Published online Apr 12, 2016. doi: 10.5528/wjtm.v5.i1.14
Peer-review started: August 7, 2015
First decision: November 3, 2015
Revised: November 17, 2015
Accepted: December 29, 2015
Article in press: January 4, 2016
Published online: April 12, 2016
Processing time: 249 Days and 19.1 Hours
Asthma is a complex disorder characterised by inflammation of airway and symptoms of wheeze and shortness of breath. Allergic asthma, atopic dermatitis and allergic rhinitis are immunoglobulin E (IgE) related diseases. Current therapies targeting asthma rely on non-specific medication to control airway inflammation and prevent symptoms. Severe asthma remains difficult to treat. Genetic and genomic approaches of asthma and IgE identified many novel loci underling the disease pathophysiology. Recent epigenetic approaches also revealed the insights of DNA methylation and chromatin modification on histones in asthma and IgE. More than 30 microRNAs have been identified to have regulating roles in asthma. Understanding the pathways of the novel genetic loci and epigenetic elements in asthma and IgE will provide new therapeutic means for clinical management of the disease in future.
Core tip: Asthma is a complex disorder characterised by inflammation of airway. Allergic asthma is an immunoglobulin E (IgE) related disease. Severe asthma remains difficult to treat. Genetic and genomic approaches of asthma and IgE identified many novel loci underling the disease pathophysiology. Recent epigenetic approaches also revealed the insights of DNA methylation and chromatin modification on histones in asthma and IgE. More than 30 microRNAs have been identified to have regulation roles in asthma. Understanding the pathways of the novel genetic loci and epigenetic elements in asthma and IgE will provide new therapeutic means for clinical management of the disease in future.