1
|
Morya AK, Ramesh PV, Nishant P, Kaur K, Gurnani B, Heda A, Salodia S. Diabetic retinopathy: A review on its pathophysiology and novel treatment modalities. World J Methodol 2024; 14:95881. [PMID: 39712561 PMCID: PMC11287547 DOI: 10.5662/wjm.v14.i4.95881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 07/26/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic non-communicable disease with the ability to cause serious microvascular and macrovascular complications throughout the body, including in the eye. Diabetic retinopathy (DR), present in one-third of patients with diabetes, is a vision-threatening complication caused by uncontrolled diabetes, which greatly affects the retinal blood vessels and the light-sensitive inner retina, eventually leading to blindness. Several epidemiological studies elucidate that DR can vary by age of onset, duration, types of diabetes, and ethnicity. Recent studies show that the pathogenesis of diabetic retinopathy has spread its roots beyond merely being the result of hyperglycemia. The complexity of its etiopathology and diagnosis makes therapeutic intervention challenging. This review throws light on the pathological processes behind DR, the cascade of events that follow it, as well as the available and emerging treatment options.
Collapse
Affiliation(s)
- Arvind Kumar Morya
- Head of the Department, Department of Ophthalmology, All India Institute of Medical Sciences, Hyderabad 508126, Telangana, India
| | - Prasanna Venkatesh Ramesh
- Glaucoma Medical Officer, Department of Glaucoma and Research, Mahathma Eye Hospital Private Limited, Trichy 620017, Tamil Nadu, India
| | - Prateek Nishant
- Department of Ophthalmology, ESIC Medical College, Patna 801103, Bihar, India
| | - Kirandeep Kaur
- Department of Pediatric Ophthalmology and Strabismus, Gomabai Netralaya and Research Centre, Neemuch 458441, Madhya Pradesh, India
| | - Bharat Gurnani
- Cornea and Refractive Services, Gomabai Netralaya and Research Centre, Neemuch 458441, Madhya Pradesh, India
| | - Aarti Heda
- Department of Ophthalmology, National Institute of Ophthalmology, Pune 411000, Maharashtra, India
| | - Sarika Salodia
- Global Medical Safety, Lundbeck, Singapore 569933, Singapore, Singapore
| |
Collapse
|
2
|
Young CJ, Lyons D, Piggins HD. Circadian Influences on the Habenula and Their Potential Contribution to Neuropsychiatric Disorders. Front Behav Neurosci 2022; 15:815700. [PMID: 35153695 PMCID: PMC8831701 DOI: 10.3389/fnbeh.2021.815700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
The neural circadian system consists of the master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN) communicating time of day cues to the rest of the body including other brain areas that also rhythmically express circadian clock genes. Over the past 16 years, evidence has emerged to indicate that the habenula of the epithalamus is a candidate extra-SCN circadian oscillator. When isolated from the SCN, the habenula sustains rhythms in clock gene expression and neuronal activity, with the lateral habenula expressing more robust rhythms than the adjacent medial habenula. The lateral habenula is responsive to putative SCN output factors as well as light information conveyed to the perihabenula area. Neuronal activity in the lateral habenula is altered in depression and intriguingly disruptions in circadian rhythms can elevate risk of developing mental health disorders including depression. In this review, we will principally focus on how circadian and light signals affect the lateral habenula and evaluate the possibility that alteration in these influences contribute to mental health disorders.
Collapse
|
3
|
Short-term fasting differentially regulates PI3K/AkT/mTOR and ERK signalling in the rat hypothalamus. Mech Ageing Dev 2020; 192:111358. [PMID: 32961167 DOI: 10.1016/j.mad.2020.111358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 11/20/2022]
Abstract
It is known that insulin secreted by pancreatic β-cells enters the brain by crossing the blood-brain barrier. However, it was demonstrated that insulin expression occurs in various brain regions as well. Albeit the list of insulin actions in the brain is long and it includes control of energy homeostasis, neuronal survival, maintenance of synaptic plasticity and cognition, not much is known about the adaptive significance of insulin synthesis in brain. We previously reported that short-term fasting promotes insulin expression and subsequent activation of insulin receptor in the rat periventricular nucleus. In order to uncover a physiological importance of the fasting-induced insulin expression in hypothalamus, we analyzed the effect of short-term food deprivation on the expression of several participants of PI3K/AKT/mTOR and Ras/MAPK signaling pathways that are typically activated by this hormone. We found that the hypothalamic content of total and activated IRS1, IRS2, PI3K, and mTOR remained unchanged, but phosphorylated AKT1/2/3 was decreased. The levels of activated ERK1/2 were increased after six-hour fasting. Moreover, activated ERK1/2 was co-expressed with activated insulin receptor in the nucleus arcuatus. Our previously published and current findings suggest that the ERK activation in hypothalamus was at least partially initiated by the centrally produced insulin.
Collapse
|
4
|
Vasselli JR, Pi-Sunyer FX, Wall DG, John CS, Chapman CD, Currie PJ. Central effects of insulin detemir on feeding, body weight, and metabolism in rats. Am J Physiol Endocrinol Metab 2017; 313:E613-E621. [PMID: 28720583 PMCID: PMC5792141 DOI: 10.1152/ajpendo.00111.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022]
Abstract
Insulin detemir (DET) is a basal insulin analog that, in contrast to other long-acting forms of insulin, has significant weight-gain-sparing effects in diabetic patients. We hypothesized that this effect of DET may be due to its enhanced catabolic action in the central nervous system. We investigated the long-term effects of single third ventricular (3V) microinjections of equimolar doses of DET and regular insulin in normal male rats on feeding, body weight, energy expenditure (EE), and respiratory quotient (RQ). Also, in acute testing, we assessed the ability of lower doses of DET to alter feeding, EE, and RQ when microinjected directly into the paraventricular nucleus (PVN). The anabolic peptide ghrelin served as a positive control in acute testing. 3V administration of both DET (0.5-2.0 mU) and regular insulin (2.0-8.0 mU) significantly reduced feeding and body weight over 48 and 120 h, respectively, with DET yielding greater inhibitory effects. DET also stimulated greater elevations of EE and reductions of RQ over 72 and 48 h postinjection, respectively. In acute (4 h) testing, microinjections of DET (0.5 mU) into the PVN reduced feeding, increased EE, and reduced RQ, while ghrelin (100 pmol) had the opposite effects. When administered sequentially into the PVN, DET (0.25 and 0.5 mU) reversed ghrelin-induced feeding, EE, and RQ effects. These data support the notion that the weight-sparing effect of DET is at least in part based on its central catabolic action and that enhanced EE and reduced RQ may participate in this effect.
Collapse
Affiliation(s)
- Joseph R Vasselli
- Obesity Nutrition Research Center, Department of Medicine, Columbia University, New York, New York; and
| | - F Xavier Pi-Sunyer
- Obesity Nutrition Research Center, Department of Medicine, Columbia University, New York, New York; and
| | - Daniel G Wall
- Department of Psychology, Reed College, Portland, Oregon
| | | | | | - Paul J Currie
- Department of Psychology, Reed College, Portland, Oregon
| |
Collapse
|
5
|
Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 2014; 118:1-18. [PMID: 24582776 DOI: 10.1016/j.pneurobio.2014.02.005] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/09/2014] [Accepted: 02/20/2014] [Indexed: 12/13/2022]
Abstract
Insulin and Insulin Growth Factor-1 (IGF-1) play a major role in body homeostasis and glucose regulation. They also have paracrine/autocrine functions in the brain. The Insulin/IGF-1 signaling pathway contributes to the control of neuronal excitability, nerve cell metabolism and cell survival. Glucagon like peptide-1 (GLP-1), known as an insulinotropic hormone has similar functions and growth like properties as insulin/IGF-1. Growing evidence suggests that dysfunction of these pathways contribute to the progressive loss of neurons in Alzheimer's disease (AD) and Parkinson's disease (PD), the two most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting insulin/IGF-1 and GLP-1 signaling with currently available anti-diabetics. These studies have shown that administration of insulin, IGF-1 and GLP-1 agonists reverses signaling abnormalities and has positive effects on surrogate markers of neurodegeneration and behavioral outcomes. Several proof-of-concept studies are underway that attempt to translate the encouraging preclinical results to patients suffering from AD and PD. In the first part of this review, we discuss physiological functions of insulin/IGF-1 and GLP-1 signaling pathways including downstream targets and receptors distribution within the brain. In the second part, we undertake a comprehensive overview of preclinical studies targeting insulin/IGF-1 or GLP-1 signaling for treating AD and PD. We then detail the design of clinical trials that have used anti-diabetics for treating AD and PD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into treatments for patients with AD and PD.
Collapse
|
6
|
Strazielle N, Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 2013; 10:1473-91. [PMID: 23298398 DOI: 10.1021/mp300518e] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The brain develops and functions within a strictly controlled environment resulting from the coordinated action of different cellular interfaces located between the blood and the extracellular fluids of the brain, which include the interstitial fluid and the cerebrospinal fluid (CSF). As a correlate, the delivery of pharmacologically active molecules and especially macromolecules to the brain is challenged by the barrier properties of these interfaces. Blood-brain interfaces comprise both the blood-brain barrier located at the endothelium of the brain microvessels and the blood-CSF barrier located at the epithelium of the choroid plexuses. Although both barriers develop extensive surface areas of exchange between the blood and the neuropil or the CSF, the molecular fluxes across these interfaces are tightly regulated. Cerebral microvessels acquire a barrier phenotype early during cerebral vasculogenesis under the influence of the Wnt/β-catenin pathway, and of recruited pericytes. Later in development, astrocytes also play a role in blood-brain barrier maintenance. The tight choroid plexus epithelium develops very early during embryogenesis. It is specified by various signaling molecules from the embryonic dorsal midline, such as bone morphogenic proteins, and grows under the influence of Sonic hedgehog protein. Tight junctions at each barrier comprise a distinctive set of claudins from the pore-forming and tightening categories that determine their respective paracellular barrier characteristics. Vesicular traffic is limited in the cerebral endothelium and abundant in the choroidal epithelium, yet without evidence of active fluid phase transcytosis. Inorganic ion transport is highly regulated across the barriers. Small organic compounds such as nutrients, micronutrients and hormones are transported into the brain by specific solute carriers. Other bioactive metabolites, lipophilic toxic xenobiotics or pharmacological agents are restrained from accumulating in the brain by several ATP-binding cassette efflux transporters, multispecific solute carriers, and detoxifying enzymes. These various molecular effectors differently distribute between the two barriers. Receptor-mediated endocytotic and transcytotic mechanisms are active in the barriers. They enable brain penetration of selected polypeptides and proteins, or inversely macromolecule efflux as it is the case for immnoglobulins G. An additional mechanism specific to the BCSFB mediates the transport of selected plasma proteins from blood into CSF in the developing brain. All these mechanisms could be explored and manipulated to improve macromolecule delivery to the brain.
Collapse
Affiliation(s)
- N Strazielle
- Brain-i, Lyon Neuroscience Research Center, Lyon, France.
| | | |
Collapse
|
7
|
Yao ZG, Liu Y, Zhang L, Huang L, Ma CM, Xu YF, Zhu H, Qin C. Co-location of HDAC2 and insulin signaling components in the adult mouse hippocampus. Cell Mol Neurobiol 2012; 32:1337-42. [PMID: 22733364 PMCID: PMC11498477 DOI: 10.1007/s10571-012-9859-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/05/2012] [Indexed: 01/15/2023]
Abstract
As one part of epigenetics, histone deacetylases (HDACs) have been demonstrated to get into the neural events, including neurogenesis, synaptic plasticity, and neurodegeneration through regulating acetylation status of target proteins to influence protein function and gene expression. However, the recent studies indicated that HDAC2, a member of HDACs family, played a role in insulin signaling pathway and synaptic plasticity. Here, we are concerned about whether HDAC2 was co-located with insulin signaling components in postsynaptic glutamatergic neurons (PSGNs) of the adult mouse hippocampus using double immunofluorescence staining. The results displayed that HDAC2 was present in PSGNs marked by N-methyl-D-aspartate receptor subunit 2B, in which major components of insulin signaling pathway such as insulin receptor alpha and beta and insulin receptor substrate-1 were also involved. Accordingly, we speculate that the interaction of HDAC2 and insulin signaling system in PSGNs observed in the present study may serve as a potential mechanism in memory formation. We hope this could provide a valuable basis for understanding the roles of HDAC2 and insulin on cognitive impairment of diabetes mellitus, involved Alzheimer's disease, which is also called type 3 diabetes recently. And this will also benefit to the treatment of insulin-related diseases in the central nervous system.
Collapse
Affiliation(s)
- Zhi-Gang Yao
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yu Liu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Ling Zhang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Lan Huang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chun-Mei Ma
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yan-Feng Xu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Hua Zhu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chuan Qin
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Panjiayuan Nanli No. 5, Chaoyang District, Beijing, 100021 China
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol 2012; 47:145-71. [PMID: 22956272 DOI: 10.1007/s12035-012-8339-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 02/07/2023]
Abstract
Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.
Collapse
Affiliation(s)
- Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
9
|
Machida M, Fujimaki S, Hidaka R, Asashima M, Kuwabara T. The insulin regulatory network in adult hippocampus and pancreatic endocrine system. Stem Cells Int 2012; 2012:959737. [PMID: 22988465 PMCID: PMC3440949 DOI: 10.1155/2012/959737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022] Open
Abstract
There is a very strong correlation between the insulin-mediated regulatory system of the central nervous system and the pancreatic endocrine system. There are many examples of the same transcriptional factors being expressed in both regions in their embryonic development stages. Hormonal signals from the pancreatic islets influence the regulation of energy homeostasis by the brain, and the brain in turn influences the secretions of the islets. Diabetes induces neuronal death in different regions of the brain especially hippocampus, causes alterations on the neuronal circuits and therefore impairs learning and memory, for which the hippocampus is responsible. The hippocampus is a region of the brain where steady neurogenesis continues throughout life. Adult neurogenesis from undifferentiated neural stem cells is greatly decreased in diabetic patients, and as a result their learning and memory functions decline. Might it be possible to reactivate stem cells whose functions have deteriorated and that are present in the tissues in which the lesions occur in diabetes, a lifestyle disease, which plagues modern humans and develops as a result of the behavior of insulin-related factor? In this paper we summarize research in regard to these matters based on examples in recent years.
Collapse
Affiliation(s)
| | | | | | | | - Tomoko Kuwabara
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-4 Higashi, Tsukuba Science City 305-8562, Japan
| |
Collapse
|
10
|
Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012; 2012:384017. [PMID: 22500228 PMCID: PMC3303591 DOI: 10.1155/2012/384017] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/12/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022] Open
Abstract
Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimer's disease (AD) considered as the "brain-type diabetes." In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human "healthy" longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.
Collapse
Affiliation(s)
- Ana I. Duarte
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Paula I. Moreira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina R. Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
11
|
Picone P, Giacomazza D, Vetri V, Carrotta R, Militello V, San Biagio PL, Di Carlo M. Insulin-activated Akt rescues Aβ oxidative stress-induced cell death by orchestrating molecular trafficking. Aging Cell 2011; 10:832-43. [PMID: 21624038 DOI: 10.1111/j.1474-9726.2011.00724.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Increasing evidence indicates that Alzheimer's disease, one of the most diffused aging pathologies, and diabetes may be related. Here, we demonstrate that insulin signalling protects LAN5 cells by amyloid-β42 (Aβ)-induced toxicity. Aβ affects both activation of insulin receptors and the levels of phospho-Akt, a critical signalling molecule in this pathway. In contrast, oxidative stress induced by Aβ can be antagonized by active Akt that, in turn, inhibits Foxo3a, a pro-apoptotic transcription factor activated by reactive oxygen species generation. Insulin cascade protects against mitochondrial damage caused by Aβ treatment, restoring the mitochondrial membrane potential. Moreover, we show that the recovery of the organelle integrity recruits active Akt translocation to the mitochondrion. Here, it plays a role both by maintaining unimpaired the permeability transition pore through increase in HK-II levels and by blocking apoptosis through phosphorylation of Bad, coming from cytoplasm after Aβ stimulus. Together, these results indicate that the Akt survival signal antagonizes the Aβ cell death process by balancing the presence and modifications of common molecules in specific cellular environments.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto di Biomedicina ed Immunologia Molecolare Alberto Monroy, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Warne JP. Shaping the stress response: interplay of palatable food choices, glucocorticoids, insulin and abdominal obesity. Mol Cell Endocrinol 2009; 300:137-46. [PMID: 18984030 DOI: 10.1016/j.mce.2008.09.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/24/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
Activity of the hypothalamo-pituitary-adrenal (HPA) axis is regulated by a negative feedback loop that dampens central drive of the axis via the actions of the secreted glucocorticoids. Conversely, under conditions of chronic stress, glucocorticoids delivered centrally increase hypothalamic paraventricular nucleus (PVN) corticotrophin-releasing factor (CRF) expression and the response to restraint. However, HPA axis activity and PVN CRF mRNA expression under chronic stress conditions are often reduced, implying other indirect peripheral or extra-hypothalamic glucocorticoid actions. Glucocorticoids chronically increase palatable food intake, which increases abdominal fat depots and circulating insulin levels, both of which negatively correlate with PVN CRF mRNA expression and may in turn dampen the response to stress. Such an effect is dependent on food choices, rather than total calories ingested. Considering stress is omnipresent in the workplace, palatable food ingestion may represent a means to combat the feeling of stress which is ultimately maladaptive when unresolved.
Collapse
Affiliation(s)
- James P Warne
- Diabetes Center, University of California San Francisco, 513 Parnassus Avenue, Box 0534, San Francisco, CA 94143-0534, USA.
| |
Collapse
|
13
|
Neuronal Nitric Oxide Synthase Activation Is Involved in Insulin-Mediated Cardiovascular Effects in the Nucleus Tractus Solitarii of Rats. Neuroscience 2009; 159:727-34. [DOI: 10.1016/j.neuroscience.2008.12.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 11/22/2008] [Accepted: 12/27/2008] [Indexed: 11/20/2022]
|
14
|
Warne JP, Horneman HF, Akana SF, Foster MT, Dallman MF. Insulin and the constituent branches of the hepatic vagus interact to modulate hypothalamic and limbic neuropeptide mRNA expression differentially. J Neuroendocrinol 2008; 20:1067-77. [PMID: 18638024 DOI: 10.1111/j.1365-2826.2008.01766.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin and signalling through the vagus nerve act in concert to regulate metabolic homeostasis and ingestive behaviour. Our previous studies using streptozotocin (STZ)-diabetic rats have shown that hepatic branch vagotomy (HV), gastroduodenal branch vagotomy (GV) and capsaicin treatment of the common hepatic branch that selectively destroys afferent fibres (CapV), all promote lard, but not total, caloric intake to levels similar to those achieved with insulin treatment. Because hypothalamic and limbic mRNA expression of neuropeptides linked to energy balance is altered by STZ-diabetes and HV, we examined the role(s) of insulin and the common hepatic and gastroduodenal branches of the vagus nerve and hepatic afferent fibres in the regulation of these neuropeptides in rats with high, steady-state corticosterone levels. STZ-diabetic rats were prepared with osmotic minipumps containing either saline or insulin and were compared with nondiabetic counterparts: half of each group received a vagal manipulation, the other half were sham operated. Five days after surgery, rats were offered the choice of lard and chow to consume for another 5 days, when brains were collected and processed for in situ hybridisation. Paraventricular nucleus corticotrophin-releasing factor (CRF) mRNA was elevated by STZ treatment, an effect prevented by either insulin treatment or GV. By contrast, CRF mRNA expression in the central nucleus of the amygdala and bed nuclei of the stria terminalis was unaffected by STZ treatment, but HV and CapV manipulations elevated expression in the nondiabetic, but not STZ-diabetic groups. Arcuate nucleus neuropeptide Y, but not pro-opiomelanocortin, mRNA expression was elevated by STZ treatment and all vagal manipulations; however, exogenous insulin treatment failed to prevent this, in keeping with their previously documented elevated caloric intake. These results strongly suggest that the gastroduodenal branch and hepatic branch proper, which merge to form the common hepatic branch, differentially interact with prevailing insulin levels to regulate hypothalamic and limbic neuropeptide mRNA expression.
Collapse
Affiliation(s)
- J P Warne
- Department of Physiology, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Stoyanovitch AG, Johnson MA, Clifton DK, Steiner RA, Fraley GS. Galanin-like peptide rescues reproductive function in the diabetic rat. Diabetes 2005; 54:2471-6. [PMID: 16046316 DOI: 10.2337/diabetes.54.8.2471] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Galanin-like peptide (GALP) is expressed in the hypothalamic arcuate nucleus and is regulated by leptin and insulin. Centrally administered GALP stimulates gonadotropin secretion and sexual behavior in the rat. Type 1 diabetes is associated with reduced expression of GALP, as well as an overall decline in reproductive function. We postulated that tonic activity of GALP in the brain is required to sustain normal reproductive activity. To test this hypothesis, we examined whether central (intracerebroventricular) immunoblockade of GALP would reduce sexual behaviors and serum levels of luteinizing hormone (LH) in normal adult male rats. We found that GALP antibody reversibly reduced serum levels of LH and abolished male sexual behaviors (P < 0.05 and 0.001, respectively). Second, we tested whether intracerebroventricular GALP could restore normal plasma LH levels and sexual behavior in diabetic animals. We compared groups of diabetic rats that received intracerebroventricular GALP or vehicle and found that GALP increased serum levels of LH and sexual behavior. Third, we examined whether intracerebroventricular administration of affinity-purified GALP antibody could block the effect of insulin and leptin in reversing the effects of diabetes on LH and sexual behavior. We found that treatment of diabetic animals with insulin and leptin nearly normalized LH levels and sexual behaviors; however, this effect was attenuated by intracerebroventricular administration of GALP antibody (P < 0.05). These observations demonstrate that endogenous GALP provides trophic support to the neuroendocrine reproductive axis, including sexual behavior.
Collapse
Affiliation(s)
- Angela G Stoyanovitch
- Biology Department, 35 E. 12th St., PSC 3065, Box 9000, Biology Dept., Hope College, Holland, MI 49423, USA
| | | | | | | | | |
Collapse
|
17
|
Porte D, Baskin DG, Schwartz MW. Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 2005; 54:1264-76. [PMID: 15855309 DOI: 10.2337/diabetes.54.5.1264] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin and its signaling systems are implicated in both central and peripheral mechanisms governing the ingestion, distribution, metabolism, and storage of nutrients in organisms ranging from worms to humans. Input from the environment regarding the availability and type of nutrients is sensed and integrated with humoral information (provided in part by insulin) regarding the sufficiency of body fat stores. In response to these afferent inputs, neuronal pathways are activated that influence energy flux and nutrient metabolism in the body and ensure reproductive competency. Growing evidence supports the hypothesis that reduced central nervous system insulin signaling from either defective secretion or action contributes to the pathogenesis of common metabolic disorders, including diabetes and obesity, and may therefore help to explain the close association between these two disorders. These considerations implicate insulin action in the brain, an organ previously considered to be insulin independent, as a key determinant of both glucose and energy homeostasis.
Collapse
Affiliation(s)
- Daniel Porte
- Division of Metabolism, Diabetes, and Endocrinology, University of California San Diego, USA.
| | | | | |
Collapse
|
18
|
Abstract
Animals have developed highly adaptive and redundant mechanisms to maintain energy balance by matching caloric intake to caloric expenditure. Recent evidence has pointed to a variety of peripheral signals that inform specific central nervous system (CNS) circuits about the status of peripheral energy stores as critical to the maintenance of energy balance. A critical component of these CNS circuits is the melanocortin system. Regulation of signaling by melanocortin 3 and melanocortin 4 receptors in the CNS is controlled via neuronal cell bodies in the arcuate nucleus of the hypothalamus that synthesize melanocortin receptor agonists such as alpha-melanocyte-stimulating hormone (alpha-MSH) or antagonists such as agouti-related protein (AgRP). The activity of these two populations of neurons is reciprocally regulated by a number of peripheral and central systems that influence energy balance. Further, increased melanocortin signaling via pharmacological or genetic means in the CNS causes potent reductions in food intake and weight loss. Decreased melanocortin signaling via pharmacological or genetic means results in increased food intake and weight gain. Reviewed here is the wide range of evidence that points to the melanocortin system as a critical node in the diverse neurocircuitry that regulates food intake and body weight.
Collapse
Affiliation(s)
- Randy J Seeley
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio 45267-0559, USA.
| | | | | |
Collapse
|
19
|
Yuan ZR, Liu B, Zhang Y, Yuan L, Muteliefu G, Lu J. Upregulated expression of neuronal nitric oxide synthase by insulin in both neurons and astrocytes. Brain Res 2004; 1008:1-10. [PMID: 15081376 DOI: 10.1016/j.brainres.2004.01.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2004] [Indexed: 11/15/2022]
Abstract
Both insulin and nitric oxide (NO) play important roles in the brain. However, there are no unequivocal evidences pointing to a direct effect of insulin on nitric oxide pathway in the brain. In the present study, the effects of insulin on the expression and activity of neuronal nitric oxide synthase (nNOS) were investigated in the cultured cerebellum cell line R2, cerebral cortical astrocytes, and neurons of rats by using flow cytometry, in situ hybridization, RT-PCR, and electron spin resonance (ESR) techniques. In astrocytes, the expression of nNOS was significantly stimulated by insulin in a concentration-dependent manner, with a maximal increase of about 47.6% compared with the control values (p<0.05, t test, n=5). Furthermore, in situ hybridization analysis showed that the expression of nNOS was also significantly increased by insulin (0.64 ng/ml, 6 h), reaching 134.2+/-9.6% of the control values (p<0.05, t test, n=3). In addition, by using nNOS specific primers, RT-PCR analysis also demonstrated the same effect of insulin (0.64 ng/ml, 6 h) on nNOS mRNA expression. Similarly, significant increase of the expression of nNOS protein and mRNA were also observed in both R2 cells and neurons of rats after incubation with insulin. In addition, significant increase of the activity of nNOS in R2 cells and astrocytes were also detected after incubation with insulin (0.64 ng/ml, 9 h) by using ESR technique. Overall, our results suggested that exogenous insulin could upregulate the expression and activity of nNOS in R2 cells, cerebral cortical astrocytes, and neurons of rats. The phenomena opened new insights for further investigation of the physical and pathological significances of insulin in the brain.
Collapse
Affiliation(s)
- Zhong Rui Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Health Science Center of Peking University, Beijing, China.
| | | | | | | | | | | |
Collapse
|
20
|
Reiter CEN, Sandirasegarane L, Wolpert EB, Klinger M, Simpson IA, Barber AJ, Antonetti DA, Kester M, Gardner TW. Characterization of insulin signaling in rat retina in vivo and ex vivo. Am J Physiol Endocrinol Metab 2003; 285:E763-74. [PMID: 12799319 DOI: 10.1152/ajpendo.00507.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin receptor (IR) signaling cascades have been studied in many tissues, but retinal insulin action has received little attention. Retinal IR signaling and activity were investigated in vivo in rats that were freely fed, fasted, or injected with insulin by phosphotyrosine immunoblotting and by measuring kinase activity. A retina explant system was utilized to investigate the IR signaling cascade, and immunohistochemistry was used to determine which retinal cell layers respond to insulin. Basal IR activity in the retina was equivalent to that in brain and significantly greater than that of liver, and it remained constant between freely fed and fasted rats. Furthermore, IR signaling increased in the retina after portal vein administration of supraphysiological doses of insulin. Ex vivo retinas responded to 10 nM insulin with IR beta-subunit (IRbeta) and IR substrate-2 (IRS-2) tyrosine phosphorylation and AktSer473 phosphorylation. The retina expresses mRNA for all three Akt isoforms as determined by in situ hybridization, and insulin specifically increases Akt-1 kinase activity. Phospho-AktSer473 immunoreactivity increases in retinal nuclear cell layers with insulin treatment. These results demonstrate that the retinal IR signaling cascade to Akt-1 possesses constitutive activity, and that exogenous insulin further stimulates this prosurvival pathway. These findings may have implications in understanding normal and dysfunctional retinal physiology.
Collapse
Affiliation(s)
- Chad E N Reiter
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Drive H166, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shu IW, Lindenberg DL, Mizuno TM, Roberts JL, Mobbs CV. The fatty acid synthase inhibitor cerulenin and feeding, like leptin, activate hypothalamic pro-opiomelanocortin (POMC) neurons. Brain Res 2003; 985:1-12. [PMID: 12957363 DOI: 10.1016/s0006-8993(03)02806-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypothalamic POMC neurons mediate catabolic responses such as decreased food intake and increased energy expenditure by, in part, monitoring levels of metabolic factors such as glucose, insulin and leptin. Recently, fatty acid synthase inhibitors were reported to reduce body weight, inhibit food intake, and increase metabolic rate, possibly by acting on hypothalamic neurons through a mechanism involving malonyl-CoA accumulation. Given the observation that leptin mediates similar catabolic effects by, in part, activating hypothalamic POMC neurons, it is possible that other catabolic signals such as feeding and fatty acid synthase inhibition may also activate POMC neurons. To test this hypothesis, hypothalamic sections from mice that were fed or injected with the fatty acid synthase inhibitor cerulenin were examined for Fos (a marker for neuronal activation) and POMC product immunoreactivity and compared with similarly processed sections from leptin-injected mice. Feeding increased Fos immunoreactivity in the lateral peri-arcuate area of the hypothalamus of both wild-type and leptin-deficient ob/ob mice (P<0.05), indicating that nutritional activation of the hypothalamus can be leptin-independent. Furthermore, feeding significantly induced Fos immunoreactivity in neurons expressing POMC (P<0.003), indicating that feeding, like leptin, activates POMC neurons. Injection with cerulenin, like feeding and leptin, also increased Fos immunoreactivity in the lateral peri-arcuate area (P<0.03) and, more specifically, in neurons expressing POMC. In contrast, injection with cerulenin had no grossly observable effects on cortical Fos immunoreactivity and appeared to suppress fasting-induced Fos immunoreactivity by about 35% (although the decrease did not reach statistical significance) in the medial arcuate nucleus, an area associated with anabolic responses such as increased food intake. Injection with cerulenin also decreased Fos immunoreactivity in the granular layer of the dentate gyrus of the hippocampus by about 30% (P<0.05), further suggesting that cerulenin does not non-specifically activate wide varieties of neurons. These results suggest that activation of hypothalamic POMC neurons may help to mediate some of the catabolic effects associated with feeding, cerulenin and leptin.
Collapse
Affiliation(s)
- I-Wei Shu
- Fishberg Research Center for Neurobiology, New York, NY, USA
| | | | | | | | | |
Collapse
|
22
|
Levin BE, Dunn-Meynell AA, Routh VH. CNS sensing and regulation of peripheral glucose levels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:219-58. [PMID: 12420361 DOI: 10.1016/s0074-7742(02)51007-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is clear that the brain has evolved a mechanism for sensing levels of ambient glucose. Teleologically, this is likely to be a function of its requirement for glucose as a primary metabolic substrate. There is no question that the brain can sense and mount a counterregulatory response to restore very low levels of plasma and brain glucose. But it is less clear that the changes in glucose associated with normal diurnal rhythms and feeding cycles are sufficient to influence either ingestive behavior or the physiologic responses involved in regulating plasma glucose levels. Glucosensing neurons are clearly a distinct class of metabolic sensors with the capacity to respond to a variety of intero- and exteroceptive stimuli. This makes it likely that these glucosensing neurons do participate in physiologically relevant homeostatic mechanisms involving energy balance and the regulation of peripheral glucose levels. It is our challenge to identify the mechanisms by which these neurons sense and respond to these metabolic cues.
Collapse
Affiliation(s)
- Barry E Levin
- Neurology Service, VA Medical Center, East Orange, New Jersey 07018, USA
| | | | | |
Collapse
|
23
|
Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 2002; 8:1376-82. [PMID: 12426561 DOI: 10.1038/nm1202-798] [Citation(s) in RCA: 642] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 10/21/2002] [Indexed: 12/30/2022]
Abstract
Circulating insulin inhibits endogenous glucose production. Here we report that bidirectional changes in hypothalamic insulin signaling affect glucose production. The infusion of either insulin or a small-molecule insulin mimetic in the third cerebral ventricle suppressed glucose production independent of circulating levels of insulin and of other glucoregulatory hormones. Conversely, central antagonism of insulin signaling impaired the ability of circulating insulin to inhibit glucose production. Finally, third-cerebral-ventricle administration of inhibitors of ATP-sensitive potassium channels, but not of antagonists of the central melanocortin receptors, also blunted the effect of hyperinsulinemia on glucose production. These results reveal a new site of action of insulin on glucose production and suggest that hypothalamic insulin resistance can contribute to hyperglycemia in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Silvana Obici
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | |
Collapse
|
24
|
Kern W, Born J, Fehm HL. Role of insulin in Alzheimer's disease:approaches emerging from basic animal research and neurocognitive studies in humans. Drug Dev Res 2002. [DOI: 10.1002/ddr.10101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Air EL, Benoit SC, Blake Smith KA, Clegg DJ, Woods SC. Acute third ventricular administration of insulin decreases food intake in two paradigms. Pharmacol Biochem Behav 2002; 72:423-9. [PMID: 11900815 DOI: 10.1016/s0091-3057(01)00780-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The pancreatic hormone, insulin, has been hypothesized to be an important regulator of food intake. Consistent with this hypothesis is the finding that exogenous insulin, in doses that do not affect blood glucose, reliably suppresses food intake and body weight. However, previous experiments have utilized a long-term delivery paradigm, in which insulin is administered via osmotic minipump and changes in body weight and food intake are measured across days. In separate experiments, we report that acute central injections of insulin can reduce food intake. In Experiment 1, injection of insulin (8 mU) into the third cerebral ventricle reliably suppressed intake of pelleted rat chow beginning at onset of the rats' dark phase. In Experiment 2, central insulin reliably and dose dependently suppressed intake of a 1-h 15% sucrose meal in the middle of the light phase. These data suggest that insulin can reduce food intake in acute delivery paradigms and provide another means by which to assess the roles of other central systems in the mediation of insulin's effects on energy homeostasis.
Collapse
Affiliation(s)
- Ellen L Air
- Department of Biomedical Sciences, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Evidence has been accumulating recently that the hormone insulin may modulate cognitive activity by acting in the central nervous system. Initially derived from the observation that insulin and insulin receptors are found in specific brain areas, this evidence also includes cognitive assessments of humans in insulin-deficient and insulin-resistant disease states and experimental manipulation of rodent models. Additional support is derived from in vivo and in vitro systems that are used to investigate the neurophysiological basis of learning and memory. This article is a brief review of the literature that suggests a connection between insulin and memory and draws together some of the findings relevant to possible physiological mechanisms for this cognitive effect.
Collapse
Affiliation(s)
- C R Park
- Research Service, James A. Haley Veteran's Hospital, 13000 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
27
|
Fehm HL, Perras B, Smolnik R, Kern W, Born J. Manipulating neuropeptidergic pathways in humans: a novel approach to neuropharmacology? Eur J Pharmacol 2000; 405:43-54. [PMID: 11033313 DOI: 10.1016/s0014-2999(00)00540-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Given the tremendous number of neuropeptides, which are synthesized in the central nervous system, the brain can be viewed as one of the most prominent endocrine organs. Elucidation of the functions of these peptides is hampered by the facts that after intravenous administration access to brain receptors is prevented or impaired by the blood-brain barrier. Here, we provide evidence that intranasal administration can be a way to circumvent the blood-brain barrier. Selected experiments will be reported indicating that peptides after intranasal administration in humans can specifically alter a great variety of brain functions. For vasopressin, we demonstrated improving effects of long-term intranasal treatment on sleep in elderly people. Insulin showed improving effects of short-term memory functions. For adrenocorticotropin/melanocyte stimulating hormone, ACTH/MSH-(4-10), a twofold action was isolated: The melanocortin fragment diminished selective attention and, with subchronic administration, reduced body fat. These results could provide the basis for developing a new, specific, and "soft" neuropharmacology.
Collapse
Affiliation(s)
- H L Fehm
- Medizinische Klinik I, Medizinische Universität Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| | | | | | | | | |
Collapse
|
28
|
H�rsch D, Kahn CR. Region-specific mRNA expression of phosphatidylinositol 3-kinase regulatory isoforms in the central nervous system of C57BL/6J mice. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991206)415:1<105::aid-cne8>3.0.co;2-h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Numan S, Russell DS. Discrete expression of insulin receptor substrate-4 mRNA in adult rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:97-102. [PMID: 10521603 DOI: 10.1016/s0169-328x(99)00160-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The insulin receptor substrate (IRS) proteins are a family of important regulatory adapters that mediate the coupling between receptor-associated tyrosine kinases and downstream effectors including phosphatidylinositol-3'-kinases (PI-3-Ks). In the present study, the distribution of IRS-4 mRNA was determined in rat brain by in situ hybridization. IRS-4 mRNA was widely expressed throughout the hypothalamus, with the most dense labeling observed in the medial preoptic nucleus, ventromedial hypothalamus, and arcuate nucleus. In contrast, and unlike IRS-1 or IRS-2, expression of IRS-4 mRNA in other forebrain and midbrain regions was much more restricted. The expression of IRS-4 mRNA in the hypothalamus suggests a specific role for this factor in the signaling of one or more receptors involved hypothalamic functions including feeding, lactation, sexual and parental behaviors.
Collapse
Affiliation(s)
- S Numan
- Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, 34 Park Street, B-013, New Haven, CT, USA
| | | |
Collapse
|
30
|
Schwartz MW, Baskin DG, Kaiyala KJ, Woods SC. Model for the regulation of energy balance and adiposity by the central nervous system. Am J Clin Nutr 1999; 69:584-96. [PMID: 10197558 DOI: 10.1093/ajcn/69.4.584] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In 1995, we described a new model for adiposity regulation. Since then, data regarding the biology of body weight regulation has accumulated at a remarkable rate and has both modified and strengthened our understanding of this homeostatic system. In this review we integrate new information into a revised model for further understanding this important regulatory process. Our model of energy homeostasis proposes that long-term adiposity-related signals such as insulin and leptin influence the neuronal activity of central effector pathways that serve as controllers of energy balance.
Collapse
Affiliation(s)
- M W Schwartz
- Department of Medicine, University of Washington, Harborview-Medical Center and the VA Puget Sound Health Care System, Seattle 98108, USA.
| | | | | | | |
Collapse
|
31
|
Baskin DG, Schwartz MW, Seeley RJ, Woods SC, Porte D, Breininger JF, Jonak Z, Schaefer J, Krouse M, Burghardt C, Campfield LA, Burn P, Kochan JP. Leptin receptor long-form splice-variant protein expression in neuron cell bodies of the brain and co-localization with neuropeptide Y mRNA in the arcuate nucleus. J Histochem Cytochem 1999; 47:353-62. [PMID: 10026237 DOI: 10.1177/002215549904700309] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Reduced leptin (Ob protein) signaling is proposed to be a stimulus for the activation of neuropeptide Y (NPY) gene activity and increased expression of mRNA for the long form of the leptin receptor (Ob-Rb) in the hypothalamic arcuate nucleus. To determine if Ob-Rb protein is expressed in arcuate nucleus NPY neurons, we developed an affinity-purified polyclonal antibody against amino acids 956-1102 of human Ob-Rb. This antibody specifically recognizes the cytoplasmic tail of Ob-Rb and does not react with shorter leptin-receptor variants. Western immunoblots of Ob-Rb-transfected COS cells showed a single 150-kD band, and immunofluorescence revealed intense perinuclear staining in the cytoplasm. A 150-kD band was also present in Western immunoblots of hypothalamus. Immunocytochemical staining of brain slices revealed immunoreactive Ob-Rb protein concentrated in many neuronal cell bodies in the same regions of the forebrain that also express Ob-Rb mRNA. In the hypothalamus, Ob-Rb-positive cell bodies were abundant in the arcuate nucleus and ventromedial nucleus, with lesser numbers in the dorsomedial nucleus and paraventricular nucleus. Immunostaining was also detected in cell bodies of pyramidal cell neurons of the pyriform cortex and cerebral cortex, in neurons of the thalamus, and on the surface of ependymal cells lining the third ventricle. The choroid plexus, which expresses the short Ob-Ra form, was negative. Combined immunocytochemistry for Ob-Rb protein and fluorescence in situ hybridization for NPY mRNA identified arcuate nucleus neurons containing both NPY mRNA and Ob-Rb protein. The present finding of Ob-Rb protein in neurons that express NPY mRNA supports the hypothesis that arcuate nucleus NPY neurons are direct targets of leptin and play an important role in regulation of food intake and body weight.
Collapse
Affiliation(s)
- D G Baskin
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Folli F, Ghidella S, Bonfanti L, Kahn CR, Merighi A. The early intracellular signaling pathway for the insulin/insulin-like growth factor receptor family in the mammalian central nervous system. Mol Neurobiol 1996; 13:155-83. [PMID: 8938649 DOI: 10.1007/bf02740639] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Several studies support the idea that the polypeptides belonging to the family of insulin and insulin-like growth factors (IGFs) play an important role in brain development and continue to be produced in discrete areas of the adult brain. In numerous neuronal populations within the olfactory bulb, the cerebral and cerebellar cortex, the hippocampus, some diencephalic and brainstem nuclei, the spinal cord and the retina, specific insulin and IGF receptors, as well as crucial components of the intracellular receptor signaling pathway have been demonstrated. Thus, mature neurons are endowed with the cellular machinery to respond to insulin and IGF stimulation. Studies in vitro and in vivo, using normal and transgenic animals, have led to the hypothesis that, in the adult brain, IGF-I not only acts as a trophic factor, but also as a neuromodulator of some higher brain functions, such as long-term potentiation and depression. Furthermore, a trophic effect on certain neuronal populations becomes clearly evident in the ischemic brain or neurodegenerative disorders. Thus, the analysis of the early intracellular signaling pathway for the insulin/IGF receptor family in the brain is providing us with new intriguing findings on the way the mammalian brain is sculpted and operates.
Collapse
MESH Headings
- Adult
- Animals
- Ataxia Telangiectasia/genetics
- Ataxia Telangiectasia/pathology
- Brain/embryology
- Brain/growth & development
- Brain/physiology
- Brain Ischemia/metabolism
- Brain Ischemia/pathology
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation
- Humans
- Insulin/physiology
- Mammals/embryology
- Mammals/growth & development
- Mammals/physiology
- Mice
- Mice, Neurologic Mutants
- Mice, Transgenic
- Models, Neurological
- Nerve Tissue Proteins/drug effects
- Nerve Tissue Proteins/physiology
- Phosphorylation
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/metabolism
- Rats
- Receptor, Insulin/drug effects
- Receptor, Insulin/physiology
- Receptors, Somatomedin/drug effects
- Receptors, Somatomedin/physiology
- Retina/physiology
- Signal Transduction/physiology
- Somatomedins/physiology
- Spinal Cord/physiology
Collapse
Affiliation(s)
- F Folli
- Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
33
|
Henneberg N, Hoyer S. Desensitization of the neuronal insulin receptor: a new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)? Arch Gerontol Geriatr 1995; 21:63-74. [PMID: 15374226 DOI: 10.1016/0167-4943(95)00646-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1994] [Revised: 01/13/1995] [Accepted: 03/30/1995] [Indexed: 10/27/2022]
Abstract
Even in its incipient stage, late-onset sporadic dementia of the Alzheimer type (SDAT) is characterized by an abnormal reduction in brain glucose consumption and energy formation. Gathering evidence indicates that cerebral glucose metabolism is controlled by brain insulin/insulin receptors. This led us to hypothesize that the abnormal reduction in glucose utilization found in Alzheimer brains is preceded by a desensitization of cerebral insulin receptors which might be due to enhanced levels of stress factors such as cortisol and catecholamines. The hypothesis is supported by clinical findings of an abnormal response to the oral glucose tolerance test in AD patients. Furthermore, experimental desensitization of the cerebral insulin receptor resulted in both cognitive deficits and metabolic abnormalities in cerebral oxidative glucose metabolism resembling those described in incipient late-onset SDAT. Glucose is the major source of energy in the CNS, and any impairment in cerebral glucose oxidation can be expected to result in deficits in both acetylcholine synthesis and ATP formation, which might contribute to altered APP processing and enhanced susceptibility to neurotoxicity.
Collapse
Affiliation(s)
- N Henneberg
- Brain Metabolism Group, Department of Pathochemistry and General Neurochemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|