direction, IRCCS Neurologic Institute C. Besta Foundation, 20133, Milan, Italy
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Simona Pogliani
- Cell Therapy Production Unit, Scientific Direction, IRCCS Neurologic Institute C. Besta Foundation, 20133, Milan, Italy
| | - Simona Frigerio
- Cell Therapy Production Unit, Scientific Direction, IRCCS Neurologic Institute C. Besta Foundation, 20133, Milan, Italy
| | - Luca Mirra
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Gagni
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), 20131, Milan, Italy
| | - Fabio Moda
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Unit of Laboratory Medicine, Laboratory of Clinical Pathology, IRCCS Neurologic Institute C. Besta Foundation, Milan, Italy
| | - Federico Angelo Cazzaniga
- Unit of Laboratory Medicine, Laboratory of Clinical Pathology, IRCCS Neurologic Institute C. Besta Foundation, Milan, Italy
| | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Giuseppe Paglia
- School of Medicine and Surgery, Milano-Bicocca University, 20900, Monza, Italy
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Catia Traversari
- Cell Therapy Production Unit, Scientific Direction, IRCCS Neurologic Institute C. Besta Foundation, 20133, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Scientific Direction, IRCCS Neurologic Institute C. Besta Foundation, 20133, Milan, Italy.
| |
Collapse
|
2
|
Liu JJJ, Liu D, To SKY, Wong AST. Exosomes in cancer nanomedicine: biotechnological advancements and innovations. Mol Cancer 2025; 24:166. [PMID: 40481526 PMCID: PMC12144782 DOI: 10.1186/s12943-025-02372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/28/2025] [Indexed: 06/11/2025] Open
Abstract
Exosomes, as natural intercellular messengers, are gaining prominence as delivery vehicles in nanomedicine, offering a superior alternative to conventional synthetic nanoparticles for cancer therapeutics. Unlike lipid, polymer, or metallic nanoparticles, which often face challenges related to immunogenicity, targeting precision, and off-tumor toxicity, exosomes can effectively encapsulate a diverse range of therapeutic agents while exhibiting low toxicity, favorable pharmacokinetics, and organotropic properties. This review examines recent advancements in exosome bioengineering over the past decade. Innovations such as microfluidics-based platforms, nanoporation, fusogenic hybrids, and genetic engineering have significantly improved loading efficiencies, production scalability, and pharmacokinetics of exosomes. These advancements facilitate tumor-specific cargo delivery, resulting in substantial improvements in retention and efficacy essential for clinical success. Moreover, enhanced biodistribution, targeting, and bioavailability-through strategies such as cell selection, surface modifications, membrane composition alterations, and biomaterial integration-suggests a promising future for exosomes as an ideal nanomedicine delivery platform. We also highlight the translational impact of these strategies through emerging clinical trials. Additionally, we outline a framework for clinical translation that focuses on: cargo selection, organotropic cell sourcing, precision loading methodologies, and route-specific delivery optimization. In summary, this review emphasizes the potential of exosomes to overcome the pharmacokinetic and safety challenges that have long impeded oncology drug development, thus enabling safer and more effective cancer treatments.
Collapse
Affiliation(s)
- Jacky J J Liu
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Duanrui Liu
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Sally K Y To
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, 17 W, Hong Kong Science and Technology Parks, New Territories, Hong Kong.
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Shah KA, Ali T, Hussain Y, Dormocara A, You B, Cui JH. Isolation, characterization and therapeutic potentials of exosomes in lung cancer: Opportunities and challenges. Biochem Biophys Res Commun 2025; 759:151707. [PMID: 40153996 DOI: 10.1016/j.bbrc.2025.151707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/08/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Lung cancer (LC) signifies the primary cause of cancer-related mortality, representing 24 % of all cancer fatalities. LC is intricate and necessitates innovative approaches for early detection, precise diagnosis, and tailored treatment. Exosomes (EXOs), a subclass of extracellular vesicles (EVs), are integral to LC advancement, intercellular communication, tumor spread, and resistance to anticancer therapies. EXOs represent a viable drug delivery strategy owing to their distinctive biological characteristics, such as natural origin, biocompatibility, stability in blood circulation, minimal immunogenicity, and potential for modification. They can function as vehicles for targeted pharmaceuticals and facilitate the advancement of targeted therapeutics. EXOs are pivotal in the metastatic cascade, facilitating communication between cancer cells and augmenting their invasive capacity. Nonetheless, obstacles such as enhancing cargo loading efficiency, addressing homogeneity concerns during preparation, and facilitating large-scale clinical translation persist. Interdisciplinary collaboration in research is crucial for enhancing the efficacy of EXOs drug delivery systems. This review explores the role of EXOs in LC, their potential as therapeutic agents, and challenges in their development, aiming to advance targeted treatments. Future research should concentrate on engineering optimization and developing innovative EXOs to improve flexibility and effectiveness in clinical applications.
Collapse
Affiliation(s)
- Kiramat Ali Shah
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Tariq Ali
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Yaseen Hussain
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Amos Dormocara
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Bengang You
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Jing-Hao Cui
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Uno K, Kubota E, Mori Y, Nishigaki R, Kojima Y, Kanno T, Sasaki M, Fukusada S, Sugimura N, Tanaka M, Ozeki K, Shimura T, Johnston RN, Kataoka H. Mesenchymal stem cell-derived small extracellular vesicles as a delivery vehicle of oncolytic reovirus. Life Sci 2025; 368:123489. [PMID: 39987955 DOI: 10.1016/j.lfs.2025.123489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
AIM The oncolytic reovirus has demonstrated efficacy against various cancer types in preclinical and clinical studies. However, its anti-tumor activity is limited. This study aimed to develop a novel drug delivery system (DDS) using small extracellular vesicles (sEVs) derived from human adipose-derived mesenchymal stem cells to enhance the therapeutic potential of reovirus. MATERIALS AND METHODS sEVs, which offer distinct advantages over traditional systems such as nanoparticles due to their natural biocompatibility, low immunogenicity, ability to cross biological barriers, and cell-derived targeting properties, were engineered to encapsulate reovirus particles (sEVs-reo). The anti-tumor activity of sEVs-reo was evaluated using colorectal cancer cell lines HCT116 and SW480. Additionally, resistance to neutralizing antibodies, internalization by cancer cells, and efficacy against junctional adhesion molecule-A(JAM-A)-knockout colon cancer cells resistant to reovirus, generated via CRISPR/Cas9, were assessed. KEY FINDINGS sEVs-reo encapsulated reovirus particles effectively, and at a concentration of 0.5 μg/ml, reduced viable tumor cells by 60.3 % in HCT116 and 42.5 % in SW480. Remarkably, sEVs-reo exhibited significant efficacy even in the presence of neutralizing antibodies, including anti-σ1 antibodies and serum from reovirus-infected mice. sEVs-reo were rapidly internalized by cancer cells within 4 h while exhibiting reduced immunogenicity relative to reovirus, and demonstrated significant anti-tumor activity against JAM-A-deficient colon cancer cells. SIGNIFICANCE This study demonstrates that sEVs-reo can address key challenges associated with oncolytic virotherapy. These findings support potential of sEVs as a novel and effective DDS for reovirus in colon cancer treatment, while offering a versatile platform to enhance the efficacy of other oncolytic viruses.
Collapse
Affiliation(s)
- Konomu Uno
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Yoshinori Mori
- Department of Gastroenterology, Nagoya City University West Medical Center, Kita-ku, Nagoya 462-8508, Japan
| | - Ruriko Nishigaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yuki Kojima
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takuya Kanno
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Makiko Sasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Shigeki Fukusada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Naomi Sugimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Keiji Ozeki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
5
|
Huang D, Huang W, Liu M, Chen J, Xiao D, Peng Z, He H, Shen H, Jin Q, Chen L, Rao D, Zhao M, Huang J. Progress of mesenchymal stem cell-derived exosomes in targeted delivery of antitumor drugs. Cancer Cell Int 2025; 25:169. [PMID: 40301903 PMCID: PMC12042352 DOI: 10.1186/s12935-025-03795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are currently being used in clinical trials for the treatment of a wide range of diseases and have a wide range of applications in the fields of tissue engineering and regeneration. Exosomes are extracellular vesicles containing a variety of components such as proteins, nucleic acids and lipids, which are widely present in biological fluids and have the functions of participating in intercellular information transfer, immune response and tissue repair, and can also be used as carriers to target and deliver tumors to improve therapeutic effects. Mesenchymal stem cell-derived Exosomes (MSC-Exos), which have the advantages of low immunogenicity and high tumor homing ability, have attracted much attention in targeted drug delivery. Here, we review the current knowledge on the involvement of MSC-Exos in tumor progression and their potential as drug delivery systems in targeted therapies. It also discusses the advantages and prospects of MSC-Exos as a drug carrier and the challenges that still need to be overcome.
Collapse
Affiliation(s)
- Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Wenlong Huang
- Department of General Medicine, First People's Hospital of Zunyi (Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Meijin Liu
- People's Hospital of Ganzhou Economic Development Zone, Ganzhou, 341000, China
| | - Jie Chen
- Department of Laboratory Medicine, the Affiliated Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing, 402177, China
| | - Dewang Xiao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Zongbo Peng
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Haoquan He
- Department of General Practice, Ditian Community health centre, Jinhua jindong, xiaoshun, 321000, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Linli Chen
- Laboratory Medicine, Guizhou Aerospace Hospital, Zunyi, 563100, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Minghong Zhao
- Laboratory Medicine, Guizhou Aerospace Hospital, Zunyi, 563100, China.
| | - Junyun Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
6
|
Keshtkar S, Asvar Z, Najafi H, Heidari M, Kaviani M, Sarvestani FS, Tamaddon AM, Sadati MS, Hamidizadeh N, Azarpira N. Exosomes as natural vectors for therapeutic delivery of bioactive compounds in skin diseases. Front Pharmacol 2025; 16:1485769. [PMID: 40356952 PMCID: PMC12066514 DOI: 10.3389/fphar.2025.1485769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Skin diseases are a broad category of diseases and each has complex conditions, which makes it challenging for dermatologists to provide targeted treatment. Exosomes are natural vesicles secreted by cells and play a key role in cell communication. Due to their unique characteristics, including inherent stability, minimal immunogenicity, high biocompatibility, and exceptional ability to penetrate cells, exosomes are being explored as potential delivery vehicles for therapeutics across various diseases including skin problems. Utilizing exosomes for drug delivery in skin diseases can improve treatment outcomes and reduce the side effects of traditional drug delivery methods. Indeed, exosomes can be engineered or utilized as an innovative approach to deliver therapeutic agents such as small molecule drugs, genes, or proteins specifically to affected skin cells. In addition to targeting specific skin cells or tissues, these engineered exosome-based nanocarriers can reduce off-target effects and improve drug efficacy. Hence, this article highlights the transformative potential of this technology in revolutionizing drug delivery in dermatology and improving patient outcomes.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haniyeh Najafi
- Department of Pharmaceutical Nanotechnology, Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Sadat Sadati
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Hamidizadeh
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Basyoni AE, Atta A, Salem MM, Mohamed TM. Harnessing exosomes for targeted drug delivery systems to combat brain cancer. Cancer Cell Int 2025; 25:150. [PMID: 40234973 PMCID: PMC12001718 DOI: 10.1186/s12935-025-03731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
Brain cancer remains a significant challenge in the field of oncology, primarily because of its aggressive nature and the limited treatment options available. Conventional therapies often fall short in effectively targeting tumor cells, while sparing healthy brain tissue from collateral damage. However, exosomes are now recognized as promising nanocarriers for targeted drug delivery. These naturally occurring extracellular vesicles can cross the blood-brain barrier and selectively interact with cancer cells. Utilizing exosomes as drug delivery vehicles offers a novel approach with significant potential for targeted therapy. By encapsulating therapeutic agents within exosomes, drugs can be specifically targeted to tumor cells, maximizing their impact whilst minimizing damage to healthy brain tissue. Furthermore, exosomes can be modified to display molecules that specifically recognize and bind to cancer cells, further enhancing their precision and efficacy. While exosome-based therapies show potential, scalability, purification, and clinical application challenges remain. The scalability of exosome production, purification, and modification techniques remains a hurdle that must be overcome for clinical translation. Additionally, the intricate interactions between the tumor microenvironment and exosomes necessitate further research to optimize therapeutic outcomes. The review explores applications and future perspectives of exosome-based therapies in advancing targeted brain cancer treatment.
Collapse
Affiliation(s)
- Abdullah E Basyoni
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Amira Atta
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
8
|
Kaçaroğlu D, Yaylacı S, Ulaşlı AM. Dual facets of MSC-derived small EVs: regulatory insights into antitumor mechanisms in pancreatic ductal adenocarcinoma. Med Oncol 2025; 42:158. [PMID: 40208413 PMCID: PMC11985665 DOI: 10.1007/s12032-025-02713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense, fibrotic, immunosuppressive, and desmoplastic extracellular matrix. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have emerged as a novel therapeutic strategy. Nonetheless, the potential dual effects of MSC-EVs on tumor cells warrant careful consideration. This study aimed to evaluate the mechanistic effects of MSC-EVs on PDAC. Wharton's Jelly (WJ) MSC-derived small EVs were isolated using ultracentrifugation method and analyzed through nanoparticle tracking analysis (NTA) and flow cytometry. EVs were added to Panc-1 cells at concentrations of 4000-10,000 EVs per cell, and a preliminary MTT assay was performed. In subsequent experiments, EVs were added to Panc-1 cells at concentrations of only 4000, 8000 and 12,000 EVs per cell. After 24 h, apoptosis and cell cycle analyses were performed. The expression of epithelial-mesenchymal transition (EMT)-related and immune-related genes was analyzed. Cell cycle analysis showed higher G1 phase percentage in the control group (31%) compared to MSC EV-treated groups (35-36%). Apoptosis analysis revealed similar viable and necrotic cell percentages among the control (80% viable) and treated groups (approximately 78-79% viable). The CD44, VIM, MMP9, TIMP1, and ZEB1 genes were downregulated in treated groups compared to the control. Although CLDN1 and CDH1 genes were upregulated at the lowest EV concentration, they were downregulated at higher EV concentrations. Immune gene analysis showed downregulation of pro-inflammatory cytokines (IL-6, TNF-α, IFN-γ, IL-1α, IL-1β) and upregulation of the anti-inflammatory cytokine IL-10 in treated groups. This study revealed the dual role of WJ-MSC small EVs in PDAC. While they suppressed cell proliferation and modulated EMT markers, indicating their antitumor potential, they also exhibited an immunosuppressive profile. These findings highlight both the promise and challenges of using WJ-MSC small EVs as therapeutic agents, necessitating further studies to optimize their application and balance their effects.
Collapse
Affiliation(s)
- Demet Kaçaroğlu
- Faculty of Medicine, Department of Medical Biology, Lokman Hekim University, Söğütözü, 2179. Sk. No:6, 06530, Çankaya, Ankara, Turkey.
| | - Seher Yaylacı
- Faculty of Medicine, Department of Medical Biology, Lokman Hekim University, Söğütözü, 2179. Sk. No:6, 06530, Çankaya, Ankara, Turkey
| | - Alper Murat Ulaşlı
- Stem Cell Institute, Interdisciplinary Stem Cell and Regenerative Medicine Department, Ankara University, Cevizlidere, Ceyhun Atuf Kansu Cd. No:169, 06520, Çankaya, Ankara, Turkey
| |
Collapse
|
9
|
Araujo-Abad S, Berna JM, Lloret-Lopez E, López-Cortés A, Saceda M, de Juan Romero C. Exosomes: from basic research to clinical diagnostic and therapeutic applications in cancer. Cell Oncol (Dordr) 2025; 48:269-293. [PMID: 39298081 PMCID: PMC11997007 DOI: 10.1007/s13402-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer continues to pose a global threat despite potent anticancer drugs, often accompanied by undesired side effects. To enhance patient outcomes, sophisticated multifunctional approaches are imperative. Small extracellular vesicles (EVs), a diverse family of naturally occurring vesicles derived from cells, offer advantages over synthetic carriers. Among the EVs, the exosomes are facilitating intercellular communication with minimal toxicity, high biocompatibility, and low immunogenicity. Their tissue-specific targeting ability, mediated by surface molecules, enables precise transport of biomolecules to cancer cells. Here, we explore the potential of exosomes as innovative therapeutic agents, including cancer vaccines, and their clinical relevance as biomarkers for clinical diagnosis. We highlight the cargo possibilities, including nucleic acids and drugs, which make them a good delivery system for targeted cancer treatment and contrast agents for disease monitoring. Other general aspects, sources, and the methodology associated with therapeutic cancer applications are also reviewed. Additionally, the challenges associated with translating exosome-based therapies into clinical practice are discussed, together with the future prospects for this innovative approach.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, Quito, 170124, Ecuador
| | - José Marcos Berna
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Elena Lloret-Lopez
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, 170124, Ecuador
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain.
| |
Collapse
|
10
|
Hong R, Yu P, Zhang X, Su P, Liang H, Dong D, Wang X, Wang K. The role of cancer-associated fibroblasts in the tumour microenvironment of urinary system. Clin Transl Med 2025; 15:e70299. [PMID: 40195290 PMCID: PMC11975626 DOI: 10.1002/ctm2.70299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Urological tumours are a type of neoplasms that significantly jeopardise human life and wellbeing. Cancer-associated fibroblasts (CAFs), serving as the primary component of the stromal cellular milieu, form a diverse cellular cohort that exerts substantial influence on tumourigenesis and tumour progression. In this review, we summarised the literatures regarding the functions of CAFs in the urinary tumour microenvironment (TME). We primarily examined the multifaceted activities of CAFs in the TME of urological system tumours, including inhibiting tumour immunity, remodelling the extracellular matrix, promoting tumour growth, metastasis, drug resistance and their clinical applications. We also discussed potential future directions for leveraging artificial intelligence in CAFs research. KEY POINTS: The interaction of CAFs with various cell secretory factors in the TME of urological tumors. The application of CAFs in diagnosis, treatment and prognosis of urological tumors.
Collapse
Affiliation(s)
- Ri Hong
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Puguang Yu
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Xiaoli Zhang
- Department of Critical Care MedicineShengjing Hospital of China Medical UniversityShenyangChina
| | - Peng Su
- Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Hongyuan Liang
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Dan Dong
- College of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Xuesong Wang
- Department of UrologyPeople's Hospital of China Medical UniversityShenyangChina
- Department of UrologyPeople's Hospital of Liaoning ProvinceShenyangChina
| | - Kefeng Wang
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
11
|
Perrone MG, Filieri S, Azzariti A, Armenise D, Baldelli OM, Liturri A, Sardanelli AM, Ferorelli S, Miciaccia M, Scilimati A. Exosomes in Ovarian Cancer: Towards Precision Oncology. Pharmaceuticals (Basel) 2025; 18:371. [PMID: 40143147 PMCID: PMC11946531 DOI: 10.3390/ph18030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Identification of targetable biomarkers to improve early disease detection and overall patient outcomes is becoming an urgent need in clinical oncology. Ovarian cancer (OC) has one of the highest mortality rates among gynecological cancers. It is asymptomatic and almost always diagnosed at an advanced stage (III or IV), leading to a 5-year survival rate of approximately 35%. Methods: Current therapeutic approaches for OC are very limited and mainly consist of cytoreductive surgery and cisplatin plus taxane-based chemotherapy. No gender and tumor specific biomarkers are known. Exosomes, lipid bilayer vesicles of endocytic origin secreted by most cell types, represent sources of information for their involvement in the onset and progression of many diseases. Hence, research on exosome contents as tools and targets in precise oncology therapy provides knowledge essential to improving diagnosis and prognosis of the disease. Results: This review attempts to give an overview of how exosomes are implicated in ovarian carcinoma pathogenesis to trigger further cancer exosome-based investigations aimed at developing ovarian cancer fine-tuning diagnostic methodologies. Conclusions: It is essential to investigate exosome-based cancer drugs to advance understanding, improve treatment plans, create personalized strategies, ensure safety, and speed up clinical translation to increase patients' overall survival and quality of life. Papers published in PubMed and Web of Science databases in the last five years (2020-2024) were used as a bibliographic source.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Silvana Filieri
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy; (S.F.); (A.M.S.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V. O. Flacco, 65, 70124 Bari, Italy;
| | - Domenico Armenise
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Olga Maria Baldelli
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Anselma Liturri
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Anna Maria Sardanelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy; (S.F.); (A.M.S.)
| | - Savina Ferorelli
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Morena Miciaccia
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Antonio Scilimati
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| |
Collapse
|
12
|
Chen L, Zhang J, Huang Y, Zhang X, Zhang G, Kong S, Gao J, Zhang X, Ding B. Drug Delivery Systems Based on Dendritic-Cell-Derived Exosomes. Pharmaceutics 2025; 17:326. [PMID: 40142991 PMCID: PMC11946698 DOI: 10.3390/pharmaceutics17030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Exosomes, spherical lipid-bilayered particles secreted by cells, have recently emerged as a novel and highly promising drug delivery system, attracting extensive attention in the field of biomedical research. Dendritic-cell-derived exosomes (DC-Exos) possess surface protein and ligands characteristic of DC cells, such as functional MHC-I and MHC-II, CD80, CD86. These components play a crucial role in immune responses, facilitating antigen uptake, presentation, and the activation of antigen-specific CD4 and CD8 T cells. These properties make them striking and excellent drug delivery vehicles for use in various immune diseases and cancer therapy. This review summarizes and discusses the characteristics, current methods and types of drug loading of DC-Exos. Its surface modifications and application in disease treatment were also discussed, aiming to motivate the development of exosome-based theranostic nanoplatforms and nanotechnology for improved healthcare treatments.
Collapse
Affiliation(s)
- Lihua Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (L.C.); (G.Z.); (S.K.)
| | - Jie Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, No. 118 Jiahang Road, Jiaxing 314001, China; (J.Z.); (Y.H.); (X.Z.); (J.G.)
| | - Yueyan Huang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, No. 118 Jiahang Road, Jiaxing 314001, China; (J.Z.); (Y.H.); (X.Z.); (J.G.)
| | - Xiaoqin Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, No. 118 Jiahang Road, Jiaxing 314001, China; (J.Z.); (Y.H.); (X.Z.); (J.G.)
| | - Guoqing Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (L.C.); (G.Z.); (S.K.)
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, No. 118 Jiahang Road, Jiaxing 314001, China; (J.Z.); (Y.H.); (X.Z.); (J.G.)
| | - Shuaizhi Kong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (L.C.); (G.Z.); (S.K.)
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, No. 118 Jiahang Road, Jiaxing 314001, China; (J.Z.); (Y.H.); (X.Z.); (J.G.)
| | - Jianqing Gao
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, No. 118 Jiahang Road, Jiaxing 314001, China; (J.Z.); (Y.H.); (X.Z.); (J.G.)
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaojuan Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, No. 118 Jiahang Road, Jiaxing 314001, China; (J.Z.); (Y.H.); (X.Z.); (J.G.)
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, No. 118 Jiahang Road, Jiaxing 314001, China; (J.Z.); (Y.H.); (X.Z.); (J.G.)
| |
Collapse
|
13
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the cornea: Exploring the therapeutic solutions offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2025; 105:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
14
|
Zhang Y, Lu Z, Guo J, Wang Q, Zhang X, Yang H, Li X. Advanced Carriers for Precise Delivery and Therapeutic Mechanisms of Traditional Chinese Medicines: Integrating Spatial Multi-Omics and Delivery Visualization. Adv Healthc Mater 2025; 14:e2403698. [PMID: 39828637 DOI: 10.1002/adhm.202403698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/01/2024] [Indexed: 01/22/2025]
Abstract
The complex composition of traditional Chinese medicines (TCMs) has posed challenges for in-depth study and global application, despite their abundance of bioactive compounds that make them valuable resources for disease treatment. To overcome these obstacles, it is essential to modernize TCMs by focusing on precise disease treatment. This involves elucidating the structure-activity relationships within their complex compositions, ensuring accurate in vivo delivery, and monitoring the delivery process. This review discusses the research progress of TCMs in precision disease treatment from three perspectives: spatial multi-omics technology for precision therapeutic activity, carrier systems for precise in vivo delivery, and medical imaging technology for visualizing the delivery process. The aim is to establish a novel research paradigm that advances the precision therapy of TCMs.
Collapse
Affiliation(s)
- Yusheng Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, P. R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongjun Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100029, P. R. China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| |
Collapse
|
15
|
Kostyusheva A, Romano E, Yan N, Lopus M, Zamyatnin AA, Parodi A. Breaking barriers in targeted Therapy: Advancing exosome Isolation, Engineering, and imaging. Adv Drug Deliv Rev 2025; 218:115522. [PMID: 39855273 DOI: 10.1016/j.addr.2025.115522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Exosomes have emerged as promising tools for targeted drug delivery in biomedical applications and medicine. This review delves into the scientific advancements, challenges, and future prospects specifically associated with these technologies. In this work, we trace the research milestones that led to the discovery and characterization of exosomes and extracellular vesicles, and discuss strategies for optimizing the synthetic yield and the loading of these particles with various therapeutics. In addition, we report the current major issues affecting the field and hampering the clinical translation of these technologies. Highlighting the pivotal role of imaging techniques, we explore how they drive exosome therapy and development by offering insights into biodistribution and cellular trafficking dynamics. Methodologies for vesicle isolation, characterization, loading, and delivery mechanisms are thoroughly examined, alongside strategies aimed at enhancing their therapeutic efficacy. Special emphasis was dedicated to their therapeutic properties, particularly to their ability to deliver biologics into the cytoplasm. Furthermore, we delve into the intricate balance between surface modifications and targeting properties including also transgenic methods aimed at their functionalization and visualization within biological systems. This review underscores the transformative potential of these carriers in targeted drug delivery and identifies crucial areas for further research and clinical translation.
Collapse
Affiliation(s)
- Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| | | | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Vidyanagari, Mumbai 400098, India
| | - Andrey A Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia.
| |
Collapse
|
16
|
Wu T, Song H, Wang R, Wang W, Xing J. A hyaluronic acid nanogels based exosome production factory for tumor photothermal therapy and angiogenesis inhibition. Int J Biol Macromol 2025; 293:139363. [PMID: 39743113 DOI: 10.1016/j.ijbiomac.2024.139363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Exosomes as a unique drug delivery system provide a new choice for tumor therapy. However, the in vitro functionalization of exosomes and the process of circulating drug delivery can easily cause exosome degradation and drug loss, thus reducing the efficiency of drug delivery. In this work, based on the endocyto-fusion-exocytosis pathway of exosome formation, a multifunctional hyaluronic acid nanogel loaded with the antiangiogenic drug vatalanib and the near-infrared photothermal agent indocyanine green (ICG) was designed. Lysosome escape and photothermal therapy were combined to promote exosome production. Hyaluronic acid nanogels were endocytosed by tumor cells with CD44 mediation, forming intracellular vesicle-coated nanogels, which were subsequently degraded by hyaluronidase with high expression in tumor cells. Anti-angiogenic signals in intracellular vesicles were then delivered to vascular endothelial cells by exosomes through membrane fusion and exocytosis, which inhibited tumor angiogenesis to prevent tumor proliferation and metastasis. Cell experiments and tumor models demonstrate that our therapeutic strategy can achieve effective tumor inhibition.
Collapse
Affiliation(s)
- Tong Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300350, PR China.
| | - Rijie Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300350, PR China.
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
17
|
Zhang X, Zhang L, Tian J, Li Y, Wu M, Zhang L, Qin X, Gong L. The application and prospects of drug delivery systems in idiopathic pulmonary fibrosis. BIOMATERIALS ADVANCES 2025; 168:214123. [PMID: 39615374 DOI: 10.1016/j.bioadv.2024.214123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease primarily affecting elderly individuals aged >65 years and has a poor prognosis. No effective treatment is currently available for IPF. The two antipulmonary fibrosis drugs nintedanib and pirfenidone approved by the FDA in the United States have somewhat decelerated IPF progression. However, the side effects of these drugs can lead to poor patient tolerance and compliance with the medications. Researchers have recently developed various methods for IPF treatment, such as gene silencing and pathway inhibitors, which hold great promise in IPF treatment. Nevertheless, the nonselectivity and nonspecificity of drugs often affect their efficacies. Drug delivery systems (DDS) are crucial for delivering drugs to specific target tissues or cells, thereby minimizing potential side effects, enhancing drug bioavailability, and reducing lung deposition. This review comprehensively summarizes the current state of DDS and various delivery strategies for IPF treatment (e.g., nano-delivery, hydrogel delivery, and biological carrier delivery) to completely expound the delivery mechanisms of different drug delivery carriers. Subsequently, the advantages and disadvantages of different DDS are fully discussed. Finally, the challenges and difficulties associated with the use of different DDS are addressed so as to accelerate their rapid clinical translation.
Collapse
Affiliation(s)
- Xi Zhang
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China; Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Jiahua Tian
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunfei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Manli Wu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Longju Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China.
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China.
| |
Collapse
|
18
|
Xia W, Tan Y, Liu Y, Xie N, Zhu H. Prospect of extracellular vesicles in tumor immunotherapy. Front Immunol 2025; 16:1525052. [PMID: 40078996 PMCID: PMC11897508 DOI: 10.3389/fimmu.2025.1525052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Extracellular vesicles (EVs), as cell-derived small vesicles, facilitate intercellular communication within the tumor microenvironment (TME) by transporting biomolecules. EVs from different sources have varied contents, demonstrating differentiated functions that can either promote or inhibit cancer progression. Thus, regulating the formation, secretion, and intake of EVs becomes a new strategy for cancer intervention. Advancements in EV isolation techniques have spurred interest in EV-based therapies, particularly for tumor immunotherapy. This review explores the multifaceted functions of EVs from various sources in tumor immunotherapy, highlighting their potential in cancer vaccines and adoptive cell therapy. Furthermore, we explore the potential of EVs as nanoparticle delivery systems in tumor immunotherapy. Finally, we discuss the current state of EVs in clinical settings and future directions, aiming to provide crucial information to advance the development and clinical application of EVs for cancer treatment.
Collapse
Affiliation(s)
- Wenbo Xia
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunhan Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongen Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
19
|
David P, Kouhestani D, Hansen FJ, Paul S, Czubayko F, Karabiber A, Weisel N, Klösch B, Merkel S, Ole-Baur J, Gießl A, Van Deun J, Vera J, Mittelstädt A, Weber GF. Exosomal CD40, CD25, and Serum CA19-9 as Combinatory Novel Liquid Biopsy Biomarker for the Diagnosis and Prognosis of Patients with Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2025; 26:1500. [PMID: 40003965 PMCID: PMC11854914 DOI: 10.3390/ijms26041500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is largely due to several challenges, such as late diagnosis, early metastasis, limited response to chemotherapy, aggressive tumor biology, and high rates of tumor recurrence. Therefore, the development of a non-invasive and effective method for early detection of PDAC is crucial to improving patient outcomes. Continued research and exploration in this area are essential to enhance early detection methods and ultimately improve the prognosis for individuals with PDAC. In this study, we examined 37 exosomal surface proteins through a multiplex flow cytometry test on peripheral plasma samples from a group of 51 clinical control individuals (including healthy volunteers and non-cancer patients (Cholecystectomy, Hernia, healthy volunteers)), 21 pancreatitis, and 48 patients diagnosed with PDAC. Our research findings revealed that the level of exosomal CD40 expression is significantly lower in patients with PDAC and pancreatitis compared to non-cancer patients (p < 0.0001). Additionally, pancreatitis patients exhibited higher levels of exosomal CD25 expression than PDAC patients (p = 0.0104). PDAC patients with higher exo-CD40 had worse survival than patients with lower exo-CD40 (p = 0.0035). Similarly, PDAC patients with higher exo-CD25 showed worse survival in comparison to patients with lower exo-CD25 (p = 0.04). Statistical analysis revealed that exosomal CD40 achieved an AUC of 0.827 in distinguishing PDAC from clinical controls. Combining exo-CD40 along with exo-CD25 and CA19-9 discriminated PDAC patients from clinical controls with an AUC of 0.92. Exo-CD40 and exo-CD25 proteins found in exosomes isolated from plasma can serve as excellent non-invasive biomarkers for the early diagnosis of PDAC. Further larger scale studies are needed to validate combined exo-CD40 and exo-CD25 as a diagnostic tool for the identification of PDAC patients through non-invasive liquid biopsy.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Dina Kouhestani
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Frederik J. Hansen
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Sushmita Paul
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.O.-B.); (J.V.)
| | - Franziska Czubayko
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Alara Karabiber
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Nadine Weisel
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Bettina Klösch
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Susanne Merkel
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Jan Ole-Baur
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.O.-B.); (J.V.)
- Medizinische Klinik IV (Hämatologie und Onkologie), Klinikum Bayreuth GmbH, 95445 Bayreuth, Germany
| | - Andreas Gießl
- Department of Ophthalmology, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Jan Van Deun
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.O.-B.); (J.V.)
| | - Julio Vera
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.O.-B.); (J.V.)
| | - Anke Mittelstädt
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Georg F. Weber
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| |
Collapse
|
20
|
Wang Q, Sun J, Jiang H, Yu M. Emerging roles of extracellular vesicles in oral and maxillofacial areas. Int J Oral Sci 2025; 17:11. [PMID: 39900916 PMCID: PMC11791077 DOI: 10.1038/s41368-024-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
The oral and maxillofacial region is a highly complex area composed of multiple tissue types and bears various critical functions of the human body. Diseases in this region pose significant diagnostic and management challenges; therefore, exploring new strategies for early diagnosis, targeted treatment, and tissue reconstruction is key to improving patient prognosis and quality of life. Extracellular vesicles are a group of heterogeneous lipid-bilayer membrane structures secreted by most cell types, including exosomes, microvesicles, and apoptotic bodies. Present in various body fluids and tissues, they act as messengers via the transfer of nucleic acids, proteins, and metabolites to recipient cells. To date, studies have revealed the different roles of extracellular vesicles in physiological or pathological processes, as well as applications in disease diagnosis, prognosis, and treatment. The importance and tissue specificity of the dental and maxillofacial tissues indicate that extracellular vesicles derived from this region are promising for further research. This paper reviews the published data on extracellular vesicles derived from cells, body fluids, and tissues in oral and maxillofacial regions, summarizes the latest advances in extracellular vesicles from extensive sources, and concludes with a focus on the current research progress and application prospects of engineered exosomes in oral science.
Collapse
Affiliation(s)
- Qianting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jiayu Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Haci Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Simon L, Constanzo J, Terraza-Aguirre C, Ibn Elfekih Z, Berthelot J, Benkhaled BT, Haute T, Pednekar K, Clark K, Emerson SJ, Atis S, Benedetti C, Langlois S, Marquant A, Prakash J, Wang A, Devoisselle JM, Montier T, Djouad F, Pouget JP, Lapinte V, Morille M. Surface modification of extracellular vesicles with polyoxazolines to enhance their plasma stability and tumor accumulation. Biomaterials 2025; 313:122748. [PMID: 39180918 DOI: 10.1016/j.biomaterials.2024.122748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Extracellular vesicles (EVs) are future promising therapeutics, but their instability in vivo after administration remains an important barrier to their further development. Many groups evaluated EV surface modification strategies to add a targeting group with the aim of controlling EV biodistribution. Conversely, fewer groups focused on their stabilization to obtain "stealth" allogenic EVs. Modulating their stabilization and biodistribution is an essential prerequisite for their development as nano-therapeutics. Here, we explored polyoxazolines with lipid anchors association to the EV membrane (POxylation as an alternative to PEGylation) to stabilize EVs in plasma and control their biodistribution, while preserving their native properties. We found that this modification maintained and seemed to potentiate the immunomodulatory properties of EVs derived from mesenchymal stem/stromal cells (MSC). Using a radiolabeling protocol to track EVs at a therapeutically relevant concentration in vivo, we demonstrated that POxylation is a promising option to stabilize EVs in plasma because it increased EV half-life by 6 fold at 6 h post-injection. Moreover, EV accumulation in tumors was higher after POxylation than after PEGylation.
Collapse
Affiliation(s)
- L Simon
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | | | - Z Ibn Elfekih
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Berthelot
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - B T Benkhaled
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Haute
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - K Pednekar
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - K Clark
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S J Emerson
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S Atis
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - C Benedetti
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - S Langlois
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - A Marquant
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - A Wang
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - J M Devoisselle
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de La Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200, Brest, France
| | - F Djouad
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France
| | - J P Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - V Lapinte
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - Marie Morille
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
22
|
Tariq H, Bukhari SZ, An R, Dong J, Ihsan A, Younis MR. Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy. Mater Today Bio 2025; 30:101440. [PMID: 39866781 PMCID: PMC11758955 DOI: 10.1016/j.mtbio.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently. Exosomes are involved in strategic phases of the onset and development of atherosclerosis because they have been identified to control pathophysiologic pathways including inflammation, angiogenesis, or senescence. This review investigates the potential role of stem cell-derived exosomes in atherosclerosis management. We briefly introduced atherosclerosis and stem cell therapy including stem cell-derived exosomes. The biogenesis of exosomes along with their secretion and isolation have been elaborated. The design engineering of exosomes has been summarized to present how drug loading and surface modification with targeting ligands can improve the therapeutic and targeting capacity of exosomes, demonstrating atheroprotective action. Moreover, the mechanism of action (endothelial dysfunction, reduction of dyslipidemia, macrophage polarization, vascular calcification, and angiogenesis) of drug-loaded exosomes to treat atherosclerosis has been discussed in detail. In the end, a comparative and balanced viewpoint has been given regarding the current challenges and potential solutions to advance exosome engineering for cardiovascular therapeutic applications.
Collapse
Affiliation(s)
- Hassan Tariq
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ruibing An
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Rizwan Younis
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
23
|
Nie L, Ma J, Yu Y, Tao Y, Song Z, Li J. Exosomes as carriers to stimulate an anti-cancer immune response in immunotherapy and as predictive markers. Biochem Pharmacol 2025; 232:116699. [PMID: 39647605 DOI: 10.1016/j.bcp.2024.116699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
During this era of rapid advancements in cancer immunotherapy, the application of cell-released small vesicles that activate the immune system is of considerable interest. Exosomes are cell-derived nanovesicles that show great promise for the immunological treatment of cancer because of their immunogenicity and molecular transfer capacity. Recent technological advancements have enabled the identification of functional functions that exosome cargoes perform in controlling immune responses. Exosomes are originated specifically from immune cells and tumor cells and they show unique composition patterns directly related to the immunotherapy against cancer. Exosomes can also deliver their cargo to particular cells, which can affect the phenotypic and immune-regulatory functions of those cells. Exosomes can influence the course of cancer and have therapeutic benefits by taking part in several cellular processes; as a result, they have the dual properties of activating and restraining cancer. Exosomes have tremendous potential for cancer immunotherapy; they may develop into the most powerful cancer vaccines and carriers of targeted antigens and drugs. Comprehending the potential applications of exosomes in immune therapy is significant for regulating cancer progression. This review offers an analysis of the function of exosomes in immunotherapy, specifically as carriers that function as diagnostic indicators for immunological activation and trigger an anti-cancer immune response. Moreover, it summarizes the fundamental mechanism and possible therapeutic applications of exosome-based immunotherapy for human cancer.
Collapse
Affiliation(s)
- Lili Nie
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yang Yu
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhidu Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Jian Li
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
24
|
Song Y, Kong H, Oh S, Kim SB. Plant-derived extracellular vesicles as nanocarriers for combination therapy enhancing paclitaxel-based regimens in breast cancer. BMB Rep 2025; 58:53-63. [PMID: 39978779 PMCID: PMC11875746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Breast cancer remains a leading cause of morbidity and mortality worldwide. Triple-negative breast cancer (TNBC) presents unique challenges owing to its aggressiveness and limited treatment options. Paclitaxel-based chemotherapy is widely used in breast cancer treatment. However, its efficacy is often limited by toxicity, multidrug resistance, and lack of targeted delivery. In response to these challenges, recent studies have focused on the use of extracellular vesicles (EVs), particularly plant-derived EVs, as innovative drug delivery systems capable of enhancing therapeutic outcomes and reducing adverse effects. Plant-derived EVs offer significant advantages owing to their biocompatibility, low immunogenicity, and scalability. They provide a natural platform for delivering chemotherapeutics such as paclitaxel and doxorubicin directly to tumor cells. This review explores the therapeutic potential of plant-derived EVs in breast cancer treatment, focusing on TNBC by examining their ability to improve drug stability, bioavailability, and selective targeting of cancer cells. Key studies on EVs derived from plants such as grapefruit, ginger, and tea leaves have demonstrated their capacity to deliver chemotherapeutic agents effectively while mitigating common side effects associated with conventional delivery methods. Although the use of plantderived EVs is still in early stages of research, findings suggest that that these nanocarriers can serve as transformative tools in oncology, providing a versatile and efficient platform for precise cancer treatment. This review highlights current landscape of research on plant-derived EVs, their application in breast cancer therapy, and future directions required to translate these findings into clinical practice. [BMB Reports 2025; 58(2): 53-63].
Collapse
Affiliation(s)
- Youngcheon Song
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Hyunseok Kong
- Department of Animal Science, Sahmyook University, Seoul 01795, Korea
| | - Soohwan Oh
- College of Pharmacy, Korea University, Sejong 30019, Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| |
Collapse
|
25
|
Abedi A, Moosazadeh Moghaddam M, Kachuei R, Imani Fooladi AA. Exosomes as a Therapeutic Strategy in Cancer: Potential Roles as Drug Carriers and Immune Modulators. Biochim Biophys Acta Rev Cancer 2025; 1880:189238. [PMID: 39674417 DOI: 10.1016/j.bbcan.2024.189238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Exosome-based cancer immunotherapy is advancing quickly on the concept of artificially activating the immune system to combat cancer. They can mechanistically change the tumor microenvironment, increase immune responses, and function as efficient drug delivery vehicles because of their inherent bioactivity, low toxicity, and immunogenicity. Accurate identification of the mechanisms of action of exosomes in tumor environments, along with optimization of their isolation, purification, and characterization methods, is necessary to increase clinical applications. Exosomes can be modified through cargo loading and surface modification to enhance their therapeutic applications, either before or after the donor cells' isolation. These engineered exosomes can directly target tumor cells at the tumor site or indirectly activate innate and adaptive immune responses in the tumor microenvironment. This approach is particularly effective when combined with traditional cancer immunotherapy techniques such as vaccines, immune checkpoints, and CAR-T cells. It can improve anti-tumor responses, induce long-term immunity, and address the limitations of traditional therapies, such as poor penetration in solid tumors and immunosuppressive environments. This review aims to provide a comprehensive and detailed overview of the direct role of engineered exosomes as drug delivery systems and their immunomodulatory effects on tumors as an indirect approach to fighting cancer. Additionally, it will discuss novel immunotherapy options.
Collapse
Affiliation(s)
- Azam Abedi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater 2025; 44:283-318. [PMID: 39507371 PMCID: PMC11539077 DOI: 10.1016/j.bioactmat.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation. This review elucidates the development and benefits of the EViH system in tissue regeneration, emphasizing the interaction and impact of EVs and hydrogels. Furthermore, it succinctly outlines the pathophysiological characteristics of various types of tissue injuries such as wounds, bone and cartilage injuries, cardiovascular diseases, nerve injuries, as well as liver and kidney injuries, underscoring how EViH systems target these processes to address related tissue damage. Lastly, it explores the challenges and prospects in further advancing EViH-based tissue regeneration, aiming to impart a comprehensive understanding of EViH. The objective is to furnish a thorough overview of EViH in enhancing regenerative medicine applications and to inspire researchers to devise innovative tissue engineering materials for regenerative medicine.
Collapse
Affiliation(s)
- Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yansheng Shan
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| |
Collapse
|
27
|
Li J, Wang J, Chen Z. Emerging role of exosomes in cancer therapy: progress and challenges. Mol Cancer 2025; 24:13. [PMID: 39806451 PMCID: PMC11727182 DOI: 10.1186/s12943-024-02215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
This review highlights recent progress in exosome-based drug delivery for cancer therapy, covering exosome biogenesis, cargo selection mechanisms, and their application across multiple cancer types. As small extracellular vesicles, exosomes exhibit high biocompatibility and low immunogenicity, making them ideal drug delivery vehicles capable of efficiently targeting cancer cells, minimizing off-target damage and side effects. This review aims to explore the potential of exosomes in cancer therapy, with a focus on applications in chemotherapy, gene therapy, and immunomodulation. Additionally, challenges related to exosome production and standardization are analyzed, highlighting the importance of addressing these issues for their clinical application. In conclusion, exosome-based drug delivery systems offer promising potential for future cancer therapies. Further research should aim to enhance production efficiency and facilitate clinical translation, paving the way for innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiale Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Jiachong Wang
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| | - Zigui Chen
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
28
|
Silva RO, Haddad M, Counil H, Zaouter C, Patten SA, Fulop T, Ramassamy C. Exploring the potential of plasma and adipose mesenchymal stem cell-derived extracellular vesicles as novel platforms for neuroinflammation therapy. J Control Release 2025; 377:880-898. [PMID: 39617173 DOI: 10.1016/j.jconrel.2024.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Persistent reactive oxygen species (ROS) and neuroinflammation contribute to the onset and progression of neurodegenerative diseases, underscoring the need for targeted therapeutic strategies to mitigate these effects. Extracellular vesicles (EVs) show promise in drug delivery due to their biocompatibility, ability to cross biological barriers, and specific interactions with cell and tissue receptors. In this study, we demonstrated that human plasma-derived EVs (pEVs) exhibit higher brain-targeting specificity, while adipose-derived mesenchymal stem cells EVs (ADMSC-EVs) offer regenerative and immunomodulatory properties. We further investigated the potential of these EVs as therapeutic carriers for brain-targeted drug delivery, using Donepezil (DNZ) as the model drug. DNZ, a cholinesterase inhibitor commonly used for Alzheimer's disease (AD), also has neuroprotective and anti-inflammatory properties. The size of EVs used ranged from 50 to 300 nm with a surface charge below -30 mV. Both formulations showed rapid cellular internalization, without toxicity, and the ability to cross the blood-brain barrier (BBB) in a zebrafish model. The have analyzed the anti-inflammatory and antioxidant actions of pEVs-DNZ and ADMSC-EVs-DNZ in the presence of lipopolysaccharide (LPS). ADMSC-EVs significantly reduced the inflammatory mediators released by HMC3 microglial cells while treatment with pEVs-DNZ and ADMSC-EVs-DNZ lowered both phagocytic activity and ROS levels in these cells. In vivo experiments using zebrafish larvae revealed that both EV formulations reduced microglial proliferation and exhibited antioxidant effects. Overall, this study highlights the potential of EVs loaded with DNZ as a novel approach for treating neuroinflammation underlying various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mohamed Haddad
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Hermine Counil
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Charlotte Zaouter
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Shunmoogum A Patten
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Charles Ramassamy
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
29
|
Lou S, Hu W, Wei P, He D, Fu P, Ding K, Chen Z, Dong Z, Zheng J, Wang K. Artificial Nanovesicles Derived from Cells: A Promising Alternative to Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22-41. [PMID: 39692623 DOI: 10.1021/acsami.4c12567] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
As naturally secreted vesicles by cells, extracellular vesicles (EVs) play essential roles in modulating cell-cell communication and have significant potential in tissue regeneration, immune regulation, and drug delivery. However, the low yield and uncontrollable heterogeneity of EVs have been obstacles to their widespread translation into clinical practice. Recently, it has been discovered that artificial nanovesicles (NVs) produced by cell processing can inherit the components and functions of the parent cells and possess similar structures and functions to EVs, with significantly higher yields and more flexible functionalization, making them a powerful complement to natural EVs. This review focuses on recent advances in the research of artificial NVs as replacements for natural EVs. We provide an overview comparing natural EVs and artificial NVs and summarize the top-down preparation strategies of NVs. The applications of NVs prepared from stem cells, differentiated cells, and engineered cells are presented, as well as the latest advances in NV engineering. Finally, the main challenges of artificial NVs are discussed.
Collapse
Affiliation(s)
- Saiyun Lou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Wei Hu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Pengyao Wei
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Dongdong He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Pan Fu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kejian Ding
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhenyi Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Jianping Zheng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Mohseni A, Salehi F, Rostami S, Hadiloo K, Hashemi M, Baridjavadi Z, Ahangari F, Karami N, Samani F, Tahmasebi S, Farahani N, Taheriazam A. Harnessing the power of exosomes for diagnosis, prognosis, and treatment of hematological malignancies. Stem Cell Res Ther 2025; 16:6. [PMID: 39773361 PMCID: PMC11708188 DOI: 10.1186/s13287-024-04125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are small extracellular vesicles of endocytic origin released by various cell types. They consist of lipid bilayers containing macromolecules such as lipids, proteins, microRNAs, growth factors, cytokines, and carbohydrates. Exosomes play a critical role in the diagnosis and treatment of various diseases. For instance, exosome contents have been utilized as biomarkers in body fluids (urine, saliva, serum) to identify cancers, autoimmune diseases, and inflammatory conditions such as sepsis. Due to their small size and ability to reach tumor microenvironments, exosomes are also used as carriers for chemotherapeutic drugs in drug delivery systems. Furthermore, evidence indicates that malignant cells release exosomes into the tumor microenvironment, influencing immune cells in a paracrine manner. Additionally, immune cell-derived exosomes, such as those from Natural Killer (NK) cells or cytotoxic T lymphocytes (CTLs), show potential as therapeutic agents in treating malignancies like leukemia. This review discusses the diagnostic role of exosomes in various hematological malignancies and explores the therapeutic potential of immune cell-derived exosomes in these diseases.
Collapse
Affiliation(s)
- Amirata Mohseni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Fatemeh Salehi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Samaneh Rostami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kaveh Hadiloo
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Baridjavadi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institue of Iran, Tehran, Iran
| | - Najibeh Karami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Samani
- Blood Transfusion Research Center, High Institute for Research and Education in transfusion medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
31
|
Luan X, Wang X, Bian G, Li X, Gao Z, Liu Z, Zhang Z, Han T, Zhao J, Zhao H, Luan X, Zhu W, Dong L, Guo F. Exosome applications for the diagnosis and treatment of pancreatic ductal adenocarcinoma: An update (Review). Oncol Rep 2025; 53:13. [PMID: 39575479 PMCID: PMC11605277 DOI: 10.3892/or.2024.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant neoplasm that typically manifests with subtle clinical manifestations in its early stages and frequently eludes diagnosis until the advanced phases of the disease. The limited therapeutic options available for PDAC significantly contribute to its high mortality rate, highlighting the urgent need for novel biomarkers capable of effectively identifying early clinical manifestations and facilitating precise diagnosis. The pivotal role of cellular exosomes in both the pathogenesis and therapeutic interventions for PDAC has been underscored. Furthermore, researchers have acknowledged the potential of exosomes as targeted drug carriers against regulatory cells in treating PDAC. The present article aims to provide a comprehensive review encompassing recent advancements in utilizing exosomes for elucidating mechanisms underlying disease development, patterns of metastasis, diagnostic techniques and treatment strategies associated with PDAC.
Collapse
Affiliation(s)
- Xinchi Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuezhe Wang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gang Bian
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Ziru Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zijiao Liu
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhishang Zhang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyue Han
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinpeng Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongjiao Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xinyue Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wuhui Zhu
- Department of Hepatobiliary surgery, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Lili Dong
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
32
|
Baran Z, Çetinkaya M, Baran Y. Mesenchymal Stem Cells in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:149-177. [PMID: 39470980 DOI: 10.1007/5584_2024_824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.
Collapse
Affiliation(s)
- Züleyha Baran
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Melisa Çetinkaya
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Baran
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
33
|
Zhao T, Mu Y, Deng H, Liang K, Zhou F, Lin Q, Cao F, Zhou F, Yang Z. Research hotspots and trends of mesenchymal stem cell-derived extracellular vesicles for drug delivery: a bibliometric and visualization analysis from 2013 to 2023. Front Cell Dev Biol 2024; 12:1412363. [PMID: 39539963 PMCID: PMC11557358 DOI: 10.3389/fcell.2024.1412363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Our study aims to provide a comprehensive overview of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in drug delivery research, focusing on the period between 2013 and 2023. Given the increasing global interest in this field, we utilized bibliometric tools to explore publication trends, key contributors, and thematic research clusters. Methods Data was collected from the Web of Science (WoS) database, and an in-depth bibliometric analysis was conducted using VOSviewer. The analysis encompassed bibliographic coupling, co-citation, co-authorship, and co-occurrence trends, offering a structured insight into global research activity. We also employed Citespace to further analyze thematic clusters in this domain. Results Our analysis revealed a total of 1,045 publications related to MSC-EVs in drug delivery over the past decade, showing a steady increase in research output. China led in publication count, H-index, prolific authors, and research funding, while the United States ranked highest in total citations, average citation counts, and H-index performance. Pharmaceutics emerged as the leading journal by publication volume, with the Journal of Controlled Release having the strongest total link strength. Top institutions driving research included Shanghai Jiao Tong University, Zhejiang University, and Harvard University. VOSviewer analysis identified four major research clusters: tissue engineering, cancer, neurological diseases, and targeted delivery. Citespace analysis refined this further into ten thematic areas, including differentiation, tissue regeneration, and drug resistance. Discussion This bibliometric assessment provides a holistic visualization of the research landscape for MSC-EVs in drug delivery, underlining the significant contributions of China and the United States. Our findings underscore the increasing global importance of MSC-EV research and highlight emerging themes that will likely guide future research directions. The insights from this study offer a foundational framework for identifying nascent frontiers in MSC-EV-based drug delivery.
Collapse
Affiliation(s)
- Tianyuan Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yuhao Mu
- School of Medicine, Nankai University, Tianjin, China
| | - Haobin Deng
- Department of Oncology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Kaini Liang
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Fanfan Zhou
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Qiyuan Lin
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Fuyang Cao
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feifei Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhen Yang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
34
|
Palakurthi SS, Shah B, Kapre S, Charbe N, Immanuel S, Pasham S, Thalla M, Jain A, Palakurthi S. A comprehensive review of challenges and advances in exosome-based drug delivery systems. NANOSCALE ADVANCES 2024; 6:5803-5826. [PMID: 39484149 PMCID: PMC11523810 DOI: 10.1039/d4na00501e] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/22/2024] [Indexed: 11/03/2024]
Abstract
Exosomes or so-called natural nanoparticles have recently shown enormous potential for targeted drug delivery systems. Several studies have reported that exosomes as advanced drug delivery platforms offer efficient targeting of chemotherapeutics compared to individual polymeric nanoparticles or liposomes. Taking structural constituents of exosomes, viz., proteins, nucleic acids, and lipids, into consideration, exosomes are the most promising carriers as genetic messengers and for treating genetic deficiencies or tumor progression. Unfortunately, very little attention has been paid to the factors like source, scalability, stability, and validation that contribute to the quality attributes of exosome-based drug products. Some studies suggested that exosomes were stable at around -80 °C, which is impractical for storing pharmaceutical products. Currently, no reports on the shelf-life and in vivo stability of exosome formulations are available. Exosomes are quickly cleared from blood circulation, and their in vivo distribution depends on the source. Considering these challenges, further studies are necessary to address major limitations such as poor drug loading, reduced in vivo stability, a need for robust, economical, and scalable production methods, etc., which may unlock the potential of exosomes in clinical applications. A few reports based on hybrid exosomes involving hybridization between different cell/tumor/macrophage-derived exosomes with synthetic liposomes through membrane fusion have shown to overcome some limitations associated with natural or synthetic exosomes. Yet, sufficient evidence is indispensable to prove their stability and clinical efficacy.
Collapse
Affiliation(s)
- Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Brijesh Shah
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Susan Immanuel
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Maharshi Thalla
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Ankit Jain
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| |
Collapse
|
35
|
Cotto N, Chauhan N, Adriano B, Chauhan DS, Cabrera M, Chauhan SC, Yallapu MM. Milk Exosome-Glow Nanosystem for Cancer Cellular and Tissue Bioimaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:711-720. [PMID: 39483633 PMCID: PMC11522989 DOI: 10.1021/cbmi.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 11/03/2024]
Abstract
Milk-derived exosomes are widely used for diagnosis, delivery, imaging, and theranostic applications. Near-Infrared (NIR) based fluorescence bioimaging is an attractive and safer technique that is used for clinical applications. However, almost all NIR imaging agents tend to have poor photostability, short half-life, nonspecific protein binding, and concentration-dependent aggregation(s). Therefore, there is an unmet clinical need to develop newer and safer modalities to package and deliver NIR imaging agents. Bovine milk exosomes are natural, biocompatible, safe, and efficient nanocarriers that facilitate the delivery of micro- and macromolecules. Herein, we developed an exosome-based NIR dye loaded nanoimaging formulation that offers improved solubility and photostability of NIR dye. Following the acetic acid based extracellular vesicle (EV) treatment method, we extracted the bovine milk exosomes from a variety of pasteurized grade milk. The EVs were screened for their physicochemical properties such as particle size and concentration and zeta potential. The stability of these exosomes was also determined under different conditions, including storage temperatures, pH, and salt concentrations. Next, indocyanine green, a model NIR dye was loaded into these exosomes (Exo-Glow) via a sonication method and further assessed for their improved fluorescence intensity and photostability using an IVIS imaging system. Initial screening suggested that size of the selected bovine milk exosomes was ∼100-135 nm with an average particle concentration of 5.8 × 102 particles/mL. Exo-Glow further demonstrated higher fluorescence intensity in cancer cells and tissues when compared to free dye. These results showed that Exo-Glow has the potential to serve as a safer NIR imaging tool for cancer cells/tissues.
Collapse
Affiliation(s)
- Nycol
M. Cotto
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Neeraj Chauhan
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Benilde Adriano
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Deepak S. Chauhan
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Marco Cabrera
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Subhash C. Chauhan
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Murali M. Yallapu
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|
36
|
Ahmed W, Mushtaq A, Ali S, Khan N, Liang Y, Duan L. Engineering Approaches for Exosome Cargo Loading and Targeted Delivery: Biological versus Chemical Perspectives. ACS Biomater Sci Eng 2024; 10:5960-5976. [PMID: 38940421 DOI: 10.1021/acsbiomaterials.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Exosomes are nanoscale membrane bound vesicles secreted by almost all types of cells. Their unique attributes, such as minimal immunogenicity and compatibility with biological systems, make them novel carriers for drug delivery. These native exosomes harbor proteins, nucleic acids, small molecule compounds, and fluorogenic agents. Moreover, through a combination of chemical and bioengineering methodologies, exosomes are tailored to transport precise therapeutic payloads to designated cells or tissues. In this review, we summarize the strategies for exosome modification and drug loading modalities in engineered exosomes. In addition, we provide an overview of the advances in the use of engineered exosomes for targeted drug delivery. Lastly, we discuss the merits and limitations of chemically engineered versus bioengineered exosome-mediated target therapies. These insights offer additional options for refining engineered exosomes in pharmaceutical development and hold promise for expediting the successful translation of engineered exosomes from the bench to the bedside.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Orthopedics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
- Medical School, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Asim Mushtaq
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland 4300, Australia
| | - Shahzad Ali
- Department of Orthopedics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
- Medical School, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
- Medical School, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Institute of Mental Health, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen 518020, Guangdong, China
| | - Li Duan
- Department of Orthopedics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| |
Collapse
|
37
|
Li Y, Shen Q, Feng L, Zhang C, Jiang X, Liu F, Pang B. A nanoscale natural drug delivery system for targeted drug delivery against ovarian cancer: action mechanism, application enlightenment and future potential. Front Immunol 2024; 15:1427573. [PMID: 39464892 PMCID: PMC11502327 DOI: 10.3389/fimmu.2024.1427573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/22/2024] [Indexed: 10/29/2024] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological malignancies in the world and is the leading cause of cancer-related death in women. The complexity and difficult-to-treat nature of OC pose a huge challenge to the treatment of the disease, Therefore, it is critical to find green and sustainable drug treatment options. Natural drugs have wide sources, many targets, and high safety, and are currently recognized as ideal drugs for tumor treatment, has previously been found to have a good effect on controlling tumor progression and reducing the burden of metastasis. However, its clinical transformation is often hindered by structural stability, bioavailability, and bioactivity. Emerging technologies for the treatment of OC, such as photodynamic therapy, immunotherapy, targeted therapy, gene therapy, molecular therapy, and nanotherapy, are developing rapidly, particularly, nanotechnology can play a bridging role between different therapies, synergistically drive the complementary role of differentiated treatment schemes, and has a wide range of clinical application prospects. In this review, nanoscale natural drug delivery systems (NNDDS) for targeted drug delivery against OC were extensively explored. We reviewed the mechanism of action of natural drugs against OC, reviewed the morphological composition and delivery potential of drug nanocarriers based on the application of nanotechnology in the treatment of OC, and discussed the limitations of current NNDDS research. After elucidating these problems, it will provide a theoretical basis for future exploration of novel NNDDS for anti-OC therapy.
Collapse
Affiliation(s)
- Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Stella GM, Lisini D, Pedrazzoli P, Galli G, Bortolotto C, Melloni G, D’Ambrosio G, Klersy C, Grosso A, Paino F, Tomaselli S, Saracino L, Alessandri G, Pessina A, Grignani E, Rosti V, Corsico AG, Comoli P, Agustoni F. Phase I Clinical Trial on Pleural Mesothelioma Using Neoadjuvant Local Administration of Paclitaxel-Loaded Mesenchymal Stromal Cells (PACLIMES Trial): Study Rationale and Design. Cancers (Basel) 2024; 16:3391. [PMID: 39410011 PMCID: PMC11475395 DOI: 10.3390/cancers16193391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background and rationale. Pleural mesothelioma (PM) is a rare and aggressive neoplasm that originates from the pleural mesothelium and whose onset is mainly linked to exposure to asbestos, which cannot be attacked with truly effective therapies with consequent poor prognosis. The rationale of this study is based on the use of mesenchymal stromal cells (MSCs) as a vehicle for chemotherapy drugs to be injected directly into the pathological site, such as the pleural cavity. Study design. The study involves the use of a conventional chemotherapeutic drug, Paclitaxel (PTX), which is widely used in the treatment of different types of solid tumors, including PM, although some limitations are related to pharmacokinetic aspects. The use of PTX-loaded MSCs to treat PM should provide several potential advantages over the systemically administered drug as reduced toxicity and increased concentration of active drug in the tumor-surrounding context. The PACLIMES trial explores the safety and toxicity of the local administration of Paclimes in chemonaive patients, candidates for pleurectomy. The secondary objective is to find the effective Paclimes dose for subsequent phase II studies and to observe and record the antitumor activity. Future direction. The experimental pre-clinical background and rationale are discussed as well.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (P.P.); (G.G.); (A.G.C.); (F.A.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.G.); (S.T.); (L.S.)
| | - Daniela Lisini
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (P.P.); (G.G.); (A.G.C.); (F.A.)
- Medical Oncology Unit, Oncology and Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Galli
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (P.P.); (G.G.); (A.G.C.); (F.A.)
- Medical Oncology Unit, Oncology and Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Radiology Unit-Diagnostic Imaging I, Department of Diagnostic Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulio Melloni
- Unit of Thoracic Surgery, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gioacchino D’Ambrosio
- Pathology Unit, Department of Diagnostical Services and Imaging, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Catherine Klersy
- Biostatistics and Clinical Trial Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, 27100 Pavia, Italy;
| | - Amelia Grosso
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.G.); (S.T.); (L.S.)
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (F.P.); (G.A.); (A.P.)
| | - Stefano Tomaselli
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.G.); (S.T.); (L.S.)
| | - Laura Saracino
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.G.); (S.T.); (L.S.)
| | - Giulio Alessandri
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (F.P.); (G.A.); (A.P.)
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (F.P.); (G.A.); (A.P.)
| | - Elena Grignani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Vittorio Rosti
- Phase 1 Clinical Trial Unit and Experimental Therapy, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (P.P.); (G.G.); (A.G.C.); (F.A.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.G.); (S.T.); (L.S.)
| | - Patrizia Comoli
- Cell Factory, Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Francesco Agustoni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (P.P.); (G.G.); (A.G.C.); (F.A.)
- Medical Oncology Unit, Oncology and Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
39
|
Cunha Silva L, Branco F, Cunha J, Vitorino C, Gomes C, Carrascal MA, Falcão A, Miguel Neves B, Teresa Cruz M. The potential of exosomes as a new therapeutic strategy for glioblastoma. Eur J Pharm Biopharm 2024; 203:114460. [PMID: 39218361 DOI: 10.1016/j.ejpb.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) stands for the most common and aggressive type of brain tumour in adults. It is highly invasive, which explains its short rate of survival. Little is known about its risk factors, and current therapy is still ineffective. Hence, efforts are underway to develop novel and effective treatment approaches against this type of cancer. Exosomes are being explored as a promising strategy for conveying and delivering therapeutic cargo to GBM cells. They can fuse with the GBM cell membrane and, consequently, serve as delivery systems in this context. Due to their nanoscale size, exosomes can cross the blood-brain barrier (BBB), which constitutes a significant hurdle to most chemotherapeutic drugs used against GBM. They can subsequently inhibit oncogenes, activate tumour suppressor genes, induce immune responses, and control cell growth. However, despite representing a promising tool for the treatment of GBM, further research and clinical studies regarding exosome biology, engineering, and clinical applications still need to be completed. Here, we sought to review the application of exosomes in the treatment of GBM through an in-depth analysis of the scientific and clinical studies on the entire process, from the isolation and purification of exosomes to their design and transformation into anti-oncogenic drug delivery systems. Surface modification of exosomes to enhance BBB penetration and GBM-cell targeting is also a topic of discussion.
Collapse
Affiliation(s)
- Leonor Cunha Silva
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3004 535, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra 3000-504, Portugal
| | - Mylène A Carrascal
- Tecnimede Group, Sintra 2710-089, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra 3000-548, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
40
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Torres Quintas S, Canha-Borges A, Oliveira MJ, Sarmento B, Castro F. Special Issue: Nanotherapeutics in Women's Health Emerging Nanotechnologies for Triple-Negative Breast Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300666. [PMID: 36978237 DOI: 10.1002/smll.202300666] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer appears as the major cause of cancer-related deaths in women, with more than 2 260 000 cases reported worldwide in 2020, resulting in 684 996 deaths. Triple-negative breast cancer (TNBC), characterized by the absence of estrogen, progesterone, and human epidermal growth factor type 2 receptors, represents ≈20% of all breast cancers. TNBC has a highly aggressive clinical course and is more prevalent in younger women. The standard therapy for advanced TNBC is chemotherapy, but responses are often short-lived, with high rate of relapse. The lack of therapeutic targets and the limited therapeutic options confer to individuals suffering from TNBC the poorest prognosis among breast cancer patients, remaining a major clinical challenge. In recent years, advances in cancer nanomedicine provided innovative therapeutic options, as nanoformulations play an important role in overcoming the shortcomings left by conventional therapies: payload degradation and its low solubility, stability, and circulating half-life, and difficulties regarding biodistribution due to physiological and biological barriers. In this integrative review, the recent advances in the nanomedicine field for TNBC treatment, including the novel nanoparticle-, exosome-, and hybrid-based therapeutic formulations are summarized and their drawbacks and challenges are discussed for future clinical applications.
Collapse
Affiliation(s)
- Sofia Torres Quintas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Canha-Borges
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS-CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| |
Collapse
|
42
|
Tian Y, Wang X, Wu C, Qiao J, Jin H, Li H. A protracted war against cancer drug resistance. Cancer Cell Int 2024; 24:326. [PMID: 39342202 PMCID: PMC11439304 DOI: 10.1186/s12935-024-03510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Currently, even the most effective anti-cancer therapies are often limited by the development of drug resistance and tumor relapse, which is a major challenge facing current cancer research. A deep understanding of the molecular and biochemical bases of drug efficacy that can help predict the clinical drug resistance, coupled with the evolution of systematic genomic and proteomic technologies, have facilitated studies identifying and elucidating the underlying mechanisms. In this review, we focus on several important issues on cancer drug resistance and provide a framework for understanding the common ways by which cancers develop resistance to therapeutic agents. With the increasing arsenal of novel anticancer agents and techniques, there are now unprecedented opportunities to understand and overcome drug resistance. The proteolysis targeting chimera (PROTAC) technology, immunotherapy, nanomedicine, and real-time monitoring of drug response all provide effective approaches for combating drug resistance. In addition to the advancement of therapeutic technologies, the revolution of treatment concept is also of great importance. We can take advantage of the interplay between drug sensitive and resistant subclones for combating cancer. However, there remains a long way to go in the protracted war against cancer drug resistance.
Collapse
Affiliation(s)
- Yuan Tian
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, P.R. China
| | - Xiaowei Wang
- Department of Thoracic Surgery/Clinical Research Center, The First Affiliated Hospital of Navy Medical University, 168 Changhai Road, Shanghai, 200433, P.R. China
| | - Cong Wu
- Department of Thoracic Surgery/Clinical Research Center, The First Affiliated Hospital of Navy Medical University, 168 Changhai Road, Shanghai, 200433, P.R. China
| | - Jiaming Qiao
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, P.R. China
| | - Hai Jin
- Department of Thoracic Surgery/Clinical Research Center, The First Affiliated Hospital of Navy Medical University, 168 Changhai Road, Shanghai, 200433, P.R. China.
| | - Huafei Li
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, P.R. China.
| |
Collapse
|
43
|
Ren L, Zhang D, Pang L, Liu S. Extracellular vesicles for cancer therapy: potential, progress, and clinical challenges. Front Bioeng Biotechnol 2024; 12:1476737. [PMID: 39398642 PMCID: PMC11466826 DOI: 10.3389/fbioe.2024.1476737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Extracellular vesicles (EVs) play an important role in normal life activities and disease treatment. In recent years, there have been abundant relevant studies focusing on EVs for cancer therapy and showing good performance on tumor inhibition. To enhance the effectiveness of EVs, EV analogs have been developed. This review summarizes the classification, origin, production, purification, modification, drug loading and cancer treatment applications of EVs and their analogs. Also, the characteristics of technologies involved are analyzed, which provides the basis for the development and application of biogenic vesicle-based drug delivery platform for cancer therapy. Meanwhile, challenges in translating these vesicles into clinic, such as limited sources, lack of production standards, and insufficient targeting and effectiveness are discussed. With ongoing exploration and clinical studies, EV-based drugs will make great contributions to cancer therapy.
Collapse
Affiliation(s)
- Lili Ren
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Dingmei Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Long Pang
- College of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
| | - Shiyu Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
44
|
Bettin I, Brattini M, Kachoie EA, Capaldi S, Thalappil MA, Bernardi P, Ferrarini I, Fuhrmann G, Mariotto S, Butturini E. Extracellular Vesicles based STAT3 delivery as innovative therapeutic approach to restore STAT3 signaling deficiency. N Biotechnol 2024; 82:43-53. [PMID: 38734368 DOI: 10.1016/j.nbt.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Extracellular Vesicles (EVs) have been proposed as a promising tool for drug delivery because of their natural ability to cross biological barriers, protect their cargo, and target specific cells. Moreover, EVs are not recognized by the immune system as foreign, reducing the risk of an immune response and enhancing biocompatibility. Herein, we proposed an alternative therapeutic strategy to restore STAT3 signaling exploiting STAT3 loaded EVs. This approach could be useful in the treatment of Autosomal Dominant Hyper-IgE Syndrome (AD-HIES), a rare primary immunodeficiency and multisystem disorder due to the presence of mutations in STAT3 gene. These mutations alter the signal transduction of STAT3, thereby impeding Th17 CD4+ cell differentiation that leads to the failure of immune response. We set up a simple and versatile method in which EVs were loaded with fully functional STAT3 protein. Moreover, our method allows to follow the uptake of STAT3 loaded vesicles inside cells due to the presence of EGFP in the EGFP-STAT3 fusion protein construct. Taken together, the data presented in this study could provide the scientific background for the development of new therapeutic strategy aimed to restore STAT3 signaling in STAT3 misfunction associated diseases like AD-HIES. In the future, the administration of fully functional wild type STAT3 to CD4+ T cells of AD-HIES patients might compensate its loss of function and would be beneficial for these patients, lowering the risk of infections, the use of medications, and hospitalizations.
Collapse
Affiliation(s)
- Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Martina Brattini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Elham Ataie Kachoie
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134 Verona, Italy.
| | - Stefano Capaldi
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134 Verona, Italy.
| | - Muhammed Ashiq Thalappil
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Paolo Bernardi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Human Anatomy, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Isacco Ferrarini
- Department of Engineering for Innovation Medicine, Section of Hematology, University of Verona, Verona, Italy.
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| |
Collapse
|
45
|
Zhang L, Qiang W, Li MQ, Wang SJ, Jia W, Wang R, Bai SW, Wang QF, Wang HY. A drug delivery system of HIF-1α siRNA nanoparticles loaded by mesenchymal stem cells on choroidal neovascularization. Nanomedicine (Lond) 2024; 19:2171-2185. [PMID: 39225143 PMCID: PMC11485800 DOI: 10.1080/17435889.2024.2393075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: To assess mesenchymal stem cells (MSCs) as carriers for HIF-1α siRNA-loaded nanoparticles (NPs) for targeted therapy of experimental choroidal neovascularization (CNV).Materials & methods: A poly (lactic-co-glycolic acid) (PLGA)-core/lipid-shell hybrid NP was designed. The transfection efficacy of MSCs with the hybrid NPs was assessed. Mice were intravenously injected with MSCs after laser photocoagulation and CNV was assessed at 7 days post-injection.Results & conclusion: The transfection efficiency of hybrid NPs into MSCs was 72.7%. HIF-1α mRNA expression in 661w cells co-cultured with MSC-hybrid-siRNA NPs was significantly lower. Intravenous delivery of MSC-hybrid-siRNA NPs greatly reduced CNV area and length. Intravenous injection of MSC-hybrid-siRNA NPs achieved therapeutic efficacy in reducing CNV area. The MSC-mediated homing enabled targeted inhibition of ocular angiogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Wei Qiang
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Mu-Qiong Li
- Department of Pharmaceutical Chemistry & Analysis Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Si-Jia Wang
- Institute of Biomedical Photonics & Sensors, School of Life Science & Technology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi Province, China
| | - Wei Jia
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Ru Wang
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Shu-Wei Bai
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Qian-Feng Wang
- Medical College of Optometry & Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong Province, China
| | - Hai-Yan Wang
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| |
Collapse
|
46
|
Ge K, Ren Y, Hong Z, Mao Z, Yao B, Ye K, Jia C. Microchip Based Isolation and Drug Delivery of Patient-Derived Extracellular Vesicles Against Their Homologous Tumor. Adv Healthc Mater 2024:e2401990. [PMID: 39221674 DOI: 10.1002/adhm.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Extracellular vesicles (EVs) have demonstrated significant potential in drug delivery and anti-tumor therapy. Despite this promising strategy, challenges such as specific targeting, EVs purification persist. In this study, a personalized nanodrug delivery platform using patient-derived tumor EVs (PT-EVs) based on a microchip is presented. The microchip integrates multiple functions, including capture, enrichment, drug loading, and elution of PT-EVs. The isolation and drug-carrying procedures are completed within a 12 h timeframe, achieving a recovery rate of 65%, significantly surpassing the conventional ultracentrifuge (UC) method. Furthermore, PT-EVs derived from patient tumor models are first utilized as natural drug carriers, capitalizing on their inherent homing ability to precisely target homologous tumors. Lenvatinib and doxorubicin (DOX), two commonly utilized drugs in the clinical treatment of hepatocellular carcinoma (HCC), are loaded into PT-EVs and delivered to a matched in vitro tumor model that recapitulates original tumors for drug susceptibility testing. As is proven, PT-EVs exhibit robust tumor cell targeting and efficient receptor-mediated cellular uptake, and the efficacy of chemotherapeutic drugs is improved significantly. These results suggest that this platform could be a valuable tool for efficient isolation of PT-EVs and personalized drug customization, particularly when working with limited clinical samples, thus supporting personalized and precision medicine.
Collapse
Affiliation(s)
- Ke Ge
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital Affiliated to Medical School of Westlake University, Hangzhou, 310006, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yongan Ren
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zichen Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhenjun Mao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Kai Ye
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Changku Jia
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital Affiliated to Medical School of Westlake University, Hangzhou, 310006, China
| |
Collapse
|
47
|
Huang C, Zhang J, Wang H, Liang C. Exosomes That Have Different Cellular Origins Followed by the Impact They Have on Prostate Tumor Development in the Tumor Microenvironment. Cancer Rep (Hoboken) 2024; 7:e70001. [PMID: 39229670 PMCID: PMC11372288 DOI: 10.1002/cnr2.70001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/15/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common urinary tumor with the highest incidence rate and the second among the leading causes of death worldwide for adult males. In the worldwide cancer incidence rate, PCa is on the increase. The cancerous cells in the prostate and cells in the microenvironment surrounding the tumor communicate through signal transduction, which is crucial for the development and spread of PCa. RECENT FINDINGS Exosomes are nanoscale vesicles released into body fluids by various cells that can aid intercellular communication by releasing nucleic acids and proteins. Exosomes published by different types of cells in the tumor microenvironment can have varying impacts on the proliferation and growth of tumor cells via various signaling pathways, modes of action, and secreted cytokines. CONCLUSION The main purpose of this review is to describe the effects of different cell-derived exosomes in the tumor microenvironment of PCa on the progression of tumor cells, as well as to summarize and discuss the prospects for the application of exosomes in the treatment and diagnosis of PCa.
Collapse
Affiliation(s)
- Cong Huang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| | - Jialong Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| | - Hongzhi Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
48
|
Di Santo R, Verdelli F, Niccolini B, Varca S, Gaudio AD, Di Giacinto F, De Spirito M, Pea M, Giovine E, Notargiacomo A, Ortolani M, Di Gaspare A, Baldi A, Pizzolante F, Ciasca G. Exploring novel circulating biomarkers for liver cancer through extracellular vesicle characterization with infrared spectroscopy and plasmonics. Anal Chim Acta 2024; 1319:342959. [PMID: 39122286 DOI: 10.1016/j.aca.2024.342959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with cirrhosis being a major risk factor. Traditional blood markers like alpha-fetoprotein (AFP) demonstrate limited efficacy in distinguishing between HCC and cirrhosis, underscoring the need for more effective diagnostic methodologies. In this context, extracellular vesicles (EVs) have emerged as promising candidates; however, their practical diagnostic application is restricted by the current lack of label-free methods to accurately profile their molecular content. To address this gap, our study explores the potential of mid-infrared (mid-IR) spectroscopy, both alone and in combination with plasmonic nanostructures, to detect and characterize circulating EVs. RESULTS EVs were extracted from HCC and cirrhotic patients. Mid-IR spectroscopy in the Attenuated Total Reflection (ATR) mode was utilized to identify potential signatures for patient classification, highlighting significant changes in the Amide I-II region (1475-1700 cm-1). This signature demonstrated diagnostic performance comparable to AFP and surpassed it when the two markers were combined. Further investigations utilized a plasmonic metasurface suitable for ultrasensitive spectroscopy within this spectral range. This device consists of two sets of parallel rod-shaped gold nanoantennas (NAs); the longer NAs produced an intense near-field amplification in the Amide I-II bands, while the shorter NAs were utilized to provide a sharp reflectivity edge at 1800-2200 cm-1 for EV mass-sensing. A clinically relevant subpopulation of EVs was targeted by conjugating NAs with an antibody specific to Epithelial Cell Adhesion Molecule (EpCAM). This methodology enabled the detection of variations in the quantity of EpCAM-presenting EVs and revealed changes in the Amide I-II lineshape. SIGNIFICANCE The presented results can positively impact the development of novel laboratory methods for the label-free characterization of EVs, based on the combination between mid-IR spectroscopy and plasmonics. Additionally, data obtained by using HCC and cirrhotic subjects as a model system, suggest that this approach could be adapted for monitoring these conditions.
Collapse
Affiliation(s)
- R Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy; Dipartimento di Scienze della Vita, della salute e delle Professioni sanitarie, Link Campus University, Rome, Italy
| | - F Verdelli
- Dutch Institute for Fundamental Energy Research (DIFFER), Eindhoven 5600 HH, The Netherlands
| | - B Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - S Varca
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Del Gaudio
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - F Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - M De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| | - M Pea
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - E Giovine
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - A Notargiacomo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - M Ortolani
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
| | - A Di Gaspare
- NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - A Baldi
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - F Pizzolante
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
49
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
50
|
Hu S, Zhang C, Ma Q, Li M, Yu X, Zhang H, Lv S, Shi Y, He X. Unveiling the multifaceted roles of microRNAs in extracellular vesicles derived from mesenchymal stem cells: implications in tumor progression and therapeutic interventions. Front Pharmacol 2024; 15:1438177. [PMID: 39161894 PMCID: PMC11330784 DOI: 10.3389/fphar.2024.1438177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have the capacity to migrate to tumor sites in vivo and transmit paracrine signals by secreting extracellular vesicles (EVs) to regulate tumor biological behaviors. MSC-derived EVs (MSC-EVs) have similar tumor tropism and pro- or anti-tumorigenesis as their parental cells and exhibit superior properties in drug delivery. MSC-EVs can transfer microRNAs (miRNAs) to tumor cells, thereby manipulating multiple key cancer-related pathways, and further playing a vital role in the tumor growth, metastasis, drug resistance and other aspects. In addition, tumor cells can also influence the behaviors of MSCs in the tumor microenvironment (TME), orchestrating this regulatory process via miRNAs in EVs (EV-miRNAs). Clarifying the specific mechanism by which MSC-derived EV-miRNAs regulate tumor progression, as well as investigating the roles of EV-miRNAs in the TME will contribute to their applications in tumor pharmacotherapy. This article mainly reviews the multifaceted roles and mechanism of miRNAs in MSC-EVs affecting tumor progression, the crosstalk between MSCs and tumor cells caused by EV-miRNAs in the TME. Eventually, the clinical applications of miRNAs in MSC-EVs in tumor therapeutics are illustrated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|