1
|
Nicholson JW, Sidhu SK, Czarnecka B. Fluoride exchange by glass-ionomer dental cements and its clinical effects: a review. Biomater Investig Dent 2023; 10:2244982. [PMID: 37615013 PMCID: PMC10444020 DOI: 10.1080/26415275.2023.2244982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
The topic of fluoride release and uptake by glass-ionomer (glass polyalkenoate) dental cements is reviewed. The study was based on a literature search carried out using PubMed. The main key words used were glass-ionomer and fluoride, and further refinements were made by adding the keywords anti-microbial, anti-caries and remineralization. Papers were selected from the initial search, which concentrated on fundamental aspects of fluoride release, including kinetics and the influence of the cement composition, and resulting clinical performance against caries. Other relevant papers were cited where they added useful and relevant data. From these published papers, it was possible to explain the detailed mechanism of fluoride release by glass-ionomer cements and also its uptake. Fluoride release has been shown to be a two-step process. In neutral solutions, the steps can be divided into early wash-out and long-term diffusion. In acid conditions, the early wash-out remains, though with greater amounts of fluoride released, and the long-term release becomes one of slow dissolution. The effect of fluoride on the viability of oral micro-organisms has been described, and glass-ionomers have been shown to release sufficient fluoride to reduce the size and viability of adjacent populations of oral bacteria. The effect of low levels of fluoride on the remineralization of tooth tissue has been considered. Levels needed to increase remineralization are much lower than those needed to adversely affect oral bacteria, from which we conclude that glass-ionomers release sufficient fluoride to promote remineralization. Despite this, there remains uncertainty about their overall contribution to sound oral health, given the widespread use of other sources of fluoride, such as toothpastes.
Collapse
Affiliation(s)
- John W. Nicholson
- Dental Materials Unit, Bart’s and the London Institute of Dentistry, Queen Mary University of London, London, UK
- Bluefield Centre for Biomaterials, London, UK
| | - Sharanbir K. Sidhu
- Centre for Oral Bioengineering, Institute of Dentistry, Bart’s & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Beata Czarnecka
- Department of Biomaterials and Experimental Dentistry, University of Medical Sciences, Poznań, Poland
| |
Collapse
|
2
|
Nicholson JW, Coleman NJ, Sidhu SK. Kinetics of ion release from a conventional glass-ionomer cement. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:30. [PMID: 33725215 PMCID: PMC7966620 DOI: 10.1007/s10856-021-06501-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/23/2021] [Indexed: 05/09/2023]
Abstract
Release kinetics for sodium, silicon, aluminium, calcium and phosphorus from conventional glass-ionomer dental cement has been studied in neutral and acid conditions. Specimens (6 mm height × 4 mm diameter) were made from AquaCem (Dentsply, Konstanz, Germany), 6 per experiment. They were matured (37 °C, 1 h), then placed in 5 cm3 storage solution at 20-22 °C. In the first experiment, deionised water, changed daily for 28 days, was used. In the second, deionised water, changed monthly for 21 months, was used. In the third, lactic acid (20 mmol dm-3, pH: 2.7 ± 0.1), changed monthly for 21 months was used. After storage each solution was analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results showed that in neutral conditions, no calcium was released, but in acid, significant amounts were released. The other elements (Na, Al, Si and P) were released in neutral as well as acid conditions, with greater amounts in acid. More frequent changes of water gave greater release. In neutral conditions, release over 21 months followed the equation: [E]c = [E]1t/(t + t½) + β√t ([E]c is the cumulative release of the element). In acid conditions, this became: [E]c = [E]1t/(t + t½) + αt. Hence release of all elements was shown to occur in two steps, a rapid initial one (half-life: 12-18 h) and a longer second one. In neutral conditions, the longer step involves diffusion; in acid it involves erosion. These patterns influence the material's bioactivity.
Collapse
Affiliation(s)
- John W Nicholson
- Dental Physical Sciences Unit, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
- Bluefield Centre for Biomaterials, 67-68 Hatton Garden, London, EC1N 8JY, UK.
| | - Nichola J Coleman
- School of Science, University of Greenwich, Medway Campus, Chatham, Kent, ME4 4TB, UK
| | - Sharanbir K Sidhu
- Centre for Oral Bioengineering, Institute of Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| |
Collapse
|
3
|
Mocanu A, Cadar O, Frangopol PT, Petean I, Tomoaia G, Paltinean GA, Racz CP, Horovitz O, Tomoaia-Cotisel M. Ion release from hydroxyapatite and substituted hydroxyapatites in different immersion liquids: in vitro experiments and theoretical modelling study. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201785. [PMID: 33614097 PMCID: PMC7890514 DOI: 10.1098/rsos.201785] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/20/2020] [Indexed: 05/06/2023]
Abstract
Multi-substituted hydroxyapatites (ms-HAPs) are currently gaining more consideration owing to their multifunctional properties and biomimetic structure, owning thus an enhanced biological potential in orthopaedic and dental applications. In this study, nano-hydroxyapatite (HAP) substituted with multiple cations (Sr2+, Mg2+ and Zn2+) for Ca2+ and anion ( Si O 4 4 - ) for P O 4 3 - and OH-, specifically HAPc-5%Sr and HAPc-10%Sr (where HAPc is HAP-1.5%Mg-0.2%Zn-0.2%Si), both lyophilized non-calcined and lyophilized calcined, were evaluated for their in vitro ions release. These nanomaterials were characterized by scanning electron microscopy, field emission-scanning electron microscopy and energy-dispersive X-ray, as well as by atomic force microscope images and by surface specific areas and porosity. Further, the release of cations and of phosphate anions were assessed from nano-HAP and ms-HAPs, both in water and in simulated body fluid, in static and simulated dynamic conditions, using inductively coupled plasma optical emission spectrometry. The release profiles were analysed and the influence of experimental conditions was determined for each of the six nanomaterials and for various periods of time. The pH of the samples soaked in the immersion liquids was also measured. The ion release mechanism was theoretically investigated using the Korsmeyer-Peppas model. The results indicated a mechanism principally based on diffusion and dissolution, with possible contribution of ion exchange. The surface of ms-HAP nanoparticles is more susceptible to dissolution into immersion liquids owing to the lattice strain provoked by simultaneous multi-substitution in HAP structure. According to the findings, it is rational to suggest that both materials HAPc-5%Sr and HAPc-10%Sr are bioactive and can be potential candidates in bone tissue regeneration.
Collapse
Affiliation(s)
- Aurora Mocanu
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Petre T. Frangopol
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
| | - Gheorghe Tomoaia
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Gertrud-Alexandra Paltinean
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
| | - Csaba Pal Racz
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
| | - Ossi Horovitz
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Street, 400028 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
4
|
Montagna G, Cristofaro F, Fassina L, Bruni G, Cucca L, Kochen A, Divieti Pajevic P, Bragdon B, Visai L, Gerstenfeld L. An in vivo Comparison Study Between Strontium Nanoparticles and rhBMP2. Front Bioeng Biotechnol 2020; 8:499. [PMID: 32612980 PMCID: PMC7308719 DOI: 10.3389/fbioe.2020.00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/29/2020] [Indexed: 01/24/2023] Open
Abstract
The osteoinductive property of strontium was repeatedly proven in the last decades. Compelling in vitro data demonstrated that strontium hydroxyapatite nanoparticles exert a dual action, by promoting osteoblasts-driven matrix secretion and inhibiting osteoclasts-driven matrix resorption. Recombinant human bone morphogenetic protein 2 (rhBMP2) is a powerful osteoinductive biologic, used for the treatment of vertebral fractures and critically-sized bone defects. Although effective, the use of rhBMP2 has limitations due its recombinant morphogen nature. In this study, we examined the comparison between two osteoinductive agents: rhBMP2 and the innovative strontium-substituted hydroxyapatite nanoparticles. To test their effectiveness, we independently loaded Gelfoam sponges with the two osteoinductive agents and used the sponges as agent-carriers. Gelfoam are FDA-approved biodegradable medical devices used as delivery system for musculoskeletal defects. Their porous structure and spongy morphology make them attractive in orthopedic field. The abiotic characterization of the loaded sponges, involving ion release pattern and structure investigation, was followed by in vivo implantation onto the periosteum of healthy mice and comparison of the effects induced by each implant was performed. Abiotic analysis demonstrated that strontium was continuously released from the sponges over 28 days with a pattern similar to rhBMP2. Histological observations and gene expression analysis showed stronger endochondral ossification elicited by strontium compared to rhBMP2. Osteoclast activity was more inhibited by strontium than by rhBMP2. These results demonstrated the use of sponges loaded with strontium nanoparticles as potential bone grafts might provide better outcomes for complex fractures. Strontium nanoparticles are a novel and effective non-biologic treatment for bone injuries and can be used as novel powerful therapeutics for bone regeneration.
Collapse
Affiliation(s)
- Giulia Montagna
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.,Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Francesco Cristofaro
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Giovanna Bruni
- C.S.G.I. Department of Chemistry, Physical-Chemistry Section, University of Pavia, Pavia, Italy
| | - Lucia Cucca
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Alejandro Kochen
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Beth Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Livia Visai
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Louis Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
5
|
Khan MD, Chottitisupawong T, Vu HHT, Ahn JW, Kim GM. Removal of Phosphorus from an Aqueous Solution by Nanocalcium Hydroxide Derived from Waste Bivalve Seashells: Mechanism and Kinetics. ACS OMEGA 2020; 5:12290-12301. [PMID: 32548412 PMCID: PMC7271366 DOI: 10.1021/acsomega.0c00993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Excessive supply of phosphorus, a vital macronutrient for all organisms, can cause unwanted environmental consequences such as eutrophication. An increase in agricultural and industrial activities has created a considerable imbalance in the phosphorus cycle with continuing adverse effects on sustainability and ecosystem health, thereby stipulating/postulating the significance of phosphorus removal. A unique and sustainable concept for the removal of phosphorus through the utilization of waste bivalve seashells was proposed in the present study. Flat-surfaced and hexagonally shaped nanocalcium hydroxide particles (∼96% purity) with size ranging from 100 to 400 nm have been synthesized, and phosphorus from its aqueous solution is treated via precipitation. An optimization study has been conducted using the Box-Behnken design of response surface methodology, which highlights that with a calcium/phosphorus mass ratio, pH, and temperature of 2.16, 10.20, and 25.48 °C, a phosphorus removal efficiency of 99.33% can be achieved in a residence time of 10 min. Also, under the same conditions, diluted human urine was analyzed and phosphorus removal efficiency of ∼95% was observed. Through experimental results, semiquantitative phase analysis, and transmission electron microscopy, it has been found that the reaction was diffusion-controlled, which was further confirmed through shrinking core diffusion modeling. The present study manifests the promising potential of waste seashell-derived nanocalcium hydroxide for phosphorus treatment and its precipitation in the form of value-added hydroxyapatite.
Collapse
Affiliation(s)
- Mohd D. Khan
- Resources
Recycling Department, University of Science
and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
- Center
for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources
(KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, South Korea
| | - Thannaree Chottitisupawong
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, South Korea
| | - Hong H. T. Vu
- Center
for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources
(KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, South Korea
| | - Ji W. Ahn
- Center
for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources
(KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, South Korea
| | - Gwang M. Kim
- Center
for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources
(KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, South Korea
| |
Collapse
|
6
|
Garbo C, Locs J, D'Este M, Demazeau G, Mocanu A, Roman C, Horovitz O, Tomoaia-Cotisel M. Advanced Mg, Zn, Sr, Si Multi-Substituted Hydroxyapatites for Bone Regeneration. Int J Nanomedicine 2020; 15:1037-1058. [PMID: 32103955 PMCID: PMC7025681 DOI: 10.2147/ijn.s226630] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose Compositional tailoring is gaining more attention in the development of advanced biomimetic nanomaterials. In this study, we aimed to prepare advanced multi-substituted hydroxyapatites (ms-HAPs), which show similarity with the inorganic phase of bones and might have therapeutic potential for bone regeneration. Materials Novel nano hydroxyapatites substituted simultaneously with divalent cations: Mg2+ (1.5%), Zn2+ (0.2%), Sr2+ (5% and 10%), and Si (0.2%) as orthosilicate (SiO44-) were designed and successfully synthesized for the first time. Methods The ms-HAPs were obtained via a wet-chemistry precipitation route without the use of surfactants, which is a safe and ecologically friendly method. The composition of synthesized materials was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The materials were characterized by X-ray powder diffraction (XRD), FT-IR and FT-Raman spectroscopy, BET measurements and by imaging techniques using high-resolution TEM (HR-TEM), FE-SEM coupled with EDX, and atomic force microscopy (AFM). The ion release was measured in water and in simulated body fluid (SBF). Results Characterization methods confirmed the presence of the unique phase of pure stoichiometric HAP structure and high compositional purity of all synthesized nanomaterials. The doping elements influenced the crystallite size, the crystallinity, lattice parameters, morphology, particle size and shape, specific surface area, and porosity. Results showed a decrease in both nanoparticle size and crystallinity degree, coupled with an increase in specific surface area of these advanced ms-HAP materials, in comparison with pure stoichiometric HAP. The release of biologically important ions was confirmed in different liquid media, both in static and simulated dynamic conditions. Conclusion The incorporation of the four substituting elements into the HAP structure is demonstrated. Synthesized nanostructured ms-HAP materials might inherit the in vivo effects of substituting functional elements and properties of hydroxyapatite for bone healing and regeneration. Results revealed a rational tailoring approach for the design of a next generation of bioactive ms-HAPs as promising candidates for bone regeneration.
Collapse
Affiliation(s)
- Corina Garbo
- Babes-Bolyai University of Cluj-Napoca, Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Cluj-Napoca 400028, Romania
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga LV-1007, Latvia
| | - Matteo D'Este
- AO Research Institute Davos, Davos Platz 7270, Switzerland
| | | | - Aurora Mocanu
- Babes-Bolyai University of Cluj-Napoca, Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Cluj-Napoca 400028, Romania
| | - Cecilia Roman
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca 400293, Romania
| | - Ossi Horovitz
- Babes-Bolyai University of Cluj-Napoca, Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Cluj-Napoca 400028, Romania
| | - Maria Tomoaia-Cotisel
- Babes-Bolyai University of Cluj-Napoca, Faculty of Chemistry and Chemical Engineering, Physical Chemistry Centre, Chemical Engineering Department, Cluj-Napoca 400028, Romania.,Academy of Romanian Scientists, Bucharest 050094, Romania
| |
Collapse
|
7
|
About the Genetic Mechanisms of Apatites: A Survey on the Methodological Approaches. MINERALS 2017. [DOI: 10.3390/min7080139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Apatites are properly considered as a strategic material owing to the broad range of their practical uses, primarily biomedical but chemical, pharmaceutical, environmental and geological as well. The apatite group of minerals has been the subject of a huge number of papers, mainly devoted to the mass crystallization of nanosized hydroxyapatite (or carboapatite) as a scaffold for osteoinduction purposes. Many wet and dry methods of synthesis have been proposed. The products have been characterized using various techniques, from the transmission electron microscopy to many spectroscopic methods like IR and Raman. The experimental approach usually found in literature allows getting tailor made micro- and nano- crystals ready to be used in a wide variety of fields. Despite the wide interest in synthesis and characterization, little attention has been paid to the relationships between bulk structure and corresponding surfaces and to the role plaid by surfaces on the mechanisms involved during the early stages of growth of apatites. In order to improve the understanding of their structure and chemical variability, close attention will be focused on the structural complexity of hydroxyapatite (HAp), on the richness of its surfaces and their role in the interaction with the precursor phases, and in growth kinetics and morphology.
Collapse
|
8
|
Parent M, Magnaudeix A, Delebassée S, Sarre E, Champion E, Viana Trecant M, Damia C. Hydroxyapatite microporous bioceramics as vancomycin reservoir: Antibacterial efficiency and biocompatibility investigation. J Biomater Appl 2016; 31:488-498. [PMID: 27278782 DOI: 10.1177/0885328216653108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstarctInfections after bone reconstructive surgery are a real therapeutic and economic issue for the modern health care system. As the pathogen (most often Staphylococcus aureus) is able to develop a biofilm inside the bone, local delivery of antibiotics is of interest since high drug concentrations would be delivered directly at the target place. In this context, this study evaluated a porous hydroxyapatite implant as biocompatible bone substitute and vancomycin-delivery system to prevent post-operative infections. A simple method of impregnation with optimised conditions insured a high antibiotic loading (up to 2.3 ± 0.3 mg/m2), with a complete in vitro release obtained within 1-5 days. Additionally, the bacteriostatic and bactericidal effects of vancomycin were retained after loading on hydroxyapatite, as demonstrated after challenge with a Staphylococcus aureus strain. Regarding the biocompatibility, a wound healing assay of pre-osteoblastic MC3T3-E1 cells exposed to various concentrations of vancomycin revealed a dose-dependent reduction in cell migration for antibiotic concentrations higher than 1 mg/mL. Meanwhile, cells were able to proliferate normally on vancomycin-loaded scaffolds, although cell initial adhesion was seriously impaired for scaffolds loaded with 2.3 mg/m2 Loaded scaffolds could be stored up to three months at room temperature without any degradation of the antibiotic. Together, these results demonstrate the efficacy of these hydroxyapatite bone substitutes for local delivery of vancomycin in the context of bone infection.
Collapse
Affiliation(s)
- Marianne Parent
- Univ. Limoges, CNRS, ENSCI, SPCTS, UMR 7315, Limoges, France
| | | | - Sylvie Delebassée
- Univ. Limoges, Laboratoire de Chimie des Substances Naturelles, Limoges, France
| | - Elisabeth Sarre
- Univ. Limoges, CNRS, ENSCI, SPCTS, UMR 7315, Limoges, France
| | - Eric Champion
- Univ. Limoges, CNRS, ENSCI, SPCTS, UMR 7315, Limoges, France
| | | | - Chantal Damia
- Univ. Limoges, CNRS, ENSCI, SPCTS, UMR 7315, Limoges, France
| |
Collapse
|
9
|
Dorozhkin SV. Dissolution mechanism of calcium apatites in acids: A review of literature. World J Methodol 2012; 2:1-17. [PMID: 25237611 PMCID: PMC4145559 DOI: 10.5662/wjm.v2.i1.1] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 02/06/2023] Open
Abstract
Eight dissolution models of calcium apatites (both fluorapatite and hydroxyapatite) in acids were drawn from the published literature, analyzed and discussed. Major limitations and drawbacks of the models were conversed in details. The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general. Therefore, an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids. For this purpose, eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution. The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future. This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data, obtained by various research groups under dissimilar experimental conditions.
Collapse
|
10
|
Pan H, Li Z, Lam W, Wong J, Darvell B, Luk K, Lu W. Solubility of strontium-substituted apatite by solid titration. Acta Biomater 2009; 5:1678-85. [PMID: 19135423 DOI: 10.1016/j.actbio.2008.11.032] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 10/10/2008] [Accepted: 11/25/2008] [Indexed: 11/25/2022]
Abstract
Solid titration was used to explore the solubility isotherms of partially (Srx-HAp, x=1, 5, 10, 40, 60 mol.%) and fully substituted strontium hydroxyapatite (Sr-HAp). Solubility increased with increasing strontium content. No phase other than strontium-substituted HAp, corresponding to the original titrant, was detected in the solid present at equilibrium; in particular, dicalcium hydrogen phosphate was not detected at low pH. The increase in solubility with strontium content is interpreted as a destabilization of the crystal structure by the larger strontium ion. Carbonated HAp was formed in simulated body fluid containing carbonate on seeding with Sr10-HAp, but the precipitate was strontium-substituted on seeding with Sr-HAp. Strontium-substituted HAp might be usable as a template for the growth of new bone, since nucleation appears to be facilitated.
Collapse
|
11
|
Lomashvili KA, Monier-Faugere MC, Wang X, Malluche HH, O'Neill WC. Effect of bisphosphonates on vascular calcification and bone metabolism in experimental renal failure. Kidney Int 2009; 75:617-25. [PMID: 19129793 DOI: 10.1038/ki.2008.646] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although it is known that bisphosphonates prevent medial vascular calcification in vivo, their mechanism of action remains unknown and, in particular, whether they act directly on the blood vessels or indirectly through inhibition of bone resorption. To determine this, we studied the effects of two bisphosphonates on calcification of rat aortas in vitro and on in vivo aortic calcification and bone metabolism in rats with renal failure. We produced vascular calcification in rats with adenine-induced renal failure fed a high-phosphate diet. Daily treatment with either etidronate or pamidronate prevented aortic calcification, with the latter being 100-fold more potent. Both aortic calcification and bone formation were reduced in parallel; however, bone resorption was not significantly affected. In all uremic rats, aortic calcium content correlated with bone formation but not with bone resorption. Bisphosphonates also inhibited calcification of rat aortas in culture and arrested further calcification of precalcified vessels but did not reverse their calcification. Expression of osteogenic factors or calcification inhibitors was not altered by etidronate in vitro. Hence, these studies show that bisphosphonates can directly inhibit uremic vascular calcification independent of bone resorption. The correlation between inhibition of aortic calcification and bone mineralization is consistent with a common mechanism such as the prevention of hydroxyapatite formation and suggests that bisphosphonates may not be able to prevent vascular calcification without inhibiting bone formation in uremic rats.
Collapse
Affiliation(s)
- Koba A Lomashvili
- Renal Division, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Scattered through the practice of medicine are dogmas with little or no scientific basis. One of these is the product of the serum calcium and phosphorus concentrations, the so-called calcium-phosphorus product or Ca x P. The assumption that ectopic calcification will occur when the product of the serum calcium and phosphorus concentrations exceeds a particular threshold has become standard practice in nephrology even though there is little scientific basis. Experimental support is lacking, the chemistry underlying the use of the product is oversimplified and the concept that ectopic calcification is simply the result of supersaturation is biologically flawed. The evidence that the Ca x P is an independent risk factor for mortality and morbidity is also questionable. Although ectopic calcification can occur in many sites, this review will focus on vascular calcification, as it is the most common site and the site most likely to affect patient outcomes.
Collapse
Affiliation(s)
- W C O'Neill
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
13
|
Pan HB, Darvell BW. Solubility of hydroxyapatite by solid titration at pH 3–4. Arch Oral Biol 2007; 52:618-24. [PMID: 17240349 DOI: 10.1016/j.archoralbio.2006.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 11/28/2006] [Accepted: 12/05/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The solubility isotherm (S) of hydroxyapatite (HAp) is of fundamental importance to saliva chemistry, dental caries and related contexts. It has previously been shown that the locus of the S[HAp] is substantially lower than is commonly reported, and of different slope, probably due to HAps incongruent dissolution. The aim of the present study was to determine the S[HAp] over a wider pH range and to identify the precipitate formed at equilibrium in HAp solid titration. METHODS The solid titration technique of Leung and Darvell (Leung VW-H, Darvell BW. Calcium-phosphate system in saliva-like media. J Chem Soc Faraday Trans 1991;87(11):1759-64.) was used to investigate the solubility behaviour of HAp at 37.0+/-0.1 degrees C in 100 mM aqueous KCl. The pH range studied overlapped that of earlier work from pH 3.6 to 5.2, for a reproducibility check and validation, and extended to pH approximately 2.9. XRD and EDX were used to identify the precipitates. SEM and TEM were used to observe the morphology. RESULTS The previous S[HAp] reported by Chen et al. (Chen Z-F, Darvell BW, Leung VW-H. Hydroxyapatite solubility in simple inorganic solutions. Arch Oral Biol 2004;49(5):359-67.) was reconfirmed. An abrupt change of slope of S[HAp] was detected at pH approximately 3.9. No other phase than HAp was found at pH 3.2, 3.6 and 4.1. In particular, brushite (dicalcium phosphate dihydrate) was not detected, even below pH 3.9, where instead calcium-deficient HAp was formed. CONCLUSION The solid titration method was reconfirmed as reproducible and to yield HAp from pH 2.9 to 5.2. The expected brushite did not appear, but rather a stable calcium-deficient HAp was consistently formed. The chemistry of calcium phosphates needs to be reevaluated.
Collapse
Affiliation(s)
- H-B Pan
- Dental Materials Science, The University of Hong Kong, Hong Kong
| | | |
Collapse
|
14
|
Sutter B, Hossner LR, Ming DW. Dissolution kinetics of iron-, manganese-, and copper-containing synthetic hydroxyapatites. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL. SOIL SCIENCE SOCIETY OF AMERICA 2005; 69:362-70. [PMID: 16052742 DOI: 10.2136/sssaj2005.0362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Micronutrient-substituted synthetic hydroxyapatite (SHA) is being evaluated by the National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program for crop production on long-duration human missions to the International Space Station or for future Lunar or Martian outposts. The stirred-flow technique was utilized to characterize Ca, P, Fe, Mn, and Cu release characteristics from Fe-, Mn-, and Cu-containing SHA in deionized (DI) water, citric acid, and diethylene-triamine-pentaacetic acid (DTPA). Initially, Ca and P release rates decreased rapidly with time and were controlled by a non-SHA calcium phosphate phase(s) with low Ca/P solution molar ratios (0.91-1.51) relative to solid SHA ratios (1.56-1.64). At later times, Ca/P solution molar ratios (1.47-1.79) were near solid SHA ratios and release rates decreased slowly indicating that SHA controlled Ca and P release. Substituted SHA materials had faster dissolution rates relative to unsubstituted SHA. The initial metal release rate order was Mn >> Cu > Fe which followed metal-oxide/phosphate solubility suggesting that poorly crystalline metal-oxides/phosphates were dominating metal release. Similar metal release rates for all substituted SHA (approximately 0.01 cmol kg-1 min-1) at the end of the DTPA experiment indicated that SHA dissolution was supplying the metals into solution and that poorly crystalline metal-oxide/phosphates were not controlling metal release. Results indicate that non-SHA Ca-phosphate phases and poorly crystalline metal-oxide/phosphates will contribute Ca, P, and metals. After these phases have dissolved, substituted SHA will be the source of Ca, P, and metals for plants.
Collapse
Affiliation(s)
- B Sutter
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX 77843, USA.
| | | | | |
Collapse
|
15
|
Wallin R, Wajih N, Greenwood GT, Sane DC. Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy. Med Res Rev 2001; 21:274-301. [PMID: 11410932 DOI: 10.1002/med.1010] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The causes of arterial calcification are beginning to be elucidated. Macrophages, mast cells, and smooth muscle cells are the primary cells implicated in this process. The roles of a variety of bone-related proteins including bone morphogenetic protein-2 (BMP-2), matrix Gla protein (MGP), osteoprotegerin (OPG), osteopontin, and osteonectin in regulating arterial calcification are reviewed. Animals lacking MGP, OPG, smad6, carbonic anhydrase isoenzyme II, fibrillin-1, and klotho gene product develop varying extents of arterial calcification. Hyperlipidemia, vitamin D, nicotine, and warfarin, alone or in various combinations, produce arterial calcification in animal models. MGP has recently been discovered to be an inhibitor of bone morphogenetic protein-2, the principal osteogenic growth factor. Many of the forces that induce arterial calcification may act by disrupting the essential post-translational modification of MGP, allowing BMP-2 to induce mineralization. MGP requires gamma-carboxylation before it is functional, and this process uses vitamin K as an essential cofactor. Vitamin K deficiency, drugs that act as vitamin K antagonists, and oxidant stress are forces that could prevent the formation of GLA residues on MGP. The potential role of arterial apoptosis in calcification is discussed. Potential therapeutic options to limit the rate of arterial calcification are summarized.
Collapse
Affiliation(s)
- R Wallin
- Section of Rheumatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The solubility properties of hydroxyapatite (HA) are compared with those of human dental enamel and dentin. The apatites used in this study were equilibrated with dilute phosphoric acid solutions in CO2-containing atmospheres. The experimental results are interpreted in terms of solubility models which consider the biological materials as either HA or carbonatoapatites. Both in the HA and the dental mineral systems, the results are consistent with the precipitation of another carbonate-containing apatitic phase during equilibration. However, although the chemical behavior of the HA systems is in very good agreement with predictions based on the solubility models, the results with the bioapatites are not; this inconsistency is more marked for dentin than for enamel but in both cases the results clearly indicate the inadequacy of assuming for these dental apatites the stoichiometry of HA. The models and the experimental results show that, in principle, it is possible to define the two dental minerals in terms of respective solubility product constants, if independent information is attained on the stoichiometry of these bioapatites.
Collapse
Affiliation(s)
- E C Moreno
- Physical Chemistry Department, Forsyth Dental Center, Boston, MA 02115
| | | |
Collapse
|
17
|
|