1
|
Iwai T, Ohyama A, Osada A, Nishiyama T, Shimizu M, Miki H, Asashima H, Kondo Y, Tsuboi H, Mizuno S, Takahashi S, Ishigami A, Matsumoto I. Role of inter-alpha-trypsin inhibitor heavy chain 4 and its citrullinated form in experimental arthritis murine models. Clin Exp Immunol 2024; 215:302-312. [PMID: 38190323 PMCID: PMC10876112 DOI: 10.1093/cei/uxae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/12/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Inter-α-trypsin inhibitor heavy chain 4 (ITIH4) is a major protein in serum and reported to be upregulated at the onset of rheumatoid arthritis (RA). Its citrullinated form, cit-ITIH4, is specifically found in the serum and synovial fluid of patients with RA. However, the detailed function of ITIH4 in arthritis remains unknown. The aim of this study was to clarify the role of ITIH4 and cit-ITIH4 using experimental arthritis models. ITIH4 and cit-ITIH4 expression was examined in steady-state mice and two different arthritis models, and their pathological effects were examined in Itih4-deficient mice. In naïve C57BL/6 (WT) mice, ITIH4 was expressed as mRNA in the liver and the lung and was expressed as protein in serum and hepatocytes. In K/BxN serum transferred arthritis (K/BxN-STA) and collagen-induced arthritis (CIA), ITIH4 and cit-ITIH4 in sera were increased before the onset of arthritis, and cit-ITIH4 was further increased at the peak of arthritis. In Itih4-deficient mice, citrullinated proteins in serum and joints, especially 120 kDa protein, were clearly diminished; however, there was no significant difference in arthritis severity between WT and itih-/- mice either in the K/BxN-STA or CIA model. CIA mice also exhibited pulmonary lesions and itih4-/- mice tended to show enhanced inflammatory cell aggregation compared to WT mice. Neutrophils in the lungs of itih4-/- mice were significantly increased compared to WT mice. In summary, ITIH4 itself did not alter the severity of arthritis but may inhibit autoimmune inflammation via suppression of neutrophil recruitment.
Collapse
Affiliation(s)
- Tamaki Iwai
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ayako Ohyama
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsumu Osada
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Taihei Nishiyama
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaru Shimizu
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruka Miki
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiromitsu Asashima
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuya Kondo
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroto Tsuboi
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Japan
| | - Isao Matsumoto
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
2
|
Chang Y, Ou Q, Zhou X, Nie K, Liu J, Zhang S. Global research trends and focus on the link between rheumatoid arthritis and neutrophil extracellular traps: a bibliometric analysis from 1985 to 2023. Front Immunol 2023; 14:1205445. [PMID: 37680637 PMCID: PMC10481536 DOI: 10.3389/fimmu.2023.1205445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that currently has an unknown cause and pathogenesis, and is associated with many complications and a high disability rate. The neutrophil extracellular trap network (NETs) is a newly discovered mechanism that allows neutrophils to capture and kill pathogens. Multiple studies in recent years have highlighted its relevance to the progression of rheumatoid arthritis. Despite the growing number of studies indicating the crucial role of NETs in RA, there has been no bibliometric review of research hotspots and trends in this area. In this study, we retrieved articles related to NETs in RA from the Web of Science Core Collection (WoSCC) database from 1985 to 2023 and used visualization tools such as Citespace, VOSviewer, Tableau Public, and Microsoft Office Excel 2021 to analyze the data. After screening, we included a total of 416 publications involving 2,334 researchers from 1,357 institutions in 167 countries/regions, with relevant articles published in 219 journals. The U.S., China, and Germany are the top 3 countries/regions with 124, 57, and 37 publications respectively. Mariana J. Kaplan is the most published author, and journals such as Frontiers in Immunology and International Journal of Molecular Sciences have had a significant impact on research in this field. The clinical application of PAD enzymes and their inhibitors, and the drug development of NETs as therapeutic targets for RA is a trend for future research. Our study provides a comprehensive bibliometric analysis and summary of NETs in RA publications, which will aid researchers in conducting further scientific research.
Collapse
Affiliation(s)
- Yonglong Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinling Ou
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinhui Liu
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
3
|
Mergaert AM, Warner TF, Shelef MA. Rheumatoid arthritis: Methods for two murine models. Methods Cell Biol 2022; 168:125-137. [PMID: 35366979 DOI: 10.1016/bs.mcb.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rheumatoid arthritis is an incurable chronic inflammatory disease for which the pathophysiology is not fully understood, and treatment options are flawed. Thus, animal models are used to dissect disease pathogenesis and to develop improved therapeutics. However, accurately modeling all aspects of human rheumatoid arthritis in mice is not possible, and each model has pros and cons. Two useful murine models of rheumatoid arthritis are collagen induced arthritis and TNF induced arthritis. Both recapitulate the chronic inflammatory, erosive arthritis of human rheumatoid arthritis. Collagen induced arthritis has the added similarity to human rheumatoid arthritis of pathogenic autoantibodies, but can have variable degrees of arthritis severity, a challenge for experiments. In contrast, TNF induced arthritis tends to be uniform, but primarily models the innate arm of the immune response. Here we describe the benefits, limitations, and details for both models to help investigators select and implement an appropriate model to achieve the goals of their experiments.
Collapse
Affiliation(s)
- Aisha M Mergaert
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas F Warner
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Miriam A Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States; William S. Middleton Memorial Veterans Hospital, Madison, WI, United States.
| |
Collapse
|
4
|
Markovics A, Rosenthal KS, Mikecz K, Carambula RE, Ciemielewski JC, Zimmerman DH. Restoring the Balance between Pro-Inflammatory and Anti-Inflammatory Cytokines in the Treatment of Rheumatoid Arthritis: New Insights from Animal Models. Biomedicines 2021; 10:44. [PMID: 35052724 PMCID: PMC8772713 DOI: 10.3390/biomedicines10010044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) and other autoimmune inflammatory diseases are examples of imbalances within the immune system (disrupted homeostasis) that arise from the effects of an accumulation of environmental and habitual insults over a lifetime, combined with genetic predispositions. This review compares current immunotherapies-(1) disease-modifying anti-rheumatic drugs (DMARDs) and (2) Janus kinase (JAK) inhibitors (jakinibs)-to a newer approach-(3) therapeutic vaccines (using the LEAPS vaccine approach). The Ligand Epitope Antigen Presentation System (LEAPS) therapies are capable of inhibiting ongoing disease progression in animal models. Whereas DMARDs ablate or inhibit specific proinflammatory cytokines or cells and jakinibs inhibit the receptor activation cascade for expression of proinflammatory cytokines, the LEAPS therapeutic vaccines specifically modulate the ongoing antigen-specific, disease-driving, proinflammatory T memory cell responses. This decreases disease presentation and changes the cytokine conversation to decrease the expression of inflammatory cytokines (IL-17, IL-1(α or β), IL-6, IFN-γ, TNF-α) while increasing the expression of regulatory cytokines (IL-4, IL-10, TGF-β). This review refocuses the purpose of therapy for RA towards rebalancing the immune system rather than compromising specific components to stop disease. This review is intended to be thought provoking and look forward towards new therapeutic modalities rather than present a final definitive report.
Collapse
Affiliation(s)
- Adrienn Markovics
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (A.M.); (K.M.)
| | - Ken S. Rosenthal
- Department of Basic Sciences, Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA;
- Department of Integrative Medical Sciences, NE Ohio Medical University, Rootstown, OH 44272, USA
| | - Katalin Mikecz
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (A.M.); (K.M.)
| | | | | | | |
Collapse
|
5
|
Yang ML, Sodré FMC, Mamula MJ, Overbergh L. Citrullination and PAD Enzyme Biology in Type 1 Diabetes - Regulators of Inflammation, Autoimmunity, and Pathology. Front Immunol 2021; 12:678953. [PMID: 34140951 PMCID: PMC8204103 DOI: 10.3389/fimmu.2021.678953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
The generation of post-translational modifications (PTMs) in human proteins is a physiological process leading to structural and immunologic variety in proteins, with potentially altered biological functions. PTMs often arise through normal responses to cellular stress, including general oxidative changes in the tissue microenvironment and intracellular stress to the endoplasmic reticulum or immune-mediated inflammatory stresses. Many studies have now illustrated the presence of 'neoepitopes' consisting of PTM self-proteins that induce robust autoimmune responses. These pathways of inflammatory neoepitope generation are commonly observed in many autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes (T1D), among others. This review will focus on one specific PTM to self-proteins known as citrullination. Citrullination is mediated by calcium-dependent peptidylarginine deiminase (PAD) enzymes, which catalyze deimination, the conversion of arginine into the non-classical amino acid citrulline. PADs and citrullinated peptides have been associated with different autoimmune diseases, notably with a prominent role in the diagnosis and pathology of rheumatoid arthritis. More recently, an important role for PADs and citrullinated self-proteins has emerged in T1D. In this review we will provide a comprehensive overview on the pathogenic role for PADs and citrullination in inflammation and autoimmunity, with specific focus on evidence for their role in T1D. The general role of PADs in epigenetic and transcriptional processes, as well as their crucial role in histone citrullination, neutrophil biology and neutrophil extracellular trap (NET) formation will be discussed. The latter is important in view of increasing evidence for a role of neutrophils and NETosis in the pathogenesis of T1D. Further, we will discuss the underlying processes leading to citrullination, the genetic susceptibility factors for increased recognition of citrullinated epitopes by T1D HLA-susceptibility types and provide an overview of reported autoreactive responses against citrullinated epitopes, both of T cells and autoantibodies in T1D patients. Finally, we will discuss recent observations obtained in NOD mice, pointing to prevention of diabetes development through PAD inhibition, and the potential role of PAD inhibitors as novel therapeutic strategy in autoimmunity and in T1D in particular.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Fernanda M C Sodré
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| | - Mark J Mamula
- Section of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Lut Overbergh
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Vaccination by Two DerG LEAPS Conjugates Incorporating Distinct Proteoglycan (PG, Aggrecan) Epitopes Provides Therapy by Different Immune Mechanisms in a Mouse Model of Rheumatoid Arthritis. Vaccines (Basel) 2021; 9:vaccines9050448. [PMID: 34063326 PMCID: PMC8147650 DOI: 10.3390/vaccines9050448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) can be initiated and driven by immune responses to multiple antigenic epitopes including those in cartilage proteoglycan (PG, aggrecan) and type II collagen. RA is driven by T helper 1 (Th1) or Th17 pro-inflammatory T cell responses. LEAPS (Ligand Epitope Antigen Presentation System) DerG peptide conjugate vaccines were prepared using epitopes from PG that elicit immune responses in RA patients: epitope PG70 (DerG-PG70, also designated CEL-4000) and the citrullinated form of another epitope (PG275Cit). The LEAPS peptides were administered alone or together in Seppic ISA51vg adjuvant to mice with PG G1 domain-induced arthritis (GIA), a mouse model of RA. Each of these LEAPS peptides and the combination modulated the inflammatory response and stopped the progression of arthritis in the GIA mouse model. Despite having a therapeutic effect, the DerG-PG275Cit vaccine did not elicit significant antibody responses, whereas DerG-PG70 (alone or with DerG-PG275Cit) induced both therapy and antibodies. Spleen T cells from GIA mice, vaccinated with the DerG LEAPS peptides, preferentially produced anti-inflammatory (IL-4 and IL-10) rather than pro-inflammatory (IFN-γ or IL-17) cytokines in culture. Similarly, cytokines secreted by CD4+ cells of unvaccinated GIA mice, differentiated in vitro to Th2 cells and treated with either or both DerG vaccine peptides, exhibited an anti-inflammatory (IL-4, IL-10) profile. These results suggest that the two peptides elicit different therapeutic immune responses by the immunomodulation of disease-promoting pro-inflammatory responses and that the combination of the two LEAPS conjugates may provide broader epitope coverage and, in some cases, greater efficacy than either conjugate alone.
Collapse
|
7
|
New Studies of Pathogenesis of Rheumatoid Arthritis with Collagen-Induced and Collagen Antibody-Induced Arthritis Models: New Insight Involving Bacteria Flora. Autoimmune Dis 2021; 2021:7385106. [PMID: 33833871 PMCID: PMC8016593 DOI: 10.1155/2021/7385106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/30/2020] [Accepted: 03/04/2021] [Indexed: 12/23/2022] Open
Abstract
Much public research suggests that autoimmune diseases such as rheumatoid arthritis (RA) are induced by aberrant “self” immune responses attacking autologous tissues and organ components. However, recent studies have reported that autoimmune diseases may be triggered by dysbiotic composition changes of the intestinal bacteria and an imbalance between these bacteria and intestinal immune systems. However, there are a few solid concepts or methods to study the putative involvement and relationship of these inner environmental factors in RA pathogenesis. Fortunately, Collagen-Induced Arthritis (CIA) and Collagen Antibody-Induced Arthritis (CAIA) models have been widely used as animal models for studying the pathogenesis of RA. In addition to RA, these models can be extensively used as animal models for studying complicated hypotheses in many diseases. In this review, we introduce some basic information about the CIA and CAIA models as well as how to apply these models effectively to investigate relationships between the pathogenesis of autoimmune diseases, especially RA, and the dysbiosis of intestinal bacterial flora.
Collapse
|
8
|
Defects in ubiquitination and NETosis and their associations with human diseases. Pathology 2021; 53:439-445. [PMID: 33518384 DOI: 10.1016/j.pathol.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022]
Abstract
Various autoimmune diseases are associated with defects in protein degradation and NETosis. This review aims to examine defects in ubiquitination and NETosis and their associations with human disease. This study involved a systematic search of electronic databases, including PubMed, EBSCO, and LILACS, to locate articles on the relationship between human disease and defects in protein degradation and NETosis. Ubiquitination and NETosis can trigger a cascade of events that affect immune system function and impact the body's ability to fight disease. Ubiquitination is implicated in various disorders, such as Liddle's syndrome, Alzheimer's disease, and other neurodegenerative disorders, whereas NETosis has been linked to antineutrophil cytoplasmic antibody associated vasculitis, accelerated atherosclerosis, thrombosis, rheumatoid arthritis, antiphospholipid antibody syndrome, type 1 diabetes mellitus, and renal inflammatory complications. Researchers have attempted for years to identify the link between neurodegenerative disease and ubiquitination. Previous studies analysed the relationships between different autoimmune disorders and NETosis and identified various ubiquitin conjugates and NET remnants that trigger disease development and progression. Ubiquitination and NETosis play key roles in the emergence and progression of neurodegenerative and autoimmune disorders. Further investigation is needed to elucidate the mechanisms underlying the relationships between these disorders and biological processes.
Collapse
|
9
|
Abstract
Multiple sclerosis (MS), a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system, is today a leading cause of unpredictable lifelong disability in young adults. The treatment of patients in progressive stages remains highly challenging, alluding to our limited understanding of the underlying pathological processes. In this review, we provide insights into the mechanisms underpinning MS progression from a perspective of epigenetics, that refers to stable and mitotically heritable, yet reversible, changes in the genome activity and gene expression. We first recapitulate findings from epigenetic studies examining the brain tissue of progressive MS patients, which support a contribution of DNA and histone modifications in impaired oligodendrocyte differentiation, defective myelination/remyelination and sustained neuro-axonal vulnerability. We next explore possibilities for identifying factors affecting progression using easily accessible tissues such as blood by comparing epigenetic signatures in peripheral immune cells and brain tissue. Despite minor overlap at individual methylation sites, nearly 30% of altered genes reported in peripheral immune cells of progressive MS patients were found in brain tissue, jointly converging on alterations of neuronal functions. We further speculate about the mechanisms underlying shared epigenetic patterns between blood and brain, which likely imply the influence of internal (genetic control) and/or external (e.g. smoking and ageing) factors imprinting a common signature in both compartments. Overall, we propose that epigenetics might shed light on clinically relevant mechanisms involved in disease progression and open new avenues for the treatment of progressive MS patients in the future.
Collapse
Affiliation(s)
- L Kular
- From the, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Jagodic
- From the, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Valdivia A, Agarwal PK, Bhattacharya SK. Myelin Basic Protein Phospholipid Complexation Likely Competes with Deimination in Experimental Autoimmune Encephalomyelitis Mouse Model. ACS OMEGA 2020; 5:15454-15467. [PMID: 32637820 PMCID: PMC7331039 DOI: 10.1021/acsomega.0c01590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Multiple sclerosis has complex pathogenesis encompassing a variety of components (immunologic, genetic, and environmental). The autoimmunogenicity against the host's myelin basic protein is a major contributor. An increase in myelin basic protein deimination (a post-translational modification) and a change in phospholipid composition have been associated with multiple sclerosis. The interaction of myelin basic protein with phospholipids in the myelin membrane is an important contributor to the stability and maintenance of proper myelin sheath function. The study of this aspect of multiple sclerosis is an area that has yet to be fully explored and that the present study seeks to understand. Several biochemical methods, a capillary electrophoresis coupled system and mass spectrometry, were used in this study. These methods identified four specific phospholipids complexing with myelin basic protein. We show that lysophosphatidylcholine 18:1 provides a robust competitive effect against hyper-deimination. Our data suggest that lysophosphatidylcholine 18:1 has a different biochemical behavior when compared to other phospholipids and lysophosphatidylcholines 14:0, 16:0, and 18:0.
Collapse
Affiliation(s)
- Anddre
Osmar Valdivia
- Department
of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida 33136, United States
- Neuroscience
Graduate Program, University of Miami, Miami, Florida 33136, United States
| | - Pratul K. Agarwal
- Department
of Biochemistry & Cell and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Physiological
Sciences andHigh Performance Computing Center, Oklahoma
State University, Stillwater, 106 Math Sciences, Stillwater, Oklahoma 74078-1010, United States
| | - Sanjoy K. Bhattacharya
- Department
of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida 33136, United States
- Neuroscience
Graduate Program, University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
11
|
Mørkholt AS, Oklinski MK, Larsen A, Bockermann R, Issazadeh-Navikas S, Nieland JGK, Kwon TH, Corthals A, Nielsen S, Nieland JDV. Pharmacological inhibition of carnitine palmitoyl transferase 1 inhibits and reverses experimental autoimmune encephalitis in rodents. PLoS One 2020; 15:e0234493. [PMID: 32520953 PMCID: PMC7286491 DOI: 10.1371/journal.pone.0234493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/26/2020] [Indexed: 02/01/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease characterized by demyelination and inflammation. Dysregulated lipid metabolism and mitochondrial dysfunction are hypothesized to play a key role in MS. Carnitine Palmitoyl Transferase 1 (CPT1) is a rate-limiting enzyme for beta-oxidation of fatty acids in mitochondria. The therapeutic effect of pharmacological CPT1 inhibition with etomoxir was investigated in rodent models of myelin oligodendrocyte glycoprotein- and myelin basic protein-induced experimental autoimmune encephalitis (EAE). Mice receiving etomoxir showed lower clinical score compared to placebo, however this was not significant. Rats receiving etomoxir revealed significantly lower clinical score and lower body weight compared to placebo group. When comparing etomoxir with interferon-β (IFN-β), IFN-β had no significant therapeutic effects, whereas etomoxir treatment starting at day 1 and 5 significantly improved the clinical scores compared to the IFN-β and the placebo group. Immunohistochemistry and image assessments of brain sections from rats with EAE showed higher myelination intensity and decreased expression of CPT1A in etomoxir-treated rats compared to placebo group. Moreover, etomoxir mediated increased interleukin-4 production and decreased interleukin-17α production in activated T cells. In conclusion, CPT1 is a key protein in the pathogenesis of EAE and MS and a crucial therapeutic target for the treatment.
Collapse
Affiliation(s)
| | | | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Robert Bockermann
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen N, Denmark
| | | | | | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Angelique Corthals
- Department of Science, John Jay College of Criminal Justice, City University of New York, New York, New York, United States of America
| | - Søren Nielsen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Meta-IQ, ApS, Aarhus C, Denmark
| | | |
Collapse
|
12
|
Martinez-Prat L, Palterer B, Vitiello G, Parronchi P, Robinson WH, Mahler M. Autoantibodies to protein-arginine deiminase (PAD) 4 in rheumatoid arthritis: immunological and clinical significance, and potential for precision medicine. Expert Rev Clin Immunol 2019; 15:1073-1087. [DOI: 10.1080/1744666x.2020.1668778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura Martinez-Prat
- Research and Development, Inova Diagnostics, San Diego, CA, USA
- Department of Experimental Science, Francisco de Vitoria University, Madrid, Spain
| | - Boaz Palterer
- specialist in Allergy and Clinical Immunology, Experimental and Clinical Medicine Department, University of Florence, Florence, Italy
| | - Gianfranco Vitiello
- resident in Allergy and Clinical Immunology, Experimental and Clinical Medicine Department, University of Florence, Florence, Italy
| | - Paola Parronchi
- (Allergy and Clinical Immunology), Laboratory Head, Experimental and Clinical Medicine Department, University of Florence, Florence, Italy
| | - William H. Robinson
- (Immunology and Rheumatology), Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
- Geriatric Research Education and Clinical [GRECC] Division, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Michael Mahler
- Research and Development, Inova Diagnostics, San Diego, CA, USA
| |
Collapse
|
13
|
Pathological consequences of anti-citrullinated protein antibodies in tear fluid and therapeutic potential of pooled human immune globulin-eye drops in dry eye disease. Ocul Surf 2019; 18:80-97. [PMID: 31606460 DOI: 10.1016/j.jtos.2019.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the role of Anti-Citrullinated Protein autoantibodies (ACPAs) in the pathology of dry eye disease (DED) and the therapeutic potential of pooled human immune globulin-eye drops in these patients. METHODS We investigated the presence of citrullinated proteins and ACPAs in ocular surface wash (OSW) and conjunctival impressions from patients with DED and determined the pathological consequences of OSW with high ACPA using in vitro experiments and in vivo murine models. We performed a randomized, double-masked, pilot clinical trial to determine the safety, tolerability and preliminary efficacy of using pooled human immune globulin-eye drops to treat DED patients with ACPAs in OSW. RESULTS We found that neutrophils are a source of citrullinated proteins on the ocular surface of DED patients. We detected significantly higher immunoglobulin amount and presence of several species of ACPAs in OSW from DED patients. We also found that OSW with high ACPA contributes to production of NETs, and that ACPAs cause ocular surface disease in murine eyes, both of which are reduced with addition of Immune globulins. As compared to Vehicle treatment, pooled human immune globulin-eye drops (IVIG 4 mg/mL) twice a day for 8 weeks caused significant reduction in signs and symptoms of DED with no difference in tolerability or adverse events. CONCLUSIONS This is the first report demonstrating ACPAs in OSW of DED patients and their contribution to ocular surface disease. The first-in-human clinical trial suggests that pooled immune globulin-eye drops are a potential new class of biologic therapies for Dry Eye patients.
Collapse
|
14
|
Kampstra ASB, Dekkers JS, Volkov M, Dorjée AL, Hafkenscheid L, Kempers AC, van Delft M, Kissel T, Reijm S, Janssen GMC, van Veelen PA, Bang H, Huizinga TWJ, Trouw LA, van der Woude D, Toes REM. Different classes of anti-modified protein antibodies are induced on exposure to antigens expressing only one type of modification. Ann Rheum Dis 2019; 78:908-916. [PMID: 31151934 DOI: 10.1136/annrheumdis-2018-214950] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/05/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Autoantibodies against post-translationally modified proteins (anti-modified protein antibodies or AMPAs) are a hallmark of rheumatoid arthritis (RA). A variety of classes of AMPAs against different modifications on proteins, such as citrullination, carbamylation and acetylation, have now been described in RA. At present, there is no conceptual framework explaining the concurrent presence or mutual relationship of different AMPA responses in RA. Here, we aimed to gain understanding of the co-occurrence of AMPA by postulating that the AMPA response shares a common 'background' that can evolve into different classes of AMPAs. METHODS Mice were immunised with modified antigens and analysed for AMPA responses. In addition, reactivity of AMPA purified from patients with RA towards differently modified antigens was determined. RESULTS Immunisation with carbamylated proteins induced AMPAs recognising carbamylated proteins and also acetylated proteins. Similarly, acetylated proteins generated (autoreactive) AMPAs against other modifications as well. Analysis of anti-citrullinated protein antibodies from patients with RA revealed that these also display reactivity to acetylated and carbamylated antigens. Similarly, anti-carbamylated protein antibodies showed cross-reactivity against all three post-translational modifications. CONCLUSIONS Different AMPA responses can emerge from exposure to only a single type of modified protein. These findings indicate that different AMPA responses can originate from a common B-cell response that diversifies into multiple distinct AMPA responses and explain the presence of multiple AMPAs in RA, one of the hallmarks of the disease.
Collapse
Affiliation(s)
| | | | - Mikhail Volkov
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Annemarie L Dorjée
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Lise Hafkenscheid
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Ayla C Kempers
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Myrthe van Delft
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Theresa Kissel
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Sanne Reijm
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - George M C Janssen
- Center of Proteomics and Metabolomics, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Peter A van Veelen
- Center of Proteomics and Metabolomics, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Holger Bang
- Research and development, Orgentec Diagnostika, Mainz, Germany
| | - Tom W J Huizinga
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Leendert A Trouw
- Department of Immunohematology and Bloodtransfusion, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Diane van der Woude
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| |
Collapse
|
15
|
"NETtling" the host: Breaking of tolerance in chronic inflammation and chronic infection. J Autoimmun 2019; 88:1-10. [PMID: 29100671 DOI: 10.1016/j.jaut.2017.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022]
Abstract
How and why we break tolerance to self-proteins still remains a largely unanswered question. Neutrophils have been identified as a rich source of autoantigens in a wide array of autoimmune diseases that arise as a consequence of different environmental and genetic factors, e.g. rheumatoid arthritis (RA), lupus, vasculitis, cystic fibrosis (CF) etc. Specifically, neutrophil extracellular trap (NET) formation has been identified as a link between innate and adaptive immune responses in autoimmunity. Autoantigens including neutrophil granular proteins (targeted by anti-neutrophil cytoplasmic antibodies, ANCA) as well as post-translationally modified proteins, i.e. citrullinated and carbamylated proteins targeted by anti-citrullinated protein antibodies (ACPA) and anti-carbamylated protein antibodies (ACarPA), respectively, localize to the NETs. Moreover, NETs provide stimuli to dendritic cells that potentiate adaptive autoimmune responses. However, while NETs promote inflammation and appear to induce humoral autoreactivity across autoimmune diseases, the antigen specificity of autoantibodies found in these disorders is striking. These unique autoantigen signatures suggest that not all NETs are created equal and that the environment in which NETs arise shapes their disease-specific character. In this review article, we discuss the effects of different stimuli on the mechanism of NET formation as well as how they contribute to antigen specificity in the breaking of immune tolerance. Specifically, we compare and contrast the autoreactive nature of NETs in two settings of chronic airway inflammation: one triggered by smoking, a recognized environmental NET stimulus in RA patients, and one mediated by Pseudomonas aeruginosa, the most prevalent lung pathogen in CF patients. Finally, we draw attention to novel findings that, together with the specific environmental/chemical stimuli, should be taken into account when investigating how and why antigen specificity arises in the context of NET formation.
Collapse
|
16
|
Yang ML, Doyle HA, Clarke SG, Herold KC, Mamula MJ. Oxidative Modifications in Tissue Pathology and Autoimmune Disease. Antioxid Redox Signal 2018; 29:1415-1431. [PMID: 29088923 PMCID: PMC6166690 DOI: 10.1089/ars.2017.7382] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Various autoimmune syndromes are characterized by abnormalities found at the level of tissues and cells, as well as by microenvironmental influences, such as reactive oxygen species (ROS), that alter intracellular metabolism and protein expression. Moreover, the convergence of genetic, epigenetic, and even environmental influences can result in B and T lymphocyte autoimmunity and tissue pathology. Recent Advances: This review describes how oxidative stress to cells and tissues may alter post-translational protein modifications, both directly and indirectly, as well as potentially lead to aberrant gene expression. For example, it has been clearly observed in many systems how oxidative stress directly amplifies carbonyl protein modifications. However, ROS also lead to a number of nonenzymatic spontaneous modifications including deamidation and isoaspartate modification as well as to enzyme-mediated citrullination of self-proteins. ROS have direct effects on DNA methylation, leading to influences in gene expression, chromosome inactivation, and the silencing of genetic elements. Finally, ROS can alter many other cellular pathways, including the initiation of apoptosis and NETosis, triggering the release of modified intracellular autoantigens. CRITICAL ISSUES This review will detail specific post-translational protein modifications, the pathways that control autoimmunity to modified self-proteins, and how products of ROS may be important biomarkers of tissue pathogenesis. FUTURE DIRECTIONS A clear understanding of the many pathways affected by ROS will lead to potential therapeutic manipulations to alter the onset and/or progression of autoimmune disease.
Collapse
Affiliation(s)
- Mei-Ling Yang
- 1 Section of Rheumatology, Yale University School of Medicine , New Haven, Connecticut.,2 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Hester A Doyle
- 1 Section of Rheumatology, Yale University School of Medicine , New Haven, Connecticut.,2 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Steven G Clarke
- 3 Department of Chemistry and Biochemistry, University of California , Los Angeles, Los Angeles, California
| | - Kevan C Herold
- 2 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut.,4 Department of Immunobiology, Yale University School of Medicine , New Haven, Connecticut
| | - Mark J Mamula
- 1 Section of Rheumatology, Yale University School of Medicine , New Haven, Connecticut.,2 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
17
|
Asteriou E, Gkoutzourelas A, Mavropoulos A, Katsiari C, Sakkas LI, Bogdanos DP. Curcumin for the Management of Periodontitis and Early ACPA-Positive Rheumatoid Arthritis: Killing Two Birds with One Stone. Nutrients 2018; 10:908. [PMID: 30012973 PMCID: PMC6073415 DOI: 10.3390/nu10070908] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
We propose curcumin as a preventive measure to avoid/manage periodontitis (PD), and as a natural immunosuppressant for rheumatoid arthritis (RA). PD, mainly caused by Porphyromonas gingivalis forming biofilm and leading to tooth decay, is a major public health issue and a risk factor for the development of RA in humans. P. gingivalis is able to trigger experimental autoimmune arthritis in animal models and in humans can induce citrullinated peptides, which not only are a source of anti-citrullinated antibodies (ACPAs), but also participate in autoreactive responses and disease development. Curcumin appears to have efficient anti-bacterial activity against P. gingivalis infection and biofilm formation. In addition to antibacterial, anti-oxidant, and anti-inflammatory action, curcumin exerts unique immunosuppressant properties via the inhibition of Th17 pro-inflammatory responses and promotion of regulatory T cells, thus suppressing autoimmunity. We introduce curcumin as a natural product for the management of both PD and RA-related autoreactivity, possibly also as a preventive measure in early RA or individuals at high risk to develop RA.
Collapse
Affiliation(s)
- Eleni Asteriou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Athanasios Gkoutzourelas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Christina Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| |
Collapse
|
18
|
Tejeda EJC, Bello AM, Wasilewski E, Koebel A, Dunn S, Kotra LP. Noncovalent Protein Arginine Deiminase (PAD) Inhibitors Are Efficacious in Animal Models of Multiple Sclerosis. J Med Chem 2017; 60:8876-8887. [DOI: 10.1021/acs.jmedchem.7b01102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Elizabeth J. Curiel Tejeda
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Angelica M. Bello
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Centre
for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ewa Wasilewski
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Centre
for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Adam Koebel
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Centre
for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Shannon Dunn
- Centre
for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department
of Immunology, University of Toronto, Medical Sciences Building, 1 King’s
College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Lakshmi P. Kotra
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Centre
for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Multi-Organ
Transplant Program, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
19
|
Buuh ZY, Lyu Z, Wang RE. Interrogating the Roles of Post-Translational Modifications of Non-Histone Proteins. J Med Chem 2017; 61:3239-3252. [PMID: 28505447 DOI: 10.1021/acs.jmedchem.6b01817] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (PTMs) allot versatility to the biological functions of highly conserved proteins. Recently, modifications to non-histone proteins such as methylation, acetylation, phosphorylation, glycosylation, ubiquitination, and many more have been linked to the regulation of pivotal pathways related to cellular response and stability. Due to the roles these dynamic modifications assume, their dysregulation has been associated with cancer and many other important diseases such as inflammatory disorders and neurodegenerative diseases. For this reason, we present a review and perspective on important post-translational modifications on non-histone proteins, with emphasis on their roles in diseases and small molecule inhibitors developed to target PTM writers. Certain PTMs' contribution to epigenetics has been extensively expounded; yet more efforts will be needed to systematically dissect their roles on non-histone proteins, especially for their relationships with nononcological diseases. Finally, current research approaches for PTM study will be discussed and compared, including limitations and possible improvements.
Collapse
Affiliation(s)
- Zakey Yusuf Buuh
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Zhigang Lyu
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Rongsheng E Wang
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
20
|
Carmona-Rivera C, Carlucci PM, Moore E, Lingampalli N, Uchtenhagen H, James E, Liu Y, Bicker KL, Wahamaa H, Hoffmann V, Catrina AI, Thompson P, Buckner JH, Robinson WH, Fox DA, Kaplan MJ. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci Immunol 2017. [PMID: 28649674 DOI: 10.1126/sciimmunol.aag3358] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by synovial joint inflammation and by development of pathogenic humoral and cellular autoimmunity to citrullinated proteins. Neutrophil extracellular traps (NETs) are a source of citrullinated autoantigens and activate RA synovial fibroblasts (FLS), cells crucial in joint damage. We investigated the molecular mechanisms by which NETs promote proinflammatory phenotypes in FLS, and whether these interactions generate pathogenic anti-citrulline adaptive immune responses. NETs containing citrullinated peptides are internalized by FLS through a RAGE-TLR9 pathway promoting FLS inflammatory phenotype and their upregulation of MHC class II. Once internalized, arthritogenic NET-peptides are loaded into FLS MHC class II and presented to Ag-specific T cells. HLADRB1*0401 transgenic mice immunized with mouse FLS loaded with NETs develop antibodies specific to citrullinated forms of relevant RA autoantigens implicated in RA pathogenesis as well as cartilage damage. These results implicate FLS as mediators in RA pathogenesis, through the internalization and presentation of NET citrullinated peptides to the adaptive immune system leading to pathogenic autoimmunity and cartilage damage.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip M Carlucci
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erica Moore
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nithya Lingampalli
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA and the Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannes Uchtenhagen
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Eddie James
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Yudong Liu
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin L Bicker
- Department of Chemistry, Middle Tennessee State University, 1301 E. Main St., Murfreesboro, TN 37132, USA
| | - Heidi Wahamaa
- Department of Medicine, Solna, Karolinska University Hospital, Stockholm S17176, Sweden
| | - Victoria Hoffmann
- Division of Veterinary Resources, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anca Irinel Catrina
- Department of Medicine, Solna, Karolinska University Hospital, Stockholm S17176, Sweden
| | - PaulR Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jane H Buckner
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - William H Robinson
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA and the Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Fox
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Arthritis models: usefulness and interpretation. Semin Immunopathol 2017; 39:469-486. [PMID: 28349194 DOI: 10.1007/s00281-017-0622-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
Animal models of arthritis are used to better understand pathophysiology of a disease or to seek potential therapeutic targets or strategies. Focusing on models currently used for studying rheumatoid arthritis, we show here in which extent models were invaluable to enlighten different mechanisms such as the role of innate immunity, T and B cells, vessels, or microbiota. Moreover, models were the starting point of in vivo application of cytokine-blocking strategies such as anti-TNF or anti-IL-6 treatments. The most popular models are the different types of collagen-induced arthritis and arthritis in KBN mice. As spontaneous arthritides, human TNF-α transgenic mice are a reliable model. It is mandatory to use animal models in the respect of ethical procedure, particularly regarding the number of animals and the control of pain. Moreover, design of experiments should be of the highest level, animal models of arthritis being dedicated to exploration of well-based novelties, and never used for confirmation or replication of already proven concepts. The best interpretations of data in animal models of arthritis suppose integrated research, including translational studies from animals to humans.
Collapse
|
22
|
Apportioning Blame: Autoreactive CD4 + and CD8 + T Cells in Type 1 Diabetes. Arch Immunol Ther Exp (Warsz) 2017; 65:275-284. [PMID: 28083620 DOI: 10.1007/s00005-016-0452-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/18/2016] [Indexed: 01/14/2023]
Abstract
Type 1 diabetes (T1D) is one of the most studied archetypal organ-specific autoimmune diseases. Although many clinical, epidemiological, and pathological characteristics have been described, there are still important issues which need to be resolved as these will have a major impact on the development of future antigen-specific immunotherapies. An important question relates to T lymphocytes in the development of the disease, in particular their role in the destruction of insulin-producing beta cells. Since the discovery that certain class II histocompatibility complex molecules (HLA) are linked to the development of T1D, much research has focused on CD4+ helper T lymphocytes; however, recent studies highlight class I HLA molecules as an independent risk factor; hence, research into the role played by CD8+ cytotoxic T lymphocytes has gained momentum. In this review, we summarize recent studies clarifying the role played by both sets of autoreactive T lymphocytes in T1D, discuss the targets recognized by these cells and their phenotype in T1D patients. Finally, we will examine the possible generation of regulatory CD8+ T lymphocytes upon different immuno-intervention strategies.
Collapse
|
23
|
Nitration of MOG diminishes its encephalitogenicity depending on MHC haplotype. J Neuroimmunol 2016; 303:1-12. [PMID: 28011088 DOI: 10.1016/j.jneuroim.2016.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
Post-translational modifications of autoantigens are hypothesized to affect their immunogenicity. We here report that nitration of tyrosine 40 in Myelin Oligodendrocyte Glycoprotein (MOG) abrogates its encephalitogenicity both at protein and peptide levels in the experimental autoimmune encephalomyelitis (EAE) model in H2b C57BL/6 mice. Furthermore, nitrated MOG displays inferior antigen-specific proliferation of 2D2 splenocytes in vitro. Conversely, H2q DBA1 mice remain fully susceptible to EAE induction using nitrated MOG as the dominant epitope of H2q mice is unaltered. Molecular modeling analysis of the MOG35-55/H2-IAb complex and bioinformatics peptide binding predictions indicate that the lack of T cell reactivity towards nitrated MOG can be attributed to the inability of murine H2-IAb to efficiently present the altered peptide ligand of MOG35-55 because the nitrated tyrosine 40 cannot be accommodated in the p1 anchor pocket. In conclusion we demonstrate nitration as a relevant determinant affecting T cell recognition of carrier antigen depending on MHC haplotype. Our data have implications for understanding the role of post-translationally modified antigen in autoimmunity.
Collapse
|
24
|
De Santis M, Ceribelli A, Cavaciocchi F, Generali E, Massarotti M, Isailovic N, Crotti C, Scherer HU, Montecucco C, Selmi C. Effects of type II collagen epitope carbamylation and citrullination in human leucocyte antigen (HLA)-DR4(+) monozygotic twins discordant for rheumatoid arthritis. Clin Exp Immunol 2016; 185:309-19. [PMID: 27314557 DOI: 10.1111/cei.12825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of this study is to investigate the effect of the native, citrullinated or carbamylated type II human collagen T cell- and B cell-epitopes on the adaptive immune response in rheumatoid arthritis (RA). Peripheral blood T and B cells obtained from a human leucocyte D4-related (antigen DR4(-) HLA-DR4)(+) woman with early RA, her healthy monozygotic twin and an unrelated HLA-DR3(+) woman with early RA were analysed for activation (CD154/CD69), apoptosis (annexin/7-aminoactinomycin), cytokine production [interferon (IFN)γ/interleukin (IL)-17/IL-4/IL-10/IL-6] and functional phenotype (CD45Ra/CCR7) after stimulation with the collagen native T cell epitope (T261-273), the K264 carbamylated T cell epitope (carT261-273), the native B cell epitope (B359-369) or the R360 citrullinated B cell epitope (citB359-369), and the combinations of these. The T cell memory compartment was activated by T cell epitopes in both discordant DR4(+) twins, but not in the DR3(+) RA. The collagen-specific activation of CD4(+) T cells was induced with both the native and carbamylated T cell epitopes only in the RA twin. Both T cell epitopes also induced IL-17 production in the RA twin, but a greater IL-4 and IL-10 response in the healthy twin. The citrullinated B cell epitope, particularly when combined with the carbamylated T cell epitope, induced B cell activation and an increased IL-6/IL-10 ratio in the RA twin compared to a greater IL-10 production in the healthy twin. Our data suggest that circulating collagen-specific T and B cells are found in HLA-DR4(+) subjects, but only RA activated cells express co-stimulatory molecules and produce proinflammatory cytokines. Carbamylation and citrullination further modulate the activation and cytokine polarization of T and B cells.
Collapse
Affiliation(s)
- M De Santis
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy.,BIOMETRA Department, University of Milan, Milan, Italy
| | - A Ceribelli
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy
| | - F Cavaciocchi
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy
| | - E Generali
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy
| | - M Massarotti
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy
| | - N Isailovic
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy
| | - C Crotti
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy
| | - H U Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - C Montecucco
- Rheumatology, Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - C Selmi
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy.,BIOMETRA Department, University of Milan, Milan, Italy
| |
Collapse
|
25
|
Saijo S, Nagai A, Kinjo S, Mashimo R, Akimoto M, Kizawa K, Yabe-Wada T, Shimizu N, Takahara H, Unno M. Monomeric Form of Peptidylarginine Deiminase Type I Revealed by X-ray Crystallography and Small-Angle X-ray Scattering. J Mol Biol 2016; 428:3058-73. [DOI: 10.1016/j.jmb.2016.06.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 02/01/2023]
|
26
|
Karthikeyan K, Barker K, Tang Y, Kahn P, Wiktor P, Brunner A, Knabben V, Takulapalli B, Buckner J, Nepom G, LaBaer J, Qiu J. A Contra Capture Protein Array Platform for Studying Post-translationally Modified (PTM) Auto-antigenomes. Mol Cell Proteomics 2016; 15:2324-37. [PMID: 27141097 PMCID: PMC4937507 DOI: 10.1074/mcp.m115.057661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/19/2016] [Indexed: 11/06/2022] Open
Abstract
Aberrant modifications of proteins occur during disease development and elicit disease-specific antibody responses. We have developed a protein array platform that enables the modification of many proteins in parallel and assesses their immunogenicity without the need to express, purify, and modify proteins individually. We used anticitrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA) as a model modification and profiled antibody responses to ∼190 citrullinated proteins in 20 RA patients. We observed unique antibody reactivity patterns in both clinical anticyclic citrullinated peptide assay positive (CCP+) and CCP- RA patients. At individual antigen levels, we detected antibodies against known citrullinated autoantigens and discovered and validated five novel antibodies against specific citrullinated antigens (osteopontin (SPP1), flap endonuclease (FEN1), insulin like growth factor binding protein 6 (IGFBP6), insulin like growth factor I (IGF1) and stanniocalcin-2 (STC2)) in RA patients. We also demonstrated the utility of our innovative array platform in the identification of immune-dominant epitope(s) for citrullinated antigens. We believe our platform will promote the study of post-translationally modified antigens at a breadth that has not been achieved before, by both identifying novel autoantigens and investigating their roles in disease development. The developed platforms can potentially be used to study many autoimmune disease-relevant modifications and their immunogenicity.
Collapse
Affiliation(s)
- Kailash Karthikeyan
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287
| | - Kristi Barker
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287
| | - Yanyang Tang
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287
| | - Peter Kahn
- §Engineering Arts LLC, Phoenix, Arizona 85076
| | - Peter Wiktor
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287; §Engineering Arts LLC, Phoenix, Arizona 85076
| | - Al Brunner
- §Engineering Arts LLC, Phoenix, Arizona 85076
| | - Vinicius Knabben
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287
| | - Bharath Takulapalli
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287
| | - Jane Buckner
- ¶Benaroya Research Institute, Seattle, Washington 98101
| | - Gerald Nepom
- ¶Benaroya Research Institute, Seattle, Washington 98101
| | - Joshua LaBaer
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287
| | - Ji Qiu
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287;
| |
Collapse
|
27
|
Engelmann R, Biemelt A, Cordshagen A, Johl A, Kuthning D, Müller-Hilke B. The Prerequisites for Central Tolerance Induction against Citrullinated Proteins in the Mouse. PLoS One 2016; 11:e0158773. [PMID: 27362943 PMCID: PMC4928850 DOI: 10.1371/journal.pone.0158773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022] Open
Abstract
Objectives To assess the prerequisites for negative selection of peptidylcitrulline-specific T cells in the thymus. In detail, we here analyzed murine medullary thymic epithelial cells for the expression of peptidylarginine deiminases (PAD) and subsequent citrullination. Methods Medullary thymic epithelial cells were sorted, their mRNA was isolated and the expression of Pad genes was analyzed by quantitative PCR. Citrullination was detected by Western Blot in lysates of sorted medullary thymic epithelial cells and histologically by immunofluorescence of thymic thin sections. Results Pad2 and Pad4 are the main Pad isoforms expressed in mature medullary thymic epithelial cells of the mouse and their levels of expression are comparable to that of insulin (Ins2), another highly and promiscuously expressed protein in the thymus. Citrullination was detected in medullary thymic epithelial cells as shown by Western Blot and immunofluorescence. Conclusions Even though we here show that the murine thymus harbors the prerequisites for central tolerance to PAD and citrullinated peptides, it remains an open question whether the emergence of peptidylcitrulline-specific T cells and of autoantibodies recognizing citrullinated epitopes is caused by a failure of central or peripheral tolerance mechanisms.
Collapse
Affiliation(s)
- Robby Engelmann
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
- * E-mail:
| | - Andra Biemelt
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
| | - Antje Cordshagen
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
| | - Anja Johl
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
| | - Daniela Kuthning
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
| | - Brigitte Müller-Hilke
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
| |
Collapse
|
28
|
Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 2016; 12:402-13. [PMID: 27241241 DOI: 10.1038/nrneph.2016.71] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune diseases are a group of disorders characterized by a failure in self-tolerance to a wide variety of autoantigens. In genetically predisposed individuals, these diseases occur as a multistep process in which environmental factors have key roles in the development of abnormal innate and adaptive immune responses. Experimental evidence collected in the past decade suggests that neutrophils - the most abundant type of white blood cell - might have an important role in the pathogenesis of these diseases by contributing to the initiation and perpetuation of immune dysregulation through the formation of neutrophil extracellular traps (NETs), synthesis of proinflammatory cytokines and direct tissue damage. Many of the molecules externalized through NET formation are considered to be key autoantigens and might be involved in the generation of autoimmune responses in predisposed individuals. In several systemic autoimmune diseases, the imbalance between NET formation and degradation might increase the half-life of these lattices, which could enhance the exposure of the immune system to modified autoantigens and increase the capacity for NET-induced organ damage. This Review details the role of neutrophils and NETs in the pathophysiology of systemic autoimmune diseases, including their effect on renal damage, and discusses neutrophil targets as potential novel therapies for these diseases.
Collapse
Affiliation(s)
- Sarthak Gupta
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Systemic Autoimmunity Branch, Intramural Research Program, National Institutes of Health, Room 6D 47C, 10 Center Drive, Bethesda, MD 20892-1930, USA
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Systemic Autoimmunity Branch, Intramural Research Program, National Institutes of Health, Room 6D 47C, 10 Center Drive, Bethesda, MD 20892-1930, USA
| |
Collapse
|
29
|
Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology. Neurochem Res 2016; 41:1845-56. [PMID: 27097548 DOI: 10.1007/s11064-016-1920-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial demyelinating disease characterized by neurodegenerative events and autoimmune response against myelin component. Citrullination or deimination, a post-translational modification of protein-bound arginine into citrulline, catalyzed by Ca(2+) dependent peptidylarginine deiminase enzyme (PAD), plays an essential role in physiological processes include gene expression regulation, apoptosis and the plasticity of the central nervous system, while aberrant citrullination can generate new epitopes, thus involving in the initiation and/or progression of autoimmune disorder like MS. Myelin basic protein (MBP) is the major myelin protein and is generally considered to maintain the stability of the myelin sheath. This review describes the MBP citrullination and its consequence, as well as offering further support for the "inside-out" hypothesis that MS is primarily a neurodegenerative disease with secondary inflammatory demyelination. In addition, it discusses the role of MBP citrullination in the immune inflammation and explores the potential of inhibition of PAD enzymes as a therapeutic strategy for the disease.
Collapse
|
30
|
Parallel Aspects of the Microenvironment in Cancer and Autoimmune Disease. Mediators Inflamm 2016; 2016:4375120. [PMID: 26997761 PMCID: PMC4779817 DOI: 10.1155/2016/4375120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer and autoimmune diseases are fundamentally different pathological conditions. In cancer, the immune response is suppressed and unable to eradicate the transformed self-cells, while in autoimmune diseases it is hyperactivated against a self-antigen, leading to tissue injury. Yet, mechanistically, similarities in the triggering of the immune responses can be observed. In this review, we highlight some parallel aspects of the microenvironment in cancer and autoimmune diseases, especially hypoxia, and the role of macrophages, neutrophils, and their interaction. Macrophages, owing to their plastic mode of activation, can generate a pro- or antitumoral microenvironment. Similarly, in autoimmune diseases, macrophages tip the Th1/Th2 balance via various effector cytokines. The contribution of neutrophils, an additional plastic innate immune cell population, to the microenvironment and disease progression is recently gaining more prominence in both cancer and autoimmune diseases, as they can secrete cytokines, chemokines, and reactive oxygen species (ROS), as well as acquire an enhanced ability to produce neutrophil extracellular traps (NETs) that are now considered important initiators of autoimmune diseases. Understanding the contribution of macrophages and neutrophils to the cancerous or autoimmune microenvironment, as well as the role their interaction and cooperation play, may help identify new targets and improve therapeutic strategies.
Collapse
|
31
|
Identification of multiple transferrin species in the spleen and serum from mice with collagen-induced arthritis which may reflect changes in transferrin glycosylation associated with disease activity: The role of CD38. J Proteomics 2016; 134:127-137. [DOI: 10.1016/j.jprot.2015.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/11/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022]
|
32
|
Badillo-Soto MA, Rodríguez-Rodríguez M, Pérez-Pérez ME, Daza-Benitez L, Bollain-Y-Goytia JJ, Carrillo-Jiménez MA, Avalos-Díaz E, Herrera-Esparza R. Potential protein targets of the peptidylarginine deiminase 2 and peptidylarginine deiminase 4 enzymes in rheumatoid synovial tissue and its possible meaning. Eur J Rheumatol 2016; 3:44-49. [PMID: 27708970 DOI: 10.5152/eurjrheum.2015.0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/05/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The molecular mechanism of citrullination involves the calcium-dependent peptidylarginine deiminase (PAD) family of enzymes. These enzymes induce a stereochemical modification of normal proteins and transform them into autoantigens, which in rheumatoid arthritis trigger a complex cascade of joint inflammatory events followed by chronic synovitis, pannus formation, and finally, cartilage destruction. By hypothesizing that PAD2 and PAD4 enzymes produce autoantigens, we investigated five possible synovial protein targets of PAD enzymes. MATERIAL AND METHODS We measured PAD2, PAD4, and citrullinated proteins in 10 rheumatoid and 10 osteoarthritis synovial biopsies and then assessed the post-translational modifications of fibrinogen, cytokeratin, tubulin, IgG, and vimentin proteins using a double-fluorescence assay with specific antibodies and an affinity-purified anti-citrullinated peptide (CCP) antibody. The degree of co-localization was analyzed, and statistical significance was determined by ANOVA, Fisher's exact test, and regression analysis. RESULTS The principal results of this study demonstrated that citrullinated proteins, such as fibrinogen, IgG, and other probed proteins, were targets of PAD2 and PAD4 activity in rheumatoid synovial biopsies, whereas osteoarthritis biopsies were negative for this enzyme (p<0.0001). An analysis of citrullination sites using the UniProtKB/Swiss-Prot data bank predicts that the secondary structure of the analyzed proteins displays most of the sites for citrullination; a discussion regarding its possible meaning in terms of pathogenesis is made. CONCLUSION Our results support the conclusion that the synovial citrullination of proteins is PAD2 and PAD4 dependent. Furthermore, there is a collection of candidate proteins that can be citrullinated.
Collapse
Affiliation(s)
- Martha Adriana Badillo-Soto
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, México
| | - Mayra Rodríguez-Rodríguez
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, México
| | - María Elena Pérez-Pérez
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, México
| | - Leonel Daza-Benitez
- Unidad Médica de Alta Especialidad (UMAE) T1, Instituto Mexicano del Seguro Social (IMSS), León, Guanajuato, México
| | - Juan José Bollain-Y-Goytia
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, México
| | | | - Esperanza Avalos-Díaz
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, México
| | - Rafael Herrera-Esparza
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, México
| |
Collapse
|
33
|
Barnado A, Crofford LJ, Oates JC. At the Bedside: Neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J Leukoc Biol 2016; 99:265-78. [PMID: 26658004 PMCID: PMC6608010 DOI: 10.1189/jlb.5bt0615-234r] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/15/2015] [Accepted: 11/05/2015] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps are associated with a unique form of cell death distinct from apoptosis or necrosis, whereby invading microbes are trapped and killed. Neutrophil extracellular traps can contribute to autoimmunity by exposing autoantigens, inducing IFN-α production, and activating the complement system. The association of neutrophil extracellular traps with autoimmune diseases, particularly systemic lupus erythematosus, will be reviewed. Increased neutrophil extracellular trap formation is seen in psoriasis, antineutrophil cytoplasmic antibody-associated vasculitis, antiphospholipid antibody syndrome rheumatoid arthritis, and systemic lupus erythematosus. Neutrophil extracellular traps may promote thrombus formation in antineutrophil cytoplasmic antibody-associated vasculitis and antiphospholipid antibody syndrome. In systemic lupus erythematosus, increased neutrophil extracellular trap formation is associated with increased disease activity and renal disease, suggesting that neutrophil extracellular traps could be a disease activity marker. Neutrophil extracellular traps can damage and kill endothelial cells and promote inflammation in atherosclerotic plaques, which may contribute to accelerated atherosclerosis in systemic lupus erythematosus. As neutrophil extracellular traps induce IFN-α production, measuring neutrophil extracellular traps may estimate IFN-α levels and identify which systemic lupus erythematosus patients have elevated levels and may be more likely to respond to emerging anti-IFN-α therapies. In addition to anti-IFN-α therapies, other novel agents, such as N-acetyl-cysteine, DNase I, and peptidylarginine deiminase inhibitor 4, target neutrophil extracellular traps. Neutrophil extracellular traps offer insight into the pathogenesis of autoimmune diseases and provide promise in developing disease markers and novel therapeutic agents in systemic lupus erythematosus. Priority areas for basic research based on clinical research insights will be identified, specifically the potential role of neutrophil extracellular traps as a biomarker and therapeutic target in systemic lupus erythematosus.
Collapse
Affiliation(s)
- April Barnado
- *Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Leslie J Crofford
- *Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jim C Oates
- *Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
34
|
Pietrosimone KM, Liu P. Contributions of neutrophils to the adaptive immune response in autoimmune disease. World J Transl Med 2015; 4:60-68. [PMID: 27042404 PMCID: PMC4816207 DOI: 10.5528/wjtm.v4.i3.60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/01/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
Neutrophils are granulocytic cytotoxic leukocytes of the innate immune system that activate during acute inflammation. Neutrophils can also persist beyond the acute phase of inflammation to impact the adaptive immune response during chronic inflammation. In the context of the autoimmune disease, neutrophils modulating T and B cell functions by producing cytokines and chemokines, forming neutrophil extracellular traps, and acting as or priming antigen presentation cells. Thus, neutrophils are actively involved in chronic inflammation and tissue damage in autoimmune disease. Using rheumatoid arthritis as an example, this review focuses on functions of neutrophils in adaptive immunity and the therapeutic potential of these cells in the treatment of autoimmune disease and chronic inflammation.
Collapse
|
35
|
Pacini G, Ieronymaki M, Nuti F, Sabatino G, Larregola M, Aharoni R, Papini AM, Rovero P. Epitope mapping of anti-myelin oligodendrocyte glycoprotein (MOG) antibodies in a mouse model of multiple sclerosis: microwave-assisted synthesis of the peptide antigens and ELISA screening. J Pept Sci 2015; 22:52-8. [PMID: 26663200 DOI: 10.1002/psc.2839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 01/06/2023]
Abstract
The role of pathologic auto-antibodies against myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis is a highly controversial matter. As the use of animal models may enable to unravel the molecular mechanisms of the human disorder, numerous studies on multiple sclerosis are carried out using experimental autoimmune encephalomyelitis (EAE). In particular, the most extensively used EAE model is obtained by immunizing C57BL/6 mice with the immunodominant peptide MOG(35-55). In this scenario, we analyzed the anti-MOG antibody response in this model using the recombinant refolded extracellular domain of the protein, MOG(1-117). To assess the presence of a B-cell intramolecular epitope spreading mechanism, we tested also five synthetic peptides mapping the 1-117 sequence of MOG, including MOG(35-55). For this purpose, we cloned, expressed in Escherichia coli and on-column refolded MOG(1-117), and we applied an optimized microwave-assisted solid-phase synthetic strategy to obtain the designed peptide sequences. Subsequently, we set up a solid-phase immunoenzymatic assay testing both naïve and EAE mice sera and using MOG protein and peptides as antigenic probes. The results obtained disclose an intense IgG antibody response against both the recombinant protein and the immunizing peptide, while no response was observed against the other synthetic fragments, thus excluding the presence of an intramolecular epitope spreading mechanism. Furthermore, as the properly refolded recombinant probe is able to bind antibodies with greater efficiency compared with MOG(35-55), we hypothesize the presence of both linear and conformational epitopes on MOG(35-55) sequence.
Collapse
Affiliation(s)
- Giulia Pacini
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology - PeptLab, Florence, Italy and Cergy-Pontoise, France.,Department NeuroFarBa, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, Florence, I-50019, Italy
| | - Matthaia Ieronymaki
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology - PeptLab, Florence, Italy and Cergy-Pontoise, France.,Department NeuroFarBa, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, Florence, I-50019, Italy.,Laboratoire de Chimie Biologique EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac Neuville-sur-Oise, Cergy-Pontoise, 95000, France
| | - Francesca Nuti
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology - PeptLab, Florence, Italy and Cergy-Pontoise, France.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3/13, Sesto Fiorentino, Florence, I-50019, Italy
| | - Giuseppina Sabatino
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology - PeptLab, Florence, Italy and Cergy-Pontoise, France.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3/13, Sesto Fiorentino, Florence, I-50019, Italy
| | - Maud Larregola
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology - PeptLab, Florence, Italy and Cergy-Pontoise, France.,Laboratoire de Chimie Biologique EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac Neuville-sur-Oise, Cergy-Pontoise, 95000, France
| | - Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anna Maria Papini
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology - PeptLab, Florence, Italy and Cergy-Pontoise, France.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3/13, Sesto Fiorentino, Florence, I-50019, Italy.,Laboratoire de Chimie Biologique EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac Neuville-sur-Oise, Cergy-Pontoise, 95000, France
| | - Paolo Rovero
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology - PeptLab, Florence, Italy and Cergy-Pontoise, France.,Department NeuroFarBa, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, Florence, I-50019, Italy
| |
Collapse
|
36
|
Lazarus RC, Buonora JE, Flora MN, Freedy JG, Holstein GR, Martinelli GP, Jacobowitz DM, Mueller GP. Protein Citrullination: A Proposed Mechanism for Pathology in Traumatic Brain Injury. Front Neurol 2015; 6:204. [PMID: 26441823 PMCID: PMC4585288 DOI: 10.3389/fneur.2015.00204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/07/2015] [Indexed: 11/23/2022] Open
Abstract
Protein citrullination is a calcium-driven post-translational modification proposed to play a causative role in the neurodegenerative disorders of Alzheimer’s disease, multiple sclerosis (MS), and prion disease. Citrullination can result in the formation of antigenic epitopes that underlie pathogenic autoimmune responses. This phenomenon, which is best understood in rheumatoid arthritis, may play a role in the chronic dysfunction following traumatic brain injury (TBI). Despite substantial evidence of aberrations in calcium signaling following TBI, there is little understanding of how TBI alters citrullination in the brain. The present investigation addressed this gap by examining the effects of TBI on the distribution of protein citrullination and on the specific cell types involved. Immunofluorescence revealed that controlled cortical impact in rats profoundly up-regulated protein citrullination in the cerebral cortex, external capsule, and hippocampus. This response was exclusively seen in astrocytes; no such effects were observed on the status of protein citrullination in neurons, oligodendrocytes or microglia. Further, proteomic analyses demonstrated that the effects of TBI on citrullination were confined to a relatively small subset of neural proteins. Proteins most notably affected were those also reported to be citrullinated in other disorders, including prion disease and MS. In vivo findings were extended in an in vitro model of simulated TBI employing normal human astrocytes. Pharmacologically induced calcium excitotoxicity was shown to activate the citrullination and breakdown of glial fibrillary acidic protein, producing a novel candidate TBI biomarker and potential target for autoimmune recognition. In summary, these findings demonstrate that the effects of TBI on protein citrullination are selective with respect to brain region, cell type, and proteins modified, and may contribute to a role for autoimmune dysfunction in chronic pathology following TBI.
Collapse
Affiliation(s)
- Rachel C Lazarus
- Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - John E Buonora
- US Army Graduate Program in Anesthesia Nursing , Fort Sam Houston, TX , USA
| | - Michael N Flora
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - James G Freedy
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - David M Jacobowitz
- Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Gregory P Mueller
- Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
37
|
Ménoret A, Crocker SJ, Rodriguez A, Rathinam VA, Clark RB, Vella AT. Transition from identity to bioactivity-guided proteomics for biomarker discovery with focus on the PF2D platform. Proteomics Clin Appl 2015. [PMID: 26201056 DOI: 10.1002/prca.201500029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic strategies provide a valuable tool kit to identify proteins involved in diseases. With recent progress in MS technology, high throughput proteomics has accelerated protein identification for potential biomarkers. Numerous biomarker candidates have been identified in several diseases, and many are common among pathologies. An overall strategy that could complement and strengthen the search for biomarkers is combining protein identity with biological outcomes. This review describes an emerging framework of bridging bioactivity to protein identity, exploring the possibility that some biomarkers will have a mechanistic role in the disease process. A review of pulmonary, cardiovascular, and CNS biomarkers will be discussed to demonstrate the utility of combining bioactivity with identification as a means to not only find meaningful biomarkers, but also to uncover functional mediators of disease.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Annabelle Rodriguez
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
38
|
Caplazi P, Baca M, Barck K, Carano RAD, DeVoss J, Lee WP, Bolon B, Diehl L. Mouse Models of Rheumatoid Arthritis. Vet Pathol 2015; 52:819-26. [DOI: 10.1177/0300985815588612] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody–induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ ARE mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients.
Collapse
Affiliation(s)
- P. Caplazi
- Departments of Research Pathology, Genentech Inc, South San Francisco, CA, USA
| | - M. Baca
- Departments of Research Pathology, Genentech Inc, South San Francisco, CA, USA
| | - K. Barck
- Biomedical Imaging, Genentech Inc, South San Francisco, CA, USA
| | - R. A. D. Carano
- Biomedical Imaging, Genentech Inc, South San Francisco, CA, USA
| | - J. DeVoss
- Translational Immunology, Genentech Inc, South San Francisco, CA, USA
| | - W. P. Lee
- Translational Immunology, Genentech Inc, South San Francisco, CA, USA
| | - B. Bolon
- Department of Veterinary Biosciences and the Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, OH, USA
| | - L. Diehl
- Departments of Research Pathology, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
39
|
Subramanian V, Knight JS, Parelkar S, Anguish L, Coonrod SA, Kaplan MJ, Thompson PR. Design, synthesis, and biological evaluation of tetrazole analogs of Cl-amidine as protein arginine deiminase inhibitors. J Med Chem 2015; 58:1337-44. [PMID: 25559347 PMCID: PMC4610306 DOI: 10.1021/jm501636x] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Protein
arginine deiminases (PADs) catalyze the post-translational
hydrolysis of arginine residues to form citrulline. This once obscure
modification is now known to play a key role in the etiology of multiple
autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis,
lupus, and ulcerative colitis) and in some forms of cancer. Among
the five human PADs (PAD1, -2, -3, -4, and -6), it is unclear which
isozyme contributes to disease pathogenesis. Toward the identification
of potent, selective, and bioavailable PAD inhibitors that can be
used to elucidate the specific roles of each isozyme, we describe
tetrazole analogs as suitable backbone amide bond bioisosteres for
the parent pan PAD inhibitor Cl-amidine. These tetrazole based analogs
are highly potent and show selectivity toward particular isozymes.
Importantly, one of the compounds, biphenyl tetrazole tert-butyl Cl-amidine (compound 13), exhibits enhanced cell
killing in a PAD4 expressing osteosarcoma bone marrow (U2OS) cell
line and can also block the formation of neutrophil extracellular
traps. These bioisosteres represent an important step in our efforts
to develop stable, bioavailable, and selective inhibitors for the
PADs.
Collapse
Affiliation(s)
- Venkataraman Subramanian
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , 364 Plantation Street, Worcester, Massachusetts, 01605, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Gudmann NS, Hansen NUB, Jensen ACB, Karsdal MA, Siebuhr AS. Biological relevance of citrullinations: diagnostic, prognostic and therapeutic options. Autoimmunity 2014; 48:73-9. [PMID: 25520183 DOI: 10.3109/08916934.2014.962024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Citrullination has become a hot topic within recent years due to its involvement in diseases such as rheumatoid arthritis (RA), multiple sclerosis and fibrosis. Citrullinations are the conversion of arginine to citrulline by peptidylarginine deiminase (PAD) enzymes, which affect protein properties. The aim of this review is to summarize the advances in citrullination research and further explore the potential of citrullination as a diagnostic tool as well as inhibition of PAD enzymes as a target for treatment. METHOD We reviewed current literature with emphasis on the role of citrullination in health and disease, the nature of enzymes responsible for citrullination, and the potential of applying citrullinations in diagnostics and pharmaceuticals. CONCLUSION Current literature suggests that increased levels of citrullinated proteins are found in several if not all inflammatory diseases. In RA measurement of anti-citrullinated protein antibodies (ACPA) against citrullinated protein fragments are widely used as a prognostic biomarker. More recently, it has been indicated that levels of selected citrullinated proteins carries additional potential as biomarkers. This includes citrullinated vimentin which provide prognostic information in diseases as fibrosis and ankylosing spondylitis. In addition, recent studies suggest that inhibition of PAD is a target for treatment of diseases such as RA and cancer where proteins that are citrullinated are believed to influence the disease activity.
Collapse
|
41
|
B cell epitope spreading: mechanisms and contribution to autoimmune diseases. Immunol Lett 2014; 163:56-68. [PMID: 25445494 DOI: 10.1016/j.imlet.2014.11.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 01/03/2023]
Abstract
While a variety of factors act to trigger or initiate autoimmune diseases, the process of epitope spreading is an important contributor in their development. Epitope spreading is a diversification of the epitopes recognized by the immune system. This process happens to both T and B cells, with this review focusing on B cells. Such spreading can progress among multiple epitopes on a single antigen, or from one antigenic molecule to another. Systemic lupus erythematosus, multiple sclerosis, pemphigus, bullous pemphigoid and other autoimmune diseases, are all influenced by intermolecular and intramolecular B cell epitope spreading. Endocytic processing, antigen presentation, and somatic hypermutation act as molecular mechanisms that assist in driving epitope spreading and broadening the immune response in autoimmune diseases. The purpose of this review is to summarize our current understanding of B cell epitope spreading with regard to autoimmunity, how it contributes during the progression of various autoimmune diseases, and treatment options available.
Collapse
|
42
|
Synakiewicz A, Stachowicz-Stencel T, Adamkiewicz-Drozynska E. The role of arginine and the modified arginine deiminase enzyme ADI-PEG 20 in cancer therapy with special emphasis on Phase I/II clinical trials. Expert Opin Investig Drugs 2014; 23:1517-29. [DOI: 10.1517/13543784.2014.934808] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Mowen KA, David M. Unconventional post-translational modifications in immunological signaling. Nat Immunol 2014; 15:512-20. [DOI: 10.1038/ni.2873] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/21/2014] [Indexed: 02/07/2023]
|
44
|
Ishikawa LLW, Shoenfeld Y, Sartori A. Immunomodulation in human and experimental arthritis: including vitamin D, helminths and heat-shock proteins. Lupus 2014; 23:577-87. [DOI: 10.1177/0961203314527369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that is mainly directed to the joints, affecting the synovial membrane, the cartilage and also the bone. This disease affects 1% to 2% of the world population and is associated with significant morbidity and increased mortality. RA experimental models have allowed a great deal of information to be translated to the corresponding human disease. This review summarizes some of the most relevant findings targeting immunomodulation in arthritis. Some general guidelines to choose an adequate experimental model and also our experience with arthritis are supplied.
Collapse
Affiliation(s)
- LLW Ishikawa
- Department of Microbiology and Immunology, Biosciences Institute, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Y Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - A Sartori
- Department of Microbiology and Immunology, Biosciences Institute, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
45
|
Kobezda T, Ghassemi-Nejad S, Mikecz K, Glant TT, Szekanecz Z. Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat Rev Rheumatol 2014; 10:160-70. [PMID: 24394350 DOI: 10.1038/nrrheum.2013.205] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The involvement of autoreactive T cells in the pathogenesis of rheumatoid arthritis (RA) as well as in autoimmune animal models of arthritis has been well established; however, unanswered questions, such as the role of joint-homing T cells, remain. Animal models of arthritis are superb experimental tools in demonstrating how T cells trigger joint inflammation, and thus can help to further our knowledge of disease mechanisms and potential therapies. In this Review, we discuss the similarities and differences in T-cell subsets and functions between RA and mouse arthritis models. For example, various T-cell subsets are involved in both human and mouse arthritis, but differences might exist in the cytokine regulation and plasticity of these cells. With regard to joint-homing T cells, an abundance of synovial T cells is present in humans compared with mice. On the other hand, local expansion of type 17 T-helper (TH17) cells is observed in some animal models, but not in RA. Finally, whereas T-cell depletion therapy essentially failed in RA, antibody targeting of T cells can work, at least preventatively, in most arthritis models. Clearly, additional human and animal studies are needed to fill the gap in our understanding of the specific contribution of T-cell subsets to arthritis in mice and men.
Collapse
Affiliation(s)
- Tamás Kobezda
- Department of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Science Centre, 98 Nagyerdei Street, Debrecen H-4032, Hungary
| | - Sheida Ghassemi-Nejad
- Department of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Science Centre, 98 Nagyerdei Street, Debrecen H-4032, Hungary
| | - Katalin Mikecz
- Section of Molecular Medicine, Departments of Orthopedic Surgery, Biochemistry and Rheumatology, Rush University Medical Centre, 1735 West Harrison Street, Chicago, IL 60612, USA
| | - Tibor T Glant
- Section of Molecular Medicine, Departments of Orthopedic Surgery, Biochemistry and Rheumatology, Rush University Medical Centre, 1735 West Harrison Street, Chicago, IL 60612, USA
| | - Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Science Centre, 98 Nagyerdei Street, Debrecen H-4032, Hungary
| |
Collapse
|
46
|
Doyle HA, Yang ML, Raycroft MT, Gee RJ, Mamula MJ. Autoantigens: novel forms and presentation to the immune system. Autoimmunity 2013; 47:220-33. [PMID: 24191689 DOI: 10.3109/08916934.2013.850495] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is clear that lupus autoimmunity is marked by a variety of abnormalities, including those found at a macroscopic scale, cells and tissues, as well as more microenvironmental influences, originating at the individual cell surface through to the nucleus. The convergence of genetic, epigenetic, and perhaps environmental influences all lead to the overt clinical expression of disease, reflected by the presences of autoantibodies and tissue pathology. This review will address several specific areas that fall among the non-genetic factors that contribute to lupus autoimmunity and related syndromes. In particular, we will discuss the importance of understanding various protein post-translational modifications (PTMs), mechanisms that mediate the ability of "modified self" to trigger autoimmunity, and how these PTMs influence lupus diagnosis. Finally, we will discuss altered pathways of autoantigen presentation that may contribute to the perpetuation of chronic autoimmune disease.
Collapse
Affiliation(s)
- Hester A Doyle
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| | | | | | | | | |
Collapse
|
47
|
Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, Friday S, Li S, Patel RM, Subramanian V, Thompson P, Chen P, Fox DA, Pennathur S, Kaplan MJ. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 2013; 5:178ra40. [PMID: 23536012 DOI: 10.1126/scitranslmed.3005580] [Citation(s) in RCA: 953] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and RA synovial fluid neutrophils compared to neutrophils from healthy controls and from patients with osteoarthritis (OA). Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules, and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin antibodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A (IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease.
Collapse
Affiliation(s)
- Ritika Khandpur
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Misják P, Bősze S, Horváti K, Pásztói M, Pálóczi K, Holub MC, Szakács F, Aradi B, György B, Szabó TG, Nagy G, Glant TT, Mikecz K, Falus A, Buzás EI. The role of citrullination of an immunodominant proteoglycan (PG) aggrecan T cell epitope in BALB/c mice with PG-induced arthritis. Immunol Lett 2013; 152:25-31. [PMID: 23578666 DOI: 10.1016/j.imlet.2013.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 03/10/2013] [Accepted: 03/27/2013] [Indexed: 12/30/2022]
Abstract
The P70-84 peptide (also called 5/4E8 epitope) of the human cartilage proteoglycan (PG) aggrecan is the dominant/arthritogenic epitope in both humans and arthritis-prone BALB/c mice (PG-induced arthritis, PGIA). An elevated T cell reactivity was demonstrated to a citrullinated version of the P70-84 epitope in most of the patients with rheumatoid arthritis (RA). The goal of this study was to understand better how a T cell epitope, if citrullinated, may affect antigenicity/arthritogenicity in PGIA, a murine model of RA. T cell reactivity to differentially citrullinated versions of either the human PG aggrecan P70-84 peptide or the corresponding mouse sequence was assessed in peptide or aggrecan-immunized and arthritic BALB/c mice as well as in T cell receptor transgenic mice specific for peptide P70-84 sequence. Peripheral T cell responses were induced by priming BALB/c mice with either the human wild-type or its citrullinated versions. Unexpectedly, priming with the citrullinated self-peptide induced a higher T cell response compared to the wild-type sequence (p<0.001), and the citrullination of the human peptide abolished T cell reactivity in PGIA. Our data suggest that T cells reactive to the citrullinated P70-84 peptide escaped thymic selection and are present in the peripheral T cell repertoire. Results of this study provide evidence that citrullination of an immunodominant T cell epitope may substantially alter, either increase or abolish, T cell recognition at the periphery in an experimental model of arthritis.
Collapse
Affiliation(s)
- Petra Misják
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
BACKGROUND The immune response involves the activation of heterogeneous populations of T cells and B cells that show different degrees of affinity and specificity for target antigens. Although several techniques have been developed to study the molecular pathways that control immunity, there is a need for high-throughput assays to monitor the specificity of the immune response. CONTENT Antigen microarrays provide a new tool to study the immune response. We reviewed the literature on antigen microarrays and their advantages and limitations, and we evaluated their use for the study of autoimmune diseases. Antigen arrays have been successfully used for several purposes in the investigation of autoimmune disorders: for disease diagnosis, to monitor disease progression and response to therapy, to discover mechanisms of pathogenesis, and to tailor antigen-specific therapies to the autoimmune response of individual patients. In this review we discuss the use of antigen microarrays for the study of 4 common autoimmune diseases and their animal models: type 1 diabetes, systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. CONCLUSIONS Antigen microarrays constitute a new tool for the investigation of the immune response in autoimmune disorders and also in other conditions such as tumors and allergies. Once current limitations are overcome, antigen microarrays have the potential to revolutionize the investigation and management of autoimmune diseases.
Collapse
Affiliation(s)
- Ada Yeste
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
50
|
Wei L, Wasilewski E, Chakka SK, Bello AM, Moscarello MA, Kotra LP. Novel Inhibitors of Protein Arginine Deiminase with Potential Activity in Multiple Sclerosis Animal Model. J Med Chem 2013; 56:1715-22. [DOI: 10.1021/jm301755q] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Lianhu Wei
- Center for Molecular Design
and Preformulations, Toronto General Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Ewa Wasilewski
- Center for Molecular Design
and Preformulations, Toronto General Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Sai Kumar Chakka
- Center for Molecular Design
and Preformulations, Toronto General Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Angelica M. Bello
- Center for Molecular Design
and Preformulations, Toronto General Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Mario A. Moscarello
- The Research Institute, Hospital
for Sick Children, Toronto, Ontario, Canada
| | - Lakshmi P. Kotra
- Center for Molecular Design
and Preformulations, Toronto General Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
- McLaughlin Center for Molecular
Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|