1
|
Ma Y, Zhang M, Wang Z, Cao L, Li Y, Wan Z, Kane Y, Wang G, Li X, Zhang C. Short-term antiretroviral therapy may not correct the dysregulations of plasma virome and cytokines induced by HIV-1 infection. Virulence 2025; 16:2467168. [PMID: 39950859 PMCID: PMC11866967 DOI: 10.1080/21505594.2025.2467168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 02/09/2025] [Indexed: 02/28/2025] Open
Abstract
An expansion of plasma anelloviruses and dysregulation of inflammation was associated with HIV-1 infection. However, how antiretroviral therapy (ART) affects the dynamics of plasma virome and cytokine profile remains largely unknown. To characterize the dynamics of plasma virome and cytokines in HIV-1-infected individuals before and during the first year of ART, a cohort of 26 HIV-1-infected individuals and 19 healthy controls was recruited. Blood samples were collected and subjected to metagenomic analysis and the measurement of 27 cytokines. Metagenomic analysis revealed an increased abundance and prevalence of human pegivirus type 1 (HPgV-1) and a slightly decreased diversity and abundance of anellovirus in plasma of HIV-1-infected individuals after ART. No obvious impact was observed on other plasma commensal viruses. Increased abundance and prevalence of HPgV-1 were further confirmed by RT-qPCR assay in a larger cohort of 114 HIV-1-infected individuals. Notably, most dysregulated cytokines were not fully restored by ART, with extremely abnormal levels of IL-10, GM-CSF, VEGF, and eotaxin, and a significantly increased level of plasma I-FABP. Anelloviruses showed significantly negative correlations with other commensal viruses except HPgV-1 but had positive correlations with several anti-inflammatory and Th1 cytokines. These results suggest that short-term ART may not significantly correct the virome and cytokine dysregulations induced by HIV-1 infection. The results highlight a need for further investigation into the long-term effects of ART on virome and cytokine profiles in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenyan Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenzhou Wan
- Medical Laboratory,Taizhou Fourth People’s Hospital, Taizhou, China
| | - Yakhouba Kane
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Gang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xin Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Hetta HF, Ahmed R, Ramadan YN, Fathy H, Khorshid M, Mabrouk MM, Hashem M. Gut virome: New key players in the pathogenesis of inflammatory bowel disease. World J Methodol 2025; 15:92592. [DOI: 10.5662/wjm.v15.i2.92592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the intestine. While the mechanism underlying the pathogenesis of IBD is not fully understood, it is believed that a complex combination of host immunological response, environmental exposure, particularly the gut microbiota, and genetic susceptibility represents the major determinants. The gut virome is a group of viruses found in great frequency in the gastrointestinal tract of humans. The gut virome varies greatly among individuals and is influenced by factors including lifestyle, diet, health and disease conditions, geography, and urbanization. The majority of research has focused on the significance of gut bacteria in the progression of IBD, although viral populations represent an important component of the microbiome. We conducted this review to highlight the viral communities in the gut and their expected roles in the etiopathogenesis of IBD regarding published research to date.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Division of Microbiology, Immunology and Biotechnology, Faculty of pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Yasmin N Ramadan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hayam Fathy
- Department of Internal Medicine, Division Hepatogastroenterology, Assiut University, Assiut 71515, Egypt
| | - Mohammed Khorshid
- Department of Clinical Research, Egyptian Developers of Gastroenterology and Endoscopy Foundation, Cairo 11936, Egypt
| | - Mohamed M Mabrouk
- Department of Internal Medicine, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| | - Mai Hashem
- Department of Tropical Medicine, Gastroenterology and Hepatology, Assiut University Hospital, Assiut 71515, Egypt
| |
Collapse
|
3
|
Zhang P, Tuo X, Jiang J, Zhang Y, Zhao J, Deng C, Zhao G, Cheng Y, Song L, Yang Y, Guo R, Zhang H, Zhao H, Ma S, Li L, Shi H. Characteristics of the gut virome in patients with premalignant colorectal adenoma. J Transl Med 2025; 23:597. [PMID: 40437611 PMCID: PMC12121241 DOI: 10.1186/s12967-025-06404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/20/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND The multi-kingdom gut microbiota (e.g., bacteriome, mycobiome, and virome) characteristics of colorectal cancer have been extensively studied, yet there is still an insufficient description of the microbiota features in its early-stage, colorectal adenoma, particularly in the gut virome aspect. METHODS Based on the Metagenomic Gut Virus catalogue (MGV) containing 54,118 non-redundant gut viral genomes, this study characterized the virome composition and diversity using publicly available metagenomic sequencing data from 419 individuals with premalignant colorectal adenoma and 552 healthy controls. Furthermore, we identified and assessed the reliability and classification performance of adenoma-associated microbial signatures through comparative analysis and the random forest model. RESULTS Our results revealed a notable shift in the gut virome structure of patients compared to healthy controls, characterized by a significant increase in viral families such as Microviridae, Podoviridae_crAss-like, and Quimbyviridae. At the viral operational taxonomic unit (vOTU) level, we identified 479 vOTU signatures showing significant differences in relative abundances between patients and controls, including some patient-enriched vOTUs tending to infect Bacteroidaceae and Lachnospiraceae. Correlation network analysis revealed specific bacterial species correlated with adenoma-associated viruses, suggesting frequent interactions between them. Moreover, random forest models trained on gut viral and bacterial signatures demonstrated area under the curve (AUC) scores of 0.68, 0.82, and 0.76 for classifying healthy individuals versus patients with tubular adenomas, patients with sessile serrated adenomas, and patients with both conditions, respectively. In three independent validation cohorts, the classification performance achieved AUC scores ranging from 0.61 to 0.65. CONCLUSIONS Our study provides insights into the gut virome in premalignant colorectal adenoma, highlighting its potential role in disease development and diagnosis. Further investigations are warranted to elucidate the underlying mechanisms of gut virus-bacteria interactions and validate diagnostic models in larger populations.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, 710004, Shaanxi, China.
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, 710004, Shaanxi, China.
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, 710004, Shaanxi, China.
| | - Xiaofeng Tuo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, 710004, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, 710004, Shaanxi, China
| | - Jiong Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, 710004, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, 710004, Shaanxi, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Juhui Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, 710004, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, 710004, Shaanxi, China
| | - Chengzhao Deng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, 710004, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, 710004, Shaanxi, China
| | - Gang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, 710004, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, 710004, Shaanxi, China
| | - Yan Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, 710004, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, 710004, Shaanxi, China
| | - Lingqin Song
- Department of Medical Oncology, The Second Affiliated Hospital Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yan Yang
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Huan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, 710004, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, 710004, Shaanxi, China
| | - Hongli Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, 710004, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, 710004, Shaanxi, China
| | - Shiyang Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, 710004, Shaanxi, China.
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, 710004, Shaanxi, China.
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, 710004, Shaanxi, China.
| | - Lu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, 710004, Shaanxi, China.
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, 710004, Shaanxi, China.
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, 710004, Shaanxi, China.
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, 710004, Shaanxi, China.
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, 710004, Shaanxi, China.
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
4
|
Yan Q, Huang L, Li S, Zhang Y, Guo R, Zhang P, Lei Z, Lv Q, Chen F, Li Z, Meng J, Li J, Wang G, Chen C, Ullah H, Cheng L, Fan S, You W, Zhang Y, Ma J, Sha S, Sun W. The Chinese gut virus catalogue reveals gut virome diversity and disease-related viral signatures. Genome Med 2025; 17:30. [PMID: 40140988 PMCID: PMC11938785 DOI: 10.1186/s13073-025-01460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND The gut viral community has been increasingly recognized for its role in human physiology and health; however, our understanding of its genetic makeup, functional potential, and disease associations remains incomplete. METHODS In this study, we collected 11,286 bulk or viral metagenomes from fecal samples across large-scale Chinese populations to establish a Chinese Gut Virus Catalogue (cnGVC) using a de novo virus identification approach. We then examined the diversity and compositional patterns of the gut virome in relation to common diseases by analyzing 6311 bulk metagenomes representing 28 disease or unhealthy states. RESULTS The cnGVC contains 93,462 nonredundant viral genomes, with over 70% of these being novel viruses not included in existing gut viral databases. This resource enabled us to characterize the functional diversity and specificity of the gut virome. Using cnGVC, we profiled the gut virome in large-scale populations, assessed sex- and age-related variations, and identified 4238 universal viral signatures of diseases. A random forest classifier based on these signatures achieved high accuracy in distinguishing diseased individuals from controls (AUC = 0.698) and high-risk patients from controls (AUC = 0.761), and its predictive ability was also validated in external cohorts. CONCLUSIONS Our resources and findings significantly expand the current understanding of the human gut virome and provide a comprehensive view of the associations between gut viruses and common diseases. This will pave the way for novel strategies in the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Qiulong Yan
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510900, China.
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Liansha Huang
- Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Ruochun Guo
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510900, China
| | - Pan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhixin Lei
- School of Chemistry, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qingbo Lv
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Fang Chen
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510900, China
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | | | - Jinxin Meng
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, 100044, China
| | - Guangyang Wang
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510900, China
- Department Pathology, Dalian Municipal Central Hospital, Dalian, 116033, China
| | - Changming Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hayan Ullah
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lin Cheng
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shao Fan
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wei You
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jie Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shanshan Sha
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Wen Sun
- Centre for Translational Medicine, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China.
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
5
|
Trunfio M, Scutari R, Fox V, Vuaran E, Dastgheyb RM, Fini V, Granaglia A, Balbo F, Tortarolo D, Bonora S, Perno CF, Di Perri G, Alteri C, Calcagno A. The cerebrospinal fluid virome in people with HIV: links to neuroinflammation and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640732. [PMID: 40060671 PMCID: PMC11888432 DOI: 10.1101/2025.02.28.640732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Despite effective HIV suppression, neuroinflammation and neurocognitive issues are prevalent in people with HIV (PWH) yet poorly understood. HIV infection alters the human virome, and virome perturbations have been linked to neurocognitive issues in people without HIV. Once thought to be sterile, the cerebrospinal fluid (CSF) hosts a recently discovered virome, presenting an unexplored avenue for understanding brain and mental health in PWH. This cross-sectional study analyzed 85 CSF samples (74 from PWH on suppressive antiretroviral therapy, and 11 from controls without HIV, CWH) through shotgun metagenomics for DNA/RNA viruses. Taxonomic composition (reads and contigs), α and β diversity, and relative abundance (RA) of prokaryotic (PV), human eukaryotic (hEV), and non-human eukaryotic viruses (nhEV) were evaluated in relation to HIV infection, markers of neuroinflammation and neurodegeneration, cognitive functions, and depressive symptoms. Sensitivity analyses and post-hoc cluster analysis on the RA of viral groups and blood-brain barrier permeability were also performed. Of 46 read-positive CSF samples, 93.5% contained PV sequences, 47.8% hEV, and 45.6% nhEV. Alpha diversity was lower in PWH versus CWH, although p>0.05. At β diversity analysis, HIV status explained 3.3% of the variation in viral composition (p=0.016). Contigs retained 13 samples positive for 8 hEV, 2 nhEV, and 6 PV. Higher RA of PV was correlated with higher CSF S100β (p=0.002) and β-Amyloid 1-42 fragment (βA-42, p=0.026), while higher RA of nhEV with poorer cognitive performance (p=0.022). Conversely, higher RA of hEV correlated with better cognition (p=0.003) and lower βA-42 (p=0.012). Sensitivity analyses in virome-positive samples only confirmed these findings. Three CSF clusters were identified and showed differences in astrocytosis, βA-42, tau protein, and cognitive functions. Participants with hEV-enriched CSF showed better cognitive performance compared to those with virus-devoid and nhEV-enriched CSF (models'p<0.05). This study provides the first comprehensive description of the CSF virome in PWH, revealing associations with neuroinflammation and cognition. These findings highlight the potential involvement of the CSF virome in brain health and inform about its composition, origin, and potential clinical implications in people with and without HIV.
Collapse
Affiliation(s)
- Mattia Trunfio
- Unit of Infectious Diseases, Amedeo di Savoia hospital, Department of Medical Sciences, University of Turin, Turin 10149, Italy
- HIV Neurobehavioral Research Program, Departments of Neurosciences and Psychiatry, University of California San Diego, CA 92103, USA
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California San Diego, CA 92037, USA
| | - Rossana Scutari
- Multimodal Laboratory Research Unit, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
| | - Valeria Fox
- Multimodal Laboratory Research Unit, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| | - Elisa Vuaran
- Unit of Infectious Diseases, Amedeo di Savoia hospital, Department of Medical Sciences, University of Turin, Turin 10149, Italy
| | - Raha Maryam Dastgheyb
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vanessa Fini
- Multimodal Laboratory Research Unit, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
| | - Annarita Granaglia
- Multimodal Laboratory Research Unit, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
| | - Francesca Balbo
- Unit of Infectious Diseases, Amedeo di Savoia hospital, Department of Medical Sciences, University of Turin, Turin 10149, Italy
| | - Dora Tortarolo
- Department of Informatics, University of Turin, Turin 10149, Italy
| | - Stefano Bonora
- Unit of Infectious Diseases, Amedeo di Savoia hospital, Department of Medical Sciences, University of Turin, Turin 10149, Italy
| | - Carlo Federico Perno
- Multimodal Laboratory Research Unit, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
- UniCamillus International Medical University, Rome 00131, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Amedeo di Savoia hospital, Department of Medical Sciences, University of Turin, Turin 10149, Italy
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
- Microbiology and Virology Unit, IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Amedeo di Savoia hospital, Department of Medical Sciences, University of Turin, Turin 10149, Italy
| |
Collapse
|
6
|
Wu Z, Xie ZP, Cui XX, Sun XB, Zhao FY, Wang N, Li Y, Wang H, Zhang L, Shen J, Chen F, Sun H, He J. HIV and the gut microbiome: future research hotspots and trends. Front Microbiol 2025; 16:1466419. [PMID: 39990153 PMCID: PMC11844347 DOI: 10.3389/fmicb.2025.1466419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Background The use of highly active antiretroviral therapy has transformed AIDS into a chronic infectious disease, but issues of chronic inflammation and immune system activation persist. Modulating the gut microbiome of patients may improve this situation, yet the specific association mechanisms between HIV and the gut microbiome remain unclear. This study aims to explore the research hotspots and trends of the HIV and the gut microbiome, providing direction for future research. Methods We conducted a search of the Web of Science Core Collection database up to April 30, 2024 to retrieve articles related to the relationship between the HIV and the gut microbiome. The scientific achievements and research frontiers in this field were analyzed using CiteSpace, VOSviewer, and Bibliometrix statistical software. Results As of April 30, 2024, a total of 379 articles met the inclusion criteria. The number of publications in this field peaked in 2023, and the number of articles published after 2020 declined. The country with the highest number of publications was the United States (184 articles), and the institution with the most publications was the University of Colorado (USA) (21 articles). The author with the most publications was Routy Jean-Pierre (Canada) (14 articles). High-frequency keywords, aside from the key terms, included "HIV," "inflammation," "immune activation," "gut microbiota," and "translocation." Keyword burst results indicated that short-chain fatty acids, T cells and obesity might become the focus of future research. Conclusion The research hotspots in this field should prioritize examining the role of the primary gut microbiome metabolite, short-chain fatty acids, in reducing immune system activation and inflammation. Another emerging area of interest could be the investigation into the annual increase in obesity rates within this field. Furthermore, understanding the metabolic mechanisms of short-chain fatty acids in T cells is essential. Additionally, multi-omics analysis holds potential.
Collapse
Affiliation(s)
- Zhen Wu
- Medical School of Shihezi University, Shihezi, China
| | - Zhan-Peng Xie
- Medical School of Shihezi University, Shihezi, China
| | - Xin-Xin Cui
- Medical School of Shihezi University, Shihezi, China
| | - Xiang-Bin Sun
- Medical School of Shihezi University, Shihezi, China
| | - Fang-Yi Zhao
- Medical School of Shihezi University, Shihezi, China
| | - Nuo Wang
- Medical School of Shihezi University, Shihezi, China
| | - Yu Li
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Haixia Wang
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Li Zhang
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Jing Shen
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Fulei Chen
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Haogang Sun
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Jia He
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| |
Collapse
|
7
|
Maghini DG, Oduaran OH, Olubayo LAI, Cook JA, Smyth N, Mathema T, Belger CW, Agongo G, Boua PR, Choma SSR, Gómez-Olivé FX, Kisiangani I, Mashaba GR, Micklesfield L, Mohamed SF, Nonterah EA, Norris S, Sorgho H, Tollman S, Wafawanaka F, Tluway F, Ramsay M, Wirbel J, AWI-Gen 2 Collaborative Centre, Bhatt AS, Hazelhurst S. Expanding the human gut microbiome atlas of Africa. Nature 2025; 638:718-728. [PMID: 39880958 PMCID: PMC11839480 DOI: 10.1038/s41586-024-08485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Population studies provide insights into the interplay between the gut microbiome and geographical, lifestyle, genetic and environmental factors. However, low- and middle-income countries, in which approximately 84% of the world's population lives1, are not equitably represented in large-scale gut microbiome research2-4. Here we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,801 women from Burkina Faso, Ghana, Kenya and South Africa. By engaging with communities that range from rural and horticultural to post-industrial and urban informal settlements, we capture a far greater breadth of the world's population diversity. Using shotgun metagenomic sequencing, we identify taxa with geographic and lifestyle associations, including Treponema and Cryptobacteroides species loss and Bifidobacterium species gain in urban populations. We uncover 1,005 bacterial metagenome-assembled genomes, and we identify antibiotic susceptibility as a factor that might drive Treponema succinifaciens absence in urban populations. Finally, we find an HIV infection signature defined by several taxa not previously associated with HIV, including Dysosmobacter welbionis and Enterocloster sp. This study represents the largest population-representative survey of gut metagenomes of African individuals so far, and paired with extensive clinical biomarkers and demographic data, provides extensive opportunity for microbiome-related discovery.
Collapse
Affiliation(s)
- Dylan G Maghini
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Ovokeraye H Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Luicer A Ingasia Olubayo
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jane A Cook
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Natalie Smyth
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Theophilous Mathema
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Carl W Belger
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
- Navrongo Health Research Centre, Ghana Health Science, Navrongo, Ghana
| | - Palwendé R Boua
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Solomon S R Choma
- DIMAMO Population Health Research Centre, University of Limpopo, Polokwane, South Africa
| | - F Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), University of the Witwatersrand, Johannesburg, South Africa
| | | | - Given R Mashaba
- DIMAMO Population Health Research Centre, University of Limpopo, Polokwane, South Africa
| | - Lisa Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Shane Norris
- SAMRC/Wits Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Development and Health, University of Southampton, Southampton, UK
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), University of the Witwatersrand, Johannesburg, South Africa
| | - Floidy Wafawanaka
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), University of the Witwatersrand, Johannesburg, South Africa
| | - Furahini Tluway
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jakob Wirbel
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | | | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA.
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa.
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
8
|
Islam SMS, Singh S, Keshavarzian A, Abdel-Mohsen M. Intestinal Microbiota and Aging in People with HIV-What We Know and What We Don't. Curr HIV/AIDS Rep 2024; 22:9. [PMID: 39666149 PMCID: PMC11874070 DOI: 10.1007/s11904-024-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE OF REVIEW People with HIV (PWH) experience premature aging and an elevated risk of age-related comorbidities, even with viral suppression through antiretroviral therapy (ART). We examine gastrointestinal disruptions, specifically impaired intestinal barrier integrity and microbial dysbiosis, as contributors to these comorbidities. RECENT FINDINGS HIV infection compromises the intestinal epithelial barrier, increasing permeability and microbial translocation, which trigger inflammation and cellular stress. ART does not fully restore gut barrier integrity, leading to persistent inflammation and cellular stress. Additionally, HIV-associated microbial dysbiosis favors pro-inflammatory bacteria, intensifying inflammation and tissue damage, which may contribute to premature aging in PWH. Understanding the interactions between intestinal microbiota, chronic inflammation, cellular stress, and aging is essential to developing therapies aimed at reducing inflammation and slowing age-related diseases in PWH. In this review, we discuss critical knowledge gaps and highlight the therapeutic potential of microbiota-targeted interventions to mitigate inflammation and delay age-associated pathologies in PWH.
Collapse
Affiliation(s)
| | - Shalini Singh
- Northwestern University, 300 E Superior St, Chicago, IL, 60611, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
- Departments of Internal Medicine, physiology Rush University Medical Center, Anatomy & Cell Biology, Chicago, IL, USA
| | | |
Collapse
|
9
|
He M, Zhao N. A Mixed Effect Similarity Matrix Regression Model (SMRmix) for Integrating Multiple Microbiome Datasets at Community Level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584315. [PMID: 38559012 PMCID: PMC10979838 DOI: 10.1101/2024.03.10.584315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Recent studies have highlighted the importance of human microbiota in our health and diseases. However, in many areas of research, individual microbiome studies often offer inconsistent results due to the limited sample sizes and the heterogeneity in study populations and experimental procedures. This inconsistency underscores the necessity for integrative analysis of multiple microbiome datasets. Despite the critical need, statistical methods that incorporate multiple microbiome datasets and account for the study heterogeneity are not available in the literature. METHODS In this paper, we develop a mixed effect similarity matrix regression (SMRmix) approach for identifying community level microbiome shifts between outcomes. SMRmix has a close connection with the microbiome kernel association test, one of the most popular approaches for such a task but is only applicable when we have a single study. SMRmix enables researchers to consolidate findings from diverse microbiome studies. RESULTS Via extensive simulations, we show that SMRmix has well-controlled type I error and higher power than some potential competitors. We applied the SMRmix to two real-world datasets. The first, from the HIV-reanalysis consortium, integrated data from 17 studies on gut dysbiosis in HIV. Our analysis confirmed consistent associations between the gut microbiome and HIV infection as well as MSM (men who have sex with men) status, demonstrating greater power than competing methods. The second dataset involved 11 studies on the gut microbiome in colorectal cancer; analysis with SMRmix confirmed significant dysbiosis in affected individuals compared to healthy controls. CONCLUSION The development of SMRmix enables the integration of multiple studies and effectively managing study heterogeneity, and provides a powerful tool for uncovering consistent associations between diseases and community-level microbiome data.
Collapse
|
10
|
Gáspár Z, Nagavci B, Szabó BG, Lakatos B. Gut Microbiome Alteration in HIV/AIDS and the Role of Antiretroviral Therapy-A Scoping Review. Microorganisms 2024; 12:2221. [PMID: 39597610 PMCID: PMC11596264 DOI: 10.3390/microorganisms12112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: The gut microbiota plays a crucial role in chronic immune activation associated with human immunodeficiency virus (HIV) infection, acquired immune deficiency syndrome (AIDS) pathogenesis, non-AIDS-related comorbidities, and mortality among people living with HIV (PLWH). The effects of antiretroviral therapy on the microbiome remain underexplored. This study aims to map the evidence of the impact of integrase strand transfer inhibitors (INSTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) on the gut microbiota of PLWH. (2) Methods: A scoping review was conducted using PubMed, Web of Science, and Embase, with reports collected following PRISMA for Scoping Reviews (PRISMA-ScR). (3) Results: Evidence suggests that INSTI-based regimes generally promote the restoration of alpha diversity, bringing it closer to that of seronegative controls, while beta diversity remains largely unchanged. INSTI-based therapies are suggested to be associated with improvements in microbiota composition and a tendency toward reduced inflammatory markers. In contrast, NNRTI-based treatments demonstrate limited recovery of alpha diversity and are linked to an increase in proinflammatory bacteria. (4) Conclusions: Based on the review of the current literature, it is indicated that INSTI-based antiretroviral therapy (ART) therapy facilitates better recovery of the gut microbiome.
Collapse
Affiliation(s)
- Zsófia Gáspár
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Blin Nagavci
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Bálint Gergely Szabó
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| | - Botond Lakatos
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| |
Collapse
|
11
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowitz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. Sci Immunol 2024; 9:eado0090. [PMID: 39454027 PMCID: PMC11557871 DOI: 10.1126/sciimmunol.ado0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/25/2024] [Indexed: 10/27/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high-resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. Immunoglobulin A-positive (IgA+) PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-Taie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruixue Hou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Canales-Herrerias
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Tillowitz
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Jha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra E. Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Leyre
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathieu Uzzan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gastroenterology Department, Hôpital Henri Mondor, APHP, Créteil, France
| | - Gustavo Martinez-Delgado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Taylor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keshav Sharma
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arno R. Bourgonje
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Cruz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Akm
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros D. Polydorides
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Vujkovic-Cvijin
- F. Widjaja IBD Institute, Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mayte Suarez-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Soo N, Farinre O, Chahroudi A, Boliar S, Goswami R. A gut check: understanding the interplay of the gastrointestinal microbiome and the developing immune system towards the goal of pediatric HIV remission. Retrovirology 2024; 21:15. [PMID: 39425183 PMCID: PMC11490017 DOI: 10.1186/s12977-024-00648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART) in reducing the global incidence of vertical HIV transmissions, more than 120,000 children are still infected with the virus each year. Since ART cannot clear the HIV reservoir that is established soon after infection, children living with HIV (CLWH) are forced to rely on therapy for their lives and suffer from long-term drug-related complications. Pediatric HIV infection, like adult infection, is associated with gut microbial dysbiosis, loss of gut epithelial integrity, bacterial translocation, CD4 + T cell depletion, systemic immune activation, and viral reservoir establishment. However, unlike in adults, HIV that is vertically acquired by infants interacts with a gut microbiome that is continuously evolving while concomitantly shaping the infant's immune ontogeny. Therefore, to determine whether there may be interventions that target the HIV reservoir through microbiome-directed approaches, understanding the complex tripartite interactions between the transmitted HIV, the maturing gut microbiome, and the developing immune system during early life is crucial. Importantly, early life is the time when the gut microbiome of an individual is highly dynamic, and this temporal development of the gut microbiome plays a crucial role in educating the maturing immune system of a child. Therefore, manipulation of the gut microbiome of CLWH to a phenotype that can reduce HIV persistence by fostering an antiviral immune system might be an opportune strategy to achieve ART-free viral suppression in CLWH. This review summarizes the current state of knowledge on the vertical transmission of HIV, the developing gut microbiome of CLWH, and the immune landscape of pediatric elite controllers, and explores the prospect of employing microbial modulation as a potential therapeutic approach to achieve ART-free viral suppression in the pediatric population.
Collapse
Affiliation(s)
- Nicole Soo
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Omotayo Farinre
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, 30322, USA
| | - Saikat Boliar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
13
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowiz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.590425. [PMID: 38826293 PMCID: PMC11142040 DOI: 10.1101/2024.05.17.590425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. IgA + PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia. One Sentence Summary Intestinal germinal center B cell reduction in HIV-1 infection linked to reduced IgA + plasma cells and systemic inflammation.
Collapse
|
14
|
Boukadida C, Peralta-Prado A, Chávez-Torres M, Romero-Mora K, Rincon-Rubio A, Ávila-Ríos S, Garrido-Rodríguez D, Reyes-Terán G, Pinto-Cardoso S. Alterations of the gut microbiome in HIV infection highlight human anelloviruses as potential predictors of immune recovery. MICROBIOME 2024; 12:204. [PMID: 39420423 PMCID: PMC11483978 DOI: 10.1186/s40168-024-01925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND HIV-1 infection is characterized by a massive depletion of mucosal CD4 T cells that triggers a cascade of events ultimately linking gut microbial dysbiosis to HIV-1 disease progression and pathogenesis. The association between HIV infection and the enteric virome composition is less characterized, although viruses are an essential component of the gut ecosystem. Here, we performed a cross-sectional analysis of the fecal viral (eukaryotic viruses and bacteriophages) and bacterial microbiome in people with HIV (PWH) and in HIV-negative individuals. To gain further insight into the association between the gut microbiome composition, HIV-associated immunodeficiency, and immune recovery, we carried out a longitudinal study including 14 PWH who initiated antiretroviral therapy (ART) and were followed for 24 months with samplings performed at baseline (before ART) and at 2, 6, 12, and 24 months post-ART initiation. RESULTS Our data revealed a striking expansion in the abundance and prevalence of several human virus genomic sequences (Anelloviridae, Adenoviridae, and Papillomaviridae) in stool samples of PWH with severe immunodeficiency (CD4 < 200). We also noted a decreased abundance of sequences belonging to two plant viruses from the Tobamovirus genus, a reduction in bacterial alpha diversity, and a decrease in Inoviridae bacteriophage sequences. Short-term ART (24 months) was linked to a significant decrease in human Anelloviridae sequences. Remarkably, the detection of Anellovirus sequences at baseline independently predicted poor immune recovery, as did low CD4 T cell counts. The bacterial and bacteriophage populations were unique to each PWH with individualized trajectories; we found no discernable pattern of clustering after 24 months on ART. CONCLUSION Advanced HIV-1 infection was associated with marked alterations in the virome composition, in particular a remarkable expansion of human anelloviruses, with a gradual restoration after ART initiation. In addition to CD4 T cell counts, anellovirus sequence detection might be useful to predict and monitor immune recovery. This study confirms data on the bacteriome and expands our knowledge on the viral component of the gut microbiome in HIV-1 infection. Video Abstract.
Collapse
Affiliation(s)
- Celia Boukadida
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Amy Peralta-Prado
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Monserrat Chávez-Torres
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Karla Romero-Mora
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Alma Rincon-Rubio
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Santiago Ávila-Ríos
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Daniela Garrido-Rodríguez
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Gustavo Reyes-Terán
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
- Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Ciudad de México, México
| | - Sandra Pinto-Cardoso
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México.
| |
Collapse
|
15
|
Atugonza C, Muwonge A, Najjuka CF, Kateete DP, Katagirya E, Mwesigwa S, Asiimwe B. Early changes in the gut microbiome among HIV-infected Individuals in Uganda initiating daily TMP/SMX. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24315002. [PMID: 39417122 PMCID: PMC11482993 DOI: 10.1101/2024.10.07.24315002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Daily cotrimoxazole (TMP/SXT) prophylaxis is part of the HIV treatment package for all new HIV-infected individuals in Uganda. Although this treatment has shown reduced morbidity and mortality in HIV, it remains controversial due to its contribution to developing antibiotic-resistant bacteria. Moreover, the effects of daily use of a broad-spectrum antibiotic on the gut microbiome remain unknown. To study the early effects, we analysed shotgun metagenome sequence data from stool samples of five newly HIV-infected individuals initiating TMP/SXT prophylaxis longitudinally for the first 30 days of treatment. Using shotgun metagenomics sequencing, we generated both taxonomic and functional profiles from each patient and compared gut microbial changes Pre- TMP/SXT and post-TMP/SXT on Day 5, Day 14, and Day 30. Daily TMP/SXT prophylaxis resulted in a shift characterised by an enrichment of Prevetollea and Ruminococcus genera members and the depletion of Lactococcus and Bacteroides genera members. Furthermore, these microbial shifts were associated with changes in the functional profile revealed by a differential abundance of pathways of amino acid metabolism, carbohydrate metabolism, and nucleotide biosynthesis linked to members of the Bacteroidaceae and Enterobacteriaceae families. TMP/SXT daily prophylaxis in HIV-infected individuals is associated with dramatic changes in microbial composition and functional profiles; however, other factors such as Age, Gender, HIV clinical stage, and ART regiment are at play. Further investigation is needed to examine the implication of these shifts on clinical management and outcomes among HIV patients.
Collapse
Affiliation(s)
| | - Adrian Muwonge
- Genetics and genomics, Roslin Institute, University of Edinburgh
| | | | - David P. Kateete
- Department of Immunology and Molecular Biology, Makerere University
| | | | | | | |
Collapse
|
16
|
Li Y, Song TZ, Cao L, Zhang HD, Ma Y, Tian RR, Zheng YT, Zhang C. Large expansion of plasma commensal viruses is associated with SIV pathogenesis in Macaca leonina. SCIENCE ADVANCES 2024; 10:eadq1152. [PMID: 39356751 PMCID: PMC11446265 DOI: 10.1126/sciadv.adq1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection disrupts the homeostatic equilibrium between the host and commensal microbes. However, the dynamic changes of plasma commensal viruses and their role in HIV/simian immunodeficiency virus (SIV) pathogenesis are rarely reported. Here, we investigated the longitudinal changes of plasma virome, inflammation levels, and disease markers using an SIV-infected Macaca leonina model. Large expansions of plasma Anelloviridae, Parvoviridae, Circoviridae and other commensal viruses, and elevated levels of inflammation and D-dimer were observed since the chronic phase of SIV infection. Anelloviridae abundance appears to correlate positively with the CD4+ T cell count but negatively with SIV load especially at the acute phase, whereas other commensal viruses' abundances show opposite correlations with the two disease markers. Antiretroviral therapy slightly reduces but does not substantially reverse the expansion of commensal viruses. Furthermore, 1387 primate anellovirus open reading frame 1 sequences of more than 1500 nucleotides were annotated. The data reveal different roles of commensal viruses in SIV pathogenesis.
Collapse
Affiliation(s)
- Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Han-Dan Zhang
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- College of Pharmacy and Chemistry, Dali University, Dali, Yunnan 671000, China
| | - Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ren-Rong Tian
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
17
|
Euzen V, Ghelfenstein-Ferreira T, Benhadid-Brahmi Y, Teboul A, Dellière S, Benderdouche M, Charlier V, Desnos-Ollivier M, Hamane S, Alanio A. Evaluation of an in-house pan-Malassezia quantitative PCR in human clinical samples. Med Mycol 2024; 62:myae095. [PMID: 39270659 DOI: 10.1093/mmy/myae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/16/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
Althought Malassezia spp. have been involved in various pathologies, they are an integral part of the cutaneous, gut, oral, ears, nose and throat (ENT) mycobiota. Since Malassezia are difficult to grow in culture, unexhaustive molecular biology methods have been developed to detect them. The aim of the study was to evaluate an in-house pan-Malassezia quantitative polymerase chain reaction (panM-qPCR) on various clinical human samples and determine Malassezia burden in various human mycobiota. The panM-qPCR was designed to target the repeated 28S rDNA gene from all Malassezia species. We used the assay to quantify the Malassezia burden on 361 samples from 161 subjects (80 skin swabs from 10 healthy volunteers (HV), 13 samples from 2 seborrheic dermatitis patients (SD), 90 skin samples from 19 burned patients, 119 stool samples from 89 immunocompromised patients, 59 ENT samples from 41 patients). For HV, the amount of Malassezia was different according to the swabbed areas. Quantification cycle (Cq) in SD is lower than in HV. In burned patients, Cq was significantly lower compared to HV. In stool samples, 6.7% were positive for Malassezia spp. with a high Cq. For the ENT area, a higher proportion of positive specimens were detected in ear samples than in nose samples. Our findings emphasized the importance of qPCR, confirming elevated Malassezia spp. levels on individuals' faces and scalps, increased burden in SD patients and in severely burnt patients than in HV. The pan-MqPCR appears to be a promising tool for studying Malassezia in various human mycobiota.
Collapse
Affiliation(s)
- Victor Euzen
- Mycology and Parasitology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 av. Claude Vellefaux, 75010 Paris, France
| | - Théo Ghelfenstein-Ferreira
- Mycology and Parasitology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 av. Claude Vellefaux, 75010 Paris, France
| | - Yasmine Benhadid-Brahmi
- Mycology and Parasitology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 av. Claude Vellefaux, 75010 Paris, France
| | - Alexandra Teboul
- Mycology and Parasitology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 av. Claude Vellefaux, 75010 Paris, France
| | - Sarah Dellière
- Mycology and Parasitology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 av. Claude Vellefaux, 75010 Paris, France
| | - Mazouz Benderdouche
- Mycology and Parasitology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 av. Claude Vellefaux, 75010 Paris, France
| | - Véronique Charlier
- Mycology and Parasitology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 av. Claude Vellefaux, 75010 Paris, France
| | - Marie Desnos-Ollivier
- Natl. Ref. Center for Invasive Mycoses and Antifungals, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France
| | - Samia Hamane
- Mycology and Parasitology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 av. Claude Vellefaux, 75010 Paris, France
| | - Alexandre Alanio
- Mycology and Parasitology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 av. Claude Vellefaux, 75010 Paris, France
- Natl. Ref. Center for Invasive Mycoses and Antifungals, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
18
|
Madushanka A, Laird E, Clark C, Kraka E. SmartCADD: AI-QM Empowered Drug Discovery Platform with Explainability. J Chem Inf Model 2024; 64:6799-6813. [PMID: 39177478 DOI: 10.1021/acs.jcim.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Artificial intelligence (AI) has emerged as a pivotal force in enhancing productivity across various sectors, with its impact being profoundly felt within the pharmaceutical and biotechnology domains. Despite AI's rapid adoption, its integration into scientific research faces resistance due to myriad challenges: the opaqueness of AI models, the intricate nature of their implementation, and the issue of data scarcity. In response to these impediments, we introduce SmartCADD, an innovative, open-source virtual screening platform that combines deep learning, computer-aided drug design (CADD), and quantum mechanics methodologies within a user-friendly Python framework. SmartCADD is engineered to streamline the construction of comprehensive virtual screening workflows that incorporate a variety of formerly independent techniques─spanning ADMET property predictions, de novo 2D and 3D pharmacophore modeling, molecular docking, to the integration of explainable AI mechanisms. This manuscript highlights the foundational principles, key functionalities, and the unique integrative approach of SmartCADD. Furthermore, we demonstrate its efficacy through a case study focused on the identification of promising lead compounds for HIV inhibition. By democratizing access to advanced AI and quantum mechanics tools, SmartCADD stands as a catalyst for progress in pharmaceutical research and development, heralding a new era of innovation and efficiency.
Collapse
Affiliation(s)
- Ayesh Madushanka
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75205, United States
| | - Eli Laird
- Department of Computer Science, Southern Methodist University, Dallas, Texas 75205, United States
| | - Corey Clark
- Department of Computer Science, Southern Methodist University, Dallas, Texas 75205, United States
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75205, United States
| |
Collapse
|
19
|
Bai X, Sönnerborg A, Nowak P. Elite controllers microbiome: unraveling the mystery of association and causation. Curr Opin HIV AIDS 2024; 19:261-267. [PMID: 38874425 DOI: 10.1097/coh.0000000000000867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
PURPOSE OF REVIEW To unravel the current knowledge and possible link between the gut microbiome and HIV-1 virological control in elite controllers (EC), who can suppress viral replication in the absence of antiretroviral therapy. In addition, to discuss the limitations of current research and propose future research directions. RECENT FINDINGS EC possess a different gut bacterial microbiota profile in composition and functionality from that of treatment-naive HIV-1 viremic progressors (VP). Specifically, EC have a richer bacterial microbiota as compared to VP, which closely resembles the microbiota in HIV-1 negative healthy controls (HC). Differentially abundant bacteria are found between EC and VP or HC, though results vary among the few existing studies. These data imply that the gut microbiome could contribute to the natural suppression of HIV-1 infection. SUMMARY An association between the gut microbiome and HIV-1 virological control is evidenced by recent studies. Yet, there are substantial knowledge gaps, and the underlying mechanism of how the microbiome influences the EC phenotype is far from clarified. Future research should consider diverse microbial communities, the complex microbe-host interactions, as well as yet-unidentified causal links between microbiome alterations and HIV-1 disease progression.
Collapse
Affiliation(s)
- Xiangning Bai
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm
| | - Anders Sönnerborg
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm
- Department of Infectious Diseases, Karolinska University Hospital, Huddinge, Sweden
| | - Piotr Nowak
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm
- Department of Infectious Diseases, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
20
|
Bai X, Nielsen SD, Kunisaki KM, Trøseid M. Pulmonary comorbidities in people with HIV- the microbiome connection. Curr Opin HIV AIDS 2024; 19:246-252. [PMID: 38935049 DOI: 10.1097/coh.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW To report recent evidence on associations between human microbiome, particularly airway and gut, and pulmonary comorbidities in people with HIV (PWH). Furthermore, we explore how changes in the microbiome may contribute to pulmonary immune dysregulation and higher rates of pulmonary comorbidities among PWH. Finally, we propose future directions in the field. RECENT FINDINGS Increased risk of pulmonary comorbidities and rapid lung function decline have been reported in even well treated PWH. Altered microbiota profiles have been reported in PWH with pulmonary comorbidities and rapid lung function decline as compared to those without. The most consistent data have been the association between HIV-related pulmonary comorbidities, lung and oral microbiota dysbiosis, which has been also associated with distinct respiratory mucosal inflammatory profiles and short-term mortality. However, a possible causal link remains to be elucidated. SUMMARY Associations between the lung and oral microbiome, HIV-associated pulmonary comorbidities and rapid lung function decline have been reported in recent studies. Yet the underlying mechanism underpinning the observed associations is largely unknown and substantial knowledge gaps remain. Future research is warranted to unveil the role and mechanism of human microbiome from different anatomical compartments in relation to pulmonary comorbidities in PWH.
Collapse
Affiliation(s)
- Xiangning Bai
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Dam Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ken M Kunisaki
- Minneapolis Veterans Affairs Healthcare System
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Marius Trøseid
- Institute of Clinical Medicine, University of Oslo
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Hu A, Zaongo SD, Harypursat V, Wang X, Ouyang J, Chen Y. HIV-associated neurocognitive disorder: key implications of the microbiota-gut-brain axis. Front Microbiol 2024; 15:1428239. [PMID: 39155987 PMCID: PMC11327151 DOI: 10.3389/fmicb.2024.1428239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is now recognized to be relatively common in people living with HIV (PLWH), and remains a common cause of cognitive impairment. Unfortunately, the fundamental pathogenic processes underlying this specific outcome of HIV infection have not as yet been fully elucidated. With increased interest in research related to the microbiota-gut-brain axis, the gut-brain axis has been shown to play critical roles in regulating central nervous system disorders such as Alzheimer's disease and Parkinson's disease. PLWH are characterized by a particular affliction, referred to as gut-associated dysbiosis syndrome, which provokes an alteration in microbial composition and diversity, and of their associated metabolite composition within the gut. Interestingly, the gut microbiota has also been recognized as a key element, which both positively and negatively influences human brain health, including the functioning and development of the central nervous system (CNS). In this review, based on published evidence, we critically discuss the relevant interactions between the microbiota-gut-brain axis and the pathogenesis of HAND in the context of HIV infection. It is likely that HAND manifestation in PLWH mainly results from (i) gut-associated dysbiosis syndrome and a leaky gut on the one hand and (ii) inflammation on the other hand. In other words, the preceding features of HIV infection negatively alter the composition of the gut microbiota (microbes and their associated metabolites) and promote proinflammatory immune responses which singularly or in tandem damage neurons and/or induce inadequate neuronal signaling. Thus, HAND is fairly prevalent in PLWH. This work aims to demonstrate that in the quest to prevent and possibly treat HAND, the gut microbiota may ultimately represent a therapeutically targetable "host factor."
Collapse
Affiliation(s)
- Aizhen Hu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Wang
- Phase I Clinical Trial Center, Chonggang General Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
22
|
Sohn MB, Monaco C, Gill SR. An optimal normalization method for high sparse compositional microbiome data. PLoS Comput Biol 2024; 20:e1012338. [PMID: 39102403 PMCID: PMC11326560 DOI: 10.1371/journal.pcbi.1012338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 08/15/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
In many omics data, including microbiome sequencing data, we are only able to measure relative information. Various computational or statistical methods have been proposed to extract absolute (or biologically relevant) information from this relative information; however, these methods are under rather strong assumptions that may not be suitable for multigroup (more than two groups) and/or longitudinal outcome data. In this article, we first introduce the minimal assumption required to extract absolute from relative information. This assumption is less stringent than those imposed in existing methods, thus being applicable to multigroup and/or longitudinal outcome data. We then propose the first normalization method that works under this minimal assumption. The optimality and validity of the proposed method and its beneficial effects on downstream analysis are demonstrated in extensive simulation studies, where existing methods fail to produce consistent performance under the minimal assumption. We also demonstrate its application to real microbiome datasets to determine biologically relevant microbes to a specific disease/condition.
Collapse
Affiliation(s)
- Michael B Sohn
- Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Cynthia Monaco
- Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Steven R Gill
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
23
|
Tian X, Li S, Wang C, Zhang Y, Feng X, Yan Q, Guo R, Wu F, Wu C, Wang Y, Huo X, Ma X. Gut virome-wide association analysis identifies cross-population viral signatures for inflammatory bowel disease. MICROBIOME 2024; 12:130. [PMID: 39026313 PMCID: PMC11256409 DOI: 10.1186/s40168-024-01832-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/08/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The gut virome has been implicated in inflammatory bowel disease (IBD), yet a full understanding of the gut virome in IBD patients, especially across diverse geographic populations, is lacking. RESULTS In this study, we conducted a comprehensive gut virome-wide association study in a Chinese cohort of 71 IBD patients (15 with Crohn's disease and 56 with ulcerative colitis) and 77 healthy controls via viral-like particle (VLP) and bulk virome sequencing of their feces. By utilizing an integrated gut virus catalog tailored to the IBD virome, we revealed fundamental alterations in the gut virome in IBD patients. These characterized 139 differentially abundant viral signatures, including elevated phages predicted to infect Escherichia, Klebsiella, Enterococcus_B, Streptococcus, and Veillonella species, as well as IBD-depleted phages targeting Prevotella, Ruminococcus_E, Bifidobacterium, and Blautia species. Remarkably, these viral signatures demonstrated high consistency across diverse populations such as those in Europe and the USA, emphasizing their significance and broad relevance in the disease context. Furthermore, fecal virome transplantation experiments verified that the colonization of these IBD-characterized viruses can modulate experimental colitis in mouse models. CONCLUSIONS Building upon these insights into the IBD gut virome, we identified potential biomarkers for prognosis and therapy in IBD patients, laying the foundation for further exploration of viromes in related conditions. Video Abstract.
Collapse
Affiliation(s)
- Xiangge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Chao Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yanyan Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiaoying Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Qiulong Yan
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Fan Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Chunxue Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Yan Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
24
|
Riitho V, Connon R, Gwela A, Namusanje J, Nhema R, Siika A, Bwakura-Dangarembizi M, Musiime V, Berkley JA, Szubert AJ, Gibb DM, Walker AS, Klein N, Prendergast AJ. Biomarkers of mortality in adults and adolescents with advanced HIV in sub-Saharan Africa. Nat Commun 2024; 15:5492. [PMID: 38944653 PMCID: PMC11214617 DOI: 10.1038/s41467-024-49317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/30/2024] [Indexed: 07/01/2024] Open
Abstract
One-third of people with HIV in sub-Saharan Africa start antiretroviral therapy (ART) with advanced disease. We investigated associations between immune biomarkers and mortality in participants with advanced HIV randomised to cotrimoxazole or enhanced antimicrobial prophylaxis in the Reduction of Early Mortality in HIV-Infected Adults and Children Starting Antiretroviral Therapy (REALITY) trial (ISRCTN43622374). Biomarkers were assayed using ELISA and Luminex. Associations between baseline values and all-cause 24-week mortality were analysed using Cox models, and for cause-specific mortality used Fine & Gray models, including prophylaxis randomisation, viral load, CD4, WHO stage, age, BMI, and site as covariates; and weighted according to inverse probability of selection into the substudy. Higher baseline CRP, IFN-γ, IL-6 and IP-10 were associated with higher all-cause mortality; and higher IL-23, IL-2 and RANTES with lower all-cause mortality. Associations varied by cause of death: tuberculosis-associated mortality was most strongly associated with higher CRP and sST2, and cryptococcosis-associated mortality with higher IL-4 and lower IL-8. Changes in I-FABP (p = 0.002), faecal alpha-1 antitrypsin (p = 0.01) and faecal myeloperoxidase (p = 0.005) between baseline and 4 weeks post-ART were greater in those receiving enhanced versus cotrimoxazole prophylaxis. Our findings highlight how the immune milieu shapes outcomes following ART initiation, and how adjunctive antimicrobials can modulate the gut environment in advanced HIV.
Collapse
Affiliation(s)
- Victor Riitho
- Blizard Institute, Queen Mary University of London, London, UK
- Center for Epidemiological Modelling and Analysis (CEMA), Institute of Tropical and Infectious Diseases (UNITID), University of Nairobi, Nairobi, Kenya
| | | | - Agnes Gwela
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Ruth Nhema
- University of Zimbabwe, Harare, Zimbabwe
| | | | | | - Victor Musiime
- Joint Clinical Research Centre, Kampala, Uganda
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | | | | | | | | | | | | |
Collapse
|
25
|
Trøseid M, Nielsen SD, Vujkovic-Cvijin I. Gut microbiome and cardiometabolic comorbidities in people living with HIV. MICROBIOME 2024; 12:106. [PMID: 38877521 PMCID: PMC11177534 DOI: 10.1186/s40168-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Despite modern antiretroviral therapy (ART), people living with HIV (PLWH) have increased relative risk of inflammatory-driven comorbidities, including cardiovascular disease (CVD). The gut microbiome could be one of several driving factors, along with traditional risk factors and HIV-related risk factors such as coinfections, ART toxicity, and past immunodeficiency. RESULTS PLWH have an altered gut microbiome, even after adjustment for known confounding factors including sexual preference. The HIV-related microbiome has been associated with cardiometabolic comorbidities, and shares features with CVD-related microbiota profiles, in particular reduced capacity for short-chain fatty acid (SCFA) generation. Substantial inter-individual variation has so far been an obstacle for applying microbiota profiles for risk stratification. This review covers updated knowledge and recent advances in our understanding of the gut microbiome and comorbidities in PLWH, with specific focus on cardiometabolic comorbidities and inflammation. It covers a comprehensive overview of HIV-related and comorbidity-related dysbiosis, microbial translocation, and microbiota-derived metabolites. It also contains recent data from studies in PLWH on circulating metabolites related to comorbidities and underlying gut microbiota alterations, including circulating levels of the SCFA propionate, the histidine-analogue imidazole propionate, and the protective metabolite indole-3-propionic acid. CONCLUSIONS Despite recent advances, the gut microbiome and related metabolites are not yet established as biomarkers or therapeutic targets. The review gives directions for future research needed to advance the field into clinical practice, including promises and pitfalls for precision medicine. Video Abstract.
Collapse
Affiliation(s)
- Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Oe, 2100, Denmark
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
26
|
Pokhrel V, Kuntal BK, Mande SS. Role and significance of virus-bacteria interactions in disease progression. J Appl Microbiol 2024; 135:lxae130. [PMID: 38830797 DOI: 10.1093/jambio/lxae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Understanding disease pathogenesis caused by bacteria/virus, from the perspective of individual pathogen has provided meaningful insights. However, as viral and bacterial counterparts might inhabit the same infection site, it becomes crucial to consider their interactions and contributions in disease onset and progression. The objective of the review is to highlight the importance of considering both viral and bacterial agents during the course of coinfection. The review provides a unique perspective on the general theme of virus-bacteria interactions, which either lead to colocalized infections that are restricted to one anatomical niche, or systemic infections that have a systemic effect on the human host. The sequence, nature, and underlying mechanisms of certain virus-bacteria interactions have been elaborated with relevant examples from literature. It also attempts to address the various applied aspects, including diagnostic and therapeutic strategies for individual infections as well as virus-bacteria coinfections. The review aims to aid researchers in comprehending the intricate interplay between virus and bacteria in disease progression, thereby enhancing understanding of current methodologies and empowering the development of novel health care strategies to tackle coinfections.
Collapse
Affiliation(s)
- Vatsala Pokhrel
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhusan K Kuntal
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
| | - Sharmila S Mande
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
| |
Collapse
|
27
|
Nganou-Makamdop K, Douek DC. The Gut and the Translocated Microbiomes in HIV Infection: Current Concepts and Future Avenues. Pathog Immun 2024; 9:168-194. [PMID: 38807656 PMCID: PMC11132393 DOI: 10.20411/pai.v9i1.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
It is widely acknowledged that HIV infection results in disruption of the gut's mucosal integrity partly due a profound loss of gastrointestinal CD4+ T cells that are targets of the virus. In addition, systemic inflammation and immune activation that drive disease pathogenesis are reduced but not normalized by antiretroviral therapy (ART). It has long been postulated that through the process of microbial translocation, the gut microbiome acts as a key driver of systemic inflammation and immune recovery in HIV infection. As such, many studies have aimed at characterizing the gut microbiota in order to unravel its influence in people with HIV and have reported an association between various bacterial taxa and inflammation. This review assesses both contra-dictory and consistent findings among several studies in order to clarify the overall mechanisms by which the gut microbiota in adults may influence immune recovery in HIV infection. Independently of the gut microbiome, observations made from analysis of microbial products in the blood provide direct insight into how the translocated microbiome may drive immune recovery. To help better understand strengths and limitations of the findings reported, this review also highlights the numerous factors that can influence microbiome studies, be they experimental methodologies, and host-intrinsic or host-extrinsic factors. Altogether, a fuller understanding of the interplay between the gut microbiome and immunity in HIV infection may contribute to preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
28
|
Maqsood R, Holland LA, Wu LI, Begnel ER, Adhiambo J, Owiti P, Chohan BH, Gantt S, Kinuthia J, Wamalwa D, Ojee E, Richardson BA, Slyker J, Lehman DA, Lim ES. Gut virome and microbiome dynamics before and after SARS-CoV-2 infection in women living with HIV and their infants. RESEARCH SQUARE 2024:rs.3.rs-4257515. [PMID: 38699305 PMCID: PMC11065063 DOI: 10.21203/rs.3.rs-4257515/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Microbiome perturbations can have long-term effects on health. The dynamics of the gut microbiome and virome in women living with HIV (WLHIV) and their newborn infants is poorly understood. Here, we performed metagenomic sequencing analyses on longitudinal stool samples including 23 mothers (13 WLHIV, 10 HIV-negative) and 12 infants that experienced SARS-CoV-2 infection with mild disease, as well as 40 mothers (18 WLHIV, 22 HIV-negative) and 60 infants that remained SARS-CoV-2 seronegative throughout the study follow-up. Regardless of HIV or SARS-CoV-2 status, maternal bacterial and viral profiles were distinct from infants. Using linear mixed effects models, we showed that while the microbiome alpha diversity trajectory was not significantly different between SARS-CoV-2 seropositive and seronegative women. However, seropositive women's positive trajectory while uninfected was abruptly reversed after SARS-CoV-2 infection (p = 0.015). However, gut virome signatures of women were not associated with SARS-CoV-2. Alterations in infant microbiome and virome diversities were generally not impacted by SARS-CoV-2 but were rather driven by development. We did not find statistically significant interactions between HIV and SARS-CoV-2 on the gut microbiome and virome. Overall, our study provides insights into the complex interplay between maternal and infant bacterial microbiome, virome, and the influence of SARS-CoV-2 and HIV status.
Collapse
|
29
|
Ramos Peña DE, Pillet S, Grupioni Lourenço A, Pozzetto B, Bourlet T, Motta ACF. Human immunodeficiency virus and oral microbiota: mutual influence on the establishment of a viral gingival reservoir in individuals under antiretroviral therapy. Front Cell Infect Microbiol 2024; 14:1364002. [PMID: 38660490 PMCID: PMC11039817 DOI: 10.3389/fcimb.2024.1364002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The role of the oral microbiota in the overall health and in systemic diseases has gained more importance in the recent years, mainly due to the systemic effects that are mediated by the chronic inflammation caused by oral diseases, such as periodontitis, through the microbial communities of the mouth. The chronic infection by the human immunodeficiency virus (HIV) interacts at the tissue level (e.g. gut, genital tract, brain) to create reservoirs; the modulation of the gut microbiota by HIV infection is a good example of these interactions. The purpose of the present review is to assess the state of knowledge on the oral microbiota (microbiome, mycobiome and virome) of HIV-infected patients in comparison to that of HIV-negative individuals and to discuss the reciprocal influence of HIV infection and oral microbiota in patients with periodontitis on the potential establishment of a viral gingival reservoir. The influence of different clinical and biological parameters are reviewed including age, immune and viral status, potent antiretroviral therapies, smoking, infection of the airway and viral coinfections, all factors that can modulate the oral microbiota during HIV infection. The analysis of the literature proposed in this review indicates that the comparisons of the available studies are difficult due to their great heterogeneity. However, some important findings emerge: (i) the oral microbiota is less influenced than that of the gut during HIV infection, although some recurrent changes in the microbiome are identified in many studies; (ii) severe immunosuppression is correlated with altered microbiota and potent antiretroviral therapies correct partially these modifications; (iii) periodontitis constitutes a major factor of dysbiosis, which is exacerbated in HIV-infected patients; its pathogenesis can be described as a reciprocal reinforcement of the two conditions, where the local dysbiosis present in the periodontal pocket leads to inflammation, bacterial translocation and destruction of the supporting tissues, which in turn enhances an inflammatory environment that perpetuates the periodontitis cycle. With the objective of curing viral reservoirs of HIV-infected patients in the future years, it appears important to develop further researches aimed at defining whether the inflamed gingiva can serve of viral reservoir in HIV-infected patients with periodontitis.
Collapse
Affiliation(s)
- Diana Estefania Ramos Peña
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
- Team Mucosal Immunity and Pathogen Agents (GIMAP), Centre International de Recherche en Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, Ecole Nationale Supérieure de Lyon, Université de Lyon, Université de Saint-Etienne, Saint-Etienne, France
| | - Sylvie Pillet
- Team Mucosal Immunity and Pathogen Agents (GIMAP), Centre International de Recherche en Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, Ecole Nationale Supérieure de Lyon, Université de Lyon, Université de Saint-Etienne, Saint-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Alan Grupioni Lourenço
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Bruno Pozzetto
- Team Mucosal Immunity and Pathogen Agents (GIMAP), Centre International de Recherche en Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, Ecole Nationale Supérieure de Lyon, Université de Lyon, Université de Saint-Etienne, Saint-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Thomas Bourlet
- Team Mucosal Immunity and Pathogen Agents (GIMAP), Centre International de Recherche en Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, Ecole Nationale Supérieure de Lyon, Université de Lyon, Université de Saint-Etienne, Saint-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Ana Carolina Fragoso Motta
- Department of Stomatology, Public Health and Forensic Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Bhagchandani T, Haque MMU, Sharma S, Malik MZ, Ray AK, Kaur US, Rai A, Verma A, Sawlani KK, Chaturvedi R, Dandu H, Kumar A, Tandon R. Plasma Virome of HIV-infected Subjects on Suppressive Antiretroviral Therapy Reveals Association of Differentially Abundant Viruses with Distinct T-cell Phenotypes and Inflammation. Curr Genomics 2024; 25:105-119. [PMID: 38751600 PMCID: PMC11092910 DOI: 10.2174/0113892029279786240111052824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 05/18/2024] Open
Abstract
Background The plasma virome represents the overall composition of viral sequences present in it. Alteration in plasma virome has been reported in treatment naïve and immunocompromised (CD4 count < 200) people with HIV (PWH). However, the effect of ART on virome composition in PWH on ART with preserved CD4 counts is poorly understood. Objectives We aimed to assess the alterations in plasma virome in PWH on ART in comparison to HIV-negative uninfected controls and to further investigate possible associations of plasma viruses with inflammation and immune dysfunction, namely, immunosenescence and immune exhaustion. Methods Plasma viral DNA from PWH on ART and controls was used for sequencing on the Illumina Nextseq500 platform, followed by the identification of viral sequences using an automated pipeline, VIROMATCH. Multiplex cytokine assay was performed to measure the concentrations of various cytokines in plasma. Immunophenotyping was performed on PBMCs to identify T cell markers of immunosenescence and immune exhaustion. Results In our observational, cross-sectional pilot study, chronically infected PWH on ART had significantly different viral species compositions compared to controls. The plasma virome of PWH showed a significantly high relative abundance of species Human gammaherpesvirus 4, also known as Epstein-Barr virus (EBV). Moreover, EBV emerged as a significant viral taxon differentially enriched in PWH on ART, which further correlated positively with the exhaustion phenotype of T cells and significantly increased TNF-α in PWH on ART. Additionally, a significantly increased proportion of senescent T cells and IL-8 cytokine was detected in PWH on ART. Conclusion Altered plasma virome influenced the inflammatory response and T-cell phenotype in PWH on ART.
Collapse
Affiliation(s)
- Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Mohammad M. Ul Haque
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shilpa Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Md Zubbair Malik
- Host-Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ashwini K. Ray
- Laboratory of Metabolic Disorder and Environmental Biotechnology, Department of Environmental Studies, Faculty of Science, University of Delhi, New Delhi, India
| | - Urvinder S. Kaur
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Rai
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Kamal K. Sawlani
- Department of Medicine, King George’s Medical University, Lucknow, India
| | - Rupesh Chaturvedi
- Host-Pathogen Interaction Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Centre for System Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Himanshu Dandu
- Department of Medicine, King George’s Medical University, Lucknow, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore; India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
31
|
Maghini DG, Oduaran OH, Wirbel J, Olubayo LAI, Smyth N, Mathema T, Belger CW, Agongo G, Boua PR, Choma SSR, Gómez-Olivé FX, Kisiangani I, Mashaba GR, Micklesfield L, Mohamed SF, Nonterah EA, Norris S, Sorgho H, Tollman S, Wafawanaka F, Tluway F, Ramsay M, Bhatt AS, Hazelhurst S. Expanding the human gut microbiome atlas of Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584859. [PMID: 38559015 PMCID: PMC10980044 DOI: 10.1101/2024.03.13.584859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Population studies are crucial in understanding the complex interplay between the gut microbiome and geographical, lifestyle, genetic, and environmental factors. However, populations from low- and middle-income countries, which represent ~84% of the world population, have been excluded from large-scale gut microbiome research. Here, we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,803 women from Burkina Faso, Ghana, Kenya, and South Africa. By intensively engaging with communities that range from rural and horticultural to urban informal settlements and post-industrial, we capture population diversity that represents a far greater breadth of the world's population. Using shotgun metagenomic sequencing, we find that study site explains substantially more microbial variation than disease status. We identify taxa with strong geographic and lifestyle associations, including loss of Treponema and Cryptobacteroides species and gain of Bifidobacterium species in urban populations. We uncover a wealth of prokaryotic and viral novelty, including 1,005 new bacterial metagenome-assembled genomes, and identify phylogeography signatures in Treponema succinifaciens. Finally, we find a microbiome signature of HIV infection that is defined by several taxa not previously associated with HIV, including Dysosmobacter welbionis and Enterocloster sp. This study represents the largest population-representative survey of gut metagenomes of African individuals to date, and paired with extensive clinical biomarkers, demographic data, and lifestyle information, provides extensive opportunity for microbiome-related discovery and research.
Collapse
Affiliation(s)
- Dylan G Maghini
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Ovokeraye H Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jakob Wirbel
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Luicer A Ingasia Olubayo
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Natalie Smyth
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Theophilous Mathema
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Carl W Belger
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Palwendé R Boua
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Burkina Faso
| | - Solomon SR Choma
- DIMAMO Population Health Research Centre, University of Limpopo, South Africa
| | - F Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Given R Mashaba
- DIMAMO Population Health Research Centre, University of Limpopo, South Africa
| | - Lisa Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Shane Norris
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Burkina Faso
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Floidy Wafawanaka
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Furahini Tluway
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Ami S Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
32
|
Lu D, Wang YX, Geng ST, Zhang Z, Xu Y, Peng QY, Li SY, Zhang JB, Wang KH, Kuang YQ. Whole-protein enteral nutrition formula supplementation reduces Escherichia and improves intestinal barrier function in HIV-infected immunological nonresponders. Appl Physiol Nutr Metab 2024; 49:319-329. [PMID: 37922515 DOI: 10.1139/apnm-2022-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
People living with human immunodeficiency virus (PLWH) have persistent malnutrition, intestinal barrier dysfunction, and gut microbial imbalance. The interplay between gut microbiota and nutrients is involved in the immune reconstitution of PLWH. To evaluate the effects of whole-protein enteral nutrition formula supplementation on T-cell levels, intestinal barrier function, nutritional status, and gut microbiota composition in human immunodeficiency virus (HIV)-infected immunological nonresponders (INRs) who failed to normalize CD4+ T-cell counts, with a number <350 cells/µL, a pilot study was carried out in 13 HIV-infected INRs undergoing antiretroviral therapy who received a 3-month phase supplementation of 200 mL/200 kcal/45 g whole-protein enteral nutrition formula once daily. Our primary endpoint was increased CD4+ T-cell counts. Secondary outcome parameters were changes in intestinal barrier function, nutritional status, and gut microbiota composition. We showed that CD4+ T-cell counts of HIV-infected INRs increased significantly after the 3-month supplementation. Dietary supplementation for 3 months improved the intestinal barrier function and nutritional status of HIV-infected INRs. Furthermore, the enteral nutrition formula significantly decreased the relative abundance of Escherichia at the genus level and increased the alpha diversity of gut microbiota in HIV-infected INRs. The findings demonstrated that the whole-protein enteral nutrition formula aids in reducing Escherichia and improving intestinal barrier function in HIV-infected INRs. This study provides insight into the role of nutrients in the improvement of immune reconstitution in HIV-infected INRs. This study is registered in the Chinese Clinical Trial Registry (Document No. ChiCTR2000037839; http://www.chictr.org.cn/index.aspx).
Collapse
Affiliation(s)
- Danfeng Lu
- School of Medicine, Kunming University, Kunming, China
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Yue-Xin Wang
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shi-Tao Geng
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Zunyue Zhang
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing-Yan Peng
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Shao-You Li
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Jian-Bo Zhang
- Department of Dermatology, Second People's Hospital of Dali City, Dali, China
| | - Kun-Hua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine and Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| |
Collapse
|
33
|
Singh S, Giron LB, Shaikh MW, Shankaran S, Engen PA, Bogin ZR, Bambi SA, Goldman AR, Azevedo JLLC, Orgaz L, de Pedro N, González P, Giera M, Verhoeven A, Sánchez-López E, Pandrea I, Kannan T, Tanes CE, Bittinger K, Landay AL, Corley MJ, Keshavarzian A, Abdel-Mohsen M. Distinct intestinal microbial signatures linked to accelerated systemic and intestinal biological aging. MICROBIOME 2024; 12:31. [PMID: 38383483 PMCID: PMC10882811 DOI: 10.1186/s40168-024-01758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND People living with HIV (PLWH), even when viral replication is controlled through antiretroviral therapy (ART), experience persistent inflammation. This inflammation is partly attributed to intestinal microbial dysbiosis and translocation, which may lead to non-AIDS-related aging-associated comorbidities. The extent to which living with HIV - influenced by the infection itself, ART usage, sexual orientation, or other associated factors - affects the biological age of the intestines is unclear. Furthermore, the role of microbial dysbiosis and translocation in the biological aging of PLWH remains to be elucidated. To investigate these uncertainties, we used a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PLWH on ART and people living without HIV (PLWoH) as controls. RESULTS PLWH exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to PLWoH. Investigating the relationship between microbial translocation and biological aging, PLWH had decreased levels of tight junction proteins in the intestines, along with increased microbial translocation. This intestinal permeability correlated with faster biological aging and increased inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PLWH had higher abundance of specific pro-inflammatory bacteria, such as Catenibacterium and Prevotella. These bacteria correlated with accelerated biological aging. Conversely, the intestines of PLWH had lower abundance of bacteria known for producing the anti-inflammatory short-chain fatty acids, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbe-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid. CONCLUSIONS We identified specific microbial compositions and microbiota-related metabolic pathways that are intertwined with intestinal and systemic biological aging. This microbial signature of biological aging is likely reflecting various factors including the HIV infection itself, ART usage, sexual orientation, and other aspects associated with living with HIV. A deeper understanding of the mechanisms underlying these connections could offer potential strategies to mitigate accelerated aging and its associated health complications. Video Abstract.
Collapse
Affiliation(s)
- Shalini Singh
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Leila B Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Maliha W Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Shivanjali Shankaran
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | - Phillip A Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Zlata R Bogin
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Simona A Bambi
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Aaron R Goldman
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Joao L L C Azevedo
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | | | | | | | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Toshitha Kannan
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Ceylan E Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alan L Landay
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | | | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
34
|
Meng P, Zhang G, Ma X, Ding X, Song X, Dang S, Yang R, Xu L. Traditional Chinese medicine (Xielikang) reduces diarrhea symptoms in acquired immune deficiency syndrome (AIDS) patients by regulating the intestinal microbiota. Front Microbiol 2024; 15:1346955. [PMID: 38435694 PMCID: PMC10904582 DOI: 10.3389/fmicb.2024.1346955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Diarrheal acquired immune deficiency syndrome (AIDS) seriously affects the quality of life of patients. In this study, we analyzed the differences in the intestinal microbiota among healthy individuals, AIDS patients without diarrhea and AIDS patients with diarrhea through high-throughput sequencing. The microbial diversity in the intestines of patients in the AIDS diarrhea group was significantly increased, and after treatment with Xielikang, the intestinal microbial diversity returned to the baseline level. At the phylum level, compared those in to the healthy (ZC) and AIDS non diarrhea (FN) groups, the relative abundances of Bacteroidetes and Verrucomirobia in the AIDS diarrhea (FA) group before treatment were significantly increased, while the relative abundance of Firmicutes was significantly decreased. Similarly, compared with those in the FA group, the relative abundances of Bacteroidea and Firmicutes in the AIDS diarrhea (FB) group after treatment were significantly increased, while the relative abundance of Firmicutes was significantly decreased after treatment. Additionally, there was no significant difference between the ZC and FN groups. At the genus level, compared with those in the ZC group, the relative abundance of Prevotella and Escherichia_Shigella in the FA group was significantly increased, while the relative abundances of Megamonas and Bifidobacterium was significantly decreased compared to that in the ZC group. After treatment with Xielikang, the relative abundance of Prevotella and Escherichia_Shigella in the FB group were significantly decreased, while the relative abundances of Megamonas and Bifidobacteria were significantly increased than those in the FA group; moreover, there was no significant difference between the ZC and FN groups. The functional prediction results showed that the ketodeoxyoctonate (Kdo) transfer to lipid IVA III and the superpathway of N-acetylglucosamine pathways in the AIDS diarrhea group were significantly altered. The correlation analysis results showed that Dorea was positively correlated with inflammatory factors, while Streptococcus and Lactobacillus were negatively correlated with inflammatory factors. The composition and function of the intestinal microbiota changed significantly in AIDS diarrhea patients, which affected the immune function of the host. The Xielikang capsule modulated the composition of the intestinal microbiota in AIDS diarrhea patients and thus improved immune function and reduced diarrheal symptoms.
Collapse
Affiliation(s)
- Pengfei Meng
- Henan University of Chinese Medicine, Zhengzhou, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Guichun Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiuxia Ma
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue Ding
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiyuan Song
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuyuan Dang
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruihan Yang
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Liran Xu
- Henan University of Chinese Medicine, Zhengzhou, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
35
|
Runtuwene LR, Parbie PK, Mizutani T, Ishizaka A, Matsuoka S, Abana CZY, Kushitor D, Bonney EY, Ofori SB, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Longitudinal analysis of microbiome composition in Ghanaians living with HIV-1. Front Microbiol 2024; 15:1359402. [PMID: 38426062 PMCID: PMC10902004 DOI: 10.3389/fmicb.2024.1359402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Human immunodeficiency virus (HIV) 1 infection is known to cause gut microbiota dysbiosis. Among the causes is the direct infection of HIV-1 in gut-resident CD4+ T cells, causing a cascade of phenomena resulting in the instability of the gut mucosa. The effect of HIV infection on gut microbiome dysbiosis remains unresolved despite antiretroviral therapy. Here, we show the results of a longitudinal study of microbiome analysis of people living with HIV (PLWH). We contrasted the diversity and composition of the microbiome of patients with HIV at the first and second time points (baseline_case and six months later follow-up_case, respectively) with those of healthy individuals (baseline_control). We found that despite low diversity indices in the follow-up_case, the abundance of some genera was recovered but not completely, similar to baseline_control. Some genera were consistently in high abundance in PLWH. Furthermore, we found that the CD4+ T-cell count and soluble CD14 level were significantly related to high and low diversity indices, respectively. We also found that the abundance of some genera was highly correlated with clinical features, especially with antiretroviral duration. This includes genera known to be correlated with worse HIV-1 progression (Achromobacter and Stenotrophomonas) and a genus associated with gut protection (Akkermansia). The fact that a protector of the gut and genera linked to a worse progression of HIV-1 are both enriched may signify that despite the improvement of clinical features, the gut mucosa remains compromised.
Collapse
Affiliation(s)
- Lucky Ronald Runtuwene
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Prince Kofi Parbie
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Taketoshi Mizutani
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Aya Ishizaka
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Christopher Zaab-Yen Abana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dennis Kushitor
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Badu Ofori
- Department of Internal Medicine, Eastern Regional Hospital Koforidua, Ghana Health Service, Koforidua, Ghana
| | - Hiroshi Kiyono
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California San Diego, San Diego, CA, United States
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - William Kwabena Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Chen X, Wei J, Zhang Y, Zhang Y, Zhang T. Crosstalk between gut microbiome and neuroinflammation in pathogenesis of HIV-associated neurocognitive disorder. J Neurol Sci 2024; 457:122889. [PMID: 38262196 DOI: 10.1016/j.jns.2024.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
HIV-associated neurocognitive disorder (HAND) has become a chronic neurodegenerative disease affecting the quality of life in people living with HIV (PLWH). Despite an established association between HAND and neuroinflammation induced by HIV proteins (gp120, Tat, Rev., Nef, and Vpr), the pathogenesis of HAND remains to be fully elucidated. Accumulating evidence demonstrated that the gut microbiome is emerging as a critical regulator of various neurodegenerative diseases (e.g., Parkinson's disease, Alzheimer's disease), suggesting that the crosstalk between the gut microbiome and neuroinflammation may contribute to the development of these diseases, for example, gut dysbiosis and microbiota-derived metabolites can trigger inflammation in the brain. However, the potential role of the gut microbiome in the pathogenesis of HAND remains largely unexplored. In this review, we aim to discuss and elucidate the HAND pathogenesis correlated with gut microbiome and neuroinflammation, and intend to explore the probable intervention strategies for HAND.
Collapse
Affiliation(s)
- Xue Chen
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yulin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
37
|
Rocafort M, Gootenberg DB, Luévano JM, Paer JM, Hayward MR, Bramante JT, Ghebremichael MS, Xu J, Rogers ZH, Munoz AR, Okello S, Kim JH, Sentongo R, Wagubi R, Lankowski A, Maruapula S, Zhao G, Handley SA, Mosepele M, Siedner MJ, Kwon DS. HIV-associated gut microbial alterations are dependent on host and geographic context. Nat Commun 2024; 15:1055. [PMID: 38316748 PMCID: PMC10844288 DOI: 10.1038/s41467-023-44566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
HIV-associated changes in intestinal microbiota are believed to be important drivers of disease progression. However, the majority of studies have focused on populations in high-income countries rather than in developing regions where HIV burden is greatest. To better understand the impact of HIV on fecal microbiota globally, we compare the fecal microbial community of individuals in the U.S., Uganda, and Botswana. We identify significant bacterial taxa alterations with both treated and untreated HIV infection with a high degree of uniqueness in each cohort. HIV-associated taxa alterations are also significantly different between populations that report men who have sex with men (MSM) behavior and non-MSM populations. Additionally, while we find that HIV infection is consistently associated with higher soluble markers of immune activation, most specific bacterial taxa associated with these markers in each region are not shared and none are shared across all three geographic locations in our study. Our findings demonstrate that HIV-associated changes in fecal microbiota are overall distinct among geographical locations and sexual behavior groups, although a small number of taxa shared between pairs of geographic locations warrant further investigation, highlighting the importance of considering host context to fully assess the impact of the gut microbiome on human health and disease.
Collapse
Affiliation(s)
- Muntsa Rocafort
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - David B Gootenberg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Harvard Medical School, Boston, MA, 02114, USA
| | - Jesús M Luévano
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Harvard Medical School, Boston, MA, 02114, USA
| | - Jeffrey M Paer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | | | | | | | - Jiawu Xu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Zoe H Rogers
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | | | - Samson Okello
- Department of Medicine, Mbarara University of Science and Technology, 1956, Mbarara, Uganda
| | - June-Ho Kim
- Harvard Medical School, Boston, MA, 02114, USA
| | - Ruth Sentongo
- Department of Medicine, Mbarara University of Science and Technology, 1956, Mbarara, Uganda
| | - Robert Wagubi
- Department of Medicine, Mbarara University of Science and Technology, 1956, Mbarara, Uganda
| | - Alex Lankowski
- Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Segametsi Maruapula
- Department of Family & Consumer Sciences, University of Botswana, 0022, Gaborone, Botswana
| | - Guoyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mosepele Mosepele
- Faculty of Medicine, University of Botswana, 0022, Gaborone, Botswana
| | - Mark J Siedner
- Harvard Medical School, Boston, MA, 02114, USA
- Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
- Harvard Medical School, Boston, MA, 02114, USA.
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
38
|
Burkhart Colorado AS, Lazzaro A, Neff CP, Nusbacher N, Boyd K, Fiorillo S, Martin C, Siebert JC, Campbell TB, Borok M, Palmer BE, Lozupone C. Differential effects of antiretroviral treatment on immunity and gut microbiome composition in people living with HIV in rural versus urban Zimbabwe. MICROBIOME 2024; 12:18. [PMID: 38310301 PMCID: PMC10837999 DOI: 10.1186/s40168-023-01718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/09/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND The widespread availability of antiretroviral therapy (ART) has dramatically reduced mortality and improved life expectancy for people living with HIV (PLWH). However, even with HIV-1 suppression, chronic immune activation and elevated inflammation persist and have been linked to a pro-inflammatory gut microbiome composition and compromised intestinal barrier integrity. PLWH in urban versus rural areas of sub-Saharan Africa experience differences in environmental factors that may impact the gut microbiome and immune system, in response to ART, yet this has not previously been investigated in these groups. To address this, we measured T cell activation/exhaustion/trafficking markers, plasma inflammatory markers, and fecal microbiome composition in PLWH and healthy participants recruited from an urban clinic in the city of Harare, Zimbabwe, and a district hospital that services surrounding rural villages. PLWH were either ART naïve at baseline and sampled again after 24 weeks of first-line ART and the antibiotic cotrimoxazole or were ART-experienced at both timepoints. RESULTS Although expected reductions in the inflammatory marker IL-6, T-cell activation, and exhaustion were observed with ART-induced viral suppression, these changes were much more pronounced in the urban versus the rural area. Gut microbiome composition was the most highly altered from healthy controls in ART experienced PLWH, and characterized by both reduced alpha diversity and altered composition. However, gut microbiome composition showed a pronounced relationship with T cell activation and exhaustion in ART-naïve PLWH, suggesting a particularly significant role for the gut microbiome in disease progression in uncontrolled infection. Elevated immune exhaustion after 24 weeks of ART did correlate with both living in the rural location and a more Prevotella-rich/Bacteroides-poor microbiome type, suggesting a potential role for rural-associated microbiome differences or their co-variates in the muted improvements in immune exhaustion in the rural area. CONCLUSION Successful ART was less effective at reducing gut microbiome-associated inflammation and T cell activation in PLWH in rural versus urban Zimbabwe, suggesting that individuals on ART in rural areas of Zimbabwe may be more vulnerable to co-morbidity related to sustained immune dysfunction in treated infection. Video Abstract.
Collapse
Affiliation(s)
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Charles Preston Neff
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nichole Nusbacher
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kathryn Boyd
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, England
| | - Suzanne Fiorillo
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Casey Martin
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Janet C Siebert
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Thomas B Campbell
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Margaret Borok
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Brent E Palmer
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Catherine Lozupone
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
39
|
Ramos-Barbero MD, Gómez-Gómez C, Vique G, Sala-Comorera L, Rodríguez-Rubio L, Muniesa M. Recruitment of complete crAss-like phage genomes reveals their presence in chicken viromes, few human-specific phages, and lack of universal detection. THE ISME JOURNAL 2024; 18:wrae192. [PMID: 39361891 PMCID: PMC11475920 DOI: 10.1093/ismejo/wrae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
The order Crassvirales, which includes the prototypical crAssphage (p-crAssphage), is predominantly associated with humans, rendering it the most abundant and widely distributed group of DNA phages in the human gut. The reported human specificity and wide global distribution of p-crAssphage makes it a promising human fecal marker. However, the specificity for the human gut as well as the geographical distribution around the globe of other members of the order Crassvirales remains unknown. To determine this, a recruitment analysis using 91 complete, non-redundant genomes of crAss-like phages in human and animal viromes revealed that only 13 crAss-like phages among the 91 phages analyzed were highly specific to humans, and p-crAssphage was not in this group. Investigations to elucidate whether any characteristic of the phages was responsible for their prevalence in humans showed that the 13 human crAss-like phages do not share a core genome. Phylogenomic analysis placed them in three independent families, indicating that within the Crassvirales group, human specificity is likely not a feature of a common ancestor but rather was introduced on separate/independent occasions in their evolutionary history. The 13 human crAss-like phages showed variable geographical distribution across human metagenomes worldwide, with some being more prevalent in certain countries than in others, but none being universally identified. The varied geographical distribution and the absence of a phylogenetic relationship among the human crAss-like phages are attributed to the emergence and dissemination of their bacterial host, the symbiotic human strains of Bacteroides, across various human populations occupying diverse ecological niches worldwide.
Collapse
Affiliation(s)
- María Dolores Ramos-Barbero
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Gloria Vique
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Lorena Rodríguez-Rubio
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| |
Collapse
|
40
|
Roach MJ, Beecroft SJ, Mihindukulasuriya KA, Wang L, Paredes A, Cárdenas LAC, Henry-Cocks K, Lima LFO, Dinsdale EA, Edwards RA, Handley SA. Hecatomb: an integrated software platform for viral metagenomics. Gigascience 2024; 13:giae020. [PMID: 38832467 PMCID: PMC11148595 DOI: 10.1093/gigascience/giae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Modern sequencing technologies offer extraordinary opportunities for virus discovery and virome analysis. Annotation of viral sequences from metagenomic data requires a complex series of steps to ensure accurate annotation of individual reads and assembled contigs. In addition, varying study designs will require project-specific statistical analyses. FINDINGS Here we introduce Hecatomb, a bioinformatic platform coordinating commonly used tasks required for virome analysis. Hecatomb means "a great sacrifice." In this setting, Hecatomb is "sacrificing" false-positive viral annotations using extensive quality control and tiered-database searches. Hecatomb processes metagenomic data obtained from both short- and long-read sequencing technologies, providing annotations to individual sequences and assembled contigs. Results are provided in commonly used data formats useful for downstream analysis. Here we demonstrate the functionality of Hecatomb through the reanalysis of a primate enteric and a novel coral reef virome. CONCLUSION Hecatomb provides an integrated platform to manage many commonly used steps for virome characterization, including rigorous quality control, host removal, and both read- and contig-based analysis. Each step is managed using the Snakemake workflow manager with dependency management using Conda. Hecatomb outputs several tables properly formatted for immediate use within popular data analysis and visualization tools, enabling effective data interpretation for a variety of study designs. Hecatomb is hosted on GitHub (github.com/shandley/hecatomb) and is available for installation from Bioconda and PyPI.
Collapse
Affiliation(s)
- Michael J Roach
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sarah J Beecroft
- Harry Perkins Institute of Medical Research, Perth, WA, 6009, Australia
| | - Kathie A Mihindukulasuriya
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Leran Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anne Paredes
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luis Alberto Chica Cárdenas
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kara Henry-Cocks
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia
| | | | - Elizabeth A Dinsdale
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia
| | - Scott A Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
41
|
Maqsood R, Holland LA, Wu LI, Begnel ER, Adhiambo J, Owiti P, Chohan BH, Gantt S, Kinuthia J, Wamalwa D, Ojee E, Richardson BA, Slyker J, Lehman DA, Lim ES. Gut virome and microbiome dynamics before and after SARS-CoV-2 infection in women living with HIV and their infants. Gut Microbes 2024; 16:2394248. [PMID: 39185682 PMCID: PMC11352790 DOI: 10.1080/19490976.2024.2394248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Microbiome perturbations can have long-term effects on health. The dynamics of the gut microbiome and virome in women living with HIV (WLHIV) and their newborn infants is poorly understood. Here, we performed metagenomic sequencing analyses on longitudinal stool samples including 23 mothers (13 WLHIV, 10 HIV-negative) and 12 infants that experienced SARS-CoV-2 infection with mild disease, as well as 40 mothers (18 WLHIV, 22 HIV-negative) and 60 infants that remained SARS-CoV-2 seronegative throughout the study follow-up. Regardless of HIV or SARS-CoV-2 status, maternal bacterial and viral profiles were distinct from infants. Using linear mixed effects models, we showed that the microbiome alpha diversity trajectory was not significantly different between SARS-CoV-2 seropositive and seronegative women. However, seropositive women's positive trajectory while uninfected was abruptly reversed after SARS-CoV-2 infection (p = 0.015). Gut virome signatures of women were not associated with SARS-CoV-2. Alterations in infant microbiome and virome diversities were generally not impacted by SARS-CoV-2 but were rather driven by development. We did not find statistically significant interactions between HIV and SARS-CoV-2 on the gut microbiome and virome. Overall, our study provides insights into the complex interplay between maternal and infant bacterial microbiome, virome, and the influence of SARS-CoV-2 and HIV status.
Collapse
Affiliation(s)
- Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Lily I. Wu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Emily R. Begnel
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Judith Adhiambo
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Prestone Owiti
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Bhavna H. Chohan
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center of Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Centre de Recherche du CHU St-Justine, Montreal, Québec, Canada
| | - John Kinuthia
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Dalton Wamalwa
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Ednah Ojee
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Barbra A. Richardson
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Dara A. Lehman
- Department of Global Health, University of Washington, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
42
|
Ma J, Wen S, Dong A, Fan W, Kang Y. Gut Microbiome (Bacteria, Fungi, and Viruses) and HIV Infection: Revealing Novel Treatment Strategies. Mol Nutr Food Res 2023; 67:e2300566. [PMID: 37867202 DOI: 10.1002/mnfr.202300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Plenty of research on microbial-viral interactions has revealed that some commensal microorganisms in the gut, including bacteria, fungi, and viruses, can resist or promote viral infection, whereas other microorganisms are involved in pathogenicity. Therefore, the balance between commensal microorganisms and human organisms is a key factor for determining infection and disease progression, and commensal microorganisms have become a hot research area in the medical field. In this review, the compositional characteristics of gut microbiota (bacteria, fungi, and viruses) during HIV infection are reviewed and changes in gut microbiota among different HIV-infected populations are described. Furthermore, the latest progress of potential microbial therapeutic methods, including a) probiotics, prebiotics, and synbiotics, b) fecal microbiota transplantation (FMT), c) phage therapy, and d) antifungal strategy, microbial enzyme inhibition, and dietary therapeutics, is analyzed based on gut bacteria, fungi, and viruses in the field of HIV infection. This study aims to provide a useful reference for developing novel strategies for the prevention and treatment of HIV infection based on commensal microorganisms.
Collapse
Affiliation(s)
- Jieqiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Shiyuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Aobo Dong
- Third Hospital of Baotou City, Baotou, China
| | - Weiping Fan
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yongbo Kang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
43
|
Spiertz A, Tsakmaklis A, Farowski F, Knops E, Heger E, Wirtz M, Kaiser R, Holtick U, Vehreschild MJGT, Di Cristanziano V. Torque teno virus-DNA load as individual cytomegalovirus risk assessment parameter upon allogeneic hematopoietic stem cell transplantation. Eur J Haematol 2023; 111:963-969. [PMID: 37772680 DOI: 10.1111/ejh.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Immune recovery following allogeneic hematopoietic stem cell transplantation (allo-HSCT) decisively influences the occurrence of opportunistic infections, one of the leading causes of death among this group of patients. Yet, today, there are no laboratory parameters mirroring immune function sufficiently. Torque teno virus (TTV) has already proven itself as a functional immune marker in other settings. AIMS In this analysis, we investigated whether monitoring of TTV-DNA load in whole blood is able to provide additional information on the capacity of the immune system to control cytomegalovirus (CMV) replication in allo-HSCT recipients. METHODS Whole blood samples from 59 patients were collected upon allo-HSCT (between Day -7 and +10), on Day +14, +21, +28, +56, +90, and +365 post-transplant. TTV-DNA loads and other relevant clinical information were correlated with the risk of CMV infections or reactivations, defined by evidence of viral replication in blood. RESULTS CMV serostatus of the recipient and a TTV load below 1000 copies/mL upon allo-HSCT were significantly associated with an increased incidence of CMV infection or reactivation. CONCLUSIONS Quantification of TTV load in the early phase of allo-HSCT procedure could provide additional information in order to identify patients at risk for CMV infection or reactivation.
Collapse
Affiliation(s)
- Arlene Spiertz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anastasia Tsakmaklis
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fedja Farowski
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, University of Cologne, Cologne, Germany
- Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maike Wirtz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Udo Holtick
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, University of Cologne, Cologne, Germany
- Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
44
|
Mageiros L, Megremis S, Papadopoulos NG. The virome in allergy and asthma: A nascent, ineffable player. J Allergy Clin Immunol 2023; 152:1347-1351. [PMID: 37778473 DOI: 10.1016/j.jaci.2023.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Allergic diseases can be affected by virus-host interactions and are increasingly linked with the tissue-specific microbiome. High-throughput metagenomic sequencing has offered the opportunity to study the presence of viruses as an ecologic system, namely, the virome. Even though virome studies are technically challenging conceptually and analytically, they are already producing novel data expanding our understanding of the pathophysiologic mechanisms related to chronic inflammation and allergy. The importance of interspecies and intraspecies interactions is becoming apparent, as they can significantly, directly or indirectly, affect the host's response and antigenic state. Here, we emphasize the challenges and potential insights related to study of the virome in the context of allergy and asthma. We review the limited number of studies that have investigated the virome in these conditions, underlining the need for prospective, repeated sampling designs to unravel the virome's impact on disease development and its interplay with microbiota and immunity. The potential therapeutic use of bacteriophages, which are highly complex components of the virome, is discussed. There is clearly a need for further in-depth investigation of the virome as a system in allergic diseases.
Collapse
Affiliation(s)
- Leonardos Mageiros
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece; University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
45
|
Sereti I, Verburgh ML, Gifford J, Lo A, Boyd A, Verheij E, Verhoeven A, Wit FWNM, Schim van der Loeff MF, Giera M, Kootstra NA, Reiss P, Vujkovic-Cvijin I. Impaired gut microbiota-mediated short-chain fatty acid production precedes morbidity and mortality in people with HIV. Cell Rep 2023; 42:113336. [PMID: 37918403 PMCID: PMC10872975 DOI: 10.1016/j.celrep.2023.113336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Antiretroviral therapy (ART) has dramatically lengthened lifespan among people with HIV (PWH), but this population experiences heightened rates of inflammation-related comorbidities. HIV-associated inflammation is linked with an altered microbiome; whether such alterations precede inflammation-related comorbidities or occur as their consequence remains unknown. We find that ART-treated PWH exhibit depletion of gut-resident bacteria that produce short-chain fatty acids (SCFAs)-crucial microbial metabolites with anti-inflammatory properties. Prior reports establish that fecal SCFA concentrations are not depleted in PWH. We find that gut-microbiota-mediated SCFA production capacity is better reflected in serum than in feces and that PWH exhibit reduced serum SCFA, which associates with inflammatory markers. Leveraging stool and serum samples collected prior to comorbidity onset, we find that HIV-specific microbiome alterations precede morbidity and mortality in ART-treated PWH. Among these microbiome alterations, reduced microbiome-mediated conversion of lactate to propionate precedes mortality in PWH. Thus, gut microbial fiber/lactate conversion to SCFAs may modulate HIV-associated comorbidity risk.
Collapse
Affiliation(s)
- Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, NIAID/NIH, Rockville, MD, USA; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Myrthe L Verburgh
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Jacob Gifford
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alice Lo
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anders Boyd
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; HIV Monitoring Foundation, Amsterdam, the Netherlands; Public Health Service of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands
| | - Eveline Verheij
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Aswin Verhoeven
- Leiden University Medical Center, Center for Proteomics & Metabolomics, Leiden, the Netherlands
| | - Ferdinand W N M Wit
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; HIV Monitoring Foundation, Amsterdam, the Netherlands
| | - Maarten F Schim van der Loeff
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Public Health Service of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics & Metabolomics, Leiden, the Netherlands
| | - Neeltje A Kootstra
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Experimental Immunology, Amsterdam, the Netherlands
| | - Peter Reiss
- Amsterdam University Medical Centers, University of Amsterdam, Infectious Diseases, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands; Amsterdam University Medical Centers, University of Amsterdam, Department of Global Health, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
46
|
Bhagchandani T, Nikita, Verma A, Tandon R. Exploring the Human Virome: Composition, Dynamics, and Implications for Health and Disease. Curr Microbiol 2023; 81:16. [PMID: 38006423 DOI: 10.1007/s00284-023-03537-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Humans are colonized by large number of microorganisms-bacteria, fungi, and viruses. The overall genome of entire viruses that either lives on or inside the human body makes up the human virome and is indeed an essential fraction of the human metagenome. Humans are constantly exposed to viruses as they are ubiquitously present on earth. The human virobiota encompasses eukaryotic viruses, bacteriophages, retroviruses, and even giant viruses. With the advent of Next-generation sequencing (NGS) and ongoing development of numerous bioinformatic softwares, identification and taxonomic characterization of viruses have become easier. The viruses are abundantly present in humans; these can be pathogenic or commensal. The viral communities occupy various niches in the human body. The viruses start colonizing the infant gut soon after birth in a stepwise fashion and the viral composition diversify according to their feeding habits. Various factors such as diet, age, medications, etc. influence and shape the human virome. The viruses interact with the host immune system and these interactions have beneficial or detrimental effects on their host. The virome composition and abundance change during the course of disease and these alterations impact the immune system. Hence, the virome population in healthy and disease conditions influences the human host in numerous ways. This review presents an overview of assembly and composition of the human virome in healthy asymptomatic individuals, changes in the virome profiles, and host-virome interactions in various disease states.
Collapse
Affiliation(s)
- Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
47
|
Chen Z, Liu Y, Huang W. Alveolar macrophage modulation via the gut-lung axis in lung diseases. Front Immunol 2023; 14:1279677. [PMID: 38077401 PMCID: PMC10702770 DOI: 10.3389/fimmu.2023.1279677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Several studies have demonstrated great potential implications for the gut-lung axis in lung disease etiology and treatment. The gut environment can be influenced by diet, metabolites, microbiotal composition, primary diseases, and medical interventions. These changes modulate the functions of alveolar macrophages (AMs) to shape the pulmonary immune response, which greatly impacts lung health. The immune modulation of AMs is implicated in the pathogenesis of various lung diseases. However, the mechanism of the gut-lung axis in lung diseases has not yet been determined. This mini-review aimed to shed light on the critical nature of communication between the gut and AMs during the development of pulmonary infection, injury, allergy, and malignancy. A better understanding of their crosstalk may provide new insights into future therapeutic strategies targeting the gut-AM interaction.
Collapse
Affiliation(s)
| | | | - Weizhe Huang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
48
|
Wang H, Xu S, Li S, Su B, Sherrill-Mix S, Liang G. Virome in immunodeficiency: what we know currently. Chin Med J (Engl) 2023; 136:2647-2657. [PMID: 37914672 PMCID: PMC10684123 DOI: 10.1097/cm9.0000000000002899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT Over the past few years, the human virome and its complex interactions with microbial communities and the immune system have gained recognition as a crucial factor in human health. Individuals with compromised immune function encounter distinctive challenges due to their heightened vulnerability to a diverse range of infectious diseases. This review aims to comprehensively explore and analyze the growing evidence regarding the role of the virome in immunocompromised disease status. By surveying the latest literature, we present a detailed overview of virome alterations observed in various immunodeficiency conditions. We then delve into the influence and mechanisms of these virome changes on the pathogenesis of specific diseases in immunocompromised individuals. Furthermore, this review explores the clinical relevance of virome studies in the context of immunodeficiency, highlighting the potential diagnostic and therapeutic gains from a better understanding of virome contributions to disease manifestations.
Collapse
Affiliation(s)
- Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Siqi Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Scott Sherrill-Mix
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
49
|
Munjoma PT, Chandiwana P, Wyss J, Mazhandu AJ, Jordi SBU, Gutsire R, Katsidzira L, Yilmaz B, Misselwitz B, Duri K. Immune activation and inflammation in lactating women on combination antiretroviral therapy: role of gut dysfunction and gut microbiota imbalance. Front Immunol 2023; 14:1280262. [PMID: 38045684 PMCID: PMC10693333 DOI: 10.3389/fimmu.2023.1280262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Combination antiretroviral therapy (cART) effectively controls HIV; however, chronic low-level viremia and gut microbiota dysbiosis remain significant drivers of gut and systemic inflammation. In this study, we explored the relationship between gut microbiota composition, intestinal inflammation, microbial translocation, and systemic inflammation in women on cART in Sub-Saharan Africa. Methods We conducted a study in HIV-infected and HIV-uninfected lactating women followed up at 6 weeks and 6 months postpartum in Harare, Zimbabwe. We used 16S ribosomal Ribonucleic Acid (rRNA) sequencing and MesoScale Discovery V-Plex assays to examine the gut microbiome and to quantify plasma inflammatory biomarkers, respectively. In addition, we measured fecal calprotectin, plasma lipopolysaccharide-binding protein (LBP), and soluble cluster of differentiation 14 (sCD14) by enzyme-linked immunosorbent assay to assess gut inflammation, microbial translocation, and monocyte/macrophage activation. Results A group of 77 lactating women were studied, of which 35% were HIV-infected. Fecal calprotectin levels were similar by HIV status at both follow-up time points. In the HIV-infected group at 6 weeks postpartum, fecal calprotectin was elevated: median (interquartile range) [158.1 µg/g (75.3-230.2)] in women who had CD4+ T-lymphocyte counts <350 cells/µL compared with those with ≥350 cells/µL [21.1 µg/g (0-58.4)], p = 0.032. Plasma sCD14 levels were significantly higher in the HIV-infected group at both 6 weeks and 6 months postpartum, p < 0.001. Plasma LBP levels were similar, but higher levels were observed in HIV-infected women with elevated fecal calprotectin. We found significant correlations between fecal calprotectin, LBP, and sCD14 with proinflammatory cytokines. Gut microbial alpha diversity was not affected by HIV status and was not affected by use of antibiotic prophylaxis. HIV significantly affected microbial beta diversity, and significant differences in microbial composition were noted. The genera Slackia and Collinsella were relatively more abundant in the HIV-infected group, whereas a lower relative abundance of Clostriduim sensu_stricto_1 was observed. Our study also found correlations between gut microbial taxa abundance and systemic inflammatory biomarkers. Discussion and conclusion HIV-infected lactating women had increased immune activation and increased microbial translocation associated with increased gut inflammation. We identified correlations between the gut inflammation and microbial composition, microbial translocation, and systemic inflammation. The interplay of these parameters might affect the health of this vulnerable population.
Collapse
Affiliation(s)
- Privilege Tendai Munjoma
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Panashe Chandiwana
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Jacqueline Wyss
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, Bern, Switzerland
| | - Arthur John Mazhandu
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Sebastian Bruno Ulrich Jordi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, Bern, Switzerland
| | - Rutendo Gutsire
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Leolin Katsidzira
- Department of Internal Medicine, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, Bern, Switzerland
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, Bern, Switzerland
| | - Kerina Duri
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
50
|
Ogai K, Nana BC, Lloyd YM, Arios JP, Jiyarom B, Awanakam H, Esemu LF, Hori A, Matsuoka A, Nainu F, Megnekou R, Leke RGF, Ekali GL, Okamoto S, Kuraishi T. Skin microbiome profile in people living with HIV/AIDS in Cameroon. Front Cell Infect Microbiol 2023; 13:1211899. [PMID: 38029259 PMCID: PMC10644231 DOI: 10.3389/fcimb.2023.1211899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The presence of pathogens and the state of diseases, particularly skin diseases, may alter the composition of human skin microbiome. HIV infection has been reported to impair gut microbiome that leads to severe consequences. However, with cutaneous manifestations, that can be life-threatening, due to the opportunistic pathogens, little is known whether HIV infection might influence the skin microbiome and affect the skin homeostasis. This study catalogued the profile of skin microbiome of healthy Cameroonians, at three different skin sites, and compared them to the HIV-infected individuals. Taking advantage on the use of molecular assay coupled with next-generation sequencing, this study revealed that alpha-diversity of the skin microbiome was higher and beta-diversity was altered significantly in the HIV-infected Cameroonians than in the healthy ones. The relative abundance of skin microbes such as Micrococcus and Kocuria species was higher and Cutibacterium species was significantly lower in HIV-infected people, indicating an early change in the human skin microbiome in response to the HIV infection. This phenotypical shift was not related to the number of CD4 T cell count thus the cause remains to be identified. Overall, these data may offer an important lead on the role of skin microbiome in the determination of cutaneous disease state and the discovery of safe pharmacological preparations to treat microbial-related skin disorders.
Collapse
Affiliation(s)
- Kazuhiro Ogai
- AI Hospital/Macro Signal Dynamics Research and Development Center (ai@ku), Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Department of Bio-engineering Nursing, Graduate School of Nursing, Ishikawa Prefectural Nursing University, Kahoku, Japan
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Benderli Christine Nana
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Yukie Michelle Lloyd
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - John Paul Arios
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Boonyanudh Jiyarom
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Honore Awanakam
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Livo Forgu Esemu
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Institute of Medical Research and Medicinal Plant Studies, University of Yaoundé I, Yaoundé, Cameroon
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ayaka Matsuoka
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Firzan Nainu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Rosette Megnekou
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Rose Gana Fomban Leke
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Institute of Medical Research and Medicinal Plant Studies, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Shigefumi Okamoto
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|