Published online Sep 20, 2018. doi: 10.5528/wjtm.v7.i1.1
Peer-review started: June 21, 2018
First decision: July 9, 2018
Revised: July 31, 2018
Accepted: August 30, 2018
Article in press: August 30, 2018
Published online: September 20, 2018
Processing time: 92 Days and 3.8 Hours
Although boron has been a chemical element of interest since the ancient times, only a few boron-containing compounds (BCCs) had been used for medicinal purposes before the 21st century. Among these, only boric acid has been explored in multiple therapeutic applications. Hence, it is common to extrapolate from boric acid to all BCCs, supposing a similar biological effect. However, boric acid is just one of dozens of BCCs in nature and thousands available from chemical synthesis. Nowadays, there is a boom in research on new BCCs as potential tools in the prevention, diagnosis and therapy of human disease. We herein discuss the new role of BCCs in drug development, with emphasis on the compounds for which a mechanism of action has been proposed or demonstrated. Because of data gathered in recent years, BCCs have expanded beyond the well-known fields of antimicrobial and antineoplastic agents, now being explored for their possible use as enzyme inhibitors, regulators of protein expression and modulators of the immune response, as well as in biomaterials. We suggest that translational medicine can accelerate the medicinal applications of BCCs, which is especially important for the human diseases that are generating a high global burden.
Core tip: Boron-containing compounds (BCCs) have growing relevance in the biomedical field. The former almost exclusive focus on boric acid has expanded to include a wide range of BCCs in chemical and biomedical studies. The reported findings suggest that research in this field will continue increasing exponentially in the near future. Through translational medicine, the boron atom is being introduced into new compounds to explore its use in the prevention, diagnosis and therapy of multiple pathologies.