1
|
Liu C, Han S, Zhu Y, Xu W, Yang S. Novel Collector of a Dodecylpyridinium Chloride Ionic Liquid in the Reverse Flotation Separation of Muscovite from Apatite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2834-2842. [PMID: 39849303 DOI: 10.1021/acs.langmuir.4c04703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Reverse flotation separation of muscovite from apatite using a dodecylpyridinium chloride (DPDC) ionic liquid as the collector was studied in this work. The microflotation results depicted that DPDC had a strong collecting for muscovite but had a slight collecting for apatite when using phosphoric acid as a depressant for apatite in a weakly acidic pH value pulp, artificial mixture mineral flotation showed that reverse flotation separation of muscovite from apatite can be effectively achieved in the reagent scheme of phosphoric acid/DPDC, and DPDC had a better separation performance in the muscovite/apatite system than DDA. The adsorption measurements indicated that the adsorption amount of DPDC on the apatite surface was less than that of DPDC on the muscovite surface, and the zeta potential results confirmed that a strong interaction occurred between DPDC and the muscovite surface, while an extremely weak interaction occurred between DPDC and the apatite surface in the presence of phosphoric acid at pH ∼ 5.5. XPS analysis indicated that a hydrogen bond occurred between DPDC and the muscovite surface. Thus, it was inferred that DPDC could be used as an appreciation collector for the reverse flotation of muscovite from apatite.
Collapse
Affiliation(s)
- Cheng Liu
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Mineral Processing, BGRIMM Technology Group, Beijing 102600, China
- State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Guiyang 550014, China
| | - Sitong Han
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yangge Zhu
- State Key Laboratory of Mineral Processing, BGRIMM Technology Group, Beijing 102600, China
| | - Wei Xu
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Guiyang 550014, China
| | - Siyuan Yang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Uskoković V. Learning from a dark brew: how traditional coffee-making can inspire the search for improved colloidal stability. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2180387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano, Irvine, California, USA
- Department of Mechanical Engineering, San Diego State University, San Diego, California, USA
| |
Collapse
|
3
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
4
|
Skwarek E, Janusz W. The study of the interactions of malonic acid ions with the hydroxyapatite surface in liquid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Adsorption of malic acid at the hydroxyapatite/aqueous NaCl solution interface. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01938-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe aim of the study was the basic incidence on the phenomenon of adsorption that occurs at the hydroxyapatite/malic acid interface, leading to a change in the surface properties of hydroxyapatite, Analytical methods used in the research: X-ray diffraction (XRD) as well as by the, adsorption–desorption of nitrogen (ASAP), potentiometric titration. The specific adsorption of malic acid ions at the hydroxyapatite interface was investigated by means of the radioisotope method. The zeta potential of hydroxyapatite dispersions was determined by electrophoresis with Zetasizer Nano ZS90 by Malvern. The particle sizes of hydroxyapatite samples were analyzed using Masteriszer 2000 Malvern. Studies on the kinetics of malic acid on hydroxyapatite from a solution with an initial concentration of 1 mmol/dm3 have shown that the adsorption process is initially fast, followed by a slow adsorption step. An increase in the pH of the solution causes a decrease in the malic acid adsorption as a result of competition with hydroxyl ions. The presence of adsorbed malic acid was confirmed by the FTIR measurements. The effect of malic acid adsorption on the zeta potential and particle size distribution of hydroxyapatite in the NaCl solution was investigated.
Collapse
|
6
|
Janusz W, Skwarek E. Adsorption of the Tartrate Ions in the Hydroxyapatite/Aqueous Solution of NaCl System. MATERIALS 2021; 14:ma14113039. [PMID: 34204933 PMCID: PMC8199740 DOI: 10.3390/ma14113039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/16/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
The research on the interaction of tartrate ions with the surface of hydroskyapatite was presented, including the measurements of the kinetics of tartrate ion adsorption and tartrate ion adsorption as a function of pH. The adsorption of tartrate ions was calculated from the loss of tartrate concentration in the solution as measured by a radioisotope method using C-14 labeled tartaric acid. In order to explain the mechanism of interaction of tartrate ions with hydroxyapatite, supplementary measurements were carried out, i.e., potentiometric measurements of the balance of released/consumed ions in the hydroxyapatite/electrolyte solution system, zeta potential measurements, FTIR spectrophotometric measurements and the hydroxyapatite crystal structure and particle size distribution were characterized. It was found that the adsorption of tartrate ions occurs as a result of the exchange of these ions with hydroxyl, phosphate and carbonate ions. Replacing the ions with the abovementioned tartrate ions leads to the appearance of a negative charge on the surface of the hydroxapatite. On the basis of XRD study and particle size distribution, a decrease in the size of crystallites and the diameter of hydroxyapatite particles in contact with a solution of 0.001 mol/dm3 of tartaric acid was found.
Collapse
|
7
|
Mosiman DS, Chen YS, Yang L, Hawkett B, Ringer SP, Mariñas BJ, Cairney JM. Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles. SMALL METHODS 2021; 5:e2000692. [PMID: 34927889 DOI: 10.1002/smtd.202000692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/19/2020] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite nanoparticles (HAP NPs) are important for medicine, bioengineering, catalysis, and water treatment. However, current understanding of the nanoscale phenomena that confer HAP NPs their many useful properties is limited by a lack of information about the distribution of the atoms within the particles. Atom probe tomography (APT) has the spatial resolution and chemical sensitivity for HAP NP characterization, but difficulties in preparing the required needle-shaped samples make the design of these experiments challenging. Herein, two techniques are developed to encapsulate HAP NPs and prepare them into APT tips. By sputter-coating gold or the atomic layer deposition of alumina for encapsulation, partially fluoridated HAP NPs are successfully characterized by voltage- or laser-pulsing APT, respectively. Analyses reveal that significant tradeoffs exist between encapsulant methods/materials for HAP characterization and that selection of a more robust approach will require additional technique development. This work serves as an essential starting point for advancing knowledge about the nanoscale spatiochemistry of HAP NPs.
Collapse
Affiliation(s)
- Daniel S Mosiman
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Safe Global Water Institute, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yi-Sheng Chen
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Limei Yang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Brian Hawkett
- Key Centre for Polymer Colloids School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Simon P Ringer
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Benito J Mariñas
- Safe Global Water Institute, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Julie M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
8
|
Comparison of Oxalate, Citrate and Tartrate Ions Adsorption in the Hydroxyapatite/Aqueous Electrolyte Solution System. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4040045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The kinetics of adsorption/desorption of oxalate, citrate and tartrate anions was investigated using hydroxyapatite from solutions at the initial concentrations of 0.000001 and 0.001 mol/dm3 anions. The adsorption process from a solution with a concentration of 0.001 mol/dm3 takes place in three stages and is well described by the multiexponential equation of adsorption kinetics. The process of tartrate and citrate ion desorption after increasing the pH to 10 is irreversible, while the oxalate ions undergo significant desorption with the increasing pH. The adsorption of oxalate ions decreases with the increasing pH. This effect is weaker in the adsorption of citrate and tartrate ions. Ion adsorption studies were supplemented with the measurements of zeta potential, FTIR and particle distribution of hydroxyapatite particles.
Collapse
|
9
|
Owens CL, Nash GR, Hadler K, Fitzpatrick RS, Anderson CG, Wall F. Apatite enrichment by rare earth elements: A review of the effects of surface properties. Adv Colloid Interface Sci 2019; 265:14-28. [PMID: 30711795 DOI: 10.1016/j.cis.2019.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Apatite subspecies depend on their halogen and hydroxyl content; chlorapatite, hydroxylapatite and fluorapatite, with additional substitution of other elements within the lattice such as rare earth elements (REE), sodium, strontium and manganese also possible. Rare earth elements are vital to green and emerging technologies, with demand set to outstrip supply. Apatite provides a possible future source of REE. Processing rare earth deposits is often complex, with surface behaviour having a significant effect on the optimization of a process flow sheet. The effect of enrichment of natural apatite and the doping of synthetic apatite on surface behaviour can be determined by measuring the zeta potential and the isoelectric point of the mineral. In this paper, we review zeta potential studies of natural and synthetic apatite to determine the effect of elemental enrichment on surface behaviour. Fifty three studies of natural apatite and forty four studies of synthetic apatite were reviewed. The isoelectric point of apatite varied from pH 1 to pH 8.7, with studies of apatite specified to be >90% pure reducing the variation to pH 3 to pH 6.5. Of the four studies of rare earth enriched apatite found, three had IEP values between pH 3 and pH 4. A study of synthetic apatite showing enrichment of between 1 and 10% by the REE europium does not affect surface behaviour. However, no studies were found that investigated the effect of common REE processing reagents on REE enriched apatite zeta potentials. Therefore, in addition to comparing previous studies we also therefore present new zeta potential measurements of apatite from a REE enriched deposit under water and common flotation collector conditions. The IEP value of this apatite under water conditions was at pH 3.6, shifting to <3.5 under both hydroxamic acid and betacol conditions. When compared to previous studies, the behaviour of REE enriched apatite under collector conditions is similar to non-REE apatite. This result could be important for future processing of apatite enriched with REE, and therefore global apatite and rare earth supply.
Collapse
|
10
|
Dissolution and Solubility Product of Cd-Fluorapatite [Cd5(PO4)3F] at pH of 2–9 and 25–45°C. J CHEM-NY 2018. [DOI: 10.1155/2018/3109047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dissolution of the synthetic cadmium fluorapatite [Cd5(PO4)3F] at 25°C, 35°C, and 45°C was experimentally examined in HNO3 solution, pure water, and NaOH solution. The characterization results confirmed that the cadmium fluorapatite nanorods used in the experiments showed no obvious variation after dissolution. During the dissolution of Cd5(PO4)3F in HNO3 solution (pH = 2) at 25°C, the fluoride, phosphate, and cadmium ions were rapidly released from solid to solution, and their aqueous concentrations had reached the highest values after dissolution for <1 h, 1440 h, and 2880 h, respectively. After that, the total dissolution rates declined slowly though the solution Cd/P molar ratios increased incessantly from 1.55∼1.67 to 3.18∼3.22. The solubility product for Cd5(PO4)3F (Ksp) was determined to be 10−60.03 (10−59.74∼10−60.46) at 25°C, 10−60.38 (10−60.32∼10−60.48) at 35°C, and 10−60.45 (10−60.33∼10−60.63) at 45°C. Based on the log Ksp values obtained at an initial pH of 2 and 25°C, the Gibbs free energy of formation for Cd5(PO4)3F (ΔGf0) was calculated to be −4065.76 kJ/mol (−4064.11∼−4068.23 kJ/mol). The thermodynamic parameters for the dissolution process were computed to be 342515.78 J/K·mol, −85088.80 J/mol, −1434.91 J/K·mol, and 2339.50 J/K·mol for ΔG0, ΔH0, ΔS0, and ΔCp0, correspondingly.
Collapse
|
11
|
Characterization of Sn-Apatites and 99mTcO4 – anions removal from aqueous solutions. ACTA CHIMICA SLOVACA 2018. [DOI: 10.2478/acs-2018-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Apatite is a natural mineral from the group of phosphate minerals. It originates primarily in rocks and converted limestones. It is also one of the few minerals produced and used by microeconomic systems. Due to its low solubility in water and high sorption capacity, apatite is a suitable sorbent for heavy metals and radionuclides removal from aqueous radioactive waste. Increasing amount of radioactive waste (RAW) has a negative impact on human health as well as on the environment. Production of RAW is constantly increasing because of the use of nuclear energy as well as by the development of nuclear medicine. The aim of this work was to study the effect of pH and various anions on the sorption of pertechnetate anions from aqueous solution to Sn-Apatite. Sn-Apatite samples used in the experiment were prepared by the wet precipitation method and adsorption of 99mTc was monitored by the radioisotope indication method. Sorption experiments were performed using the batch method. It was found that the sorption percentage was higher than 90 % in all Sn-Apatite samples and the dissociation constant, KD, indicated high affinity of pertechnetate anions to the solid Sn-Apatite particles. The presence of competing anions did not significantly influence the ability of Sn-Apatite materials to adsorb 99mTcO4 - from aqueous solutions.
Collapse
|
12
|
Poly(lactic acid) microparticles with controllable morphology by hydroxyapatite stabilized pickering emulsions: Effect of pH, salt, and amphiphilic agents. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Characterization, Dissolution, and Solubility of Zn-Substituted Hydroxylapatites [(Zn xCa 1−x) 5(PO 4) 3OH] at 25°C. J CHEM-NY 2017. [DOI: 10.1155/2017/4619159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of Zn-substituted hydroxylapatites [(ZnxCa1−x)5(PO4)3OH, Zn-Ca-HA] with the Zn/(Zn + Ca) molar ratio (XZn) of 0~0.16 was prepared and characterized, and then the dissolution of the synthesized solids in aqueous solution was investigated by batch experiment. The results indicated that the aqueous zinc, calcium, and phosphate concentrations greatly depended on the Zn/(Zn + Ca) molar ratio of the Zn-Ca-HA solids (XZn). For the Zn-Ca-HA dissolution at 25°C with an initial pH of 2.00, the final solution pH increased, while the final solution calcium and phosphate concentrations decreased with the increasing XZn. The final solution zinc concentrations increased with the increasing XZn when XZn≤0.08 and decreased with the increasing XZn when XZn = 0.08~0.16. The mean Ksp values for (ZnxCa1−x)5(PO4)3OH at 25°C decreased from 10−57.75 to 10−58.59 with the increasing XZn from 0.00 to 0.08 and then increased from 10–58.59 to 10–56.63 with the increasing XZn from 0.08 to 0.16. This tendency was consistent with the dependency of the lattice parameter a on XZn. The corresponding free energies of formation (ΔGfo) increased lineally from −6310.45 kJ/mol to −5979.39 kJ/mol with the increasing XZn from 0.00 to 0.16.
Collapse
|
14
|
Hermassi M, Valderrama C, Gibert O, Moreno N, Font O, Querol X, Batis NH, Cortina JL. Integration of Powdered Ca-Activated Zeolites in a Hybrid Sorption–Membrane Ultrafiltration Process for Phosphate Recovery. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Hermassi
- Chemical
Engineering Department, Universitat Politècnica de Catalunya-Barcelona TECH, Avenida Diagonal 647, 08028 Barcelona, Spain
- Department
of Biological and Chemical Engineering, National Institute of Applied
Sciences and Technology (INSAT), University of Carthage (Tunisia), Tunis 676-1080 Cedex, Tunisia
| | - C. Valderrama
- Chemical
Engineering Department, Universitat Politècnica de Catalunya-Barcelona TECH, Avenida Diagonal 647, 08028 Barcelona, Spain
| | - O. Gibert
- Chemical
Engineering Department, Universitat Politècnica de Catalunya-Barcelona TECH, Avenida Diagonal 647, 08028 Barcelona, Spain
| | - N. Moreno
- Institute
of Environmental Assessment and Water Research IDAEA, Consejo Superior de Investigaciones Científicas (CSIC) Barcelona, 08034 Barcelona, Spain
| | - O. Font
- Institute
of Environmental Assessment and Water Research IDAEA, Consejo Superior de Investigaciones Científicas (CSIC) Barcelona, 08034 Barcelona, Spain
| | - X. Querol
- Institute
of Environmental Assessment and Water Research IDAEA, Consejo Superior de Investigaciones Científicas (CSIC) Barcelona, 08034 Barcelona, Spain
| | - N. H. Batis
- Department
of Biological and Chemical Engineering, National Institute of Applied
Sciences and Technology (INSAT), University of Carthage (Tunisia), Tunis 676-1080 Cedex, Tunisia
| | - J. L. Cortina
- Chemical
Engineering Department, Universitat Politècnica de Catalunya-Barcelona TECH, Avenida Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
15
|
Zhu Y, Huang B, Zhu Z, Liu H, Huang Y, Zhao X, Liang M. Characterization, dissolution and solubility of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 °C and pH 2-9. GEOCHEMICAL TRANSACTIONS 2016; 17:2. [PMID: 27158243 PMCID: PMC4858909 DOI: 10.1186/s12932-016-0034-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/25/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND The interaction between Ca-HAP and Pb(2+) solution can result in the formation of a hydroxyapatite-hydroxypyromorphite solid solution [(PbxCa1-x)5(PO4)3(OH)], which can greatly affect the transport and distribution of toxic Pb in water, rock and soil. Therefore, it's necessary to know the physicochemical properties of (PbxCa1-x)5(PO4)3(OH), predominantly its thermodynamic solubility and stability in aqueous solution. Nevertheless, no experiment on the dissolution and related thermodynamic data has been reported. RESULTS Dissolution of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3(OH)] in aqueous solution at 25 °C was experimentally studied. The aqueous concentrations were greatly affected by the Pb/(Pb + Ca) molar ratios (XPb) of the solids. For the solids with high XPb [(Pb0.89Ca0.11)5(PO4)3OH], the aqueous Pb(2+) concentrations increased rapidly with time and reached a peak value after 240-720 h dissolution, and then decreased gradually and reached a stable state after 5040 h dissolution. For the solids with low XPb (0.00-0.80), the aqueous Pb(2+) concentrations increased quickly with time and reached a peak value after 1-12 h dissolution, and then decreased gradually and attained a stable state after 720-2160 h dissolution. CONCLUSIONS The dissolution process of the solids with high XPb (0.89-1.00) was different from that of the solids with low XPb (0.00-0.80). The average K sp values were estimated to be 10(-80.77±0.20) (10(-80.57)-10(-80.96)) for hydroxypyromorphite [Pb5(PO4)3OH] and 10(-58.38±0.07) (10(-58.31)-10(-58.46)) for calcium hydroxyapatite [Ca5(PO4)3OH]. The Gibbs free energies of formation (ΔG f (o) ) were determined to be -3796.71 and -6314.63 kJ/mol, respectively. The solubility decreased with the increasing Pb/(Pb + Ca) molar ratios (XPb) of (PbxCa1‒x)5(PO4)3(OH). For the dissolution at 25 °C with an initial pH of 2.00, the experimental data plotted on the Lippmann diagram showed that the solid solution (PbxCa1-x)5(PO4)3(OH) dissolved stoichiometrically at the early stage of dissolution and moved gradually up to the Lippmann solutus curve and the saturation curve for Pb5(PO4)3OH, and then the data points moved along the Lippmann solutus curve from right to left. The Pb-rich (PbxCa1-x)5(PO4)3(OH) was in equilibrium with the Ca-rich aqueous solution. Graphical abstractLippmann diagrams for dissolution of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 ˚C and an initial pH of 2.00.
Collapse
Affiliation(s)
- Yinian Zhu
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Bin Huang
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Zongqiang Zhu
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Huili Liu
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Yanhua Huang
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Xin Zhao
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 People’s Republic of China
| | - Meina Liang
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| |
Collapse
|
16
|
Zhu Y, Zhu Z, Zhao X, Liang Y, Dai L, Huang Y. Characterization, dissolution and solubility of synthetic cadmium hydroxylapatite [Cd5(PO4)3OH] at 25-45°C. GEOCHEMICAL TRANSACTIONS 2015; 16:9. [PMID: 26190941 PMCID: PMC4506425 DOI: 10.1186/s12932-015-0025-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The substitution of Ca(2+) in Ca-hydroxylapatite by toxic Cd(2+) can cause the forming of Cd-hydroxylapatite and is a significant issue in a great variety of research areas, which hence needs an understanding of the essential physicochemical characteristics. Unfortunately, the solubility product and thermodynamic data for Cd-hydroxylapatite in water under a variety of conditions now are lacking. Little information has been reported by previous researchers. Additionally, the dissolution mechanism of Cd-hydroxylapatite has never been studied. RESULTS Dissolution of the synthetic cadmium hydroxylapatite [Cd-HAP, Cd5(PO4)3OH] in HNO3 solution (pH = 2), ultrapure water (pH = 5.6) and NaOH solution (pH = 9) was experimentally studied at 25, 35 and 45°C. Characterization by XRD, FT-IR and FE-SEM proved that Cd-HAP solids showed no recognizable change during dissolution. For the Cd-HAP dissolution in aqueous acidic media at initial pH 2 and 25°C, the solution cadmium and phosphate concentrations increased rapidly and reached the peak values after 20-30 days and 10 days reaction, respectively. Thereafter, the Cd-HAP dissolution rate decreased slowly, whereas the solution Cd/P molar ratio increased constantly from 1.65-1.69 to 6.61-6.76. The mean K sp values for Cd5(PO4)3OH were determined to be 10(-64.62) (10(-64.53)-10(-64.71)) at 25°C, 10(-65.58) (10(-65.31)-10(-65.80)) at 35°C and 10(-66.57) (10(-66.24)-10(-66.90)) at 45°C. Based on the obtained solubility data from the dissolution at initial pH 2 and 25°C, the Gibbs free energy of Cd5(PO4)3OH forming [Formula: see text] was determined to be -3,970.47 kJ/mol (-3,969.92 to -3,970.96 kJ/mol). Thermodynamic parameters, ΔG (0), ΔH (0), ΔS (0), and [Formula: see text] for the dissolution process of Cd-HAP in aqueous acidic media at initial pH 2 and 25°C were calculated 368,710.12 J/K mol, -158,809.54 J/mol, -1,770.20 and -869.53 J/K mol, respectively. CONCLUSIONS Based on the experimental results of the present work and some previous researches, the cadmium hydroxylapatite (Cd-HAP) dissolution in aqueous media is considered to have the following coincident processes: the stoichiometric dissolution coupled with protonation and complexation reactions, the non-stoichiometric dissolution with Cd(2+) release and PO4 (3-) sorption and the sorption of Cd(2+) and PO4 (3-) species from solution backwards onto Cd-HAP surface. The obtained solubility products (K sp) 10(-64.62) (10(-64.53)-10(-64.71)) for Cd-HAP was approximately 7.62-5.62 log units lower than 10(-57)-10(-59) for calcium hydroxylapatite (Ca-HAP).Graphical abstractDissolution of cadmium hydroxylapatite [Cd5(PO4)3OH].
Collapse
Affiliation(s)
- Yinian Zhu
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Zongqiang Zhu
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Xin Zhao
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 People’s Republic of China
| | - Yanpeng Liang
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Liuqin Dai
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| | - Yanhua Huang
- />College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004 People’s Republic of China
| |
Collapse
|
17
|
Garner S, Barbour ME. Nanoparticles for controlled delivery and sustained release of chlorhexidine in the oral environment. Oral Dis 2015; 21:641-4. [DOI: 10.1111/odi.12328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 11/29/2022]
Affiliation(s)
- S Garner
- Oral Nanoscience; School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - ME Barbour
- Oral Nanoscience; School of Oral and Dental Sciences; University of Bristol; Bristol UK
| |
Collapse
|
18
|
Nunes APL, Peres AEC, Valadao GES. The influence of lattice ions on the electrokinetic potential of primary and secondary phosphates. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2015.1004347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
|
20
|
Characterization, Dissolution, and Solubility of Lead Hydroxypyromorphite [Pb5(PO4)3OH] at 25–45°C. J CHEM-NY 2015. [DOI: 10.1155/2015/269387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dissolution of the hydroxypyromorphite [lead hydroxyapatite, Pb5(PO4)3OH] in HNO3solution (pH = 2.00), ultrapure water (pH = 5.60), and NaOH solution (pH = 9.00) was experimentally studied at 25°C, 35°C, and 45°C. The XRD, FT-IR, and FE-SEM analyses indicated that the hydroxypyromorphite solids were observed to have indistinguishable change during dissolution. For the hydroxypyromorphite dissolution in aqueous acidic media at initial pH 2.00 and 25°C, the aqueous phosphate concentrations rose quickly and reached the peak values after 1 h dissolution, while the aqueous lead concentrations rose slowly and reached the peak values after 1440 h. The solution Pb/P molar ratio increased constantly from 1.10 to 1.65 near the stoichiometric ratio of 1.67 to 209.85~597.72 and then decreased to 74.76~237.26 for the dissolution at initial pH 2.00 and 25°C~45°C. The averageKspvalues for Pb5(PO4)3OH were determined to be 10−80.77(10−80.57−10−80.96) at 25°C, 10−80.65(10−80.38−10−80.99) at 35°C, and 10−79.96(10−79.38−10−80.71) at 45°C. From the obtained solubility data for the dissolution at initial pH 2.00 and 25°C, the Gibbs free energy of formation [ΔGfo] for Pb5(PO4)3OH was calculated to be −3796.71 kJ/mol (−3795.55~−3797.78 kJ/mol).
Collapse
|
21
|
Qian G, Li M, Wang F, Liu X. Removal of Fe3+ from Aqueous Solution by Natural Apatite. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jsemat.2014.41003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Cummings LJ, Frost RG, Snyder MA. Monoclonal antibody purification by ceramic hydroxyapatite chromatography. Methods Mol Biol 2014; 1131:241-251. [PMID: 24515470 DOI: 10.1007/978-1-62703-992-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hydroxyapatite chromatography is shown to be an excellent method for chromatographically purifying monoclonal antibodies (Mab). Mab contained in eluates from Protein A columns was partially purified on ceramic hydroxyapatite (CHT™) Type I, 40 μm ceramic hydroxyapatite using two scouting methods which provide milligram amounts of Mab typical at laboratory scale. The result from one of the scouting methods was optimized to obtain a high concentration of purified Mab with acceptable clearance of cell culture impurities. Several techniques (linear phosphate screening, linear alkaline salt screening, and two alkaline salt step gradients) are described for obtaining high concentrations of purified Mab in a lab-scale CHT chromatography column.
Collapse
|
23
|
Abstract
The specific adsorption of citric acid ions at hydroxyapatite interface was investigated by the means of radioisotope method (14C) as a function of citric acid ions concentration, NaCl concentration and pH. Application of the hydroxyapatite has become wide in the biomaterial field as the Ca10(OH)2(PO4)6 possess biocompatibility with human hard tissue. Hydroxyapatite was synthesized using three different methods. The physical properties of the resulting powder were characterized by DTA/TG, XRD, AFM and SEM microscopy. Physicochemical qualities characterizing the electrical double layer of the hydroxyapatite/NaCl solution interface were determined. The zeta potential and the adsorption of citric acid molecule were studied as a function of pH. The point of zero charge and the isoelectric point of samples were determined. Electrical double layer parameters of hydroxyapatite/NaCl interface are influenced by a synthesis method. The points pHpzc and pHIEP for sample 1 are pHpzc 7.5 and pHIEP 3; for sample 2 pHpzc 7.05 and pHIEP 3, for smaple 3 pHpzc 6.7 and pHIEP 3. Temperature has weak influence both on pure substance and with citric acid adsorbed, as derivatographic analysis has shown, and characterization of hydroxyapatite structure may be carried out by this thermal analysis. Two phenomena are responsible for citric acid adsorption: phosphate group's replacement at hydroxyapatite surface by citric ions parallel to intraspherical complexes formation.
Collapse
Affiliation(s)
- E. Skwarek
- Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 5, 20-031 Lublin, Poland
| | - W. Janusz
- Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 5, 20-031 Lublin, Poland
| | - D. Sternik
- Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 5, 20-031 Lublin, Poland
| |
Collapse
|
24
|
Takeshita T, Matsuura Y, Arakawa S, Okamoto M. Biomineralization of hydroxyapatite on DNA molecules in SBF: morphological features and computer simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11975-11981. [PMID: 23980633 DOI: 10.1021/la402589j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The hydroxyapatite (HA) formation on the DNA molecules in SBF was examined. After immersion for four weeks in SBF at 36.5 °C, the HA crystallites of ~1-14 μm in diameter grew on the surface of DNA molecules. Various morphologies were successfully observed through scanning electron microscopy analysis. The Ca/P mol ratio (1.1-1.5) in HA was estimated by energy dispersive X-ray analysis. Original peaks of both of DNA and HA were characterized by Fourier transform infrared spectroscopy. The molecular orbital computer simulation has been used to probe the interaction of DNA with two charge-balancing ions, i.e., CaOH(+) and CaH2PO4(+). The adsorption enthalpy of the two ions on ds-DNA and/or ss-DNA having large negative value (~ -60 kcal/mol per charge-balancing ion) was the evidence for the interface in mineralization of HA in SBF.
Collapse
Affiliation(s)
- Takayuki Takeshita
- Advanced Polymeric Nanostructured Materials Engineering, Graduate School of Engineering, Toyota Technological Institute , 2-12-1 Hisakata, Tempaku, Nagoya 468 8511, Japan
| | | | | | | |
Collapse
|
25
|
Jahromi MT, Yao G, Cerruti M. The importance of amino acid interactions in the crystallization of hydroxyapatite. J R Soc Interface 2012; 10:20120906. [PMID: 23269851 DOI: 10.1098/rsif.2012.0906] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Non-collagenous proteins (NCPs) inhibit hydroxyapatite (HA; Ca(5)(PO(4))(3)OH) formation in living organisms by binding to nascent nuclei of HA and preventing their further growth. Polar and charged amino acids (AAs) are highly expressed in NCPs, and the negatively charged ones, such as glutamic acid (Glu) and phosphoserine (P-Ser) seem to be mainly responsible for the inhibitory effect of NCPs. Despite the recognized importance of these AAs on the behaviour of NCPs, their specific effect on HA crystallization is still unclear, and controversial results have been reported concerning the efficacy of HA inhibition of positively versus negatively charged AAs. We focused on a positively charged (arginine, Arg) and a negatively charged (Glu) AA, and their combination in the same solution. We studied their inhibitory effect on HA nucleation and growth at physiological temperature and pH and we determined the mechanism by which they can affect HA crystallization. Our results showed a strong inhibitory effect of Arg on HA nucleation; however, Glu was more effective in inhibiting HA crystal growth during the growth stage. The combination of Glu and Arg was less effective in controlling HA nucleation, but it inhibited HA crystal growth. We attributed these differences to the stability of complexes formed between AAs and calcium and phosphate ions at the nucleation stage, and in bonding strength of AAs to HA crystal faces during the growth stage. The AAs also influenced the morphology of synthesized HA. Presence of either Arg or Glu resulted in the formation of spherulites consisting of preferentially oriented nanoplatelets orientation. This was attributed to kinetic factors favoring growth front nucleation (GFN) mechanism.
Collapse
Affiliation(s)
- M Tavafoghi Jahromi
- Department of Materials Engineering, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
26
|
Shi Q, Feng Q, Zhang G, Deng H. Electrokinetic properties of smithsonite and its floatability with anionic collector. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.06.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Habraken WJEM, Wolke JGC, Mikos AG, Jansen JA. PLGA microsphere/calcium phosphate cement composites for tissue engineering: in vitro release and degradation characteristics. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 19:1171-88. [DOI: 10.1163/156856208785540136] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- W. J. E. M. Habraken
- a Department of Periodontology and Biomaterials, College of Dental Science, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - J. G. C. Wolke
- b Department of Periodontology and Biomaterials, College of Dental Science, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - A. G. Mikos
- c Department of Bioengineering, Rice University, Houston, TX, USA
| | - J. A. Jansen
- d Department of Periodontology and Biomaterials, College of Dental Science, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
28
|
Dorozhkin SV. Dissolution mechanism of calcium apatites in acids: A review of literature. World J Methodol 2012; 2:1-17. [PMID: 25237611 PMCID: PMC4145559 DOI: 10.5662/wjm.v2.i1.1] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 02/06/2023] Open
Abstract
Eight dissolution models of calcium apatites (both fluorapatite and hydroxyapatite) in acids were drawn from the published literature, analyzed and discussed. Major limitations and drawbacks of the models were conversed in details. The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general. Therefore, an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids. For this purpose, eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution. The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future. This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data, obtained by various research groups under dissimilar experimental conditions.
Collapse
|
29
|
|
30
|
Nunes APL, Peres AEC, de Araujo AC, Valadão GES. Electrokinetic properties of wavellite and its floatability with cationic and anionic collectors. J Colloid Interface Sci 2011; 361:632-8. [DOI: 10.1016/j.jcis.2011.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 11/25/2022]
|
31
|
Chakraborty R, Bepari S, Banerjee A. Application of calcined waste fish (Labeo rohita) scale as low-cost heterogeneous catalyst for biodiesel synthesis. BIORESOURCE TECHNOLOGY 2011; 102:3610-3618. [PMID: 21094040 DOI: 10.1016/j.biortech.2010.10.123] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 10/23/2010] [Accepted: 10/25/2010] [Indexed: 05/30/2023]
Abstract
This paper explores the feasibility of converting waste Rohu fish (Labeo rohita) scale into a high-performance, reusable, low-cost heterogeneous catalyst for synthesis of biodiesel from soybean oil. The thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) analysis revealed that a significant portion of the main component of fish scale i.e. HAP (hydroxyapatite) could be transformed into β-tri-calcium phosphate when calcined above 900°C for 2 h. Scanning Electron Microscopy (SEM) morphology studies of the calcined scale depicted a fibrous layer of porous structure; while a BET surface area of 39 m(2)/g was measured. Response surface methodology (RSM) was employed to determine the optimal parametric conditions viz. methanol/oil molar ratio, 6.27:1, calcination temperature, 997.42°C and catalyst concentration, 1.01 wt.% of oil corresponding to a maximum FAME yield of 97.73%. Reusability results confirmed that the prepared catalyst could be reemployed up to six times, procreating a potentially applicable avenue in biodiesel synthesis.
Collapse
Affiliation(s)
- R Chakraborty
- Department of Chemical Engineering, Jadavpur University, Kolkata, India.
| | | | | |
Collapse
|
32
|
Huang S, Gao S, Cheng L, Yu H. Remineralization Potential of Nano-Hydroxyapatite on Initial Enamel Lesions: An in vitro Study. Caries Res 2011; 45:460-8. [DOI: 10.1159/000331207] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 07/21/2011] [Indexed: 11/19/2022] Open
|
33
|
Vucinić DR, Radulović DS, Deusić SD. Electrokinetic properties of hydroxyapatite under flotation conditions. J Colloid Interface Sci 2009; 343:239-45. [PMID: 20018290 DOI: 10.1016/j.jcis.2009.11.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/03/2009] [Accepted: 11/10/2009] [Indexed: 12/15/2022]
Abstract
The effect of calcite supernatant, calcium, and carbonate ions on the hydroxyapatite (HA) zeta potential without and in the presence of sodium oleate (1x10(-4) mol L(-1)) was examined within the pH range from 4 to 12. The interpretation of results was based on the HA surface and oleate solution chemistry, and on some floatability tests. HA, with different positive and negative surface sites formed depending on its solubility and pH, had a negative zeta potential over the whole pH range. This mineral is not naturally floatable (flotation recovery, 5%<R<18%). The oleate ions (Ol(-)), present in a very low concentration in an acidic medium (pH from 4.8 to 6), chemisorb individually on HA surface centers [triple bond]Ca(+), [triple bond]HPO(4)Ca(+), and [triple bond]OH(2)(+), increasing the negative zeta potential of the mineral. Within the pH range from 7 to 9, the dominant oleate species Ol(-) ion and ion-molecule complex, H(Ol)(2)(-), adsorbed on HA by head groups toward the solid and associated due to chain-chain interaction in hemimicelles, made the HA surface with zeta potential about -22/-23 mV, and more floatable (R=80-100%) than in 4<pH<7 (R=15-35%) or in pH>9.3. The HA surface is less negatively charged in calcite supernatant than in water from pH 6.6 to 9.2 due to the adsorption on HA negative surface active centers ([triple bond]HPO(4)(-) and [triple bond]PO(4)(2-)) of the Ca(2+), and CaOH(+) ions (present in the calcite supernatant), producing more surface sites [triple bond]HPO(4)Ca(+), [triple bond]PO(4)Ca, [triple bond]HPO(4)CaOH, and [triple bond]PO(4)(-) CaOH, and new centers [triple bond]HPO(4)CaHCO(3) and [triple bond]PO(4)(-) CaHCO(3). In the presence of 1x10(-3) mol L(-1) CaCl(2), the HA sample has positive zeta potential, the same as calcite from the same deposit, up to IEP at pH 11.25. Carbonate ions (1x10(-3) mol L(-1) Na(2)CO(3)) do not affect the HA zeta potential. However, a possible process can be the ion-exchange reaction between bicarbonate (or carbonate) and some anion from the surface sites formed on HA. The obtained values of the HA zeta potential with the collector (1x10(-4) mol L(-1) Na-oleate) added into hydroxyapatite/calcite supernatant suspensions corroborate the weak chemisorption of Ol(-) and H(Ol)(2)(-). The likely processes in this system also are the ion-exchange reactions on [triple bond]HPO(4)CaOH and [triple bond]PO(4)(-) CaOH, [triple bond]HPO(4)CaHCO(3) and [triple bond]PO(4)(-) CaHCO(3) between oleate ion and surface hydroxyl and bicarbonate ions, surface and bulk precipitations of calcium oleate, Ca(Ol)(2), and the surface and bulk precipitations of Ca[H(Ol)(2)(-)](2) over the pH range from 7 to 9. Calcite supernatant does not influence natural floatability of the mineral. However, calcite supernatant depresses the hydroxyapatite flotation in the presence of 1x10(-4) mol L(-1) Na-oleate (pH 9, R approximately 50%), a likely result of the weak chemisorption due to the steric effect of heterogeneous HA surface formed in calcite supernatant, Ca(Ol)(2) and Ca[H(Ol)(2)(-)](2) surface and bulk precipitations.
Collapse
Affiliation(s)
- Dusica R Vucinić
- Faculty of Mining and Geology, Department of Mineral Processing, University of Belgrade, Belgrade, Serbia.
| | | | | |
Collapse
|
34
|
|
35
|
Cárdenas M, Valle-Delgado JJ, Hamit J, Rutland MW, Arnebrant T. Interactions of hydroxyapatite surfaces: conditioning films of human whole saliva. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:7262-7268. [PMID: 18547092 DOI: 10.1021/la800402s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hydroxyapatite is a very interesting material given that it is the main component in tooth enamel and because of its uses in bone implant applications. Therefore, not only the characterization of its surface is of high relevance but also designing reliable methods to study the interfacial properties of films adsorbed onto it. In this paper we apply the colloidal probe atomic force microscopy method to investigate the surface properties of commercially available hydroxyapatite surfaces (both microscopic particles and macroscopic discs) in terms of interfacial and frictional forces. In this way, we find that hydroxyapatite surfaces at physiological relevant conditions are slightly negatively charged. The surfaces were then exposed to human whole saliva, and the surface properties were re-evaluated. A thick film was formed that was very resistant to mechanical stress. The frictional measurements demonstrated that the film was indeed highly lubricating, supporting the argument that this system may prove to be a relevant model for evaluating dental and implant systems.
Collapse
Affiliation(s)
- Marité Cárdenas
- Biomedical Laboratory Science and Technology, Health and Society, Malmoe University, SE-20506 Malmoe, Sweden.
| | | | | | | | | |
Collapse
|