1
|
Kerr T, Nelson YA, Bernier NA, Spokoyny AM. An Electrochemical Strategy for Chalcogenation of closo-Dodecaborate (B 12H 12) 2- Anion. Inorg Chem 2025; 64:8845-8850. [PMID: 40272989 PMCID: PMC12076541 DOI: 10.1021/acs.inorgchem.5c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025]
Abstract
Advancements in thermal neutron generation technologies within clinical environments have led to a renewed interest in developing boron-containing compounds for boron neutron capture therapy (BNCT). Previous syntheses of several key boron cluster-based therapeutics with clinical relevance are low-yielding and have complicated workup procedures. Using electrolytic methods, we report the in situ oxidation of pseudohalides, [SCN]- and [SeCN]-, to synthesize pseudohalogenated products, B12H11YCN2- (Y = S or Se). Further, these compounds can be reduced to their respective thiol or selenol, [B12H11SH]2- (BSH) or [B12H11SeH]2- (BSeH), which are exceedingly nucleophilic and able to form zwitterionic sulfonium and selenonium compounds using alkyl-based electrophiles. The newly reported preparation of BSH and BSeH provides an efficient and convenient route to the preparation of key chalcogenated boron cluster building blocks for the biomedical and materials science communities.
Collapse
Affiliation(s)
- Tyler
A. Kerr
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Yessica A. Nelson
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Nicholas A. Bernier
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Alexander M. Spokoyny
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University
of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Lee K, González-Montiel GA, Eom H, Kim TH, Noh HC, Farah AO, Wise HR, Kim D, Cheong PHY, Lee PH. Site- and enantioselective B-H functionalization of carboranes. Nat Commun 2025; 16:4182. [PMID: 40324985 PMCID: PMC12053766 DOI: 10.1038/s41467-025-59410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Functionalization of carboranes, icosahedral boron-carbon molecular clusters, is of great interest as they have wide applications in medicinal and materials chemistry. Thus, site- and enantioselective synthesis of carboranes requires complete control of the reaction. Herein, we describe the asymmetric Rh(II)-catalyzed insertion reactions of carbenes into cage B-H bond of carboranes. This reaction thereby generates carboranes possessing a carbon-stereocenter adjacent to cage boron of the carborane, in excellent site- and enantioselectivity under mild reaction conditions. The fully computed transition structures of Rh(II)-catalyzed carbene insertion process through density functional theory are reported. These B-H insertion transition structures, in conjunction with topographical proximity surfaces analyses, visually reveal the region between the carborane and the phthalimide ligands responsible for the selectivities of this reaction.
Collapse
Affiliation(s)
- Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | | | - Hyeonsik Eom
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tae Hyeon Kim
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-2145, USA
| | - Henry R Wise
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-2145, USA
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon, 34141, Republic of Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-2145, USA.
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Cao HJ, Li JX, Yan JH, Liu MX, Zhao Q, Zhang J, Zhang J, Yan H. Post-coordination of Ru(ii) controlled regioselective B(4)-H acylmethylation of o-carboranes with sulfoxonium ylides. Chem Sci 2025:d5sc01576f. [PMID: 40308949 PMCID: PMC12038429 DOI: 10.1039/d5sc01576f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
Despite significant progress in the B-H functionalization of carboranes, the development of cost-effective catalytic systems devoid of noble metals, coupled with mechanistic validation of regioselectivity control, remains a formidable challenge. Herein, we disclose an Ag salt-free, redox-neutral, and inexpensive ruthenium(ii)-catalyzed protocol that enables exclusive B(4)-H acylmethylation of o-carboranes through a novel post-coordination strategy. By exploiting weakly coordinating carboxylic acid as a traceless directing group, this method achieves excellent mono-site selectivity for B-C(sp3) bond formation using diverse sulfoxonium ylides, demonstrating both functional group tolerance and synthetic scalability. This work not only establishes a practical synthetic platform but also addresses critical mechanistic questions unresolved in prior analogous studies. Through deuterium labeling, in situ high-resolution mass spectrometry (HRMS) tracking, and single-crystal X-ray analysis of critical Ru intermediates, we unequivocally demonstrate that the mono-site selectivity originates from a unique post-coordination mode of Ru(ii). The Ru catalyst simultaneously engages both the carboxylic acid and the enolizable acylmethyl moiety in the mono-acylated intermediate, thereby dictating the B(4)-H activation trajectory. Our findings establish a generalizable platform for regiocontrolled carborane functionalization while defining mechanistic paradigms in transition metal-mediated B-H activation chemistry.
Collapse
Affiliation(s)
- Hou-Ji Cao
- Henan Key Laboratory of Boron Chemistry and Advanced Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Jia-Xin Li
- Henan Key Laboratory of Boron Chemistry and Advanced Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Jia-Hui Yan
- Henan Key Laboratory of Boron Chemistry and Advanced Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Miao-Xin Liu
- Henan Key Laboratory of Boron Chemistry and Advanced Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Qianyi Zhao
- Henan Key Laboratory of Boron Chemistry and Advanced Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Ju Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
4
|
Wang D, He Z, Liu C, Wu Y, Tang Z, Liu S, Yu B, Luo J, Li B. Synthesis of Carboranyl Alkyl Sulfide via Radical Thiol-Ene "Click" Reaction. Org Lett 2025; 27:4000-4005. [PMID: 40192119 DOI: 10.1021/acs.orglett.5c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Synthetic methods that feature mild reaction conditions and broad functional group tolerance are highly desired for the development of third-generation boron delivery agents, which are highly significant for boron neutron capture therapy (BNCT), a selective cancer treatment technique. Molecules containing carborane are promising candidates as boron delivery compounds for BNCT. Herein, we report an efficient radical thiol-ene "click" reaction involving carboranyl thiols and unactivated alkenes under photoredox conditions. This reaction affords moderate to excellent isolated yields. The current methodology allows for the incorporation of carborane, a valuable moiety with a high boron content, into molecules under mild reaction conditions. The outstanding functional group tolerance of this method makes it suitable for the late-stage introduction of boron into bioactive molecules. The radical addition reactivity of carboranyl thiol radical was investigated by DFT calculations to uncover the impact of the 3D aromaticity of carborane on the stabilization of a sulfur centered radical.
Collapse
Affiliation(s)
- Dinghai Wang
- Department of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, 210094 Nanjing, China
| | - Zhiyong He
- Department of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, 210094 Nanjing, China
| | - Chang Liu
- Department of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, 210094 Nanjing, China
| | - Yuting Wu
- Department of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, 210094 Nanjing, China
| | - Zhongkuan Tang
- Department of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, 210094 Nanjing, China
| | - Siqi Liu
- Department of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, 210094 Nanjing, China
| | - Baolin Yu
- Department of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, 210094 Nanjing, China
| | - Jingwen Luo
- Department of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, 210094 Nanjing, China
| | - Bindong Li
- Department of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, 210094 Nanjing, China
| |
Collapse
|
5
|
Xu S, Zhang H, Zong J, Cao H, Tu D, Lu CS, Yan H. Taming Inert B-H Bond with Low Energy Light: A Near-Infrared Light-Induced Approach to Facile Carborane Cluster-Amino Acid Coupling. J Am Chem Soc 2025; 147:12845-12857. [PMID: 40168596 DOI: 10.1021/jacs.5c01610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The selective functionalization of inert B-H bonds in carborane clusters has been a formidable challenge. Recent advances have witnessed such reactions through photoredox methods utilizing ultraviolet or visible light irradiation. However, high-energy light sources often suffer from poor energy efficiency, a limited substrate scope, undesired side reactions, and low scalability. Here, we present the first successful B-H bond functionalization under low-energy near-infrared (NIR) light using a carborane-based electron donor-acceptor complex. Both photophysical investigations and theoretical modeling reveal a facile single-electron transfer from the carborane cage to the electron-deficient photocatalyst, generating a carborane cage radical under NIR light irradiation. The follow-up radical pathway enables the direct coupling of carboranes with amino acids or oligopeptides, yielding a diverse array of carborane-functionalized amino acids or oligopeptides. Beyond expanding the known chemical space of boron cluster derivatives, we further demonstrate that carborane-based amino acids with imaging and targeting capabilities could serve as promising multifunctional boron carriers for boron neutron capture therapy. Thus, the selective B-H bond functionalization of the carboranes via NIR light not only provides a straightforward and practical strategy in boron cluster synthetic chemistry but also lays the foundation for the development of next-generation boron-containing biomolecules and advanced functional materials.
Collapse
Affiliation(s)
- Shengwen Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongjian Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jibo Zong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Houji Cao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Sun W, Jin Y, Wang Y, Wen Z, Sun J, Yao J, Duttwyler S, Li H. Oxidation-induced nucleophilic substitution at the electron-rich B(12) vertex in [CB 11H 12] - under catalyst-free conditions. Chem Sci 2025; 16:5942-5947. [PMID: 40060093 PMCID: PMC11884434 DOI: 10.1039/d5sc00234f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Highly regioselective B(12) substitutions of the monocarborane anion [CB11H12]- has been a challenge. Here, we synthesized a stable B-O-N zwitterionic compound with an impressive yield (isolated yield up to 98%) and excellent regioselectivity at the B(12) position under catalyst-free conditions. The kinetics, substituent effect, and capture experiments are paired with theoretical calculations, showing that the reaction mechanism is oxidation-induced nucleophilic substitution. The hydride anion at the B(12) position is abstracted by an oxoammonium oxidant with lower cleavage energy of 4.2 kcal mol-1 than B(7-11) positions, thereby changing the electronegativity upon the conversion of [CB11H12]- to neutral [CB11H11], in turn giving very high regioselectivity for nucleophilic substitution. This work presents an effective method for synthesizing B(12) oxygen derivatives of the [CB11H12]- anion.
Collapse
Affiliation(s)
- Wanqi Sun
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Yujie Jin
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Yongtao Wang
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Zeyu Wen
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Jizeng Sun
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Jia Yao
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Simon Duttwyler
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Haoran Li
- Department of Chemistry, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| |
Collapse
|
7
|
Ma QQ, Zhou P, Liu Y, Xie Z. Chelating 1,2-Bis(2'-picolyl)- o-carborane as a Supporting Ligand for Pd-Catalyzed Selective B(3,6)-H Difunctionalization of o-Carboranes. Inorg Chem 2025; 64:5707-5715. [PMID: 40068135 DOI: 10.1021/acs.inorgchem.5c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Transition metal catalyzed selective cage B-H functionalization of carboranes has made significant progress in recent years, giving rise to the efficient synthesis of a large variety of cage B-functionalized carboranes including alkenylation, arylation, alkynylation, borylation, hydroxylation, acyloxylation, amination, and halogenation. However, the mechanisms of these catalytic B-X coupling reactions are not well understood. Herein, we describe the isolation and characterization of the catalytically relevant o-carborane based palladium(II) metallacycle, disclosing the details of Pd-catalyzed B-H functionalization of o-carboranes. As a result, highly selective catalytic B(3,6)-dihalogenation, -dimethylation, and -diarylation of o-carboranes have been achieved.
Collapse
Affiliation(s)
- Qiang-Qiang Ma
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peng Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yizhen Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zuowei Xie
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
8
|
Rao H, Jia H, Qiu Z, Xie Z. Palladium-catalyzed intramolecular oxidative annulation: synthesis of o-carboranoxazoles. Dalton Trans 2025; 54:4866-4870. [PMID: 40059851 DOI: 10.1039/d5dt00382b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
An efficient palladium-catalyzed intramolecular annulation of 1-acylamino-o-carboranes has been achieved for the synthesis of o-carboranoxazoles with good to excellent yields across a wide range of substrates. Chlorobenzene, acting as an external oxidant, plays a crucial role in this intramolecular dehydrogenative cross-coupling reaction.
Collapse
Affiliation(s)
- Hui Rao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Hairui Jia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Kirlikovali KO, Gómez-Torres A, Sauza-de la Vega A, Darù A, Krzyaniak MD, Garg P, Malliakas CD, Wasielewski MR, Gagliardi L, Farha OK. Electronically Tunable Low-Valent Uranium Metallacarboranes. Inorg Chem 2025; 64:4749-4760. [PMID: 40029039 DOI: 10.1021/acs.inorgchem.4c04431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Uranium metallocenes have played a pivotal role in advancing the understanding of low-valent uranium chemistry since the inception of this field, and they still find continued use today. Functionalization strategies for cyclopentadienyl (Cp) ligands used in uranium metallocenes have predominately focused on modifying the steric properties of the ligand through the incorporation of alkyl or silyl groups, which offer limited control over the electronic properties. Moreover, due to the flat, two-dimensional nature of Cp, functional groups will affect the coordination geometry of the uranium metallocene and can potentially present challenges in decoupling steric and electronic effects. In comparison, uranium metallacarboranes, which are boron cluster-based metallocene analogues that feature three-dimensional dianionic dicarbollide (dc) ligands, present a versatile platform that is potentially capable of not only stabilizing the low-valent uranium center but also providing control over the electronic properties of the resulting complex without significantly modifying the coordination geometry through the incorporation of a diverse range of groups onto the dc ligand at vertices directed away from the uranium center. In this work, we synthesized a series of uranium metallacarboranes featuring B-functionalized dc ligands with increasingly electron withdrawing aryl groups. A combination of cyclic voltammetry and density functional theory studies confirms that this strategy offers predictable control over the electronic properties of the uranium center. More broadly, this work establishes uranium metallacarboranes as a highly tunable class of complexes potentially capable of unlocking new insights into low-valent uranium chemistry.
Collapse
Affiliation(s)
- Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Alejandra Gómez-Torres
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Arturo Sauza-de la Vega
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrea Darù
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Palak Garg
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Christos D Malliakas
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Zhu S, Liu Y, Xie Z. Palladium-Catalyzed Selective B(3)-Esterification of o-Carboranes with CO and Alcohols. Org Lett 2025; 27:2429-2432. [PMID: 40026134 DOI: 10.1021/acs.orglett.5c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Selective functionalization of o-carboranes has received tremendous attention, specifically in the regioselective modification of the ten chemically similar BH vertices within o-carborane cage. We disclose herein a strategy for palladium-catalyzed esterification of the B(3)-H bond in o-carboranes using tungsten hexacarbonyl as a carbon monoxide source. The corresponding functionalized o-carboranes were prepared in moderate to very good yields with excellent regioselectivity.
Collapse
Affiliation(s)
- Shuai Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yizhen Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zuowei Xie
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
11
|
Noori Z, Solà M, Viñas C, Teixidor F, Poater J. Unraveling aromaticity: the dual worlds of pyrazole, pyrazoline, and 3D carborane. Beilstein J Org Chem 2025; 21:412-420. [PMID: 39996167 PMCID: PMC11849550 DOI: 10.3762/bjoc.21.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
A new series of o-carborane-fused pyrazoles has been recently successfully synthesized. This fusion was expected to create a hybrid 3D/2D aromatic system, combining the 3D aromaticity of o-carborane with the 2D aromaticity of pyrazole. However, while the boron cage retains its aromatic character, the pyrazole's aromaticity is lost. As a result, rather than forming o-carborane-fused pyrazoles, the synthesis yielded o-carborane-fused pyrazolines, which are non-aromatic. The limited overlap between the π molecular orbitals (MOs) of the planar heterocycle and the n + 1 MOs of the carborane prevents significant electronic delocalization between the two fused components. This contrasts with the fusion of pyrazole and benzene to form indazole, where both rings maintain their 2D aromaticity. Our findings demonstrate that the peripheral σ-aromaticity of carborane and the π-aromaticity of the heterocycle are orthogonal, making a true 3D/2D aromatic system unachievable. The carborane is highly aromatic, generating highly negative NICS values (-25 to -30 ppm). We have observed that these high NICS values extend to fused rings, leading to incorrect estimations of aromaticity. Therefore, relying solely on NICS can be misleading, and other computational indicators, along with experimental or structural data, should be used to accurately assess aromaticity.
Collapse
Affiliation(s)
- Zahra Noori
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Xu HL, Zhu M, Sung HHY, Williams ID, Lin Z, Zhang C, Sun J. Organocatalytic Asymmetric Synthesis of o-Carboranyl Amines. J Am Chem Soc 2025; 147:3692-3701. [PMID: 39808207 DOI: 10.1021/jacs.4c16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Carboranyl amines are distinct from typical organic amines. Due to the electronic influence of the carborane cage, they have low nucleophilicity and are reluctant to alkylate. Moreover, asymmetric synthesis of chiral carboranes is still in its infancy. Herein we have achieved the first catalytic asymmetric N-alkylation of o-carboranyl amine, providing general access to diverse secondary o-carboranyl amines with high efficiency and enantioselectivity under mild conditions. For the first time, asymmetric organocatalysis was introduced to carborane chemistry. Key to the success is the use of in situ generated (naphtho-)quinone methides as the alkylating reagents and suitable chiral acid catalysts. This protocol is also applicable to the asymmetric S-alkylation of 1-SH-o-C2B10H11. Control experiments and kinetic studies provided important insights into the reaction mechanism, which likely involves rate-determining generation of the quinone methide followed by fast and enantio-determining nucleophilic addition.
Collapse
Affiliation(s)
- Hong-Lei Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Minghui Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Herman H Y Sung
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ian D Williams
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Zhenyang Lin
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chaoshen Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
13
|
Guo C, Zhang J, Ge Y, Qiu Z, Xie Z. Asymmetric Palladium Migration for Synthesis of Chiral-at-Cage o-Carboranes. Angew Chem Int Ed Engl 2025; 64:e202416987. [PMID: 39438633 DOI: 10.1002/anie.202416987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Metal migration strategy can offer BH functionalization of o-carboranes at different positions from where initial bond activation occurs to achieve bifunctionalized o-carboranes in one reaction. We report in this article an enantioselective 3,4-bifunctionalization of o-carboranes via asymmetric Pd migration with a high efficiency and up to 98 % ee. This asymmetric catalysis has a broad substrates scope, leading to the preparation of a class of chiral-at-cage o-carborane derivatives. The enantiocontrol model is suggested on the basis of density functional theory (DFT) results, where the chiral Trost ligand plays a crucial role in this enantioselective Pd migration from exo-alkenyl sp2 C to the cage B(4) position of o-carborane.
Collapse
Affiliation(s)
- Chenyang Guo
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Zhang
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, China
| | - Yixiu Ge
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- International Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
14
|
Lee K, Yoon S, Noh HC, Kim D, Lee PH. Rhodium(III)-Catalyzed B(4)-Azo Coupling of o-Carboranes with Aryl Diazonium Tetrafluoroborates. Org Lett 2024; 26:8410-8415. [PMID: 39320152 DOI: 10.1021/acs.orglett.4c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Rh(III)-catalyzed B(4)-azo coupling reactions of o-carborane acids with aryl diazonium tetrafluoroborates have been developed, leading to the regioselective formation of B(4)-azo-coupled o-carboranes. Moreover, B(4)-azo-coupled o-carboranes can be further functionalized by introducing a second azo group, producing B(4)-C(1)-di(arylazo) o-carborane. The B(4)-azo group as an efficient directing group enables catalytic C-H amidation reactions, providing a new synthetic route for complex o-carborane derivatives.
Collapse
Affiliation(s)
- Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sugyeong Yoon
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
15
|
Wang P, Kinjo R. Borane-Mediated Polyhedral Expansion to Access Metal-Free Neutral and Cationic Derivatives of closo-Heptaboranes. J Am Chem Soc 2024. [PMID: 39358830 DOI: 10.1021/jacs.4c12003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Boranes with closed polyhedral structures feature peculiar bonding and structural characteristics, rendering them widely applicable in diverse research areas ranging from basic functionalization reactions to applications such as medicine, nanomaterials, molecular electronics, and neutron capture therapy. Among the closed borane family, the neutral and cationic heptaborane B7 clusters have been missing in contemporary boron cluster chemistry to date. Herein, we report a polyhedral expansion protocol to construct a neutral derivative of closo-heptaborane (B7) from closo-hexaborane (B6) mediated by borane. Conversion of the neutral derivative of closo-heptaborane to a cationic derivative is also demonstrated. X-ray crystallographic and spectroscopic analyses with the aid of quantum chemical calculations reveal that both neutral and cationic derivatives of closo-heptaborane exhibit a pentagonal-bipyramidal geometry and involve the delocalized σ skeletal electrons, leading to three-dimensional aromaticity. Moreover, the B7 core of the former undergoes a complexation reaction with silver tetrafluoroborate, representing the first experimental demonstration of the nucleophilic nature of the closo-heptaborane.
Collapse
Affiliation(s)
- Penglong Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Rei Kinjo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
16
|
Ren H, Zhou N, Ma W, Zhang P, Tu D, Lu CS, Yan H. Dative Bonding Activation Enables Precise Functionalization of the Remote B-H Bond of nido-Carborane Clusters. J Am Chem Soc 2024; 146:26543-26555. [PMID: 39267603 DOI: 10.1021/jacs.4c10728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The innovation of synthetic strategies for selective B-H functionalization is a pivotal objective in the realm of boron cluster chemistry. However, the precise, efficient, and rapid functionalization of a B-H bond of carboranes that is distant from the existing functional groups remains intractable owing to the limited approaches for site-selective control from the established methods. Herein, we report a dative bonding activation strategy for the selective functionalization of a nonclassical remote B-H site of nido-carboranes. By leveraging the electronic effects brought by the exopolyhedral B(9)-dative bond, a cross-nucleophile B-H/S-H coupling protocol of the distal B(5)-H bond has been established. The dative bond not only amplifies the subtle reactivity difference among B-H bonds but also significantly changes the reactive sites, further infusing nido-carboranes with additional structural diversity. This reaction paradigm features mild conditions, rapid conversion, efficient production, broad scope, and excellent group tolerance, thus enabling the applicability to an array of complex bioactive molecules. The efficient and scalable reaction platform is amenable to the modular construction of photofunctional molecules and boron delivery agents for boron neutron capture therapy. This work not only provides an unprecedented solution for the selective diversification of distal B-H sites in nido-carboranes but also holds the potential for expediting the discovery of novel carborane-based functional molecules.
Collapse
Affiliation(s)
- Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ningning Zhou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Sun Z, Zong J, Ren H, Lu C, Tu D, Poater J, Solà M, Shi Z, Yan H. Couple-close construction of non-classical boron cluster-phosphonium conjugates. Nat Commun 2024; 15:7934. [PMID: 39256342 PMCID: PMC11387837 DOI: 10.1038/s41467-024-51506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Heteropolycyclic molecular systems, which are essential components in the fields of materials and pharmacology, frequently consist of 2D extended organic aromatic rings. Here, we introduce a type of inorganic-organic hybrid 3D conjugates by merging an aromatic boron cluster with a phosphine and a π-conjugated unit. To achieve this, a couple-close synthetic strategy via B-H activation of nido-carboranes with alkynes has been developed, which leads to diverse boron cluster-extended phosphoniums in a twisted structure with high yields under mild conditions. Experimental and theoretical results reveal that the fusion between the boron cluster and the formed borophosphonium heterocycle facilitates electron delocalization throughout the structure. The unusual framework demonstrates distinct properties from bare boron clusters and pure aromatic ring-extended counterparts, such as improved thermal/chemical stability and photophysical properties. Thus, the boron cluster-based 3D conjugates expand the library of aromatic-based heterocyclics, showcasing great potential in functional materials.
Collapse
Affiliation(s)
- Zhaofeng Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jibo Zong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona, 08028, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi, Universitat de Girona, C/ Maria Aurèlia Capmany, 69, Girona, 17003, Catalonia, Spain.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
18
|
Wang X, Wang J, Xu X, Zhao H, Liu Y, Peng X, Deng X, Huang T, Zhang H, Wei Y. Antitumor Therapy through Photothermal Performance Synergized with Catalytic Activity Based on the Boron Cluster Supramolecular Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32983-32991. [PMID: 38898566 DOI: 10.1021/acsami.4c03338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chemodynamic therapy (CDT) has received widespread attention as a tumor optical treatment strategy in the field of malignant tumor therapy. Nonmetallic multifunctional nanomaterials as CDT agents, due to their low toxicity, long-lasting effects, and safety characteristics, have promising applications in the integrated diagnosis and treatment of cancer. Here, we modified the supramolecular framework of boron clusters, coupled with a variety of dyes to develop a series of metal-free agent compounds, and demonstrated that these nonmetallic compounds have excellent CDT activities through experiments. Subsequently, the best performing Methylene Blue/[closo-B12H12]2- (MB@B12H12) was used as an example. Through theoretical calculations, electron paramagnetic resonance spectroscopy, and 808 nm light irradiation, we confirmed that MB@B12H12 exhibited photothermal performance and CDT activity further. More importantly, we applied MB@B12H12 to melanoma cells and subcutaneous tumor, demonstrating its effective suppression of melanoma growth in vitro and in vivo through the synergistic effects of photothermal performance and CDT activity. This study emphasizes the generalizability of the coupling of dyes to [closo-B12H12]2- with important clinical translational potential for CDT reagents. Among them, MB@B12H12 may have a brighter future, paving the way for the rapid development of metal-free CDT reagents.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Jiajia Wang
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoran Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Haixu Zhao
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Xiaoqing Peng
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xuefan Deng
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences and National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| |
Collapse
|
19
|
Xu S, Zhang H, Xu J, Suo W, Lu CS, Tu D, Guo X, Poater J, Solà M, Yan H. Photoinduced Selective B-H Activation of nido-Carboranes. J Am Chem Soc 2024; 146:7791-7802. [PMID: 38461434 DOI: 10.1021/jacs.4c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The development of new synthetic methods for B-H bond activation has been an important research area in boron cluster chemistry, which may provide opportunities to broaden the application scope of boron clusters. Herein, we present a new reaction strategy for the direct site-selective B-H functionalization of nido-carboranes initiated by photoinduced cage activation via a noncovalent cage···π interaction. As a result, the nido-carborane cage radical is generated through a single electron transfer from the 3D nido-carborane cage to a 2D photocatalyst upon irradiation with green light. The resulting transient nido-carborane cage radical could be directly probed by an advanced time-resolved EPR technique. In air, the subsequent transformations of the active nido-carborane cage radical have led to efficient and selective B-N, B-S, and B-Se couplings in the presence of N-heterocycles, imines, thioethers, thioamides, and selenium ethers. This protocol also facilitates both the late-stage modification of drugs and the synthesis of nido-carborane-based drug candidates for boron neutron capture therapy (BNCT).
Collapse
Affiliation(s)
- Shengwen Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongjian Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weiqun Suo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xingwei Guo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, Girona, Catalonia 17003, Spain
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
21
|
Yuan S, Zhang H, Qiu Z, Xie Z. Palladium-Catalyzed Regioselective B(3,5)-Dialkenylation and B(4)-Alkenylation of o-Carboranes. J Org Chem 2024; 89:2474-2479. [PMID: 38303606 PMCID: PMC11526369 DOI: 10.1021/acs.joc.3c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Picolyl group directed B(3,5)-dialkenylation and B(4)-monoalkenylation of o-carboranes has been developed with a very low palladium catalyst loading. The degree of substitution is determined by the cage C(2)-substituents due to steric reasons. On the basis of experimental results, a plausible mechanism is proposed including electrophilic palladation and alkyne insertion followed by protonation.
Collapse
Affiliation(s)
- Shasha Yuan
- School
of Materials and Chemistry, University of
Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai-Hong
Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huifang Zhang
- Shanghai-Hong
Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zaozao Qiu
- Shanghai-Hong
Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Innovation
Institute of Carbon Neutrality and International Joint Laboratory
of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zuowei Xie
- Shanghai-Hong
Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N. T., Hong Kong, China
- Shenzhen
Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
22
|
Muñoz-Juan A, Nuez-Martínez M, Laromaine A, Viñas C. Exploring the Role of Metal in the Biointeraction of Metallacarboranes with C. elegans Embryos. Chemistry 2024; 30:e202302484. [PMID: 37870209 DOI: 10.1002/chem.202302484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Cobaltabis(dicarbollides), ferrabis(dicarbollide), and their halogenated derivatives are the most studied metallacarboranes with great medical potential. These versatile compounds and their iodinated derivatives can be used in chemotherapy, radiotherapy, particle therapy, and bioimaging when isotopes are used. These metallacarboranes have been evaluated in vitro and recently in vivo with complex animal models. Lately, these studies have been complemented using the invertebrate Caenorhabditis elegans (C. elegans), a nematode largely used in toxicology. When evaluated at the L4 stage, cobaltabis(dicarbollides), ([o-COSAN]- and [8,8'-I2 -o-COSAN]- ), exhibited a higher mean lethal dose (LD50 ) than ferrabis(dicarbollides) ([o-FESAN]- and [8,8'-I2 -o-FESAN]- ). In this work, we used the C. elegans embryos since they are a complex biological barrier with concentric layers of polysaccharides and proteins that protect them from the environment. We assessed if the metal atom changes their biointeraction with the C. elegans embryos. First, we assessed the effects on embryo development for metallacarboranes and their di-iodinated derivatives. We observed changes in color and in their surface structure. An exhaustive physicochemical characterization was performed to understand better this interaction, revealing a stronger interaction of ferrabis(dicarbollide) compounds with C. elegans embryos than the cobaltabis(dicarbollide) molecules. Unveiling the biological interaction of these compounds is of great interest for their future biomedical applications.
Collapse
Affiliation(s)
- Amanda Muñoz-Juan
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Miquel Nuez-Martínez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| |
Collapse
|
23
|
Chen F, Guo W, Ma YN, Chen X. 9,9'-Bis- o-carboranes: synthesis and exploration of properties. Chem Commun (Camb) 2024; 60:614-617. [PMID: 38100063 DOI: 10.1039/d3cc05041f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A highly efficient Pd-catalyzed B(9)-H/B(9)-H oxidative dehydrogenation coupling of carboranes to synthesize 9,9'-bis-o-carboranes has been developed. The properties and derivatization of 9,9'-bis-o-carborane were also examined, which provided diverse bis-o-carborane derivatives and bis-nido-carborane.
Collapse
Affiliation(s)
- Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wenjing Guo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
24
|
Zhang X, Lin Y, Hosmane NS, Zhu Y. Nanostructured boron agents for boron neutron capture therapy: a review of recent patents. MEDICAL REVIEW (2021) 2023; 3:425-443. [PMID: 38283251 PMCID: PMC10811353 DOI: 10.1515/mr-2023-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/16/2023] [Indexed: 01/30/2024]
Abstract
Boron neutron capture therapy (BNCT) is a potential radiation therapy modality for cancer, and tumor-targeted stable boron-10 (10B) delivery agents are an important component of BNCT. Currently, two low-molecular-weight boron-containing compounds, sodium mercaptoundecahydro-closo-dodecaborate (BSH) and boronophenylalanine (BPA), are mainly used in BNCT. Although both have suboptimal tumor selectivity, they have shown some therapeutic benefit in patients with high-grade glioma and several other tumors. To improve the efficacy of BNCT, great efforts have been devoted for the development of new boron delivery agents with better uptake and favorable pharmacokinetic profiles. This article reviews the application and research progress of boron nanomaterials as boron carriers in boron neutron capture therapy and hopes to stimulate people's interest in nanomaterial-based delivery agents by summarizing various kinds of boron nanomaterial patents disclosed in the past decade.
Collapse
Affiliation(s)
- Xiyin Zhang
- Shenzhen HEC Industrial Development Co., Ltd., Shenzhen, Guangdong Province, China
| | - Yusheng Lin
- Shenzhen HEC Industrial Development Co., Ltd., Shenzhen, Guangdong Province, China
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Yinghuai Zhu
- Sunshine Lake Pharma Co. Ltd, Dongguan, Guangdong Province, China
| |
Collapse
|
25
|
Raviprolu VT, Farias P, Carta V, Harman H, Lavallo V. When the Ferrocene Analogy Breaks Down: Metallocene Transmetallation Chemistry. Angew Chem Int Ed Engl 2023; 62:e202308359. [PMID: 37488942 DOI: 10.1002/anie.202308359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Ferrocene 1 and its dianionic Fe(bis)(dicarbollide) analogue 2 are classical compounds that display unusual stability. These compounds are not known to undergo transmetallation chemistry of the Fe-center and have been used extensively as chemical building blocks with consistent integrity. In this manuscript we describe the preparation of a charge compensated Fe(bis)(dicarbollide) species 3 Fe and its unprecedented transmetallation chemistry to Ir. Such reactions are hitherto unknown for any transition metal metallocene or metallacarborane complex. Additionally, we show that 3 Fe can be deprotonated to afford the corresponding bis(NHC) Li-carbenoid 5 that also displays unique reactivity. When 5 is reacted with [Ir(COD)Cl]2 it also undergoes a rapid transmetallation of the ferrocene "like" core to afford 6 but with the added twist that the Li-carbenoid moiety stays intact and does not transmetalate. However, when 6 is subsequently treated with CuCl, the Li-carbenoid transmetalates to Cu, which allows the controlled formation of the corresponding heterobimetallic Ir/Cu aggregate. Lastly, when Li-carbenoid 5 is treated directly with CuCl, a double transmetallation occurs from both Fe to Cu and Li-carbenoid to Cu, resulting in the trimetallic Cu cluster 8. These novel reactions pave the way for new synthetic methods to build complicated polymetallic clusters in a controlled fashion.
Collapse
Affiliation(s)
- Varun Tej Raviprolu
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Phillip Farias
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Veronica Carta
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Hill Harman
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Vincent Lavallo
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
26
|
Cui PF, Liu XR, Jin GX. Supramolecular Architectures Bearing Half-Sandwich Iridium- or Rhodium-Based Carboranes: Design, Synthesis, and Applications. J Am Chem Soc 2023; 145:19440-19457. [PMID: 37643971 DOI: 10.1021/jacs.3c05563] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The utilization of carboranes in supramolecular chemistry has attracted considerable attention. The unique spatial configuration and weak interaction forces of carboranes can help to explore the properties of supramolecular complexes, particularly via host-guest chemistry. Additionally, certain difficulties encountered in carborane development─such as controlled B-H bond activation─can be overcome by judiciously selecting metal centers and their adjacent ligands. However, few studies are being conducted in this nascent research area. With advances in this field, novel carborane-based supramolecular complexes will likely be prepared, structurally characterized, and intrinsically investigated. To expedite these efforts, we present major findings from recent studies, including π-π interactions, host-guest associations, and steric effects, which have been leveraged to implement a regioselective process for activating B(2,9)-, B(2,8)-, and B(2,7)-H bonds of para-carboranes and B(4,7)-H bonds of ortho-carboranes. Future studies should clarify the unique weak interactions of carboranes and their potential for enhancing the utility of supramolecular complexes. Although carboranes exhibit several unique weak interactions (such as dihydrogen-bond [Bδ+-Hδ-···Hδ+-Cδ-], Bδ+-Hδ-···M+, and Bδ+-Hδ-···π interactions), the manner in which they can be utilized remains unclear. Supramolecular complexes, particularly those based on host-guest chemistry, can be utilized as a platform for demonstrating potential applications of these weak interactions. Owing to the importance of alkane separation, applications related to the recognition and separation of alkane isomers via dihydrogen-bond interactions are primarily summarized. Advances in the research of unique weak interactions in carboranes will certainly lead to more possibilities for supramolecular chemistry.
Collapse
Affiliation(s)
- Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, People's Republic of China
| | - Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, People's Republic of China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, People's Republic of China
| |
Collapse
|
27
|
Zhang QS, He L, Liu Q, Chen XY. Charge Transfer Complex-Enabled Synthesis of (Hetero)arylated m-Carboranes from m-Carborane Phosphonium Salts. Org Lett 2023; 25:5768-5773. [PMID: 37534925 DOI: 10.1021/acs.orglett.3c01989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
A photoinduced charge transfer complex (CTC)-enabled photoreduction of carborane phosphonium salts for the cage carbon (hetero)arylation of carboranes was developed. It offers a convenient approach for introducing a wide range of aryl and heteroaryl groups, such as pyrroles, thiophenes, indoles, thianaphthenes, benzofurans, pyridines, and benzenes, into carboranes. This strategy offers operational simplicity, mild reaction conditions, and a broad substrate scope, making it highly advantageous.
Collapse
Affiliation(s)
- Qing-Shuang Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| |
Collapse
|
28
|
Teixidor F, Núñez R, Viñas C. Towards the Application of Purely Inorganic Icosahedral Boron Clusters in Emerging Nanomedicine. Molecules 2023; 28:molecules28114449. [PMID: 37298925 DOI: 10.3390/molecules28114449] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Traditionally, drugs were obtained by extraction from medicinal plants, but more recently also by organic synthesis. Today, medicinal chemistry continues to focus on organic compounds and the majority of commercially available drugs are organic molecules, which can incorporate nitrogen, oxygen, and halogens, as well as carbon and hydrogen. Aromatic organic compounds that play important roles in biochemistry find numerous applications ranging from drug delivery to nanotechnology or biomarkers. We achieved a major accomplishment by demonstrating experimentally/theoretically that boranes, carboranes, as well as metallabis(dicarbollides), exhibit global 3D aromaticity. Based on the stability-aromaticity relationship, as well as on the progress made in the synthesis of derivatized clusters, we have opened up new applications of boron icosahedral clusters as key components in the field of novel healthcare materials. In this brief review, we present the results obtained at the Laboratory of Inorganic Materials and Catalysis (LMI) of the Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) with icosahedral boron clusters. These 3D geometric shape clusters, the semi-metallic nature of boron and the presence of exo-cluster hydrogen atoms that can interact with biomolecules through non-covalent hydrogen and dihydrogen bonds, play a key role in endowing these compounds with unique properties in largely unexplored (bio)materials.
Collapse
Affiliation(s)
- Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Spain
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Spain
| |
Collapse
|
29
|
Ma YN, Ren H, Wu Y, Li N, Chen F, Chen X. B(9)-OH- o-Carboranes: Synthesis, Mechanism, and Property Exploration. J Am Chem Soc 2023; 145:7331-7342. [PMID: 36962083 DOI: 10.1021/jacs.2c13570] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Herein, we present a chemically robust and efficient synthesis route for B(9)-OH-o-carboranes by the oxidation of o-carboranes with commercially available 68% HNO3 under the assistance of trifluoromethanesulfonic acid (HOTf) and hexafluoroisopropanol (HFIP). The reaction is highly efficient with a wide scope of carboranes, and the selectivity of B(9)/B(8) is up to 98:2. The success of this transformation relies on the strong electrophilicity and oxidizability of HNO3, promoted through hydrogen bonds of the Brønsted acid HOTf and the solvent HFIP. Mechanism studies reveal that the oxidation of o-carborane involves an initial electrophilic attack of HNO3 to the hydrogen atom at the most electronegative B(9) of o-carborane. In this transformation, the hydrogen atom of the B-H bond is the nucleophilic site, which is different from the electrophilic substitution reaction, where the boron atom is the nucleophilic site. Therefore, this is an oxidation-reduction reaction of o-carborane under mild conditions in which N(V) → N(III) and H(-I) → H(I). The derivatization of 9-OH-o-carborane was further examined, and the carboranyl group was successfully introduced to an amino acid, polyethylene glycol, biotin, deoxyuridine, and saccharide. Undoubtedly, this approach provides a selective way for the rapid incorporation of carborane moieties into small molecules for application in boron neutron capture therapy, which requires the targeted delivery of boron-rich groups.
Collapse
Affiliation(s)
- Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Huazhan Ren
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yanxuan Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Na Li
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
30
|
Ren H, Zhang P, Xu J, Ma W, Tu D, Lu CS, Yan H. Direct B-H Functionalization of Icosahedral Carboranes via Hydrogen Atom Transfer. J Am Chem Soc 2023; 145:7638-7647. [PMID: 36946888 DOI: 10.1021/jacs.3c01314] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The efficient and selective functionalization of icosahedral carboranes (C2B10H12) at the boron vertexes is a long-standing challenge owing to the presence of 10 inert B-H bonds in a similar chemical environment. Herein, we report a new reaction paradigm for direct B-H functionalization of icosahedral carboranes via B-H homolysis enabled by a nitrogen-centered radical-mediated hydrogen atom transfer (HAT) strategy. Both the HAT process of the carborane B-H bond and the resulting boron-centered carboranyl radical intermediate have been confirmed experimentally. The reaction occurs at the most electron-rich boron vertex with the lowest B-H bond dissociation energy (BDE). Using this strategy, diverse carborane derivatization, including thiolation, selenation, alkynylation, alkenylation, cyanation, and halogenation, have been achieved in satisfactory yields under a photoinitiated condition in a metal-free and redox-neutral fashion. Moreover, the synthetic utility of the current protocol was also demonstrated by both the scale-up reaction and the construction of carborane-based functional molecules. Therefore, this methodology opens a radical pathway to carborane functionalization, which is distinct from the B-H heterolytic mechanism in the traditional strategies.
Collapse
Affiliation(s)
- Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
31
|
Duan HX, Li HN, Yang Y, Wu XJ, Wang YQ. Catalytic asymmetric synthesis of carboranylated diols bearing two adjacent stereocenters located at the α,β-position of o-carborane cage carbon. Dalton Trans 2023; 52:4077-4085. [PMID: 36880957 DOI: 10.1039/d3dt00129f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Despite the great interest in carborane-containing molecules, there is a lack of literature on the generation of central chiralities, via catalytic asymmetric transformations using prochiral carboranyl substrates. Herein, we have synthesized novel optically active icosahedral carborane-containing diols via Sharpless catalytic asymmetric dihydroxylation of carborane-derived alkenes, under mild conditions. The reaction showed a good substrate scope with 74-94% yields and 92->99% ee. This synthetic approach facilitated the creation of two adjacent stereocenters respectively located at the α,β-position of o-carborane cage carbon, with a single syn-diastereoisomer. In addition, the obtained chiral carborane-containing diol product can be transformed to cyclic sulfate and can subsequently undergo a nucleophilic substitution and reduction to obtain the unexpected nido-carboranyl derivatives of chiral amino alcohols in the form of zwitterions.
Collapse
Affiliation(s)
- Hui-Xin Duan
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan, 475004, People's Republic of China.
| | - Hao-Nan Li
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan, 475004, People's Republic of China.
| | - Yong Yang
- Zhengzhou Yuanli Biological Technology Co., Ltd., Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiao-Jun Wu
- Zhengzhou Yuanli Biological Technology Co., Ltd., Zhengzhou, Henan, 450001, People's Republic of China
| | - You-Qing Wang
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan, 475004, People's Republic of China. .,Zhengzhou Yuanli Biological Technology Co., Ltd., Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
32
|
Zhang CY, Cao K, Liu D, Yang HB, Teng CC, Li B, Yang J. Iridium-catalyzed selective amination of B(4)-H for the synthesis of o-carborane-fused indolines. Dalton Trans 2023; 52:2933-2936. [PMID: 36815456 DOI: 10.1039/d3dt00316g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
An iridium-catalyzed selective amination of B(4)-H via dehydrogenative cross-coupling of B-H/N-H bonds for the synthesis of o-carborane-fused indolines has been developed for the first time. Various types of unprecedented o-carborane-fused indolines have been synthesized, which would be potential candidates for applications in drug discovery, pharmaceutical chemistry and functional materials. This work offers a valuable reference for the designing and synthesis of o-carborane-fused heterocycles.
Collapse
Affiliation(s)
- Cai-Yan Zhang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Dechun Liu
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Han-Bo Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Chao-Chao Teng
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Bo Li
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, P. R. China
| | - Junxiao Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| |
Collapse
|
33
|
Zhang H, Cheng R, Qiu Z, Xie Z. Iridium-catalyzed regioselective B(3,6)-dialkenylation or B(4)-alkenylation of o-carboranes via B-H activation and 1,2-carbon migration of alkynes. Chem Commun (Camb) 2023; 59:740-743. [PMID: 36541286 DOI: 10.1039/d2cc05890a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient Ir-catalyzed cage boron alkenylation of 1-(2'-picolyl)-o-carboranes with diarylacetylenes has been developed, leading to a wide variety of B-H geminal addition products via 1,2-carbon migration of alkynes. The steric effect of cage carbon substituents has a great impact on the regioselectivity of such alkenylation reactions.
Collapse
Affiliation(s)
- Huifang Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China.
| | - Ruofei Cheng
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China.
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China. .,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China. .,Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T, Hong Kong, China.
| |
Collapse
|
34
|
Lu W, Wu Y, Ma YN, Chen F, Chen X. A Method for Highly Selective Halogenation of o-Carboranes and m-Carboranes. Inorg Chem 2023; 62:885-892. [PMID: 36584667 DOI: 10.1021/acs.inorgchem.2c03694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A facile halogenation method for highly selective synthesis of 9-X-o-carboranes, 9,12-X2-o-carboranes, 9-X-12-X'-o-carboranes, 9-X-m-carboranes, 9,10-X2-m-carboranes, and 9-X-10-X'-m-carboranes (X, X' = Cl, Br, I) has been developed on the basis of our previous work. The success of this transformation relies on the usage of trifluoromethanesulfonic acid (HOTf), the easily available strong Brønsted acid. The addition of HOTf greatly increases the electrophilicity of N-haloamides through hydrogen bonding interaction, resulting in the low loading of N-haloamides, short reaction time, and mild reaction conditions. Additionally, the solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) is also essential to further increase the acidity of HOTf.
Collapse
Affiliation(s)
- Wen Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yanxuan Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
35
|
Jia H, Qiu Z. Recent Advances in Transition Metal-Catalyzed B—H Bond Activation for Synthesis of o-Carborane Derivatives with B—Heteroatom Bond. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
36
|
Li S, Zhang J, Xie Z. Visible-Light-Induced Palladium-Catalyzed Cross-Coupling of Iodocarboranes with (Hetero)Arenes. Org Lett 2022; 24:7497-7501. [PMID: 36201284 DOI: 10.1021/acs.orglett.2c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work describes a general method for the efficient production of a class of cage B-centered carboranyl radicals at the B3, B4, and B9 sites via a visible-light-promoted palladium(0)/palladium(I) pathway using readily available iodo-o-carboranes as the starting materials. The electrophilicities of these hypervalent boron-centered radicals decrease in the following order: B3 > B4 > B9. They are useful intermediates for the preparation of a family of cage B-(hetero)arylated o-carboranes at ambient temperature.
Collapse
Affiliation(s)
- Shimeng Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
37
|
Anderson KP, Djurovich PI, Rubio VP, Liang A, Spokoyny AM. Metal-Catalyzed and Metal-Free Nucleophilic Substitution of 7-I-B 18H 21. Inorg Chem 2022; 61:15051-15057. [PMID: 36098984 DOI: 10.1021/acs.inorgchem.2c02116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, two pathways of reactivity are investigated to generate site-specific substitutions at the B7 vertex of the luminescent boron cluster, anti-B18H22. First, a palladium-catalyzed cross-coupling reaction utilizing the precursor 7-I-B18H21 and a series of model nucleophiles was developed, ultimately producing several B-N- and B-O-substituted species. Interestingly, the B-I bond in this cluster can also be substituted in an uncatalyzed fashion, leading to the formation of various B-N, B-O, and B-S products. This work highlights intricate differences corresponding to these two reaction pathways and analyzes the role of solvents and additives on product distributions. As a result of our synthetic studies, seven new B18-based clusters were synthesized, isolated, and characterized by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. The photoluminescence properties of two structurally similar ether and thioether products were further investigated, with both exhibiting blue fluorescence in solution at 298 K and long-lived green or yellow phosphorescence at 77 K. Overall, this work shows, for the first time, the ability to perform substitution of a boron-halogen bond with nucleophiles in a B18-based cluster, resulting in the formation of photoluminescent molecules.
Collapse
Affiliation(s)
- Kierstyn P Anderson
- Department of Chemistry and Biochemistry and California NanoSystem Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Victoria P Rubio
- Department of Chemistry and Biochemistry and California NanoSystem Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Aimee Liang
- Department of Chemistry and Biochemistry and California NanoSystem Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry and California NanoSystem Institute (CNSI), University of California, Los Angeles, California 90095, United States
| |
Collapse
|
38
|
Chen M, Xu J, Zhao D, Sun F, Tian S, Tu D, Lu C, Yan H. Site-Selective Functionalization of Carboranes at the Electron-Rich Boron Vertex: Photocatalytic B-C Coupling via a Carboranyl Cage Radical. Angew Chem Int Ed Engl 2022; 61:e202205672. [PMID: 35670361 DOI: 10.1002/anie.202205672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Functionalization of carboranes in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo-induced decarboxylation of carborane carboxylic acids to generate boron vertex-centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single-electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid-state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshi Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Songlin Tian
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
39
|
Zhang J, Xie Z. N-Ligand-Enabled Aromatic Nucleophilic Amination of 1,2-Diaryl-o-Carboranes with (R 2 N) 2 Mg for Selective Synthesis of 4-R 2 N-o-Carboranes and 2-R 2 N-m-Carboranes. Angew Chem Int Ed Engl 2022; 61:e202202675. [PMID: 35579912 DOI: 10.1002/anie.202202675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 11/08/2022]
Abstract
The nucleophilic aromatic BH substitution reaction of carboranes is uncommon, compared to the electrophilic one. This work reported a pyridine-enabled transition-metal-free regioselective nucleophilic aromatic cage B(4)-H amination of 1,2-diaryl-o-carboranes with magnesium bisamides, giving a series of B(4)-aminated o-carboranes. DFT calculations showcased a stepwise B-N formation/B-H cleavage process, in which Mg-H formation/cage closure is the rate-determining step. Unprecedentedly, in the presence of 4,4'-di-tert-butyl-2,2'-dipyridyl (dtbpy), a tandem B(4)-amination/cage isomerization reaction of o-carboranes was discovered for the facile preparation of B(2)-aminated m-carboranes. Control experiments indicated that magnesium complex, bidentate ligand (dtbpy) and reaction temperature were crucial in the cage isomerization process. This direct nucleophilic aromatic cage B-H amination reaction offers an alternative strategy for selective amination of o- and m-carboranes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
40
|
Zhou P, Chen Y, Xie Z. Iron-Catalyzed Selective B–H Activation for 4/5-fold Methylation and Arylation of Carboranes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Peng Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Yu Chen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
41
|
Zhang J, Xie Z. N‐Ligand‐Enabled Aromatic Nucleophilic Amination of 1,2‐Diaryl‐
o
‐Carboranes with (R
2
N)
2
Mg for Selective Synthesis of 4‐R
2
N‐
o
‐Carboranes and 2‐R
2
N‐
m
‐Carboranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, New Territories, Hong Kong China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, New Territories, Hong Kong China
| |
Collapse
|
42
|
Chen M, Xu J, Zhao D, Sun F, Tian S, Tu D, Lu C, Yan H. Site‐Selective Functionalization of Carboranes at Electron‐Rich Boron Vertex: Photocatalytic B‐C Coupling via a Carboranyl Cage Radical. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Chen
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jingkai Xu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Deshi Zhao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Fangxiang Sun
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Songlin Tian
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Deshuang Tu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Changsheng Lu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hong Yan
- Nanjing University School of Chemistry and Chemical Engineering 22 Hankou Rd. 210093 Nanjing CHINA
| |
Collapse
|
43
|
Yang L, Zhang Z, Bongsuiru Jei B, Ackermann L. Electrochemical Cage Activation of Carboranes. Angew Chem Int Ed Engl 2022; 61:e202200323. [PMID: 35148009 PMCID: PMC9310615 DOI: 10.1002/anie.202200323] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Carboranes are boron-carbon molecular clusters that possess unique properties, such as their icosahedron geometry, high boron content, and delocalized three-dimensional aromaticity. These features render carboranes valuable building blocks for applications in supramolecular design, nanomaterials, optoelectronics, organometallic coordination chemistry, and as boron neutron capture therapy (BNCT) agents. Despite tremendous progress in this field, stoichiometric chemical redox reagents are largely required for the oxidative activation of carborane cages. In this context, electrosyntheses represent an alternative strategy for more sustainable molecular syntheses. It is only in recent few years that considerable progress has been made in electrochemical cage functionalization of carboranes, which are summarized in this Minireview. We anticipate that electrocatalysis will serve as an increasingly powerful stimulus within the current renaissance of carborane electrochemistry.
Collapse
Affiliation(s)
- Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GottingenGermany
| | - Zi‐Jing Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GottingenGermany
| | - Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GottingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GottingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
44
|
Maeng C, Ko GH, Yang H, Han SH, Han GU, Chan Noh H, Lee K, Kim D, Lee PH. Synthesis of o-Carborane-Fused Pyrazoles through Sequential C-N Bond Formation. Org Lett 2022; 24:3526-3531. [PMID: 35533400 DOI: 10.1021/acs.orglett.2c01232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition-metal-free synthetic method for o-carborane-fused pyrazoles as a new scaffold has been developed from the reaction of B(4)-acylmethyl or B(3,5)-diacylmethyl o-carborane with 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (ADMP) in the presence of DBU in acetonitrile through sequential diazotization and cyclization reaction in one pot, consequently allowing twofold C-N bond formation under extremely mild conditions and high functional group tolerance.
Collapse
Affiliation(s)
- Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Heejin Yang
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
45
|
Gazvoda M, Dhanjee HH, Rodriguez J, Brown JS, Farquhar CE, Truex NL, Loas A, Buchwald SL, Pentelute BL. Palladium-Mediated Incorporation of Carboranes into Small Molecules, Peptides, and Proteins. J Am Chem Soc 2022; 144:7852-7860. [PMID: 35438502 PMCID: PMC9881053 DOI: 10.1021/jacs.2c01932] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carboranes represent a class of compounds with increasing therapeutic potential. However, few general approaches to readily embed carboranes into small molecules, peptides, and proteins are available. We report a strategy based on palladium-mediated C-X (X = C, S, and N) bond formation for the installation of carborane-containing moieties onto small molecules and peptides. We demonstrate the ability of Pd-based reagents with appropriate ligands to overcome the high hydrophobicity of the carborane group and enable chemoselective conjugation of cysteine residues at room temperature in aqueous buffer. Accordingly, carboranes can be efficiently installed on proteins by employing a combination of a bis-sulfonated biarylphosphine-ligated Pd reagent in an aqueous histidine buffer. This method is successfully employed on nanobodies, a fully synthetic affibody, and the antibody therapeutics trastuzumab and cetuximab. The conjugates of the affibody ZHER2 and the trastuzumab antibody retained binding to their target antigens. Conjugated proteins maintain their activity in cell-based functional assays in HER2-positive BT-474 cell lines. This approach enables the rapid incorporation of carborane moieties into small molecules, peptides, and proteins for further exploration in boron neutron capture therapy, which requires the targeted delivery of boron-dense groups.
Collapse
Affiliation(s)
| | | | - Jacob Rodriguez
- Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joseph S. Brown
- Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Charlotte E. Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicholas L. Truex
- Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States,Center for Environmental Health Sciences, Massachusetts, Institute of Technology, Cambridge, Massachusetts 02139, United States,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
46
|
Ma YN, Gao Y, Ma Y, Wang Y, Ren H, Chen X. Palladium-Catalyzed Regioselective B(9)-Amination of o-Carboranes and m-Carboranes in HFIP with Broad Nitrogen Sources. J Am Chem Soc 2022; 144:8371-8378. [PMID: 35499359 DOI: 10.1021/jacs.2c03031] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amination of carboranes has a good application prospect in organic and pharmaceutical synthesis. However, the current methods used for this transformation suffer from limitations. Herein, we report a practical method for a highly regioselective formation of a B-N bond by Pd(II)-catalyzed B(9)-H amination of o- and m-carboranes in hexafluoroisopropanol (HFIP) with different nitrogen sources under air atmosphere. The silver salt and HFIP solvent play critical roles in the present protocol. The mechanistic study reveals that the silver salt acts as a Lewis acid to promote the electrophilic palladation step by forming a heterobimetallic active catalyst PdAg(OAc)3; the strong hydrogen-bond-donating ability and low nucleophilicity of HFIP enhance the electrophilic ability of Pd(II). It is believed that these N-containing carboranes are potentially of great importance in the synthesis of new pharmaceuticals.
Collapse
Affiliation(s)
- Yan-Na Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yubin Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huazhan Ren
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.,School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
47
|
Shin S, Um K, Ko GH, Han GU, Kim D, Lee PH. Iridium(III)-Catalyzed Regioselective B(4)–H Allenylation of o-Carboranes by Ball Milling. Org Lett 2022; 24:3128-3133. [DOI: 10.1021/acs.orglett.2c00756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seohyun Shin
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyusik Um
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
48
|
Li S, Xie Z. Visible-Light-Promoted Nickel-Catalyzed Cross-Coupling of Iodocarboranes with (Hetero)Arenes via Boron-Centered Carboranyl Radicals. J Am Chem Soc 2022; 144:7960-7965. [PMID: 35451827 DOI: 10.1021/jacs.2c02329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general strategy for the generation of hypervalent boron-centered carboranyl radicals at the B(3), B(4), and B(9) positions has been developed for the first time via visible-light-promoted iodine atom abstraction from iodo-o-carboranes by low-valent nickel complex. These radicals react with various (hetero)arenes to afford a wide range of cage B-arylated carborane derivatives at room temperature in very good to excellent yields with a broad substrate scope. Their electrophilicities are dependent on the vertex charges of the cage and follow the order B(3) > B(4) > B(9). Both visible light and nickel catalyst are proved critical to the generation of boron-centered carboranyl radicals. The involvement of boron radicals is supported by control experiments. A reaction mechanism associated with these reactions is also proposed. This strategy offers a new protocol for the generation of boron-centered carboranyl radicals at the selected boron vertex, leading to a facile synthesis of a large class of cage boron substituted carborane molecules.
Collapse
Affiliation(s)
- Shimeng Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong 999077, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong 999077, China
| |
Collapse
|
49
|
Guo W, Guo C, Ma YN, Chen X. Practical Synthesis of B(9)-Halogenated Carboranes with N-Haloamides in Hexafluoroisopropanol. Inorg Chem 2022; 61:5326-5334. [PMID: 35311288 DOI: 10.1021/acs.inorgchem.2c00074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The B(9)-H halogenation of o-carborane and m-carborane was achieved with excellent selectivities in hexafluoroisopropanol (HFIP) under simple reaction conditions: single reagent [trichloroisocyanuric acid (TCCA), tribromoisocyanuric acid (TBCA) or N-iodosuccinimide (NIS)], catalyst-free, air-/moisture-tolerant, and convenient work-up. With this method, a variety of 9-halogenated o-carboranes and m-carboranes were obtained in good to excellent yields with broad tolerance of functional groups.
Collapse
Affiliation(s)
- Wenjing Guo
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chenyang Guo
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Na Ma
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
50
|
Vinogradov MM, Nelyubina YV, Aliyeu TM. New aspects of acid-assisted nucleophilic substitution reactions of 11-vertex nido-carboranes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|