1
|
Zhang Q, Wang S, Liu B, Jiang X, Sui X, Liu Z, Li D, Yu X, Wang X, Zhang H, Xun J, Zhang D. Tumor cell-derived microparticles containing MTX (MTX-TMPs) in the treatment of cholangiocarcinoma by modulating MDSCs. Life Sci 2025; 375:123713. [PMID: 40398730 DOI: 10.1016/j.lfs.2025.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 05/08/2025] [Accepted: 05/11/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is the second most common malignant tumor of the liver and lacks efficient treatments. Our previous study showed that tumor cell-derived microparticles (TMPs) containing MTX (MTX-TMPs) effectively drain the obstruction of the bile duct; however, the underlying mechanism remains unclear. METHODS Liver function indices and immune cell percentages were analyzed in CCA patients after treatment with MTX-TMPs. An intrahepatic cholangiocarcinoma (ICC) mouse model was established to assess the effect of MTX-TMPs on ICC progression and immunomodulation. The effects of MTX-TMPs on the proinflammatory effects of CCA cells, and on the myeloid-derived suppressor cells (MDSCs) recruitment, migration, apoptosis, differentiation and immunosuppressive functions were investigated using human and mouse MDSCs. RESULTS MTX-TMPs exhibited significant efficacy in treating patients with CCA, including increasing the proportion of CD45+cells, CD4+T, CD8+T, NK, and NKT cells in patients' bile or peripheral blood, and decreasing the proportion of MDSCs, without inducing abnormalities in liver function parameters. Animal experiments indicated that MTX-TMPs significantly alleviated the progression of ICC and reduced the proportion of MDSCs. The results of cell-based experiments indicated that MTX-TMPs inhibited the expression and secretion of inflammatory and chemotactic factors and the activation of STAT3 and NF-κB in CCA cells. Additionally, MTX-TMPs promoted MDSCs apoptosis, inhibited the recruitment of MDSCs to CCA cells, and suppressed the differentiation and immunosuppressive functions of MDSCs by inhibiting the STAT/CEBPβ signaling pathway. CONCLUSION Our results indicated that MTX-TMPs alleviated CCA progression by regulating MDSCs, which provide an effective strategy for the treatment of CCA.
Collapse
Affiliation(s)
- Qi Zhang
- Hospital of Integrated Chinese and Western Medicine, Tianjin Medical University, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China
| | - Saifei Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Bin Liu
- Hospital of Integrated Chinese and Western Medicine, Tianjin Medical University, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China
| | - Xiaolin Jiang
- Hospital of Integrated Chinese and Western Medicine, Tianjin Medical University, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China
| | - Xiaojun Sui
- Hospital of Integrated Chinese and Western Medicine, Tianjin Medical University, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China
| | - Zehan Liu
- Hospital of Integrated Chinese and Western Medicine, Tianjin Medical University, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China
| | - Dihua Li
- Hospital of Integrated Chinese and Western Medicine, Tianjin Medical University, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China
| | - Xiangyang Yu
- Hospital of Integrated Chinese and Western Medicine, Tianjin Medical University, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China
| | - Ximo Wang
- Hospital of Integrated Chinese and Western Medicine, Tianjin Medical University, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China
| | - Hui Zhang
- Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China.
| | - Jing Xun
- Hospital of Integrated Chinese and Western Medicine, Tianjin Medical University, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China.
| | - Dapeng Zhang
- Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China.
| |
Collapse
|
2
|
Admasu TD, Yu JS. Harnessing Immune Rejuvenation: Advances in Overcoming T Cell Senescence and Exhaustion in Cancer Immunotherapy. Aging Cell 2025; 24:e70055. [PMID: 40178455 PMCID: PMC12073907 DOI: 10.1111/acel.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with T cell-based strategies at the forefront of this revolution. However, the durability of these responses is frequently undermined by two intertwined phenomena: T cell exhaustion and senescence. While exhaustion is driven by chronic antigen exposure in the immunosuppressive tumor microenvironment, leading to a reversible state of diminished functionality, senescence reflects a more permanent, age- or stress-induced arrest in cellular proliferation and effector capacity. Together, these processes represent formidable barriers to sustained anti-tumor immunity. In this review, we dissect the molecular underpinnings of T cell exhaustion and senescence, revealing how these dysfunctions synergistically contribute to immune evasion and resistance across a range of solid tumors. We explore cutting-edge therapeutic approaches aimed at rewiring the exhausted and senescent T cell phenotypes. These include advances in immune checkpoint blockade, the engineering of "armored" CAR-T cells, senolytic therapies that selectively eliminate senescent cells, and novel interventions that reinvigorate the immune system's capacity for tumor eradication. By spotlighting emerging strategies that target both exhaustion and senescence, we provide a forward-looking perspective on the potential to harness immune rejuvenation. This comprehensive review outlines the next frontier in cancer immunotherapy: unlocking durable responses by overcoming the immune system's intrinsic aging and exhaustion, ultimately paving the way for transformative therapeutic breakthroughs.
Collapse
Affiliation(s)
| | - John S. Yu
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Kairos PharmaLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Fuchs V, Roisman L, Msamra M, Refaely Y, Cohen AY, Porgador A, Peled N, Sobarzo A. Characterization of the xeno-GVHD response generated by advanced lung cancer patient peripheral blood mononuclear cells in NSG-SGM3 mice. Transl Lung Cancer Res 2025; 14:1301-1319. [PMID: 40386721 PMCID: PMC12082230 DOI: 10.21037/tlcr-24-787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/24/2024] [Indexed: 05/20/2025]
Abstract
Background Peripheral blood mononuclear cell (PBMC) humanized mouse models are essential for researching non-small cell lung cancer (NSCLC) treatments. However, these models are prone to xeno-graft versus host disease (xeno-GVHD), hampering their utility and requiring further investigation. This study examined xeno-GVHD responses from PBMCs of advanced-stage NSCLC patients compared to healthy donors (HDs) in a humanized peripheral blood lymphocyte (hu-PBL) model. Methods PBMCs from NSCLC patients and HDs were injected into immunocompromised NSG-SGM3 mice and monitored for eight weeks. xeno-GVHD progression was assessed through clinical examinations and flow cytometry of human T-cell levels in various tissues. Results Mice injected with PBMCs from HDs showed xeno-GVHD signs as early as 28 days post-injection, whereas those from NSCLC patients exhibited minimal signs, with only one model showing delayed responses by day 42. Clinical symptoms in mice included weight loss, anemia, low platelet counts, fur changes, and behavioral modifications. Flow cytometry of human PBMCs in mice indicated dominant CD8+ effector memory T cells in peripheral blood. In contrast, CD4+ effector memory T cells were predominant in the organs, with overall T cell levels lower in NSCLC models. Conclusions This study demonstrates significant differences in xeno-GVHD progression between advance-stage NSCLC patients and HDs, likely influenced by the patient's treatment histories. These findings improve our understanding of hu-PBL models for NSCLC research and may inform future treatment studies and strategies.
Collapse
Affiliation(s)
- Vered Fuchs
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Laila Roisman
- Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Maha Msamra
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yael Refaely
- Department of Cardiothoracic Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | | | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nir Peled
- Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ariel Sobarzo
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Preclinical Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
4
|
Liang YN, Chen L, Huang QY, Song YT, Fan YJ, Chen TQ, Ni JH, Wang D, Shen XY, Wang YM, You Y. Immune cells in systemic lupus erythematosus: biology and traditional Chinese medicine therapy. Acta Pharmacol Sin 2025:10.1038/s41401-025-01554-2. [PMID: 40247040 DOI: 10.1038/s41401-025-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/30/2025] [Indexed: 04/19/2025]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by a progressive breakdown of immune tolerance to self-antigens, resulting in multiple tissue damage and clinical symptoms. Innate and adaptive immune cells including dendritic cells, macrophages, myeloid-derived suppressor cells (MDSCs), T cells and B cells are the key drivers in perpetuating and amplifying of this systemic disease. In this review we offer a comprehensive overview of recent advances in understanding the immune-pathogenesis of SLE with particular emphasis on regulatory immune cells exhibiting immunosuppressive properties, as well as newly identified factors influencing immune cell function and lineage differentiation. Furthermore, we discuss traditional Chinese medicine and natural extracts that have shown therapeutic effects on SLE by modulating immune cell differentiation and function, which may provide insights into their clinical applications.
Collapse
Affiliation(s)
- Ya-Nan Liang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Luo Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qing-Yu Huang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Yu-Ting Song
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yu-Juan Fan
- Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Tong-Qing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jia-Hui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dong Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Yi-Ming Wang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 201203, China.
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
5
|
Chen F, Cai Y, Chen X, Chen C, Fang Q, Liu J, Zhang Y, Zhou J. The role of hypoxia-senescence co-related molecular subtypes and prognostic characteristics in hepatocellular carcinoma. Sci Rep 2025; 15:12390. [PMID: 40216977 PMCID: PMC11992139 DOI: 10.1038/s41598-025-97604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is known for its high invasiveness, high fatality rate. Both hypoxia and senescence play crucial roles in the initiation and progression of cancer, yet their prognostic implications in HCC are yet to be fully understood. The hypoxia-senescence co-related genes (HSCRGs) were screened from public databases. Transcriptome data and clinical information were obtained from patients with HCC using the Cancer Genome Atlas, GSE76427, and International Cancer Genome Consortium (ICGC). The random forest tree algorithm was used to identify the characteristic genes of the disease, and the genes were verified by related experiments. SVM algorithm was used to classify HCC patients based on HSCRGs. The prediction model based on HSCRGs was established by LASSO, univariate and multivariate COX regression analysis. We used the ICGC for outside validation. The risk score model was analyzed from subgroup analysis, immune infiltration, and functional strength. The expression patterns of key prognostic genes in tumor microenvironment were decoded by single cell analysis. A total of 184 HSCRGs were identified. The expression pattern and functional characteristics of MLH1 gene in HCC were verified. Two HCC subtypes were identified based on HSCRGs. Then, a prediction model based on HSCRGs was established, and risk score was identified as an independent prognostic indicator of HCC. A new nomogram is constructed and shows good prediction ability. We further determined that the level of infiltration of immune cells and the expression of immune checkpoints are significantly affected by the risk score. The immune microenvironment was different between the two risk groups. The high-risk group was dominated by immunosuppressed cells, and the prognosis was poor. Single-cell analysis revealed the expression of seven key prognostic genes in the tumor microenvironment. Finally, qPCR results further verified the expression levels of seven prognostic genes. HSCRGs are of great significance in the prognosis prediction, risk stratification and targeted therapy of patients with HCC.
Collapse
Affiliation(s)
- Fuqing Chen
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian Province, People's Republic of China
| | - Yifan Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian Province, People's Republic of China
| | - Xiangmei Chen
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian Province, People's Republic of China
| | - Changzhou Chen
- Department Minimally Invasive and Interventional Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian Province, People's Republic of China
| | - Qinliang Fang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian Province, People's Republic of China
| | - Jianming Liu
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian Province, People's Republic of China
| | - Yibin Zhang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian Province, People's Republic of China
| | - Jianyin Zhou
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian Province, People's Republic of China.
| |
Collapse
|
6
|
Abate M, Stroobant E, Fei T, Lin YH, Shimada S, Drebin H, Chen E, Tang LH, Shah SP, Wolchok JD, Janjigian YY, Strong VE, Vardhana SA. Host Tissue Factors Predict Immune Surveillance and Therapeutic Outcomes in Gastric Cancer. Cancer Immunol Res 2025; 13:591-601. [PMID: 39786344 PMCID: PMC11964842 DOI: 10.1158/2326-6066.cir-23-0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
The immune composition of solid tumors is typically inferred from biomarkers, such as histologic and molecular classifications, somatic mutational burden, and PD-L1 expression. However, the extent to which these biomarkers predict the immune landscape in gastric adenocarcinoma-an aggressive cancer often linked to chronic inflammation-remains poorly understood. We leveraged high-dimensional spectral cytometry to generate a comprehensive single-cell immune landscape of tumors, normal tissue, and lymph nodes from patients in the Western Hemisphere with gastric adenocarcinoma. The immune composition of gastric tumors could not be predicted by traditional metrics such as tumor histology, molecular classification, mutational burden, or PD-L1 expression via IHC. Instead, our findings revealed that innate immune surveillance within tumors could be anticipated by the immune profile of the normal gastric mucosa. Additionally, distinct T-cell states in the lymph nodes were linked to the accumulation of activated and memory-like CD8+ tumor-infiltrating lymphocytes. Unbiased reclassification of patients based on tumor-specific immune infiltrate generated four distinct subtypes with varying immune compositions. Tumors with a T cell-dominant immune subtype, which spanned The Cancer Genome Atlas molecular subtypes, were exclusively associated with superior responses to immunotherapy. Parallel analysis of metastatic gastric cancer patients treated with immune checkpoint blockade showed that patients who responded to immunotherapy had a pretreatment tumor composition that corresponded to a T cell-dominant immune subtype from our analysis. Taken together, this work identifies key host-specific factors associated with intratumoral immune composition in gastric cancer and offers an immunological classification system that can effectively identify patients likely to benefit from immune-based therapies.
Collapse
Affiliation(s)
- Miseker Abate
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Emily Stroobant
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ya-Hui Lin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shoji Shimada
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Digestive Disease Center, Showa University, Northern Yokohama Hospital, Yokohama, Japan
| | - Harrison Drebin
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Eunise Chen
- Department of Surgery, University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, USA
| | - Laura H. Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab P. Shah
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D. Wolchok
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Yelena Y. Janjigian
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vivian E. Strong
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha A. Vardhana
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Zhou K, Zhang S, Shang J, Lan X. Exploring immune gene expression and potential regulatory mechanisms in anaplastic thyroid carcinoma using a combination of single-cell and bulk RNA sequencing data. Comput Biol Chem 2025; 115:108311. [PMID: 39674047 DOI: 10.1016/j.compbiolchem.2024.108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Thyroid cancer includes papillary thyroid carcinoma (PTC) and anaplastic thyroid carcinoma (ATC). While PTC has an excellent prognosis, ATC has a dismal prognosis, necessitating the identification of novel targets in ATC to aid in ATC diagnosis and treatment. Therefore, we analyzed ATC single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (bulk RNA-seq) data from the Gene Expression Omnibus (GEO), retrieved immune-related genes from the ImmPort database, and identified differentially expressed immune genes within single-cell subgroups. The AUCell package in R was used to calculate activity scores for single-cell subgroups and identify active cell populations. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on differentially expressed genes (DEGs) in active cell populations. Then, we integrated thyroid-cancer scRNA-seq and bulk RNA-seq data to identify overlapping DEGs. Relevant transcription factors (TFs) were retrieved from the TRRUST database. A protein-protein interaction (PPI) network for key TFs was created using the STRING database. Simultaneously, drugs associated with key TFs were obtained from DGIdb. ScRNA-seq cluster analysis showed that T/natural killer (NK) cells were more distributed in ATC and that thyrocytes cells were more distributed in PTC. We obtained 264 differential immune genes (DIGs) from the IMMPORT database and integrated scRNA-seq cluster analysis to identify the active cell T/NK cells and myeloid cells. Integrated bulk RNA-seq analysis obtained common immune genes (CIGs) such as TMSB4X, NFKB1, TNFRSF1B, and B2M. The nine CIG-related TFs (CEBPB, SPI1, NFKB1, RUNX1, NFE2L2, REL, CIITA, KLF6, and CEBPD) in myeloid cells and three TFs (NFKB1, FOXO1, and NR3C1) in T/NK cells were obtained from the TRRUST database. The key genes we identified represent potential targets for treating ATC.
Collapse
Affiliation(s)
- Kehui Zhou
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China; Department of Thyroid Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shijia Zhang
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China; Department of Thyroid Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jinbiao Shang
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310022, China
| | - Xiabin Lan
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China; Department of Thyroid Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
8
|
Ryba-Stanisławowska M. Unraveling Th subsets: insights into their role in immune checkpoint inhibitor therapy. Cell Oncol (Dordr) 2025; 48:295-312. [PMID: 39325360 PMCID: PMC11996958 DOI: 10.1007/s13402-024-00992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
T helper (Th) cell subsets play pivotal roles in regulating immune responses within the tumor microenvironment, influencing both tumor progression and anti-tumor immunity. Among these subsets, Th1 cells promote cytotoxic responses through the production of IFN-γ, while Th2 cells and regulatory T cells (Tregs) exert immunosuppressive effects that support tumor growth. Th9 and Th17 cells have context-dependent roles, contributing to both pro-inflammatory and regulatory processes in tumor immunity. Tumor antigen-specific T cells within the tumor microenvironment often exhibit a dysfunctional phenotype due to increased expression of inhibitory receptors such as CTLA-4 and PD-1, leading to reduced antitumor activity. Monoclonal antibodies that block these inhibitory signals-collectively known as immune checkpoint inhibitors (ICIs)-can reactivate these T cells, enhancing their ability to target and destroy cancer cells. Recent advancements have highlighted the critical role of T helper subsets in modulating responses to ICIs, with their interactions remaining a focus of ongoing research. Both positive and negative effects of ICIs have been reported in relation to Th cell subsets, with some effects depending on the type of tumor microenvironment. This review summarizes the crucial roles of different T helper cell subsets in tumor immunity and their complex relationship with immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland.
| |
Collapse
|
9
|
Angell CD, Sun SH, Lapurga G, Benner B, Quiroga D, Savardekar H, DiVincenzo MJ, Abood D, Stiff A, Duggan M, Handley D, Nagle E, Harrison Howard J, Shah H, Kendra KL, Carson WE. A comparison of myeloid-derived suppressor cell populations in patients with ulcerated vs non-ulcerated melanoma receiving immune checkpoint blockade. Melanoma Res 2025; 35:102-108. [PMID: 39883562 PMCID: PMC11867852 DOI: 10.1097/cmr.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) are expanded in cancer patients, have an intrinsic immunosuppressive function, and thus may play a role in resistance to immunotherapy. Ulceration of the melanoma primary is associated with more aggressive disease and is an independent prognostic factor for melanoma-specific survival. However, the underlying factors contributing to this more aggressive phenotype are not completely understood. The current study aims to correlate changes in circulating MDSC during immunotherapy in patients with ulcerated vs non-ulcerated melanoma primary tumors. Longitudinal changes in levels of circulating MDSCs were analyzed via flow cytometry in melanoma patients receiving immune checkpoint inhibitors (ICIs) and stratified by ulceration status. Following the initiation of therapy, the percentage of total MDSCs increased significantly in patients with both ulcerated ( P = 0.003) and non-ulcerated ( P < 0.001) tumors. When MDSCs were stratified by subset, the proportion of granulocytic MDSC (PMN-MDSC) decreased in patients with non-ulcerated tumors ( P = 0.023), while the proportion remained stable in patients with ulcerated tumors ( P = 0.121). The reduction in the proportion PMN-MDSC in non-ulcerated patients coincided with a statistically significant increase in the proportion of CD14 + /CD15 + MDSC ( P = 0.008), resulting in a greater proportion of CD14 + /CD15 + MDSC in non-ulcerated patients as compared to ulcerated melanoma patients following two infusions of ICIs (27.3 ± 19.2% vs 16.1 ± 19.2%; P = 0.008). The trajectories of the MDSC populations described here provide insight into the altered tumor microenvironment in ulcerated melanoma and highlight key changes in a cell population that could contribute to immunotherapy resistance.
Collapse
Affiliation(s)
- Colin D Angell
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Steven H Sun
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, Ohio
| | - Gabriella Lapurga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Brooke Benner
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Dionisia Quiroga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | | | | | - David Abood
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Andrew Stiff
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Megan Duggan
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Demond Handley
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Erin Nagle
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - J Harrison Howard
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Hiral Shah
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kari L Kendra
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William E Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Lee OV, Ji DX, Rosa BA, Jaye DL, Suliman S, Mitreva M, Gabay C, Vance RE, Kotov DI. Interleukin-1 receptor antagonist is a conserved early factor for exacerbating tuberculosis susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.27.564420. [PMID: 37961447 PMCID: PMC10634924 DOI: 10.1101/2023.10.27.564420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes 1.25 million deaths a year. However, tuberculosis (TB) pathogenesis remains poorly understood and is not fully recapitulated in standard mouse models. Here we find that gene signatures from three different Mtb-susceptible mouse models predict active TB disease in humans significantly better than a signature from resistant C57BL/6 (B6) mice. Conserved among susceptible mice, non-human primates, and humans, but largely absent from B6 mice, was Mtb-induced differentiation of macrophages into an Spp1 + differentiation state. Spp1 + macrophages expressed high levels of immunosuppressive molecules including IL-1 receptor antagonist (IL-1Ra). IL-1Ra was previously reported to cause Mtb susceptibility in one mouse model, but whether IL-1Ra is broadly important remains uncertain. Here we report that enhancement of IL-1 signaling via deletion of IL-Ra promoted bacterial control across three susceptible mouse models. We found IL-1 signaling amplified production of multiple cytokines by lymphoid and stromal cells, providing a multifactorial mechanism for how IL-1 promotes Mtb control. Our results indicate that myeloid cell expression of immunosuppressive molecules, in particular IL-1 receptor antagonist, is a conserved early mechanism limiting Mtb control in mice, non-human primates, and humans.
Collapse
Affiliation(s)
- Ophelia V. Lee
- Divison of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Daisy X. Ji
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David L. Jaye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Sara Suliman
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94115, USA
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Cem Gabay
- Division of Rheumatology, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Russell E. Vance
- Divison of Immunology and Molecular Medicine, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Dmitri I. Kotov
- Division of Infectious Diseases, Department of Medicine, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
11
|
Santibanez JF. Myeloid-Derived Suppressor Cells: Implications in Cancer Immunology and Immunotherapy. FRONT BIOSCI-LANDMRK 2025; 30:25203. [PMID: 40152373 DOI: 10.31083/fbl25203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 03/29/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) are believed to be key promoters of tumor development and are recognized as a hallmark of cancer cells' ability to evade the immune system evasion. MDSC levels often increase in peripheral blood and the tumor microenvironment (TME). These cells exert immunosuppressive functions, weakening the anticancer immune surveillance system, in part by repressing T-cell immunity. Moreover, MDSCs may promote tumor progression and interact with cancer cells, increasing MDSC expansion and favoring an immunotolerant TME. This review analyzes the primary roles of MDSCs in cancer and T-cell immunity, discusses the urgent need to develop effective MDSC-targeted therapies, and highlights the potential synergistic combination of MDSC targeting with chimeric antigen receptors and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, 8370993 Santiago, Chile
| |
Collapse
|
12
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
13
|
Li C, Xue Y, Yinwang E, Ye Z. The Recruitment and Immune Suppression Mechanisms of Myeloid-Derived Suppressor Cells and Their Impact on Bone Metastatic Cancer. Cancer Rep (Hoboken) 2025; 8:e70044. [PMID: 39947253 PMCID: PMC11825175 DOI: 10.1002/cnr2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND MDSCs are immature neutrophils and monocytes with immunosuppressive potentials, involving mononuclear MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs). RECENT FINDINGS They are significant components of the tumor microenvironment (TME). Besides, recent studies also verified that MDSCs also facilitated the progression of bone metastasis by regulating the network of cytokines and the function of immune cells. CONCLUSION It is necessary to summarize the mechanisms of MDSC recruitment and immunosuppression, and their impact on bone metastasis.
Collapse
Affiliation(s)
- Chengyuan Li
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yucheng Xue
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Eloy Yinwang
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhaoming Ye
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
14
|
Yu Y, Tao Y, Ma J, Li J, Song Z. Targeting the tumor microenvironment with mesenchymal stem cells based delivery approach for efficient delivery of anticancer agents: An updated review. Biochem Pharmacol 2025; 232:116725. [PMID: 39746456 DOI: 10.1016/j.bcp.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/14/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Drug delivery to cancer cells continues to present a major therapeutic challenge. Mesenchymal stem cells (MSCs) possess an intrinsic ability to migrate specifically to tumor tissues, making them promising candidates for targeted drug delivery. Evidence from preclinical studies indicates that MSCs loaded with therapeutic anti-cancer agents exhibit considerable anti-tumor activity. Moreover, several clinical trials are currently evaluating their effectiveness in cancer patients. The integration of MSCs with synthetic nanoparticles (NPs) enhances their therapeutic potential, particularly through the use of cell membrane-coated NPs, which represent a significant advancement in the field. This review systematically investigates the tumor microenvironment, the sources of MSCs, the tumor homing mechanisms, and the methods of loading and releasing anticancer drugs from MSCs. Furthermore, cutting-edge strategies to improve the efficacy of MSCs based drug delivery systems (DDS) including the innovative use of MSC membrane coated nanoparticles have been discussed. The study concludes with an overview of the therapeutic use of MSCs as drug carriers, including a detailed analysis of the mechanisms by which MSCs deliver therapeutics to cancer cells, enabling targeted drug delivery. It aims to elucidate the current state of this approach, identify key areas for development, and outline potential future directions for advancing MSCs based cancer therapies.
Collapse
Affiliation(s)
- Yang Yu
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun 130000, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Jian Li
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun 130000, China
| | - Zhidu Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
15
|
Molaro MC, Battisegola C, Schiano ME, Failla M, Rimoli MG, Lazzarato L, Chegaev K, Sodano F. Synthesis of Arginase Inhibitors: An Overview. Pharmaceutics 2025; 17:117. [PMID: 39861764 PMCID: PMC12068017 DOI: 10.3390/pharmaceutics17010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Arginase (ARG) is a binuclear manganese-containing metalloenzyme that can convert L-arginine to L-ornithine and urea and plays a key role in the urea cycle. It also mediates different cellular functions and processes such as proliferation, senescence, apoptosis, autophagy, and inflammatory responses in various cell types. In mammals, there are two isoenzymes, ARG-1 and ARG-2; they are functionally similar, but their coding genes, tissue distribution, subcellular localization, and molecular regulation are distinct. In recent decades, the abnormal expression of ARG-1 or ARG-2 has been reported to be increasingly linked to a variety of diseases, including cardiovascular disease, inflammatory bowel disease, Alzheimer's disease, and cancer. Therefore, considering the current relevance of this topic and the need to address the growing demand for new and more potent ARG inhibitors in the context of various diseases, this review was conceived. We will provide an overview of all classes of ARG inhibitors developed so far including compounds of synthetic, natural, and semisynthetic origin. For the first time, the synthesis protocol and optimized reaction conditions of each molecule, including those reported in patent applications, will be described. For each molecule, its inhibitory activity in terms of IC50 towards ARG-1 and ARG-2 will be reported specifying the type of assay conducted.
Collapse
Affiliation(s)
- Maria Cristina Molaro
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (M.C.M.); (C.B.); (M.E.S.); (M.G.R.)
| | - Chiara Battisegola
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (M.C.M.); (C.B.); (M.E.S.); (M.G.R.)
| | - Marica Erminia Schiano
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (M.C.M.); (C.B.); (M.E.S.); (M.G.R.)
| | - Mariacristina Failla
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.F.); (L.L.); (K.C.)
| | - Maria Grazia Rimoli
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (M.C.M.); (C.B.); (M.E.S.); (M.G.R.)
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.F.); (L.L.); (K.C.)
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.F.); (L.L.); (K.C.)
| | - Federica Sodano
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (M.C.M.); (C.B.); (M.E.S.); (M.G.R.)
| |
Collapse
|
16
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Zhao X, Yang L, Pan J, Zeng Z, Zhang T, Yang Y, Zhang J, Chen T, Xiao Z, Pan W. CXCL8 modulates M0 macrophage proliferation and polarization to influence tumor progression in cervical cancer. Sci Rep 2025; 15:790. [PMID: 39755693 PMCID: PMC11700176 DOI: 10.1038/s41598-024-81726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME. A nine-gene prognostic model constructed from immune gene signatures highlighted CXCL8 as a key regulator of M0 macrophage behavior. Functional experiments demonstrated that CXCL8 knockdown in M0 macrophages inhibited their proliferation, shifted polarization toward an M1-dominant phenotype, and reduced tumor-promoting M2 polarization. Co-culture experiments with CXCL8-deficient M0 macrophages further revealed a suppression of HeLa cell proliferation, migration, and invasion. These findings position M0 macrophages as central regulators within the TME and suggest that targeting pathways like CXCL8 could provide novel therapeutic strategies for improving outcomes in CESC patients.
Collapse
Affiliation(s)
- Xiyan Zhao
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Li Yang
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Department of Medical Laboratory science, Guizhou Medical University, Guizhou, Guiyang, 550004, China
| | - Jigang Pan
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Zhirui Zeng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Tuo Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Yushi Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Jingjing Zhang
- Affiliated Children's Hospital, Nanjing Medical University School of Pediatrics, Nanjing, Jiangsu, 210008, China
| | - Tengxiang Chen
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China.
| | - Ziwen Xiao
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
| |
Collapse
|
18
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2025; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
19
|
Xu X, Lin J, Wang J, Wang Y, Zhu Y, Wang J, Guo J. SPP1 expression indicates outcome of immunotherapy plus tyrosine kinase inhibition in advanced renal cell carcinoma. Hum Vaccin Immunother 2024; 20:2350101. [PMID: 38738709 PMCID: PMC11093034 DOI: 10.1080/21645515.2024.2350101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Clinical guidelines have recently advised combination therapy involving immunotherapy (IO) and tyrosine kinase inhibitors (TKI) as the first-line therapy approach for advanced renal cell carcinoma (RCC). Nevertheless, there is currently no available biomarker that can effectively distinguish the progression-free survival (PFS). RNA-sequencing and immunohistochemistry were conducted on our cohort of metastatic RCC patients, namely ZS-MRCC, who received combination therapy consisting of IO and TKI. We further applied RNA-sequencing, immunohistochemistry, and flow cytometry to examine the immune cell infiltration and functionality inside the tumor microenvironment of high-risk localized RCC samples. SPP1 expression was significantly higher in non-responders to IO-TKI therapy. Elevated levels of SPP1 were associated with poor PFS in both the ZS-MRCC cohort (HR = 2.73, p = .018) and validated in the JAVELIN Renal 101 cohort (HR = 1.61, p = .004). By multivariate Cox analysis, SPP1 was identified as a significant independent prognosticator. Furthermore, there existed a negative correlation between elevated levels of SPP1 and the presence of GZMB+CD8+ T cells (Spearman's ρ= -0.48, p < .001). Conversely, SPP1 expression is associated with T cell exhaustion markers. A significant increase in the abundance of Tregs was observed in tumors with high levels of SPP1. Additionally, a machine-learning-based model was constructed to predict the benefit of IO-TKI treatment. High SPP1 is associated with therapeutic resistance and unfavorable PFS in IO-TKI therapy. SPP1 expression have also been observed to be indicative of malfunction and exhaustion in T cells. Increased SPP1 expression has the potential to serve as a potential biomarker for treatment selection of metastatic RCC.
Collapse
Affiliation(s)
- Xianglai Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Jinglai Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Jiahao Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
21
|
Sadhukhan P, Feng M, Illingworth E, Sloma I, Ooki A, Matoso A, Sidransky D, Johnson BA, Marchionni L, Sillé FC, Choi W, McConkey D, Hoque MO. YAP1 induces bladder cancer progression and promotes immune evasion through IL-6/STAT3 pathway and CXCL deregulation. J Clin Invest 2024; 135:e171164. [PMID: 39630608 PMCID: PMC11735109 DOI: 10.1172/jci171164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
The Hippo signaling pathway plays a key role in tumorigenesis in different cancer types. We investigated the role of the Hippo effector YAP1 in the tumor immune microenvironment (TIME) of urothelial carcinoma of the bladder (UCB) and evaluated the efficacy of immunotherapy in the context of YAP1 signaling. We performed numerous in vitro and in vivo experiments to determine the role of YAP1 using genetic and pharmacological attenuation of YAP1 activity. Briefly, RNA sequencing was carried out with mouse and human cell lines to identify novel YAP1-regulated downstream targets unbiasedly. We then experimentally confirmed that YAP1 regulates the TIME through the IL-6/STAT3 signaling pathway and varied C-X-C motif chemokine regulation. We analyzed several human sample sets to explore the TIME status in the context of YAP1 expression. Our data indicate that YAP1 attenuation decreases M2 macrophages and myeloid-derived suppressor cells in the TIME compared with YAP1-expressing cells. In summary, this study provides insights into YAP1 signaling as a driver for cancer stemness and an inducer of immunosuppressive TIME. Moreover, the therapeutic efficacy of YAP1 attenuation indicates that combined blockade of YAP1 and immune checkpoints may yield clinical value for treating patients with UCB.
Collapse
Affiliation(s)
| | - Mingxiao Feng
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Illingworth
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ido Sloma
- Champions Oncology, R&D, Baltimore, Maryland, USA
| | - Akira Ooki
- Department of Otolaryngology–Head and Neck Surgery and
| | | | - David Sidransky
- Department of Otolaryngology–Head and Neck Surgery and
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Burles A. Johnson
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luigi Marchionni
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Fenna C.M. Sillé
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Woonyoung Choi
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David McConkey
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohammad O. Hoque
- Department of Otolaryngology–Head and Neck Surgery and
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Rafaqat S, Khurshid H, Hafeez R, Arif M, Zafar A, Gilani M, Ashraf H, Rafaqat S. Role of Interleukins in Pancreatic Cancer: A Literature Review. J Gastrointest Cancer 2024; 55:1498-1510. [PMID: 39256264 DOI: 10.1007/s12029-024-01111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE This review article summarizes the pathophysiological aspects of interleukins (ILs) including IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, and IL-10 in pancreatic cancer (PC). METHODS Science Direct, PubMed, and Google Scholar were used for the literature review. The search was conducted until August 12, 2024, and particular keywords such as "Pancreatic Cancer," "Interleukins," "Pathophysiological Aspects," "Immunosuppression," "Invasiveness," and "Metastasis" were used. Focusing on interleukins related to pancreatic cancer, 61 original studies were included: 32 studies for human patients, 16 studies for animal models, and 13 studies for both animal models and human patients. All types of PC were considered. The timeframe of 1991 to 2024 was chosen for clinical studies. RESULTS In epithelial pancreatic tumors, IL-1 is a major inflammation factor. Serum concentrations of soluble interleukin-2-receptor were considerably greater in patients with PC and chronic pancreatitis than in healthy individuals. In comparison to controls, pancreatic cancer patients had considerably greater levels of macrophage colony-stimulating factor and significantly lower levels of stem cell factor and IL-3. The tissues and cells of pancreatic cancer have higher concentrations of IL-4 receptors. IL-5 has a role in the accumulation of pancreatic fibrosis. For individuals with pancreatic ductal adenocarcinoma (PDAC), a high serum level of IL-6 may be a separate risk factor for the development of widespread liver metastases. PDAC patients' peripheral blood mononuclear cells exhibit a substantial upregulation of IL-7 receptor. The role of IL-8 in the growth and spread of PC in humans. The miR-200a/β-catenin axis may be the mechanism by which IL-9 stimulates the proliferation and metastasis of PC cells. Blocking IL-10 in the local microenvironment appears to result in a significant reversal of tumor-induced immunosuppression. CONCLUSION The article concludes that interleukins 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 played significant roles in the pathogenesis of PC.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan.
| | - Huma Khurshid
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Ramsha Hafeez
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Mehnaz Arif
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Ayesha Zafar
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Mahrukh Gilani
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Habiba Ashraf
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Sana Rafaqat
- Department of Biotechnology (Human Genetics), Lahore College for Women University, Lahore, 54000, Pakistan
| |
Collapse
|
23
|
Kang W, Wang C, Wang M, Liu M, Hu W, Liang X, Yang J, Zhang Y. A key regulator of tumor-associated neutrophils: the CXCR2 chemokine receptor. J Mol Histol 2024; 55:1051-1061. [PMID: 39269537 DOI: 10.1007/s10735-024-10260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
In recent years, with the advance of research, the role of tumor-associated neutrophils (TANs) in tumors has become a research hotspot. As important effector cells in the innate immune system, neutrophils play a key role in the immune and inflammatory responses of the body. As the first line of defense against bacterial and fungal infections, neutrophils have the ability to kill invading pathogens. In the pathological state of malignant tumors, the phenotype of neutrophils is altered and has an important regulatory function in tumor development. The C-X-C motif chemokine receptor 2(CXCR2) is a key molecule that mediates the migration and aggregation signaling pathway of immune cells, especially neutrophils. This review focuses on the regulation of CXCR2 on TANs in the process of tumorigenesis and development, and emphasizes the application significance of CXCR2 inhibitors in blocking the migration of TANs to tumors.
Collapse
Affiliation(s)
- Wenyan Kang
- Department of Gynecology, The First Affiliated Hospital, Hengyang School of Medicine, University of South China, Hengyang, 421001, Hunan, P.R. China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Minhui Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Meiqi Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Wei Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China
| | - Juanli Yang
- Department of Gynecology, The First Affiliated Hospital, Hengyang School of Medicine, University of South China, Hengyang, 421001, Hunan, P.R. China.
| | - Yang Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 420001, Hunan, China.
| |
Collapse
|
24
|
Song C, Tong T, Dai B, Zhu Y, Chen E, Zhang M, Zhang W. Osteoimmunology in bone malignancies: a symphony with evil. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:354-368. [PMID: 39735445 PMCID: PMC11674455 DOI: 10.1016/j.jncc.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 12/31/2024] Open
Abstract
Bone marrow is pivotal for normal hematopoiesis and immune responses, yet it is often compromised by malignancies. The bone microenvironment (BME), composed of bone and immune cells, maintains skeletal integrity and blood production. The emergence of primary or metastatic tumors in the skeletal system results in severe complications and contributes significantly to cancer-related mortality. These tumors set off a series of interactions among cancer, bone, and immune cells, and disrupt the BME locally or distantly. However, the drivers, participants, and underlying molecules of these interactions are not fully understood. This review explores the crosstalk between bone metabolism and immune responses, synthesizing current knowledge on the intersection of cancer and osteoimmune biology. It outlines how bone marrow immune cells can either facilitate or hinder tumor progression by interacting with bone cells and pinpoints the molecules responsible for immunosuppression within bone tumors. Moreover, it discusses how primary tumors remotely alter the BME, leading to systemic immune suppression in cancer patients. This knowledge provides critical rationales for emerging immunotherapies in the treatment of bone-related tumors. Taken together, by summarizing the intricate relationship between tumor cells and the BME, this review aims to deepen the understanding of the diversity, complexity, and dynamics at play during bone tumor progression. Ultimately, it highlights the potential of targeting bone-tumor interactions to correct aberrant immune functions, thereby inhibiting tumor growth and metastasis.
Collapse
Affiliation(s)
- Churui Song
- Department of Breast Surgery and Oncology, Cancer Institute, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tie Tong
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Biqi Dai
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yue Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Elina Chen
- College of Natural Sciences, University of Texas at Austin, 110 Inner Campus Drive, Austin, USA
| | - Min Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijie Zhang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, and Department of Orthopaedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Akkari L, Amit I, Bronte V, Fridlender ZG, Gabrilovich DI, Ginhoux F, Hedrick CC, Ostrand-Rosenberg S. Defining myeloid-derived suppressor cells. Nat Rev Immunol 2024; 24:850-857. [PMID: 38969773 DOI: 10.1038/s41577-024-01062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France.
- Paris-Saclay University, Paris, France.
| | - Catherine C Hedrick
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA.
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Suzanne Ostrand-Rosenberg
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
26
|
Yu K, Wang Y, Yu C, Han L, Li K, Miao K, Ni L, Wen Z, Chen C, Rao X, Wang DW, Zhou L, Zhao C. Regulatory effect of rapamycin on recruitment and function of myeloid-derived suppressor cells in heart failure. Int Immunopharmacol 2024; 141:112965. [PMID: 39186836 DOI: 10.1016/j.intimp.2024.112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Immune response and inflammation play important roles in the physiological and pathophysiological processes of heart failure (HF). In our previous study, myeloid-derived suppressor cells (MDSCs), a heterogeneous group of immature myeloid cells with anti-inflammatory and immunosuppressive functions, were shown to exert cardioprotective effects in HF. The pharmacological targeting of MDSCs using rapamycin may emerge as a promising strategy for the prevention and treatment of HF. However, the specific mechanisms underlying rapamycin-induced MDSC accumulation remain unclear. Our study aimed to clarify the effects of rapamycin on the recruitment and function of MDSCs in HF, exploring new therapeutic options for the prevention and treatment of HF. METHODS We used transverse aortic constriction surgery and isoproterenol injection to establish HF models. Flow cytometry, reverse transcription polymerase chain reaction, transcriptomics and western blot were used to explore the regulation of rapamycin on recruitment and function of MDSCs in HF. Furthermore, rapamycin and granulocyte-macrophage colony-stimulating factor (GM-CSF) were combined to induce exogenous MDSCs from bone marrow cells. RESULTS Rapamycin promotes the recruitment of MDSCs by inhibiting their maturation and differentiation via suppression of the Wnt signaling in HF mice and enhanced the immunosuppressive function of MDSCs via the NF-κB signaling. Furthermore, exogenous MDSCs induced by rapamycin and GM-CSF can significantly alleviate transverse aortic constriction-induced cardiac dysfunction. CONCLUSIONS The pharmacological targeting of MDSCs using rapamycin is a promising strategy for the prevention and treatment of HF.
Collapse
Affiliation(s)
- Kun Yu
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinhui Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengxin Yu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Li
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Miao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Ni
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wen
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Zhou
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chunxia Zhao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
27
|
Guo J, Si G, Song X, Si F. Mediating role of circulating inflammatory proteins in the effect of immune cells on esophageal cancer risk: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40374. [PMID: 39496002 PMCID: PMC11537666 DOI: 10.1097/md.0000000000040374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
The immune system and inflammatory processes play crucial roles in the development of esophageal cancer (EC). This study aimed to investigate the causal relationships between 731 immune cell phenotypes, 91 circulating inflammatory proteins, and EC, with a particular focus on the mediating role of circulating inflammatory proteins. Utilizing public genetic data, we applied a 2-sample Mendelian Randomization (MR) method to examine the causal relationships between 731 immune cell phenotypes, 91 circulating inflammatory proteins, and EC. Comprehensive sensitivity analyses were conducted to assess the robustness, heterogeneity, and horizontal pleiotropy of the MR results. Additionally, a 2-step MR method was employed to quantify the impact and proportion of immune cell phenotypes mediated by circulating inflammatory proteins on EC. Eleven immune cell phenotypes and 1 inflammatory cytokine were found to have causal relationships with EC, with results stable across all sensitivity analyses. Mediation analyses revealed that only 2 cell phenotypes had causal relationships with EC through interleukin-10: CD3 on human leukocyte antigen-DR (HLA-DR)+ T cells (mediation effect = -0.009; mediation proportion = 12.01%) and monocytic myeloid-derived suppressor cell absolute count (mediation effect = 0.018; mediation proportion = 18.97%). This study enhances the understanding of the causal relationships between immune cells, circulating inflammatory proteins, and EC. The findings highlight the potential mediating role of interleukin-10, providing new insights into the mechanisms by which immune cells may influence esophageal tumorigenesis.
Collapse
Affiliation(s)
- Jinzhou Guo
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Laboratory of TCM Syndrome and Prescription Signaling, Academy of Zhongjing, Zhengzhou, Henan, China
- Henan Key Laboratory of TCM Syndrome and Prescription Signaling, Henan International Joint, Zhengzhou, Henan, China
| | - Gao Si
- Department of Orthopedic, Peking University Third Hospital, Beijing, China
| | - Xuejie Song
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Laboratory of TCM Syndrome and Prescription Signaling, Academy of Zhongjing, Zhengzhou, Henan, China
- Henan Key Laboratory of TCM Syndrome and Prescription Signaling, Henan International Joint, Zhengzhou, Henan, China
| | - Fuchun Si
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Laboratory of TCM Syndrome and Prescription Signaling, Academy of Zhongjing, Zhengzhou, Henan, China
- Henan Key Laboratory of TCM Syndrome and Prescription Signaling, Henan International Joint, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Chen P, Yao Y, Tan H, Li J. Systemic treatments for radioiodine-refractory thyroid cancers. Front Endocrinol (Lausanne) 2024; 15:1346476. [PMID: 39473507 PMCID: PMC11518755 DOI: 10.3389/fendo.2024.1346476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/27/2024] [Indexed: 03/17/2025] Open
Abstract
Differentiated thyroid cancers (DTCs) constitute the primary histological subtype within thyroid cancer. Due to DTCs' distinctive radioiodine (RAI) uptake mechanism, standard treatment involving surgery, with or without adjunctive therapy using RAI and levothyroxine inhibition, typically yields favorable prognoses for the majority of patients with DTCs. However, this favorable outcome does not extend to individuals with decreased RAI uptake, termed radioiodine-refractory thyroid cancers (RAI-RTCs). Recent research has revealed that the genetic mutations and gene rearrangements affecting sites such as RTKs, RAS, BRAF and TERTp lead to structural and functional abnormalities in encoded proteins. These abnormalities aberrantly activate signaling pathways like the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-hydroxykinase (PI3K) signaling pathways, resulting in thyroid cells dedifferentiation, sodium/iodide symporter (NIS) dysfunction, and consequent the RAI-refractory nature of DTCs. Targeted therapy tailored to mutations presents a promising avenue for the treatment of RAI-RTCs. Lenvatinib and sorafenib, multi-kinase inhibitors, represent the standard first-line systemic treatment options, while cabozantinib is the standard second-line treatment option, for this purpose. Furthermore, ongoing clinical trials are exploring selective kinase inhibitors, immune checkpoint inhibitors, and combination therapies. Notably, numerous clinical trials have demonstrated that selective kinase inhibitors like BRAF, MEK and mTOR inhibitors can restore RAI uptake in tumor cells. However, further validation through multicenter, large-sample, double-blinded randomized controlled trials are essential. Enhanced treatment strategies and innovative therapies are expected to benefit a broader spectrum of patients as these advancements progress.
Collapse
Affiliation(s)
| | | | - Huiwen Tan
- Division of Endocrinology and Metabolism, West China Hospital of Sichuan
University, Chengdu, China
| | - Jianwei Li
- Division of Endocrinology and Metabolism, West China Hospital of Sichuan
University, Chengdu, China
| |
Collapse
|
29
|
Tan Y, Ren M, Hou J, Hou T, Lin X. Increased CD14 +HLA-DR -/low myeloid-derived suppressor cells can be regarded as a biomarker on disease severity and response to therapy in acute coronary syndrome. PeerJ 2024; 12:e18154. [PMID: 39399429 PMCID: PMC11468897 DOI: 10.7717/peerj.18154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/01/2024] [Indexed: 10/15/2024] Open
Abstract
Purpose This study aimed to investigate the dynamic changes in monocytic myeloid-derived suppressor cells (M-MDSCs) and their implications in the pathogenesis of acute coronary syndrome (ACS), shedding light on potential therapeutic targets. Experimental Design Peripheral blood samples were collected from 68 ACS patients, 35 stable angina pectoris (SAP) patients, and 30 healthy controls (HC). Multi-parameter flow cytometry was employed for analysis of M-MDSCs, explored with disease characteristics and progression. Results ACS patients exhibited an increased frequency of circulating M-MDSCs compared to SAP patients and HC. M-MDSCs levels demonstrated associations with ACS type, coronary artery lesions, multi-vessel disease, and cardiac dysfunction severity. Higher M-MDSCs levels were found in obese patients. Notably, therapy led to a significant decrease in M-MDSCs frequency. Furthermore, ACS patients exhibited elevated levels of interleukin (IL)-6, IL-10, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-α (TNF-α) in the cytokine profile associated with M-MDSCs. Increased expression of arginase-1(Arg-1) was observed in ACS patients, with positive correlations between M-MDSCs levels and IL-6, GM-CSF, and Arg-1 expression. The diagnostic performance of triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and M-MDSCs levels varied in predicting the severity of coronary artery stenosis, with TG showing higher specificity, HDL-C displaying higher sensitivity, and M-MDSCs levels demonstrating balanced sensitivity and specificity. Conclusions Assessment of M-MDSCs frequency holds promise as a predictive marker for disease progression and therapy response of coronary artery stenosis. The elevated presence of M-MDSCs suggests their potential role in modulating ACS-related inflammation.
Collapse
Affiliation(s)
- Yinsheng Tan
- Department of Cardiovascular, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Department of Cardiovascular, East District of First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Mingde Ren
- Department of Cardiovascular, Lu’an People’s Hospital of Anhui Province, Lu’an, Anhui Province, China
| | - Jie Hou
- Department of Cardiovascular, East District of First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Tao Hou
- Department of Cardiovascular, East District of First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xianhe Lin
- Department of Cardiovascular, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
30
|
Kapor S, Radojković M, Santibanez JF. Myeloid-derived suppressor cells: Implication in myeloid malignancies and immunotherapy. Acta Histochem 2024; 126:152183. [PMID: 39029317 DOI: 10.1016/j.acthis.2024.152183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Myeloid malignancies stem from a modified hematopoietic stem cell and predominantly include acute myeloid leukemia, myelodysplastic neoplasms, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory properties by governing the innate and adaptive immune systems, creating a permissive and supportive environment for neoplasm growth. This review examines the key characteristics of MDSCs in myeloid malignancies, highlighting that an increased MDSC count corresponds to heightened immunosuppressive capabilities, fostering an immune-tolerant neoplasm microenvironment. Also, this review analyzes and describes the potential of combined cancer therapies, focusing on targeting MDSC generation, expansion, and their inherent immunosuppressive activities to enhance the efficacy of current cancer immunotherapies. A comprehensive understanding of the implications of myeloid malignancies may enhance the exploration of immunotherapeutic strategies for their potential application.
Collapse
Affiliation(s)
- Suncica Kapor
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia
| | - Milica Radojković
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia; Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, Belgrade 11000, Serbia
| | - Juan F Santibanez
- Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, Belgrade 11129, Serbia; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, General Gana 1780, Santiago 8370854, Chile.
| |
Collapse
|
31
|
Ramezani-Aliakbari K, Jalali SA, Alinejad M, Jeddi-Tehrani M, Shabani M. 5-Fluorouracil Effectively Depletes Tumor Induced Myeloid Derived Suppressor Cells in 4T1 Mammary Carcinoma Model. Avicenna J Med Biotechnol 2024; 16:244-250. [PMID: 39606677 PMCID: PMC11589428 DOI: 10.18502/ajmb.v16i4.16740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/20/2024] [Indexed: 11/29/2024] Open
Abstract
Background Myeloid Derived Suppressor Cells (MDSCs) are capable of inhibiting both innate and adaptive immune responses and accumulate in the microenvironment of breast tumors. Hence, MDSC depletion by chemotherapeutic agents can improve clinical efficacy of cancer immunotherapy. The effects of 5-FU and doxorubicin agents on MDSC reduction in 4T1 breast cancer murine model were evaluated. Methods 5×105 of 4T1 tumor cells were injected into mammary fat pad of BALB/c female mice. Tumor bearing mice were randomly divided into 4 groups: PBS receiving control group, doxorubicin receiving groups at doses of 2.5 and 5 mg/kg, and 5-FU receiving group at dose of 50 mg/kg. Doxorubicin and 5-FU agents were intraperitoneally administrated at three doses with 5-day intervals and five doses for three times a week, respectively. Then, on day 20 post tumor cells injection, spleens and tumors were isolated to determine frequency of CD11b+ Gr1+ MDSCs by flow cytometry analysis. Results 5-FU was able to reduce significantly both splenic and interatumoral MDSCs comparing to control group (p=0.0276 and p=0.0067, respectively). Also, Doxorubicin treatment at dose of 50 mg/kg was associated to a significant reduction of splenic MDSCs in comparison to untreated group (p=0.0382). However, only 5-FU injection led to inhibit notably tumor growth in comparison to control group (p=0.0139). Conclusion Findings show that 5-FU has inhibitory effects on MDSCs and tumor growth in 4T1 tumor model. So, more investigations are needed to study combination of 5-FU with immune based approaches to enhance the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Khadijeh Ramezani-Aliakbari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamadan, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maedeh Alinejad
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Özbay Kurt FG, Cicortas BA, Balzasch BM, De la Torre C, Ast V, Tavukcuoglu E, Ak C, Wohlfeil SA, Cerwenka A, Utikal J, Umansky V. S100A9 and HMGB1 orchestrate MDSC-mediated immunosuppression in melanoma through TLR4 signaling. J Immunother Cancer 2024; 12:e009552. [PMID: 39266214 PMCID: PMC11409250 DOI: 10.1136/jitc-2024-009552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Immunotherapies for malignant melanoma are challenged by the resistance developed in a significant proportion of patients. Myeloid-derived suppressor cells (MDSC), with their ability to inhibit antitumor T-cell responses, are a major contributor to immunosuppression and resistance to immune checkpoint therapies in melanoma. Damage-associated molecular patterns S100A8, S100A9, and HMGB1, acting as toll like receptor 4 (TLR4) and receptor for advanced glycation endproducts (RAGE) ligands, are highly expressed in the tumor microenvironment and drive MDSC activation. However, the role of TLR4 and RAGE signaling in the acquisition of MDSC immunosuppressive properties remains to be better defined. Our study investigates how the signaling via TLR4 and RAGE as well as their ligands S100A9 and HMGB1, shape MDSC-mediated immunosuppression in melanoma. METHODS MDSC were isolated from the peripheral blood of patients with advanced melanoma or generated in vitro from healthy donor-derived monocytes. Monocytes were treated with S100A9 or HMGB1 for 72 hours. The immunosuppressive capacity of treated monocytes was assessed in the inhibition of T-cell proliferation assay in the presence or absence of TLR4 and RAGE inhibitors. Plasma levels of S100A8/9 and HMGB1 were quantified by ELISA. Single-cell RNA sequencing (scRNA-seq) was performed on monocytes from patients with melanoma and healthy donors. RESULTS We showed that exposure to S100A9 and HMGB1 converted healthy donor-derived monocytes into MDSC through TLR4 signaling. Our scRNA-seq data revealed in patient monocytes enriched inflammatory genes, including S100 and those involved in NF-κB and TLR4 signaling, and a reduced major histocompatibility complex II gene expression. Furthermore, elevated plasma S100A8/9 levels correlated with shorter progression-free survival in patients with melanoma. CONCLUSIONS These findings highlight the critical role of TLR4 and, to a lesser extent, RAGE signaling in the conversion of monocytes into MDSC-like cells, underscore the potential of targeting S100A9 to prevent this conversion, and highlight the prognostic value of S100A8/9 as a plasma biomarker in melanoma.
Collapse
Affiliation(s)
- Feyza Gül Özbay Kurt
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Beatrice-Ana Cicortas
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bianca M Balzasch
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina De la Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Volker Ast
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ece Tavukcuoglu
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Cagla Ak
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian A Wohlfeil
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
- Department of Dermatology Venereology and Allergology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
33
|
Marzęta-Assas P, Jacenik D, Zasłona Z. Pathophysiology of Arginases in Cancer and Efforts in Their Pharmacological Inhibition. Int J Mol Sci 2024; 25:9782. [PMID: 39337272 PMCID: PMC11431790 DOI: 10.3390/ijms25189782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Arginases are key enzymes that hydrolyze L-arginine to urea and L-ornithine in the urea cycle. The two arginase isoforms, arginase 1 (ARG1) and arginase 2 (ARG2), regulate the proliferation of cancer cells, migration, and apoptosis; affect immunosuppression; and promote the synthesis of polyamines, leading to the development of cancer. Arginases also compete with nitric oxide synthase (NOS) for L-arginine, and their participation has also been confirmed in cardiovascular diseases, stroke, and inflammation. Due to the fact that arginases play a crucial role in the development of various types of diseases, finding an appropriate candidate to inhibit the activity of these enzymes would be beneficial for the therapy of many human diseases. In this review, based on numerous experimental, preclinical, and clinical studies, we provide a comprehensive overview of the biological and physiological functions of ARG1 and ARG2, their molecular mechanisms of action, and affected metabolic pathways. We summarize the recent clinical trials' advances in targeting arginases and describe potential future drugs.
Collapse
Affiliation(s)
| | - Damian Jacenik
- Molecure S.A., 101 Żwirki i Wigury St., 02-089 Warsaw, Poland
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | | |
Collapse
|
34
|
Gandhi M, Sharma B, Nair S, Vaidya ADB. Current Insights into CAR T-Cell-Based Therapies for Myelodysplastic Syndrome. Pharm Res 2024; 41:1757-1773. [PMID: 39187686 DOI: 10.1007/s11095-024-03761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Myelodysplastic syndromes (MDS) are due to defective hematopoiesis in bone marrow characterized by cytopenia and dysplasia of blood cells, with a varying degree of risk of acute myeloid leukemia (AML). Currently, the only potentially curative strategy is hematopoietic stem cell transplantation (HSCT). Many patients are ineligible for HSCT, due to late diagnosis, presence of co-morbidities, old age and complications likely due to graft-versus-host disease (GvHD). As a consequence, patients with MDS are often treated conservatively with blood transfusions, chemotherapy, immunotherapy etc. based on the grade and manifestations of MDS. The development of chimeric antigen receptor (CAR)-T cell therapy has revolutionized immunotherapy for hematological malignancies, as evidenced by a large body of literature. However, resistance and toxicity associated with it are also a challenge. Hence, there is an urgent need to develop new strategies for immunological and hematopoetic management of MDS. Herein, we discuss current limitations of CAR T-cell therapy and summarize novel approaches to mitigate this. Further, we discuss the in vivo activation of tumor-specific T cells, immune check inhibitors (ICI) and other approaches to normalize the bone marrow milieu for the management of MDS.
Collapse
Affiliation(s)
- Manav Gandhi
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Bhirisha Sharma
- University of Mumbai, Santa Cruz (East), Mumbai, 400055, India
| | - Sujit Nair
- Viridis Biopharma Pvt. Ltd, Mumbai, 400022, India.
- Phytoveda Pvt. Ltd, Mumbai, 400022, India.
| | - Ashok D B Vaidya
- Kasturba Health Society-Medical Research Centre, Vile Parle (West), Mumbai, 400056, India
| |
Collapse
|
35
|
Li X, Ding H, Feng G, Huang Y. Role of angiotensin converting enzyme in pathogenesis associated with immunity in cardiovascular diseases. Life Sci 2024; 352:122903. [PMID: 38986897 DOI: 10.1016/j.lfs.2024.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Angiotensin converting enzyme (ACE) is not only a critical component in the renin-angiotensin system (RAS), but also suggested as an important mediator for immune response and activity, such as immune cell mobilization, metabolism, biogenesis of immunoregulatory molecules, etc. The chronic duration of cardiovascular diseases (CVD) has been increasingly considered to be triggered by uncontrolled pathologic immune reactions from myeloid cells and lymphocytes. Considering the potential anti-inflammatory effect of the traditional antihypertensive ACE inhibitor (ACEi), we attempt to elucidate whether ACE and its catalytically relevant substances as well as signaling pathways play a role in the immunity-related pathogenesis of common CVD, such as arterial hypertension, atherosclerosis and arrythmias. ACEi was also reported to benefit the prognoses of COVID-19-positive patients with CVD, and COVID-19 disease with preexisting CVD or subsequent cardiovascular damage is featured by a significant influx of immune cells and proinflammatory molecules, suggesting that ACE may also participate in COVID-19 induced cardiovascular injury, because COVID-19 disease basically triggers an overactive pathologic immune response. Hopefully, the ACE inhibition and manipulation of those associated bioactive signals could supplement the current medicinal management of various CVD and bring greater benefit to patients' cardiovascular health.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Huasheng Ding
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Gaoke Feng
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
36
|
Dong S, Zhao M, Zhu J, Li T, Yan M, Xing K, Liu P, Yu S, Ma J, He H. Natural killer cells: a future star for immunotherapy of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1442673. [PMID: 39234249 PMCID: PMC11371580 DOI: 10.3389/fimmu.2024.1442673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
The interplay between immune components and the epithelium plays a crucial role in the development and progression of head and neck squamous cell carcinoma (HNSCC). Natural killer (NK) cells, one of the main tumor-killing immune cell populations, have received increasing attention in HNSCC immunotherapy. In this review, we explore the mechanism underlying the interplay between NK cells and HNSCC. A series of immune evasion strategies utilized by cancer cells restrict HNSCC infiltration of NK cells. Overcoming these limitations can fully exploit the antineoplastic potential of NK cells. We also investigated the tumor-killing efficacy of NK cell-based immunotherapies, immunotherapeutic strategies, and new results from clinical trials. Notably, cetuximab, the most essential component of NK cell-based immunotherapy, inhibits the epidermal growth factor receptor (EGFR) signaling pathway and activates the immune system in conjunction with NK cells, inducing innate effector functions and improving patient prognosis. In addition, we compiled information on other areas for the improvement of patient prognosis using anti-EGFR receptor-based monoclonal antibody drugs and the underlying mechanisms and prognoses of new immunotherapeutic strategies for the treatment of HNSCC.
Collapse
Affiliation(s)
- Shuyan Dong
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jin Zhu
- Department of Pathology, Xi’an Daxing Hospital, Xi’an, China
| | - Ting Li
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingze Yan
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kaixun Xing
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Ma
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Hongjiang He
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
37
|
Mima Y, Ohtsuka T, Ebato I, Nakata Y, Tsujita A, Nakazato Y, Norimatsu Y. Review of T Helper 2-Type Inflammatory Diseases Following Immune Checkpoint Inhibitor Treatment. Biomedicines 2024; 12:1886. [PMID: 39200350 PMCID: PMC11352049 DOI: 10.3390/biomedicines12081886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Immune checkpoints are mechanisms that allow cancer cells to evade immune surveillance and avoid destruction by the body's immune system. Tumor cells exploit immune checkpoint proteins to inhibit T cell activation, thus enhancing their resistance to immune attacks. Immune checkpoint inhibitors, like nivolumab, work by reactivating these suppressed T cells to target cancer cells. However, this reactivation can disrupt immune balance and cause immune-related adverse events. This report presents a rare case of prurigo nodularis that developed six months after administering nivolumab for lung adenocarcinoma. While immune-related adverse events are commonly linked to T helper-1- or T helper-17-type inflammations, T helper-2-type inflammatory reactions, as observed in our case, are unusual. The PD-1-PD-L1 pathway is typically associated with T helper-1 and 17 responses, whereas the PD-1-PD-L2 pathway is linked to T helper-2 responses. Inhibition of PD-1 can enhance PD-L1 functions, potentially shifting the immune response towards T helper-1 and 17 types, but it may also influence T helper-2-type inflammation. This study reviews T helper-2-type inflammatory diseases emerging from immune checkpoint inhibitor treatment, highlighting the novelty of our findings.
Collapse
Affiliation(s)
- Yoshihito Mima
- Department of Dermatology, Tokyo Metropolitan Police Hospital, Tokyo 164-8541, Japan
| | - Tsutomu Ohtsuka
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Ippei Ebato
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Yukihiro Nakata
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Akihiro Tsujita
- Department of Respiratory Medicine, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Yoshimasa Nakazato
- Department of Diagnostic Pathology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Yuta Norimatsu
- Department of Dermatology, International University of Health and Welfare Narita Hospital, Chiba 286-0124, Japan;
| |
Collapse
|
38
|
Li X, Chen Y, Liang Y, Shi W. 5-Fluorouracil resistance due to sphingosine kinase 2 overexpression in colorectal cancer is associated with myeloid-derived suppressor cell-mediated immunosuppressive effects. BMC Cancer 2024; 24:983. [PMID: 39118083 PMCID: PMC11313101 DOI: 10.1186/s12885-024-12742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
PURPOSE Colorectal cancer (CRC) is one of the top five cancer-related causes of mortality globally. Acquired resistance has hindered the effectiveness of 5-fluorouracil (5-FU), the main chemotherapeutic drug used to treat CRC. Sphingosine kinase 2 (SphK2) may be a cancer treatment target and involved in 5-FU resistance. METHODS Cell growth was examined using MTT and clone formation assays for SphK2 expression. To identify immune cells in mice, flow cytometry was performed. West blotting demonstrated alterations in cell division and inflammation-related proteins. SphK2 levels and inflammation-related variables were studied using Elisa. RESULTS Due to SphK2 overexpression, immunosuppression, and 5-FU resistance are caused by the development of myeloid-derived suppressor cells (MDSCs) subsequent to IL-6/STAT3 activation and alterations in the arginase (ARG-1) protein. After therapy, the combination of SphK2 inhibitors and 5-FU can effectively suppress MDSCs while increasing CD4+ and CD8+ T cell infiltration into the tumor microenvironment, lowering tumor burden, and exhibiting a therapeutic impact on CRC. CONCLUSIONS Our findings suggest that 5-FU treatment combined with simultaneous Spkh2 inhibition by ABC294640 has anti-tumor synergistic effects by influencing multiple effects on tumor cells, T cells, and MDSCs, potentially improving the poor prognosis of colorectal cancer patients.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yungao Chen
- Human Resources Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yulin Liang
- School of Nursing, Peking Union Medical College, Beijing, China
| | - Wenna Shi
- Department of Pharmacy and Shandong Provincial key Traditional Chinese Medical Discipline of Clinical Chinese pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
39
|
Han L, He J, Xie H, Gong Y, Xie C. Pan-cell death-related signature reveals tumor immune microenvironment and optimizes personalized therapy alternations in lung adenocarcinoma. Sci Rep 2024; 14:15682. [PMID: 38977778 PMCID: PMC11231366 DOI: 10.1038/s41598-024-66662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
This study constructed a comprehensive analysis of cell death modules in eliminating aberrant cells and remodeling tumor microenvironment (TME). Consensus analysis was performed in 490 lung adenocarcinoma (LUAD) patients based on 4 types of cell death prognostic genes. Intersection method divided these LUAD samples into 5 cell death risk (CDR) clusters, and COX regression analysis were used to construct the CDR signature (CDRSig) with risk scores. Significant differences of TME phenotypes, clinical factors, genome variations, radiosensitivity and immunotherapy sensitivity were observed in different CDR clusters. Patients with higher risk scores in the CDRSig tended to be immune-excluded or immune-desert, and those with lower risk scores were more sensitive to radiotherapy and immunotherapy. The results from mouse model showed that intense expression of the high-risk gene PFKP was associated with low CD8+ T cell infiltration upon radiotherapy and anti-PD-L1 treatment. Deficient assays in vitro confirmed that PFKP downregulation enhanced cGAS/STING pathway activation and radiosensitivity in LUAD cells. In conclusion, our studies originally performed a comprehensive cell death analysis, suggesting the importance of CDR patterns in reprogramming TME and providing novel clues for LUAD personalized therapies.
Collapse
Affiliation(s)
- Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jingyi He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Hongxin Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
40
|
Rodríguez-Bejarano OH, Parra-López C, Patarroyo MA. A review concerning the breast cancer-related tumour microenvironment. Crit Rev Oncol Hematol 2024; 199:104389. [PMID: 38734280 DOI: 10.1016/j.critrevonc.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is currently the most common malignant tumour in women and one of the leading causes of their death around the world. New and increasingly personalised diagnostic and therapeutic tools have been introduced over the last few decades, along with significant advances regarding the study and knowledge related to BC. The tumour microenvironment (TME) refers to the tumour cell-associated cellular and molecular environment which can influence conditions affecting tumour development and progression. The TME is composed of immune cells, stromal cells, extracellular matrix (ECM) and signalling molecules secreted by these different cell types. Ever deeper understanding of TME composition changes during tumour development and progression will enable new and more innovative therapeutic strategies to become developed for targeting tumours during specific stages of its evolution. This review summarises the role of BC-related TME components and their influence on tumour progression and the development of resistance to therapy. In addition, an account on the modifications in BC-related TME components associated with therapy is given, and the completed or ongoing clinical trials related to this topic are presented.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| |
Collapse
|
41
|
El-Tanani M, Rabbani SA, Babiker R, Rangraze I, Kapre S, Palakurthi SS, Alnuqaydan AM, Aljabali AA, Rizzo M, El-Tanani Y, Tambuwala MM. Unraveling the tumor microenvironment: Insights into cancer metastasis and therapeutic strategies. Cancer Lett 2024; 591:216894. [PMID: 38626856 DOI: 10.1016/j.canlet.2024.216894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
This comprehensive review delves into the pivotal role of the tumor microenvironment (TME) in cancer metastasis and therapeutic response, offering fresh insights into the intricate interplay between cancer cells and their surrounding milieu. The TME, a dynamic ecosystem comprising diverse cellular and acellular elements, not only fosters tumor progression but also profoundly affects the efficacy of conventional and emerging cancer therapies. Through nuanced exploration, this review illuminates the multifaceted nature of the TME, elucidating its capacity to engender drug resistance via mechanisms such as hypoxia, immune evasion, and the establishment of physical barriers to drug delivery. Moreover, it investigates innovative therapeutic approaches aimed at targeting the TME, including stromal reprogramming, immune microenvironment modulation, extracellular matrix (ECM)-targeting agents, and personalized medicine strategies, highlighting their potential to augment treatment outcomes. Furthermore, this review critically evaluates the challenges posed by the complexity and heterogeneity of the TME, which contribute to variable therapeutic responses and potentially unintended consequences. This underscores the need to identify robust biomarkers and advance predictive models to anticipate treatment outcomes, as well as advocate for combination therapies that address multiple facets of the TME. Finally, the review emphasizes the necessity of an interdisciplinary approach and the integration of cutting-edge technologies to unravel the intricacies of the TME, thereby facilitating the development of more effective, adaptable, and personalized cancer treatments. By providing critical insights into the current state of TME research and its implications for the future of oncology, this review highlights the dynamic and evolving landscape of this field.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Rasha Babiker
- Physiology Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Imran Rangraze
- Internal Medicine Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Sushesh Srivastsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Manfredi Rizzo
- (D)epartment of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Yahia El-Tanani
- Medical School, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
42
|
Yaseen MM, Abuharfeil NM, Darmani H. MDSC expansion during HIV infection: regulators, ART and immune reconstitution. Genes Immun 2024; 25:242-253. [PMID: 38605259 DOI: 10.1038/s41435-024-00272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) become expanded in different pathological conditions including human immunodeficiency virus (HIV) infection and this may worsen the disease status and accelerate disease progression. In HIV infection, MDSCs suppress anti-HIV immune responses and hamper immune reconstitution. Understanding the factors and mechanisms of MDSC expansion during HIV infection is central to understanding the pathophysiology of HIV infection. This may pave the way to developing new therapeutic targets or strategies. In this work we addressed (i) the mechanisms that regulate MDSC expansion, (ii) the impact of antiretroviral therapy (ART) on the frequency of MDSCs during HIV infection; (iii) the impact of MDSCs on immune reconstitution during successful ART; and (iv) the potential of MDSCs as a therapeutic target.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
43
|
Floerchinger A, Seiffert M. Lessons learned from the Eµ-TCL1 mouse model of CLL. Semin Hematol 2024; 61:194-200. [PMID: 38839457 DOI: 10.1053/j.seminhematol.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
The Eµ-TCL1 mouse model has been used for over 20 years to study the pathobiology of chronic lymphocytic leukemia (CLL) and for preclinical testing of novel therapies. A CLL-like disease develops with increasing age in these mice due to a B cell specific overexpression of human TCL1. The reliability of this model to mirror human CLL is controversially discussed, as none of the known driver mutations identified in patients are found in Eµ-TCL1 mice. It has to be acknowledged that this mouse model was key to develop targeted therapies that aim at inhibiting the constitutive B cell receptor (BCR) signaling, a main driver of CLL. Inhibitors of BCR signaling became standard-of-care for a large proportion of patients with CLL as they are highly effective. The Eµ-TCL1 model further advanced our understanding of CLL biology owed to studies that crossed this mouse line with various transgenic mouse models and demonstrated the relevance of CLL-cell intrinsic and -extrinsic drivers of disease. These studies were instrumental in showing the relevance of the tumor microenvironment in the lymphoid tissues for disease progression and immune escape in CLL. It became clear that CLL cells shape and rely on stromal and immune cells, and that immune suppressive mechanisms and T cell exhaustion contribute to CLL progression. Based on this knowledge, new immunotherapy strategies were clinically tested for CLL, but so far with disappointing results. As some of these therapies were effective in the Eµ-TCL1 mouse model, the question arose concerning the translatability of preclinical studies in these mice. The aim of this review is to summarize lessons we have learnt over the last decades by studying CLL-like disease in the Eµ-TCL1 mouse model. The article focuses on pitfalls and limitations of the model, as well as the gained knowledge and potential of using this model for the development of novel treatment strategies to achieve the goal of curing patients with CLL.
Collapse
MESH Headings
- Animals
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Mice
- Disease Models, Animal
- Humans
- Mice, Transgenic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Tumor Microenvironment/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
Collapse
Affiliation(s)
- Alessia Floerchinger
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences of the University of Heidelberg, Heidelberg, Germany
| | - Martina Seiffert
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
44
|
Almanza G, Searles S, Zanetti M. Delivery of miR-214 via extracellular vesicles downregulates Xbp1 expression and pro-inflammatory cytokine genes in macrophages. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:249-258. [PMID: 39118980 PMCID: PMC11308798 DOI: 10.20517/evcna.2023.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Aim Tumor-infiltrating macrophages are tumor-promoting and show activation of the unfolded protein response (UPR). The transcription factor X-box binding protein 1 (XBP1) is a conserved element of the UPR. Upon activation, the UPR mediates the transcriptional activation of pro-inflammatory cytokines and immune suppressive factors, hence contributing to immune dysregulation in the tumor microenvironment (TME). miR-214 is a short non-coding miRNA that targets the 3'-UTR of the Xbp1 transcript. Here, we tested a new method to efficiently deliver miR-214 to macrophages as a potential new therapeutic approach. Methods We generated miR-214-laden extracellular vesicles (iEV-214) in a murine B cell and demonstrated that iEV-214 were enriched in miR-214 between 1,500 - 2,000 fold relative to control iEVs. Results Bone marrow-derived macrophages (BMDM) treated with iEV-214 for 24 h underwent a specific enrichment in miR-214, suggesting transfer of the miR-214 payload from the iEVs to macrophages. iEV-214 treatment of BMDM markedly reduced (> 50%) Xbp1 transcription under endoplasmic reticulum stress conditions compared to controls. Immune-related genes downstream of XBP1s (Il-6, Il-23p19, and Arg1) were also reduced by 69%, 51%, and 34%, respectively. Conclusions Together, these data permit to conclude that iEV-214 are an efficient strategy to downregulate the expression of Xbp1 mRNA and downstream genes in macrophages. We propose miRNA-laden iEVs are a new approach to target macrophages and control immune dysregulation in the TME.
Collapse
Affiliation(s)
- Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen Searles
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
45
|
Zhang Q, Yu T, Tan H, Shi H. Hepatic recruitment of myeloid-derived suppressor cells upon liver injury promotes both liver regeneration and fibrosis. BMC Gastroenterol 2024; 24:163. [PMID: 38745150 PMCID: PMC11092103 DOI: 10.1186/s12876-024-03245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-β were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-β. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.
Collapse
Affiliation(s)
- Qiongwen Zhang
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ting Yu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Huaicheng Tan
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Huashan Shi
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
46
|
Sohrabi S, Alipour S, Ghahramanipour Z, Masoumi J, Baradaran B. STAT signaling pathways in immune cells and their associated mechanisms in cancer pathogenesis. BIOIMPACTS : BI 2024; 15:30030. [PMID: 39963570 PMCID: PMC11830145 DOI: 10.34172/bi.30030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 02/20/2025]
Abstract
Introduction Signal transducer and activator of transcriptions (STATs) factors as critical proteins in cell signaling regulate diverse biological processes such as differentiation and proliferation of cells. STATs have been shown to play distinct roles in modulating immune responses mediated by innate and adaptive immune cell subsets due to their significant roles in cytokine signaling. Methods In the current study, we review recent studies on the contribution of individual STAT proteins to cytokine signaling, development, and activity of diverse immune cells that constitute the whole immune system and help its performance against endogenous or exogenous agents with a particular focus on meaningful STAT factor in each of innate and adaptive immune cells' subsets to clarify their function in favor of the tumor or against it. Results Dysregulation of signaling pathways in the immune cells is associated with various immune disorders, such as the inability of immune system cells in the effective destruction of cancerous cells. Increase of knowledge about these pathways' functions is essential to understand how they can be effectively targeted to eliminate tumors. Conclusion The majority of immune cells use the Jak/STAT signaling pathway, which is one of the most important signaling pathways with a role in induction of proper immune responses. Since each of the STAT factors has a specific role in diverse immune cells' subsets, appropriate targeting of them can be a promising strategy for patients who suffer from immune system disorders; specifically it can be beneficial as an approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Huang R, Kang T, Chen S. The role of tumor-associated macrophages in tumor immune evasion. J Cancer Res Clin Oncol 2024; 150:238. [PMID: 38713256 PMCID: PMC11076352 DOI: 10.1007/s00432-024-05777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Tumor growth is closely linked to the activities of various cells in the tumor microenvironment (TME), particularly immune cells. During tumor progression, circulating monocytes and macrophages are recruited, altering the TME and accelerating growth. These macrophages adjust their functions in response to signals from tumor and stromal cells. Tumor-associated macrophages (TAMs), similar to M2 macrophages, are key regulators in the TME. METHODS We review the origins, characteristics, and functions of TAMs within the TME. This analysis includes the mechanisms through which TAMs facilitate immune evasion and promote tumor metastasis. Additionally, we explore potential therapeutic strategies that target TAMs. RESULTS TAMs are instrumental in mediating tumor immune evasion and malignant behaviors. They release cytokines that inhibit effector immune cells and attract additional immunosuppressive cells to the TME. TAMs primarily target effector T cells, inducing exhaustion directly, influencing activity indirectly through cellular interactions, or suppressing through immune checkpoints. Additionally, TAMs are directly involved in tumor proliferation, angiogenesis, invasion, and metastasis. Developing innovative tumor-targeted therapies and immunotherapeutic strategies is currently a promising focus in oncology. Given the pivotal role of TAMs in immune evasion, several therapeutic approaches have been devised to target them. These include leveraging epigenetics, metabolic reprogramming, and cellular engineering to repolarize TAMs, inhibiting their recruitment and activity, and using TAMs as drug delivery vehicles. Although some of these strategies remain distant from clinical application, we believe that future therapies targeting TAMs will offer significant benefits to cancer patients.
Collapse
Affiliation(s)
- Ruizhe Huang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
48
|
Mahanti K, Saha J, Sarkar D, Pramanik A, Roy Chattopadhyay N, Bhattacharyya S. Alteration of functionality and differentiation directed by changing gene expression patterns in myeloid-derived suppressor cells (MDSCs) in tumor microenvironment and bone marrow through early to terminal phase of tumor progression. J Leukoc Biol 2024; 115:958-984. [PMID: 38236200 DOI: 10.1093/jleuko/qiae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Myeloid-derived suppressor cells are heterogenous immature myeloid lineage cells that can differentiate into neutrophils, monocytes, and dendritic cells as well. These cells have been characterized to have potent immunosuppressive capacity in neoplasia and a neoplastic chronic inflammatory microenvironment. Increased accumulation of myeloid-derived suppressor cells was reported with poor clinical outcomes in patients. They support neoplastic progression by abrogating antitumor immunity through inhibition of lymphocyte functions and directly by facilitating tumor development. Yet the shifting genetic signatures of this myeloid lineage cell toward immunosuppressive functionality in progressive tumor development remain elusive. We have attempted to identify the gene expression profile using lineage-specific markers of these unique myeloid lineage cells in a tumor microenvironment and bone marrow using a liquid transplantable mice tumor model to trace the changing influence of the tumor microenvironment on myeloid-derived suppressor cells. We analyzed the phenotype, functional shift, suppressive activity, differentiation status, and microarray-based gene expression profile of CD11b+Gr1+ lineage-specific cells isolated from the tumor microenvironment and bone marrow of 4 stages of tumor-bearing mice and compared them with control counterparts. Our analysis of differentially expressed genes of myeloid-derived suppressor cells isolated from bone marrow and the tumor microenvironment reveals unique gene expression patterns in the bone marrow and tumor microenvironment-derived myeloid-derived suppressor cells. It also suggests T-cell suppressive activity of myeloid-derived suppressor cells progressively increases toward the mid-to-late phase of the tumor and a significant differentiation bias of tumor site myeloid-derived suppressor cells toward macrophages, even in the presence of differentiating agents, indicating potential molecular characteristics of myeloid-derived suppressor cells in different stages of the tumor that can emerge as an intervention target.
Collapse
Affiliation(s)
- Krishna Mahanti
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
| | - Jayasree Saha
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
- Currently, DST-SERB NPDF, School of Bioscience, IIT Kharagpur, Paschim Medinipur, West Bengal 721302, India
| | - Debanjan Sarkar
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
| | - Anik Pramanik
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
| | - Nabanita Roy Chattopadhyay
- Department of Biotechnology, Siksha Bhaban, Visva Bharati, Shantiniketan, Birbhum, West Bengal 731235, India
- Currently, Department of Biotechnology, Haldia Institute of Technology, ICARE Complex, Haldia, West Bengal 721657, India
| | - Sankar Bhattacharyya
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Ranchi Road, Saink School, Purulia, West Bengal 723104, India
| |
Collapse
|
49
|
Wang J, Lu W, Zhang J, Du Y, Fang M, Zhang A, Sungcad G, Chon S, Xing J. Loss of TRIM29 mitigates viral myocarditis by attenuating PERK-driven ER stress response in male mice. Nat Commun 2024; 15:3481. [PMID: 38664417 PMCID: PMC11045800 DOI: 10.1038/s41467-024-44745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/29/2023] [Indexed: 04/28/2024] Open
Abstract
Viral myocarditis, an inflammatory disease of the myocardium, is a significant cause of sudden death in children and young adults. The current coronavirus disease 19 pandemic emphasizes the need to understand the pathogenesis mechanisms and potential treatment strategies for viral myocarditis. Here, we found that TRIM29 was highly induced by cardiotropic viruses and promoted protein kinase RNA-like endoplasmic reticulum kinase (PERK)-mediated endoplasmic reticulum (ER) stress, apoptosis, and reactive oxygen species (ROS) responses that promote viral replication in cardiomyocytes in vitro. TRIM29 deficiency protected mice from viral myocarditis by promoting cardiac antiviral functions and reducing PERK-mediated inflammation and immunosuppressive monocytic myeloid-derived suppressor cells (mMDSC) in vivo. Mechanistically, TRIM29 interacted with PERK to promote SUMOylation of PERK to maintain its stability, thereby promoting PERK-mediated signaling pathways. Finally, we demonstrated that the PERK inhibitor GSK2656157 mitigated viral myocarditis by disrupting the TRIM29-PERK connection, thereby bolstering cardiac function, enhancing cardiac antiviral responses, and curbing inflammation and immunosuppressive mMDSC in vivo. Our findings offer insight into how cardiotropic viruses exploit TRIM29-regulated PERK signaling pathways to instigate viral myocarditis, suggesting that targeting the TRIM29-PERK axis could mitigate disease severity.
Collapse
Affiliation(s)
- Junying Wang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, 77030, USA
| | - Wenting Lu
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, 77030, USA
| | - Jerry Zhang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, 77030, USA
| | - Yong Du
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, 77030, USA
| | - Mingli Fang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, 77030, USA
| | - Ao Zhang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, 77030, USA
| | - Gabriel Sungcad
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, 77030, USA
| | - Samantha Chon
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, 77030, USA
| | - Junji Xing
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist, Houston, TX, 77030, USA.
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist, Houston, TX, 77030, USA.
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
50
|
Tang Y, Wang M, Yu J, Lv G, Wang Y, Yu B. The antitumor action of endocannabinoids in the tumor microenvironment of glioblastoma. Front Pharmacol 2024; 15:1395156. [PMID: 38720772 PMCID: PMC11076672 DOI: 10.3389/fphar.2024.1395156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Approximately 80% of all malignant brain tumors are gliomas, which are primary brain tumors. The most prevalent subtype of glioma, glioblastoma multiforme (GBM), is also the most deadly. Chemotherapy, immunotherapy, surgery, and conventional pharmacotherapy are currently available therapeutic options for GBM; unfortunately, these approaches only prolong the patient's life by 5 years at most. Despite numerous intensive therapeutic options, GBM is considered incurable. Accumulating preclinical data indicate that overt antitumoral effects can be induced by pharmacologically activating endocannabinoid receptors on glioma cells by modifying important intracellular signaling cascades. The complex mechanism underlying the endocannabinoid receptor-evoked antitumoral activity in experimental models of glioma may inhibit the ability of cancer cells to invade, proliferate, and exhibit stem cell-like characteristics, along with altering other aspects of the complex tumor microenvironment. The exact biological function of the endocannabinoid system in the development and spread of gliomas, however, is remains unclear and appears to rely heavily on context. Previous studies have revealed that endocannabinoid receptors are present in the tumor microenvironment, suggesting that these receptors could be novel targets for the treatment of GBM. Additionally, endocannabinoids have demonstrated anticancer effects through signaling pathways linked to the classic features of cancer. Thus, the pharmacology of endocannabinoids in the glioblastoma microenvironment is the main topic of this review, which may promote the development of future GBM therapies.
Collapse
Affiliation(s)
- Yi Tang
- Department of Pharmacy, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliate Cancer Hospital of University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Maoru Wang
- Drug Dispensing Department, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Jiangping Yu
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Guangyao Lv
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yu Wang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Bin Yu
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|