1
|
Gilglioni EH, Bansal M, St-Pierre-Wijckmans W, Talamantes S, Kasarinaite A, Hay DC, Gurzov EN. Therapeutic potential of stem cell-derived somatic cells to treat metabolic dysfunction-associated steatotic liver disease and diabetes. Obes Rev 2025; 26:e13899. [PMID: 39861937 DOI: 10.1111/obr.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/22/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025]
Abstract
Developments in basic stem cell biology have paved the way for technology translation in human medicine. An exciting prospective use of stem cells is the ex vivo generation of hepatic and pancreatic endocrine cells for biomedical applications. This includes creating novel models 'in a dish' and developing therapeutic strategies for complex diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and diabetes. In this review, we explore recent advances in the generation of stem cell-derived hepatocyte-like cells and insulin-producing β-like cells. We cover the different differentiation strategies, new discoveries, and the caveats that still exist regarding their routine use. Finally, we discuss the challenges and limitations of stem cell-derived therapies as a clinical strategy to manage metabolic diseases in humans.
Collapse
Affiliation(s)
- Eduardo H Gilglioni
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Mayank Bansal
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | | | - Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Alvile Kasarinaite
- Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - David C Hay
- Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Osteil P, Withey S, Santucci N, Aryamanesh N, Pang I, Salehin N, Sun J, Qin A, Su J, Knowles H, Li XB, Cai S, Wolvetang E, Tam PPL. MIXL1 activation in endoderm differentiation of human induced pluripotent stem cells. Stem Cell Reports 2025; 20:102482. [PMID: 40280138 DOI: 10.1016/j.stemcr.2025.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) possess the ability to differentiate into a multitude of cell and tissue types but display heterogeneous propensity of differentiation into specific lineage. Characterization of the transcriptome of 11 hiPSC lines showed that activation of MIXL1 at the early stage of stem cell differentiation correlated with higher efficacy in generating definitive endoderm and advancing differentiation and maturation of endoderm derivatives. Enforced expression of MIXL1 in the endoderm-inefficient hiPSCs enhanced the propensity of endoderm differentiation, suggesting that modulation of key drivers of lineage differentiation can re-wire hiPSC to the desired lineage propensity to generate the requisite stem cell products.
Collapse
Affiliation(s)
- Pierre Osteil
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia.
| | - Sarah Withey
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Nicole Santucci
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Nader Aryamanesh
- Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Ignatius Pang
- Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Nazmus Salehin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Jane Sun
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Annie Qin
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Jiayi Su
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Hilary Knowles
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Xiucheng Bella Li
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Simon Cai
- Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
3
|
Kieffer TJ, Hoesli CA, Shapiro AMJ. Advances in Islet Transplantation and the Future of Stem Cell-Derived Islets to Treat Diabetes. Cold Spring Harb Perspect Med 2025; 15:a041624. [PMID: 39074874 PMCID: PMC12047745 DOI: 10.1101/cshperspect.a041624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
β-Cell replacement for type 1 diabetes (T1D) can restore normal glucose homeostasis, thereby eliminating the need for exogenous insulin and halting the progression of diabetes complications. Success in achieving insulin independence following transplantation of cadaveric islets fueled academic and industry efforts to develop techniques to mass produce β cells from human pluripotent stem cells, and these have now been clinically validated as an alternative source of regulated insulin production. Various encapsulation strategies are being pursued to contain implanted cells in a retrievable format, and different implant sites are being explored with some strategies reaching clinical studies. Stem cell lines, whether derived from embryonic sources or reprogrammed somatic cells, are being genetically modified for designer features, including immune evasiveness to enable implant without the use of chronic immunosuppression. Although hurdles remain in optimizing large-scale manufacturing, demonstrating efficacy, durability, and safety, products containing stem cell-derived β cells promise to provide a potent treatment for insulin-dependent diabetes.
Collapse
Affiliation(s)
- Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, School of Biomedical Engineering
- Department of Surgery, The University of British Columbia, Vancouver V6T1Z3, British Columbia, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, Department of Biomedical Engineering, McGill University, Montreal H3A 0C5, Québec, Canada
- Associate Member, Department of Biomedical Engineering, McGill University, Montreal H3A 0C5, Québec, Canada
| | - A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, Edmonton T6G2E1, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton T6G2E1, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton T6G2E1, Alberta, Canada
| |
Collapse
|
4
|
Ribezzi D, Català P, Pignatelli C, Citro A, Levato R. Bioprinting and synthetic biology approaches to engineer functional endocrine pancreatic constructs. Trends Biotechnol 2025:S0167-7799(25)00090-3. [PMID: 40185667 DOI: 10.1016/j.tibtech.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Diabetes is a complex disease affecting over 500 million people worldwide. Traditional approaches, such as insulin delivery, are mainstay treatments, but do not cure the disease. Recent advances in biofabrication and synthetic biology offer new hope for the development of tissue constructs recapitulating salient organ functions. Here, we discuss recent progress in bioprinting a functional endocrine pancreas, ranging from cell sources to main advances in biomaterials. We review innovative areas for the development of this field, with a particular focus on the convergence of synthetic biology and cell engineering with bioprinting, which opens new avenues for developing advanced in vitro models and regenerative, transplantable grafts, with the potential to provide independence from exogenous insulin administration.
Collapse
Affiliation(s)
- Davide Ribezzi
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pere Català
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Imada T, Sasaki S, Yamaguchi H, Ueda A, Kawamori D, Katakami N, Shimomura I. Imeglimin, unlike metformin, does not perturb differentiation of human induced pluripotent stem cells towards pancreatic β-like cells and rather enhances gain in β cell identity gene sets. J Diabetes Investig 2025; 16:584-597. [PMID: 39829307 PMCID: PMC11970301 DOI: 10.1111/jdi.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
AIMS/INTRODUCTION Metformin treatment for hyperglycemia in pregnancy (HIP) beneficially improves maternal glucose metabolism and reduces perinatal complications. However, metformin could impede pancreatic β cell development via impaired mitochondrial function. A new anti-diabetes drug imeglimin, developed based on metformin, improves mitochondrial function. Here we examine the effect of imeglimin on β cell differentiation using human induced pluripotent stem cell (iPSC)-derived pancreatic islet-like spheroid (SC-islet) models. MATERIALS AND METHODS Human iPSCs are differentiated into SC-islets by three-dimensional culture with and without imeglimin or metformin. Differentiation efficiencies of SC-islets were analyzed by flow cytometry, immunostaining, quantitative PCR, and insulin secretion assay. RNA sequencing and oxygen consumption rate were obtained for further characterization of SC-islets. SC-islets were cultured with proinflammatory cytokines, in part mimicking the uterus environment in HIP. RESULTS Metformin perturbed SC-islet differentiation while imeglimin did not alter it. Furthermore, imeglimin enhanced the gene expressions of β cell lineage markers. Maintenance of mitochondrial function and optimization of TGF-β and Wnt signaling were considered potential mechanisms for augmented β cell maturation by imeglimin. In the presence of proinflammatory cytokines, imeglimin ameliorated β cell differentiation impaired by cytokines and metformin. CONCLUSIONS Imeglimin does not perturb differentiation of SC-islet cells and rather enhances gain in β cell identity gene sets in contrast to metformin. This may lead to the improvement of in vitro β cell differentiation protocols.
Collapse
Affiliation(s)
- Tasuku Imada
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Shugo Sasaki
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Hiroki Yamaguchi
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Ayaka Ueda
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Dan Kawamori
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
- Medical Education Center, Faculty of MedicineOsaka UniversityOsakaJapan
- Postgraduate Medical Training CenterOsaka University Hospital, Osaka UniversityOsakaJapan
| | - Naoto Katakami
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Iichiro Shimomura
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
6
|
Piemonti L. The Last Mile in Beta-Cell Replacement Therapy for Type 1 Diabetes: Time to Grow Up. Transpl Int 2025; 38:14565. [PMID: 40236754 PMCID: PMC11998595 DOI: 10.3389/ti.2025.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
Beta cell replacement therapy for type 1 diabetes (T1D) is undergoing a transformative shift, driven by advances in stem cell biology, gene editing, and tissue engineering. While islet transplantation has demonstrated proof-of-concept success in restoring endogenous insulin production, its clinical impact remains limited by donor scarcity, immune rejection, and procedural complexities. The emergence of stem cell-derived beta-like cells represents a paradigm shift, with initial clinical trials showing promising insulin secretion in vivo. However, translating these breakthroughs into scalable, widely accessible treatments poses significant challenges. Drawing parallels to space exploration, this paper argues that while scientific feasibility has been demonstrated, true accessibility remains elusive. Without a strategic shift, beta cell therapy risks becoming an elite intervention, restricted by cost and infrastructure. Lessons from gene and cell therapies for rare diseases highlight the dangers of unsustainable pricing and limited market viability. To bridge the "last mile" a Quality by Design approach is proposed, emphasizing scalability, ease of use, and economic feasibility from the outset. By emphasizing practical implementation over academic achievements, corporate interests, market economics, or patent constraints, beta cell therapy can progress from proof-of-concept to a viable, widely accessible treatment.
Collapse
Affiliation(s)
- Lorenzo Piemonti
- Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
7
|
Berney T, Thaunat O, Berishvili E. Allogeneic Islet Transplantation: Chronicle of a Death Foretold? Transpl Int 2025; 38:14598. [PMID: 40236755 PMCID: PMC11998596 DOI: 10.3389/ti.2025.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
Innovative solutions have entered the routine management of patients with type 1 diabetes or are making the headlines and this is shaking the world of beta cell replacement therapies. Above all, allogeneic islet transplantation is enthusiastically doomed to extinction by the aficionados of "closed loop" artificial insulin delivery systems or those convinced of the imminent large scale availability of stem-cell derived insulin-producing tissues. This opinion paper will propose that neither will be a universal solution in the very near future and will argue that xenogeneic islet transplantation may be a serious outsider in the race for new therapies. In the meantime, the odds are in favor of allogeneic islet (and pancreas) transplantation remaining first line options in the treatment of complicated type 1 diabetes. There is no question that "closed loop" systems have already greatly improved the management of type 1 diabetes, but, while "unlimited" sources of insulin-producing cells are jockeying for approval as standard-of-care, these improvements are more likely to drive a shift of indications -from islet transplant alone to simultaneous islet-kidney transplantation- than to herald the demise of islet transplantation.
Collapse
Affiliation(s)
- Thierry Berney
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France
- Lyon-Est Faculty of Medicine, Claude Bernard University (Lyon 1), Villeurbanne, France
| | - Ekaterine Berishvili
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
- Department of Surgery, Laboratory of Tissue Engineering and Organ Regeneration, University of Geneva, Geneva, Switzerland
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Sali S, Azzam L, Jaro T, Ali AAG, Mardini A, Al-Dajani O, Khattak S, Butler AE, Azeez JM, Nandakumar M. A perfect islet: reviewing recent protocol developments and proposing strategies for stem cell derived functional pancreatic islets. Stem Cell Res Ther 2025; 16:160. [PMID: 40165291 PMCID: PMC11959787 DOI: 10.1186/s13287-025-04293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The search for an effective cell replacement therapy for diabetes has driven the development of "perfect" pancreatic islets from human pluripotent stem cells (hPSCs). These hPSC-derived pancreatic islet-like β cells can overcome the limitations for disease modelling, drug development and transplantation therapies in diabetes. Nevertheless, challenges remain in generating fully functional and mature β cells from hPSCs. This review underscores the significant efforts made by researchers to optimize various differentiation protocols aimed at enhancing the efficiency and quality of hPSC-derived pancreatic islets and proposes methods for their improvement. By emulating the natural developmental processes of pancreatic embryogenesis, specific growth factors, signaling molecules and culture conditions are employed to guide hPSCs towards the formation of mature β cells capable of secreting insulin in response to glucose. However, the efficiency of these protocols varies greatly among different human embryonic stem cell (hESC) and induced pluripotent stem cell (hiPSC) lines. This variability poses a particular challenge for generating patient-specific β cells. Despite recent advancements, the ultimate goal remains to develop a highly efficient directed differentiation protocol that is applicable across all genetic backgrounds of hPSCs. Although progress has been made, further research is required to optimize the protocols and characterization methods that could ensure the safety and efficacy of hPSC-derived pancreatic islets before they can be utilized in clinical settings.
Collapse
Affiliation(s)
- Sujitha Sali
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Leen Azzam
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Taraf Jaro
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ahmed Ali Gebril Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ali Mardini
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Omar Al-Dajani
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Shahryar Khattak
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alexandra E Butler
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain.
| | - Juberiya M Azeez
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Manjula Nandakumar
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| |
Collapse
|
9
|
Mbaye EHA, Scott EA, Burke JA. From Edmonton to Lantidra and beyond: immunoengineering islet transplantation to cure type 1 diabetes. FRONTIERS IN TRANSPLANTATION 2025; 4:1514956. [PMID: 40182604 PMCID: PMC11965681 DOI: 10.3389/frtra.2025.1514956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-producing β cells within pancreatic islets, the specialized endocrine cell clusters of the pancreas. Islet transplantation has emerged as a β cell replacement therapy, involving the infusion of cadaveric islets into a patient's liver through the portal vein. This procedure offers individuals with T1D the potential to restore glucose control, reducing or even eliminating the need for exogenous insulin therapy. However, it does not address the underlying autoimmune condition responsible for T1D. The need for systemic immunosuppression remains the primary barrier to making islet transplantation a more widespread therapy for patients with T1D. Here, we review recent progress in addressing the key limitations of islet transplantation as a viable treatment for T1D. Concerns over systemic immunosuppression arise from its potential to cause severe side effects, including opportunistic infections, malignancies, and toxicity to transplanted islets. Recognizing the risks, the Edmonton protocol (2000) marked a shift away from glucocorticoids to prevent β cell damage specifically. This transition led to the development of combination immunosuppressive therapies and the emergence of less toxic immunosuppressive and anti-inflammatory drugs. More recent advances in islet transplantation derive from islet encapsulation devices, biomaterial platforms releasing immunomodulatory compounds or surface-modified with immune regulating ligands, islet engineering and co-transplantation with accessory cells. While most of the highlighted studies in this review remain at the preclinical stage using mouse and non-human primate models, they hold significant potential for clinical translation if a transdisciplinary research approach is prioritized.
Collapse
Affiliation(s)
- El Hadji Arona Mbaye
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Evan A. Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, VA, United States
| | | |
Collapse
|
10
|
Wang Y, McGarrigle J, Cook J, Rios P, Monica GL, Chen Y, Wei W, Oberholzer J. The future of islet transplantation beyond the BLA approval: challenges and opportunities. FRONTIERS IN TRANSPLANTATION 2025; 4:1522409. [PMID: 40124184 PMCID: PMC11925927 DOI: 10.3389/frtra.2025.1522409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
This opinion paper explores the path forward for islet transplantation as a cell therapy for type 1 diabetes, following the Biologics License Application (BLA) approval. The authors review key challenges and opportunities that lie ahead. After a brief overview of the history of human islet transplantation, the paper examines the FDA's regulatory stance on isolated islet cells and the requirements for obtaining a BLA. The authors discuss the significance of this approval and the critical steps necessary to broaden patient access, such as scaling up production, clinical integration, reimbursement frameworks, post-marketing surveillance, and patient education initiatives. The paper highlights that the approval of LANTIDRA as an allogeneic cell transplant for uncontrolled type 1 diabetes marks the beginning of new chapters in improving islet transplantation. The authors emphasize essential areas for development, including advancements in islet manufacturing, optimization of transplant sites, islet encapsulation, exploration of unlimited cell sources, and gene editing technologies. In conclusion, the future of islet transplantation beyond the BLA approval presents challenges and opportunities. While significant regulatory milestones have been reached, hurdles remain. Innovations in stem cell-derived islets, cell encapsulation, and gene editing show promise in enhancing graft survival, expanding the availability of transplantable cells, and reducing the reliance on immunosuppressive drugs. These advancements could pave the way for more accessible, durable, and personalized diabetes treatments.
Collapse
Affiliation(s)
- Yong Wang
- Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
- CellTrans, Inc., Chicago, IL, United States
| | | | - Jenny Cook
- CellTrans, Inc., Chicago, IL, United States
| | - Peter Rios
- CellTrans, Inc., Chicago, IL, United States
| | | | - Yingying Chen
- Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
| | - Wei Wei
- Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
| | - Jose Oberholzer
- Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
- CellTrans, Inc., Chicago, IL, United States
| |
Collapse
|
11
|
Waite EL, Tigue M, Yu M, Lahori D, Kelly K, May CL, Naji A, Roman J, Doliba N, Avrahami D, Nguyen-Ngoc KV, Sander M, Glaser B, Kaestner KH. The IsletTester Mouse: An Immunodeficient Model With Stable Hyperglycemia for the Study of Human Islets. Diabetes 2025; 74:332-342. [PMID: 39571094 PMCID: PMC11842601 DOI: 10.2337/db23-0887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/18/2024] [Indexed: 02/22/2025]
Abstract
The gold standard for assessing the function of human islets or β-like cells derived from stem cells involves their engraftment under the kidney capsule of hyperglycemic, immunodeficient mice. Current models, such as streptozotocin treatment of severely immunodeficient mice or the NRG-Akita strain, are limited due to unstable and variable hyperglycemia and/or high morbidity. To address these limitations, we developed the IsletTester mouse via CRISPR/Cas9-mediated gene editing of glucokinase (Gck), the glucose sensor of the β-cells, directly in NSG zygotes. IsletTester mice are heterozygous for an Arg345→stop mutation in Gck and present with stable random hyperglycemia (∼250 mg/dL [14 mmol/L]), normal lifespan, and fertility. We demonstrate the utility of this model through functional engraftment of both human islets and human embryonic stem cell-derived β-like cells. The IsletTester mouse will enable the study of human islet biology over time and under different physiological conditions and can provide a useful preclinical platform to determine the functionality of stem cell-derived islet products. ARTICLE HIGHLIGHTS Current mouse models for assessing islet function in vivo are limited due to unstable and variable hyperglycemia and/or high morbidity. We derived the IsletTester mouse to address these limitations. Leveraging a previously characterized glucokinase mutation and CRISPR/Cas9 technology, we successfully developed a moderately hyperglycemic and immunodeficient mouse model for the in vivo assessment of islet function. Our IsletTester mouse has stable, moderate hyperglycemia that can be corrected with primary human islets or stem cell-derived insulin-producing cells. The IsletTester mouse provides a reliable, easy-to-use platform for the preclinical assessment of stem cell-derived islet products or islet-targeted drugs.
Collapse
Affiliation(s)
- Eric L. Waite
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mark Tigue
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ming Yu
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Deeksha Lahori
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Kelly
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Catherine Lee May
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ali Naji
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Jeffrey Roman
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nicolai Doliba
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dana Avrahami
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Kim-Vy Nguyen-Ngoc
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
- Max Delbruck Center, Berlin, Germany
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Klaus H. Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
12
|
Rech Tondin A, Lanzoni G. Islet Cell Replacement and Regeneration for Type 1 Diabetes: Current Developments and Future Prospects. BioDrugs 2025; 39:261-280. [PMID: 39918671 PMCID: PMC11906537 DOI: 10.1007/s40259-025-00703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 03/14/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder characterized by the destruction of insulin-producing beta cells in the pancreas, leading to insulin deficiency and chronic hyperglycemia. The main current therapeutic strategies for clinically overt T1D - primarily exogenous insulin administration combined with blood glucose monitoring - fail to fully mimic physiological insulin regulation, often resulting in suboptimal or insufficient glycemic control. Islet cell transplantation has emerged as a promising avenue for functionally replacing endogenous insulin production and achieving long-term glycemic stability. Here, we provide an overview of current islet replacement strategies, ranging from islet transplantation to stem cell-derived islet cell transplantation, and highlight emerging approaches such as immunoengineering. We examine the advancements in immunosuppressive protocols to enhance graft survival, innovative encapsulation, and immunomodulation techniques to protect transplanted islets, and the ongoing challenges in achieving durable and functional islet integration. Additionally, we discuss the latest clinical outcomes, the potential of gene editing technologies, and the emerging strategies for islet cell regeneration. This review aims to highlight the potential of these approaches to transform the management of T1D and improve the quality of life of individuals affected by this condition.
Collapse
Affiliation(s)
- Arthur Rech Tondin
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
13
|
Mima A, Kimura A, Ito R, Hatano Y, Tsujimoto H, Mae SI, Yamane J, Fujibuchi W, Uza N, Toyoda T, Seno H, Osafune K. Mechanistic elucidation of human pancreatic acinar development using single-cell transcriptome analysis on a human iPSC differentiation model. Sci Rep 2025; 15:4668. [PMID: 39920294 PMCID: PMC11806057 DOI: 10.1038/s41598-025-88690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
Few effective treatments have been developed for intractable pancreatic exocrine disorders due to the lack of suitable disease models using human cells. Pancreatic acinar cells differentiated from human induced pluripotent stem cells (hiPSCs) have the potential to solve this issue. In this study, we aimed to elucidate the developmental mechanisms of pancreatic exocrine acinar lineages to establish a directed differentiation method for pancreatic acinar cells from hiPSCs. hiPSC-derived pancreatic endoderm cells were spontaneously differentiated into both pancreatic exocrine and endocrine tissues by implantation into the renal subcapsular space of NOD/SCID mice. Single-cell RNA-seq analysis of the retrieved grafts confirmed the differentiation of pancreatic acinar lineage cells and identified REG4 as a candidate marker for pancreatic acinar progenitor cells. Furthermore, differential gene expression analysis revealed upregulated pathways, including cAMP-related signals, involved in the differentiation of hiPSC-derived pancreatic acinar lineage cells in vivo, and we found that a cAMP activator, forskolin, facilitates the differentiation from hiPSC-derived pancreatic endoderm into pancreatic acinar progenitor cells in our in vitro differentiation culture. Therefore, this platform contributes to our understanding of the developmental mechanisms of pancreatic acinar lineage cells and the establishment of differentiation methods for acinar cells from hiPSCs.
Collapse
Affiliation(s)
- Atsushi Mima
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Gastroenterology and Hepatology, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Azuma Kimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Rege Nephro Co., Ltd., Med-Pharm Collaboration Building, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ryo Ito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yu Hatano
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiraku Tsujimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Rege Nephro Co., Ltd., Med-Pharm Collaboration Building, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junko Yamane
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
14
|
Schaaf C, Sussel L. A Cure for Type 1 Diabetes: Are We There Yet? Diabetes Technol Ther 2025. [PMID: 39911033 DOI: 10.1089/dia.2024.0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Type 1 diabetes (T1D) affects over 2 million people in the United States and has no known cure. The discovery and first use of insulin in humans 102 years ago marked a revolutionary course of treatment for the disease, and although the formulations and delivery systems have advanced, insulin administration remains the standard of care today. While improved treatment options represent notable progress in T1D management, finding a functional cure for the disease remains the ultimate goal. Approaches to curing T1D have historically focused on blunting the autoimmune response, although sustained effects of immune modulation have proven elusive. Islet transplant therapies have also proven effective, although a lack of available donor tissue and the need for immunosuppression to prevent both host-graft rejection and the autoimmune response have reserved such treatments for those who already require immunosuppressive regimens for other reasons or undergo severe hypoglycemic events in conjunction with hypoglycemic unawareness. With the advent of human stem cell research, the focus has shifted toward generating an abundance of allogeneic, functional beta-like cells that can be transplanted into the patients. Immunoisolation devices have also shown some promise as a method of preventing immune rejection and the autoimmune destruction of transplanted cells. Finally, advances in new immune therapies, if used in the early stages of T1D progression, have proven to delay the onset of diabetes. Stem cell-based therapies are a promising approach to curing T1D. The ongoing clinical trials show some success, although they currently require immunosuppressant agents. Encapsulation devices provide a method of immunoisolation that does not require immunosuppression; however, the devices tested thus far eventually lead to cell death and fibrotic tissue growth. Substantial research efforts are underway to develop new approaches to protect the stem cell-derived beta cells upon transplantation.
Collapse
Affiliation(s)
- Christopher Schaaf
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Denver, Colorado, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Denver, Colorado, USA
| |
Collapse
|
15
|
Feng X, Zhang H, Yang S, Cui D, Wu Y, Qi X, Su Z. From stem cells to pancreatic β-cells: strategies, applications, and potential treatments for diabetes. Mol Cell Biochem 2025; 480:173-190. [PMID: 38642274 DOI: 10.1007/s11010-024-04999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/22/2024]
Abstract
Loss and functional failure of pancreatic β-cells results in disruption of glucose homeostasis and progression of diabetes. Although whole pancreas or pancreatic islet transplantation serves as a promising approach for β-cell replenishment and diabetes therapy, the severe scarcity of donor islets makes it unattainable for most diabetic patients. Stem cells, particularly induced pluripotent stem cells (iPSCs), are promising for the treatment of diabetes owing to their self-renewal capacity and ability to differentiate into functional β-cells. In this review, we first introduce the development of functional β-cells and their heterogeneity and then turn to highlight recent advances in the generation of β-cells from stem cells and their potential applications in disease modeling, drug discovery and clinical therapy. Finally, we have discussed the current challenges in developing stem cell-based therapeutic strategies for improving the treatment of diabetes. Although some significant technical hurdles remain, stem cells offer great hope for patients with diabetes and will certainly transform future clinical practice.
Collapse
Affiliation(s)
- Xingrong Feng
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Daxin Cui
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Yanting Wu
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Xiaocun Qi
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China.
| |
Collapse
|
16
|
Grattoni A, Korbutt G, Tomei AA, García AJ, Pepper AR, Stabler C, Brehm M, Papas K, Citro A, Shirwan H, Millman JR, Melero-Martin J, Graham M, Sefton M, Ma M, Kenyon N, Veiseh O, Desai TA, Nostro MC, Marinac M, Sykes M, Russ HA, Odorico J, Tang Q, Ricordi C, Latres E, Mamrak NE, Giraldo J, Poznansky MC, de Vos P. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat Rev Endocrinol 2025; 21:14-30. [PMID: 39227741 PMCID: PMC11938328 DOI: 10.1038/s41574-024-01029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis. Therapeutic intervention for T1DM requires a complex regimen of glycaemic monitoring and the administration of exogenous insulin to regulate blood glucose levels. Advances in continuous glucose monitoring and algorithm-driven insulin delivery devices have improved the quality of life of patients. Despite this, mimicking islet function and complex physiological feedback remains challenging. Pancreatic islet transplantation represents a potential functional cure for T1DM but is hindered by donor scarcity, variability in harvested cells, aggressive immunosuppressive regimens and suboptimal clinical outcomes. Current research is directed towards generating alternative cell sources, improving transplantation methods, and enhancing cell survival without chronic immunosuppression. This Review maps the progress in cell replacement therapies for T1DM and outlines the remaining challenges and future directions. We explore the state-of-the-art strategies for generating replenishable β cells, cell delivery technologies and local targeted immune modulation. Finally, we highlight relevant animal models and the regulatory aspects for advancing these technologies towards clinical deployment.
Collapse
Affiliation(s)
- Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| | - Gregory Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Cherie Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Michael Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Klearchos Papas
- Department of Surgery, The University of Arizona, Tucson, AZ, USA
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Haval Shirwan
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Juan Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Michael Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Norma Kenyon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Tejal A Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA, USA
- Brown University, School of Engineering, Providence, RI, USA
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jon Odorico
- UW Health Transplant Center, Madison, WI, USA
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, US
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esther Latres
- Research Department, Breakthrough T1D, New York, NY, USA
| | | | - Jaime Giraldo
- Research Department, Breakthrough T1D, New York, NY, USA.
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
17
|
Verhoeff K, Cuesta-Gomez N, Maghera J, Dadheech N, Pawlick R, Smith N, O'Gorman D, Razavy H, Marfil-Garza B, Young LG, Thiesen A, MacDonald PE, Shapiro AMJ. Scalable Bioreactor-based Suspension Approach to Generate Stem Cell-derived Islets From Healthy Donor-derived iPSCs. Transplantation 2025; 109:e22-e35. [PMID: 39656525 DOI: 10.1097/tp.0000000000005108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) offer the potential to generate autologous iPSC-derived islets (iPSC islets), however, remain limited by scalability and product safety. METHODS Herein, we report stagewise characterization of cells generated following a bioreactor-based differentiation protocol. Cell characteristics were assessed using flow cytometry, quantitative reverse transcription polymerase chain reaction, patch clamping, functional assessment, and in vivo functional and immunohistochemistry evaluation. Protocol yield and costs are assessed to determine scalability. RESULTS Differentiation was capable of generating 90.4% PDX1 + /NKX6.1 + pancreatic progenitors and 100% C-peptide + /NKX6.1 + iPSC islet cells. However, 82.1%, 49.6%, and 0.9% of the cells expressed SOX9 (duct), SLC18A1 (enterochromaffin cells), and CDX2 (gut cells), respectively. Explanted grafts contained mature monohormonal islet-like cells, however, CK19 + ductal tissues persist. Using this protocol, semi-planar differentiation using 150 mm plates achieved 5.72 × 10 4 cells/cm 2 (total 8.3 × 10 6 cells), whereas complete suspension differentiation within 100 mL Vertical-Wheel bioreactors significantly increased cell yield to 1.1 × 10 6 cells/mL (total 105.0 × 10 6 cells), reducing costs by 88.8%. CONCLUSIONS This study offers a scalable suspension-based approach for iPSC islet differentiation within Vertical-Wheel bioreactors with thorough characterization of the ensuing product to enable future protocol comparison and evaluation of approaches for off-target cell elimination. Results suggest that bioreactor-based suspension differentiation protocols may facilitate scalability and clinical implementation of iPSC islet therapies.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Nerea Cuesta-Gomez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Jasmine Maghera
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Nidheesh Dadheech
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Rena Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Nancy Smith
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Doug O'Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Haide Razavy
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Braulio Marfil-Garza
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
- CHRISTUS-LatAm Hub-Excellence and Innovation Center, Monterrey, Mexico
| | | | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - A M James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Gonzalez-Sanchez FA, Sanchez-Huerta TM, Huerta-Gonzalez A, Sepulveda-Villegas M, Altamirano J, Aguilar-Aleman JP, Garcia-Varela R. Diabetes current and future translatable therapies. Endocrine 2024; 86:865-881. [PMID: 38971945 DOI: 10.1007/s12020-024-03944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Diabetes is one of the major diseases and concerns of public health systems that affects over 200 million patients worldwide. It is estimated that 90% of these patients suffer from diabetes type 2, while 10% present diabetes type 1. This type of diabetes and certain types of diabetes type 2, are characterized by dysregulation of blood glycemic levels due to the total or partial depletion of insulin-secreting pancreatic β-cells. Different approaches have been proposed for long-term treatment of insulin-dependent patients; amongst them, cell-based approaches have been the subject of basic and clinical research since they allow blood glucose level sensing and in situ insulin secretion. The current gold standard for insulin-dependent patients is on-demand exogenous insulin application; cell-based therapies aim to remove this burden from the patient and caregivers. In recent years, protocols to isolate and implant pancreatic islets from diseased donors have been developed and tested in clinical trials. Nevertheless, the shortage of donors, along with the need of immunosuppressive companion therapies, have pushed researchers to focus their attention and efforts to overcome these disadvantages and develop alternative strategies. This review discusses current tested clinical approaches and future potential alternatives for diabetes type 1, and some diabetes type 2, insulin-dependent patients. Additionally, advantages and disadvantages of these discussed methods.
Collapse
Affiliation(s)
- Fabio Antonio Gonzalez-Sanchez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Triana Mayra Sanchez-Huerta
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Alexandra Huerta-Gonzalez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Maricruz Sepulveda-Villegas
- Departamento de Medicina Genómica y Hepatología, Hospital Civil de Guadalajara, "Fray Antonio Alcalde", Guadalajara, 44280, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44100, Jalisco, Mexico
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Epigmenio González 500, San Pablo, 76130, Santiago de Queretaro, Qro, México
| | - Juan Pablo Aguilar-Aleman
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Ingenieria Biomedica, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Rebeca Garcia-Varela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México.
- Carbone Cancer Center, University of Wisconsin - Madison, 1111 Highland Ave, Wisconsin, 53705, Madison, USA.
| |
Collapse
|
19
|
Tornabene P, Wells JM. Exploring optimal protocols for generating and preserving glucose-responsive insulin-secreting progenitor cells derived from human pluripotent stem cells. Eur J Cell Biol 2024; 103:151464. [PMID: 39486145 PMCID: PMC11840517 DOI: 10.1016/j.ejcb.2024.151464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024] Open
Abstract
Human pluripotent stem cells (hPSCs) represent an unlimited source of β-like cells for both disease modeling and cellular therapy for diabetes. Numerous protocols have been published describing the differentiation of hPSCs into β-like cells that secret insulin in response to a glucose challenge. However, among the most widely used protocols it is not clear which yield the most functional cells with reproducible glucose-stimulated insulin-secretion (GSIS). Moreover, the technical challenges in culturing and differentiating hPSCs is a barrier for many researchers. In this study, we performed a side-by-side functional comparison based on three widely used methods to generate insulin expressing cells and identified optimal stages and conditions for cryopreserving and reconstituting stem cell (SC)-derived islets with a robust GSIS. Despite the fact that each protocol yields SC-islets consisting of insulin and glucagon-expressing cells, the SC-islets obtained from the two more recent revised protocols were more functional as measured by robust and reproducible GSIS. Moreover, we demonstrate that pancreatic progenitors and differentiated endocrine cells that have been cryopreserved for up to 10 months, can be reconstituted into glucose responsive SC-islets. These findings should enable the use of human PSC-derived β-like cells technologies even by groups with minimal PSC culture experience.
Collapse
Affiliation(s)
- Patrizia Tornabene
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati OH 45229, USA; Center for Stem Cell and Organoids Medicine (CuSTOM), CCHMC, Cincinnati OH 45229, USA.
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati OH 45229, USA; Center for Stem Cell and Organoids Medicine (CuSTOM), CCHMC, Cincinnati OH 45229, USA; Division of Endocrinology, CCHMC, Cincinnati OH 45229, USA.
| |
Collapse
|
20
|
Yehya H, Wells A, Majcher M, Nakhwa D, King R, Senturk F, Padmanabhan R, Jensen J, Bukys MA. Identifying and optimizing critical process parameters for large-scale manufacturing of iPSC derived insulin-producing β-cells. Stem Cell Res Ther 2024; 15:408. [PMID: 39522051 PMCID: PMC11550522 DOI: 10.1186/s13287-024-03973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Type 1 diabetes, an autoimmune disorder leading to the destruction of pancreatic β-cells, requires lifelong insulin therapy. Islet transplantation offers a promising solution but faces challenges such as limited availability and the need for immunosuppression. Induced pluripotent stem cells (iPSCs) provide a potential alternative source of functional β-cells and have the capability for large-scale production. However, current differentiation protocols, predominantly conducted in hybrid or 2D settings, lack scalability and optimal conditions for suspension culture. METHODS We examined a range of bioreactor scaleup process parameters and quality target product profiles that might affect the differentiation process. This investigation was conducted using an optimized High Dimensional Design of Experiments (HD-DoE) protocol designed for scalability and implemented in 0.5L (PBS-0.5 Mini) vertical wheel bioreactors. RESULTS A three stage suspension manufacturing process is developed, transitioning from adherent to suspension culture, with TB2 media supporting iPSC growth during scaling. Stage-wise optimization approaches and extended differentiation times are used to enhance marker expression and maturation of iPSC-derived islet-like clusters. Continuous bioreactor runs were used to study nutrient and growth limitations and impact on differentiation. The continuous bioreactors were compared to a Control media change bioreactor showing metabolic shifts and a more β-cell-like differentiation profile. Cryopreserved aggregates harvested from the runs were recovered and showed maintenance of viability and insulin secretion capacity post-recovery, indicating their potential for storage and future transplantation therapies. CONCLUSION This study demonstrated that stage time increase and limited media replenishing with lactate accumulation can increase the differentiation capacity of insulin producing cells cultured in a large-scale suspension environment.
Collapse
Affiliation(s)
- Haneen Yehya
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
- Cleveland State University, 2121 Euclid Ave, Cleveland, OH, 44115, USA
| | - Alexandra Wells
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Michael Majcher
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Dhruv Nakhwa
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Ryan King
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Faruk Senturk
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | | | - Jan Jensen
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Michael A Bukys
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA.
| |
Collapse
|
21
|
Wong JM, Pepper AR. Status of islet transplantation and innovations to sustainable outcomes: novel sites, cell sources, and drug delivery strategies. FRONTIERS IN TRANSPLANTATION 2024; 3:1485444. [PMID: 39553396 PMCID: PMC11565603 DOI: 10.3389/frtra.2024.1485444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
Islet transplantation (ITx) is an effective means to restore physiologic glycemic regulation in those living with type 1 diabetes; however, there are a handful of barriers that prevent the broad application of this functionally curative procedure. The restricted cell supply, requisite for life-long toxic immunosuppression, and significant immediate and gradual graft attrition limits the procedure to only those living with brittle diabetes. While intraportal ITx is the primary clinical site, portal vein-specific factors including low oxygen tension and the instant blood-mediated inflammatory reaction are detrimental to initial engraftment and long-term function. These factors among others prevent the procedure from granting recipients long-term insulin independence. Herein, we provide an overview of the status and limitations of ITx, and novel innovations that address the shortcomings presented. Despite the marked progress highlighted in the review from as early as the initial islet tissue transplantation in 1893, ongoing efforts to improve the procedure efficacy and success are also explored. Progress in identifying unlimited cell sources, more favourable transplant sites, and novel drug delivery strategies all work to broaden ITx application and reduce adverse outcomes. Exploring combination of these approaches may uncover synergies that can further advance the field of ITx in providing sustainable functional cures. Finally, the potential of biomaterial strategies to facilitate immune evasion and local immune modulation are featured and may underpin successful application in alternative transplant sites.
Collapse
Affiliation(s)
| | - Andrew R. Pepper
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Wang S, Du Y, Zhang B, Meng G, Liu Z, Liew SY, Liang R, Zhang Z, Cai X, Wu S, Gao W, Zhuang D, Zou J, Huang H, Wang M, Wang X, Wang X, Liang T, Liu T, Gu J, Liu N, Wei Y, Ding X, Pu Y, Zhan Y, Luo Y, Sun P, Xie S, Yang J, Weng Y, Zhou C, Wang Z, Wang S, Deng H, Shen Z. Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient. Cell 2024; 187:6152-6164.e18. [PMID: 39326417 DOI: 10.1016/j.cell.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/25/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
We report the 1-year results from one patient as the preliminary analysis of a first-in-human phase I clinical trial (ChiCTR2300072200) assessing the feasibility of autologous transplantation of chemically induced pluripotent stem-cell-derived islets (CiPSC islets) beneath the abdominal anterior rectus sheath for type 1 diabetes treatment. The patient achieved sustained insulin independence starting 75 days post-transplantation. The patient's time-in-target glycemic range increased from a baseline value of 43.18% to 96.21% by month 4 post-transplantation, accompanied by a decrease in glycated hemoglobin, an indicator of long-term systemic glucose levels at a non-diabetic level. Thereafter, the patient presented a state of stable glycemic control, with time-in-target glycemic range at >98% and glycated hemoglobin at around 5%. At 1 year, the clinical data met all study endpoints with no indication of transplant-related abnormalities. Promising results from this patient suggest that further clinical studies assessing CiPSC-islet transplantation in type 1 diabetes are warranted.
Collapse
Affiliation(s)
- Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China.
| | - Yuanyuan Du
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Boya Zhang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Gaofan Meng
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Zewen Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Soon Yi Liew
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Zhengyuan Zhang
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Xiangheng Cai
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | | | - Wei Gao
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | | | - Jiaqi Zou
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Hui Huang
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Mingyang Wang
- Department of Ultrasound, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | | | - Xuelian Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Ting Liang
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Tengli Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Jiabin Gu
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Na Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yanling Wei
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Xuejie Ding
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yue Pu
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Yixiang Zhan
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yu Luo
- Hangzhou Reprogenix Bioscience, Hangzhou, China
| | - Peng Sun
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Shuangshuang Xie
- Radiology Department, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Jiuxia Yang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Chunlei Zhou
- Department of Medical Laboratory, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Zhenglu Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Shuang Wang
- Department of Plastic and Burn, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Hongkui Deng
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; China Changping Laboratory, Beijing 102206, China.
| | - Zhongyang Shen
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, NHC Key Laboratory for Critical Care Medicine, Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China.
| |
Collapse
|
23
|
Parmar B, Bhatia D. Small Molecular Approaches for Cellular Reprogramming and Tissue Engineering: Functions as Mediators of the Cell Signaling Pathway. Biochemistry 2024; 63:2542-2556. [PMID: 39312802 DOI: 10.1021/acs.biochem.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Utilizing induced pluripotent stem cells (iPSCs) in drug screening and cell replacement therapy has emerged as a method with revolutionary applications. With the advent of patient-specific iPSCs and the subsequent development of cells that exhibit disease phenotypes, the focus of medication research will now shift toward the pathology of human diseases. Regular iPSCs can also be utilized to generate cells that assess the negative impacts of medications. These cells provide a much more precise and cost-efficient approach compared to many animal models. In this review, we explore the utilization of small-molecule drugs to enhance the growth of iPSCs and gain insights into the process of reprogramming. We mainly focus on the functions of small molecules in modulating different signaling pathways, thereby modulating cell fate. Understanding the way small molecule drugs interact with iPSC technology has the potential to significantly enhance the understanding of physiological pathways in stem cells and practical applications of iPSC-based therapy and screening systems, revolutionizing the treatment of diseases.
Collapse
Affiliation(s)
- Bhagyesh Parmar
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gandhinagar 382355, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gandhinagar 382355, India
| |
Collapse
|
24
|
Maestas MM, Bui MH, Millman JR. Recent progress in modeling and treating diabetes using stem cell-derived islets. Stem Cells Transl Med 2024; 13:949-958. [PMID: 39159002 PMCID: PMC11465181 DOI: 10.1093/stcltm/szae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Stem cell-derived islets (SC-islets) offer the potential to be an unlimited source of cells for disease modeling and the treatment of diabetes. SC-islets can be genetically modified, treated with chemical compounds, or differentiated from patient derived stem cells to model diabetes. These models provide insights into disease pathogenesis and vulnerabilities that may be targeted to provide treatment. SC-islets themselves are also being investigated as a cell therapy for diabetes. However, the transplantation process is imperfect; side effects from immunosuppressant use have reduced SC-islet therapeutic potential. Alternative methods to this include encapsulation, use of immunomodulating molecules, and genetic modification of SC-islets. This review covers recent advances using SC-islets to understand different diabetes pathologies and as a cell therapy.
Collapse
Affiliation(s)
- Marlie M Maestas
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Maggie H Bui
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Jeffrey R Millman
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States
| |
Collapse
|
25
|
Wani SI, Mir TA, Nakamura M, Tsuchiya T, Alzhrani A, Iwanaga S, Arai K, Alshehri EA, Shamma T, Obeid DA, Chinnappan R, Assiri AM, Yaqinuddin A, Vashist YK, Broering DC. A review of current state-of-the-art materiobiology and technological approaches for liver tissue engineering. BIOPRINTING 2024; 42:e00355. [DOI: 10.1016/j.bprint.2024.e00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
|
26
|
Keymeulen B, De Groot K, Jacobs-Tulleneers-Thevissen D, Thompson DM, Bellin MD, Kroon EJ, Daniels M, Wang R, Jaiman M, Kieffer TJ, Foyt HL, Pipeleers D. Encapsulated stem cell-derived β cells exert glucose control in patients with type 1 diabetes. Nat Biotechnol 2024; 42:1507-1514. [PMID: 38012450 PMCID: PMC11471599 DOI: 10.1038/s41587-023-02055-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Clinical studies on the treatment of type 1 diabetes with device-encapsulated pancreatic precursor cells derived from human embryonic stem cells found that insulin output was insufficient for clinical benefit. We are conducting a phase 1/2, open-label, multicenter trial aimed at optimizing cell engraftment (ClinicalTrials.gov identifier: NCT03163511 ). Here we report interim, 1-year outcomes in one study group that received 2-3-fold higher cell doses in devices with an optimized membrane perforation pattern. β cell function was measured by meal-stimulated plasma C-peptide levels at 3-month intervals, and the effect on glucose control was assessed by continuous glucose monitoring (CGM) and insulin dosing. Of 10 patients with undetectable baseline C-peptide, three achieved levels ≥0.1 nmol l-1 from month 6 onwards that correlated with improved CGM measures and reduced insulin dosing, indicating a glucose-controlling effect. The patient with the highest C-peptide (0.23 nmol l-1) increased CGM time-in-range from 55% to 85% at month 12; β cell mass in sentinel devices in this patient at month 6 was 4% of the initial cell mass, indicating directions for improving efficacy.
Collapse
Affiliation(s)
- Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel and Universitair Ziekenhuis Brussel, Brussels, Belgium.
| | - Kaat De Groot
- Diabetes Research Center, Vrije Universiteit Brussel and Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | | - David M Thompson
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melena D Bellin
- Department of Pediatrics and Department of Surgery, University of Minnesota Medical Center, Minneapolis, MN, USA
| | | | | | | | | | - Timothy J Kieffer
- ViaCyte Inc., San Diego, CA, USA
- Department of Cellular and Physiological Sciences and Department of Surgery, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | | | - Daniel Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel and Universitair Ziekenhuis Brussel, Brussels, Belgium.
| |
Collapse
|
27
|
Ka M, Hawkins E, Pouponnot C, Duvillié B. Modelling human diabetes ex vivo: a glance at maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2024; 15:1427413. [PMID: 39387055 PMCID: PMC11461259 DOI: 10.3389/fendo.2024.1427413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes is a complex metabolic disease which most commonly has a polygenic origin; however, in rare cases, diabetes may be monogenic. This is indeed the case in both Maturity Onset Diabetes of the Young (MODY) and neonatal diabetes. These disease subtypes are believed to be simpler than Type 1 (T1D) and Type 2 Diabetes (T2D), which allows for more precise modelling. During the three last decades, many studies have focused on rodent models. These investigations provided a wealth of knowledge on both pancreas development and beta cell function. In particular, they allowed the establishment of a hierarchy of the transcription factors and highlighted the role of microenvironmental factors in the control of progenitor cell proliferation and differentiation. Transgenic mice also offered the possibility to decipher the mechanisms that define the functional identity of the pancreatic beta cells. Despite such interest in transgenic mice, recent data have also indicated that important differences exist between mice and human. To overcome these limitations, new human models are necessary. In the present review, we describe these ex vivo models, which are created using stem cells and organoids, and represent an important step toward islet cell therapy and drug discovery.
Collapse
Affiliation(s)
- Moustapha Ka
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Eleanor Hawkins
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Celio Pouponnot
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Bertrand Duvillié
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| |
Collapse
|
28
|
Arroyave F, Uscátegui Y, Lizcano F. From iPSCs to Pancreatic β Cells: Unveiling Molecular Pathways and Enhancements with Vitamin C and Retinoic Acid in Diabetes Research. Int J Mol Sci 2024; 25:9654. [PMID: 39273600 PMCID: PMC11395045 DOI: 10.3390/ijms25179654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetes mellitus, a chronic and non-transmissible disease, triggers a wide range of micro- and macrovascular complications. The differentiation of pancreatic β-like cells (PβLCs) from induced pluripotent stem cells (iPSCs) offers a promising avenue for regenerative medicine aimed at treating diabetes. Current differentiation protocols strive to emulate pancreatic embryonic development by utilizing cytokines and small molecules at specific doses to activate and inhibit distinct molecular signaling pathways, directing the differentiation of iPSCs into pancreatic β cells. Despite significant progress and improved protocols, the full spectrum of molecular signaling pathways governing pancreatic development and the physiological characteristics of the differentiated cells are not yet fully understood. Here, we report a specific combination of cofactors and small molecules that successfully differentiate iPSCs into PβLCs. Our protocol has shown to be effective, with the resulting cells exhibiting key functional properties of pancreatic β cells, including the expression of crucial molecular markers (pdx1, nkx6.1, ngn3) and the capability to secrete insulin in response to glucose. Furthermore, the addition of vitamin C and retinoic acid in the final stages of differentiation led to the overexpression of specific β cell genes.
Collapse
Affiliation(s)
- Felipe Arroyave
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
- Doctoral Program in Biociencias, Universidad de La Sabana, Chia 250008, Colombia
| | - Yomaira Uscátegui
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
- Doctoral Program in Biociencias, Universidad de La Sabana, Chia 250008, Colombia
- School of Medicine, Universidad de La Sabana, Chia 250008, Colombia
| |
Collapse
|
29
|
Berger C, Glaser M, Ziegler AL, Neukel V, Walz F, Zdzieblo D. Generation of a pancreas derived hydrogel for the culture of hiPSC derived pancreatic endocrine cells. Sci Rep 2024; 14:20653. [PMID: 39232042 PMCID: PMC11375036 DOI: 10.1038/s41598-024-67327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/10/2024] [Indexed: 09/06/2024] Open
Abstract
Stem cell-derived β-cells (SC-BCs) represent a potential source for curing diabetes. To date, in vitro generated SC-BCs display an immature phenotype and lack important features in comparison to their bona-fide counterparts. Transplantation into a living animal promotes SC-BCs maturation, indicating that components of the in vivo microenvironment trigger final SC-BCs development. Here, we investigated whether cues of the pancreas specific extracellular matrix (ECM) can improve the differentiation of human induced pluripotent stem cells (hiPSCs) towards β-cells in vitro. To this aim, a pancreas specific ECM (PanMa) hydrogel was generated from decellularized porcine pancreas and its effect on the differentiation of hiPSC-derived pancreatic hormone expressing cells (HECs) was tested. The hydrogel solidified upon neutralization at 37 °C with gelation kinetics similar to Matrigel. Cytocompatibility of the PanMa hydrogel was demonstrated for a culture duration of 21 days. Encapsulation and culture of HECs in the PanMa hydrogel over 7 days resulted in a stable gene and protein expression of most β-cell markers, but did not improve β-cell identity. In conclusion, the study describes the production of a PanMa hydrogel, which provides the basis for the development of ECM hydrogels that are more adapted to the demands of SC-BCs.
Collapse
Affiliation(s)
- Constantin Berger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.
| | - Markus Glaser
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Anna-Lena Ziegler
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Valentina Neukel
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Fabiola Walz
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Zdzieblo
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Project Center for Stem Cell Process Engineering, Fraunhofer Institute for Silicate Research, Würzburg, Germany
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| |
Collapse
|
30
|
Zanfrini E, Bandral M, Jarc L, Ramirez-Torres MA, Pezzolla D, Kufrin V, Rodriguez-Aznar E, Avila AKM, Cohrs C, Speier S, Neumann K, Gavalas A. Generation and application of novel hES cell reporter lines for the differentiation and maturation of hPS cell-derived islet-like clusters. Sci Rep 2024; 14:19863. [PMID: 39191834 DOI: 10.1038/s41598-024-69645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The significant advances in the differentiation of human pluripotent stem (hPS) cells into pancreatic endocrine cells, including functional β-cells, have been based on a detailed understanding of the underlying developmental mechanisms. However, the final differentiation steps, leading from endocrine progenitors to mono-hormonal and mature pancreatic endocrine cells, remain to be fully understood and this is reflected in the remaining shortcomings of the hPS cell-derived islet cells (SC-islet cells), which include a lack of β-cell maturation and variability among different cell lines. Additional signals and modifications of the final differentiation steps will have to be assessed in a combinatorial manner to address the remaining issues and appropriate reporter lines would be useful in this undertaking. Here we report the generation and functional validation of hPS cell reporter lines that can monitor the generation of INS+ and GCG+ cells and their resolution into mono-hormonal cells (INSeGFP, INSeGFP/GCGmCHERRY) as well as β-cell maturation (INSeGFP/MAFAmCHERRY) and function (INSGCaMP6). The reporter hPS cell lines maintained strong and widespread expression of pluripotency markers and differentiated efficiently into definitive endoderm and pancreatic progenitor (PP) cells. PP cells from all lines differentiated efficiently into islet cell clusters that robustly expressed the corresponding reporters and contained glucose-responsive, insulin-producing cells. To demonstrate the applicability of these hPS cell reporter lines in a high-content live imaging approach for the identification of optimal differentiation conditions, we adapted our differentiation procedure to generate SC-islet clusters in microwells. This allowed the live confocal imaging of multiple SC-islets for a single condition and, using this approach, we found that the use of the N21 supplement in the last stage of the differentiation increased the number of monohormonal β-cells without affecting the number of α-cells in the SC-islets. The hPS cell reporter lines and the high-content live imaging approach described here will enable the efficient assessment of multiple conditions for the optimal differentiation and maturation of SC-islets.
Collapse
Affiliation(s)
- Elisa Zanfrini
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Manuj Bandral
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Luka Jarc
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Maria Alejandra Ramirez-Torres
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Daniela Pezzolla
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Vida Kufrin
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Eva Rodriguez-Aznar
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Ana Karen Mojica Avila
- Institute of Physiology, Faculty of Medicine, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Christian Cohrs
- Institute of Physiology, Faculty of Medicine, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Katrin Neumann
- Stem Cell Engineering Facility (SCEF), CRTD, TU Dresden, Dresden, Germany
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- German Centre for Diabetes Research (DZD), Munich-Neuherberg, Germany.
| |
Collapse
|
31
|
Sartori-Maldonado R, Montaser H, Soppa I, Eurola S, Juutila J, Balaz M, Puttonen H, Otonkoski T, Saarimäki-Vire J, Wartiovaara K. Thymidylate synthase disruption to limit cell proliferation in cell therapies. Mol Ther 2024; 32:2535-2548. [PMID: 38867450 PMCID: PMC11405178 DOI: 10.1016/j.ymthe.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Stem and progenitor cells hold great promise for regenerative medicine and gene therapy approaches. However, transplantation of living cells entails a fundamental risk of unwanted growth, potentially exacerbated by CRISPR-Cas9 or other genetic manipulations. Here, we describe a safety system to control cell proliferation while allowing robust and efficient cell manufacture, without any added genetic elements. Inactivating TYMS, a key nucleotide metabolism enzyme, in several cell lines resulted in cells that proliferate only when supplemented with exogenous thymidine. Under supplementation, TYMS-/--pluripotent stem cells proliferate, produce teratomas, and successfully differentiate into potentially therapeutic cell types such as pancreatic β cells. Our results suggest that supplementation with exogenous thymidine affects stem cell proliferation, but not the function of stem cell-derived cells. After differentiation, postmitotic cells do not require thymidine in vitro or in vivo, as shown by the production of functional human insulin in mice up to 5 months after implantation of stem cell-derived pancreatic tissue.
Collapse
Affiliation(s)
- Rocio Sartori-Maldonado
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Inkeri Soppa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Solja Eurola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Juhana Juutila
- Faculty of Biological and Environmental Sciences University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Melanie Balaz
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Henri Puttonen
- Department of Pathology, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Children's Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Kirmo Wartiovaara
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Clinical Genetics, Helsinki University Hospital, 00290 Helsinki, Finland.
| |
Collapse
|
32
|
Kano M. Parathyroid Gland Generation from Pluripotent Stem Cells. Endocrinol Metab (Seoul) 2024; 39:552-558. [PMID: 38853617 PMCID: PMC11375298 DOI: 10.3803/enm.2024.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Patients with permanent hypoparathyroidism require lifelong treatment. Current replacement therapies sometimes have adverse effects (e.g., hypercalciuria and chronic kidney disease). Generating parathyroid glands (PTGs) from the patient's own induced pluripotent stem cells (PSCs), with transplantation of these PTGs, would be an effective treatment option. Multiple methods for generating PTGs from PSCs have been reported. One major trend is in vitro differentiation of PSCs into PTGs. Another is in vivo generation of PSC-derived PTGs by injecting PSCs into PTG-deficient embryos. This review discusses current achievements and challenges in present and future PTG regenerative medicine.
Collapse
Affiliation(s)
- Mayuko Kano
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
33
|
Niu F, Liu W, Ren Y, Tian Y, Shi W, Li M, Li Y, Xiong Y, Qian L. β-cell neogenesis: A rising star to rescue diabetes mellitus. J Adv Res 2024; 62:71-89. [PMID: 37839502 PMCID: PMC11331176 DOI: 10.1016/j.jare.2023.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Diabetes Mellitus (DM), a chronic metabolic disease characterized by elevated blood glucose, is caused by various degrees of insulin resistance and dysfunctional insulin secretion, resulting in hyperglycemia. The loss and failure of functional β-cells are key mechanisms resulting in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). AIM OF REVIEW Elucidating the underlying mechanisms of β-cell failure, and exploring approaches for β-cell neogenesis to reverse β-cell dysfunction may provide novel strategies for DM therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Emerging studies reveal that genetic susceptibility, endoplasmic reticulum (ER) stress, oxidative stress, islet inflammation, and protein modification linked to multiple signaling pathways contribute to DM pathogenesis. Over the past few years, replenishing functional β-cell by β-cell neogenesis to restore the number and function of pancreatic β-cells has remarkably exhibited a promising therapeutic approach for DM therapy. In this review, we provide a comprehensive overview of the underlying mechanisms of β-cell failure in DM, highlight the effective approaches for β-cell neogenesis, as well as discuss the current clinical and preclinical agents research advances of β-cell neogenesis. Insights into the challenges of translating β-cell neogenesis into clinical application for DM treatment are also offered.
Collapse
Affiliation(s)
- Fanglin Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Neurology, Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Medical Research Center, the affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Man Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yujia Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Chen L, Wang N, Zhang T, Zhang F, Zhang W, Meng H, Chen J, Liao Z, Xu X, Ma Z, Xu T, Liu H. Directed differentiation of pancreatic δ cells from human pluripotent stem cells. Nat Commun 2024; 15:6344. [PMID: 39068220 PMCID: PMC11283558 DOI: 10.1038/s41467-024-50611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Dysfunction of pancreatic δ cells contributes to the etiology of diabetes. Despite their important role, human δ cells are scarce, limiting physiological studies and drug discovery targeting δ cells. To date, no directed δ-cell differentiation method has been established. Here, we demonstrate that fibroblast growth factor (FGF) 7 promotes pancreatic endoderm/progenitor differentiation, whereas FGF2 biases cells towards the pancreatic δ-cell lineage via FGF receptor 1. We develop a differentiation method to generate δ cells from human stem cells by combining FGF2 with FGF7, which synergistically directs pancreatic lineage differentiation and modulates the expression of transcription factors and SST activators during endoderm/endocrine precursor induction. These δ cells display mature RNA profiles and fine secretory granules, secrete somatostatin in response to various stimuli, and suppress insulin secretion from in vitro co-cultured β cells and mouse β cells upon transplantation. The generation of human pancreatic δ cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation studies in diabetes.
Collapse
Affiliation(s)
- Lihua Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Nannan Wang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongran Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Wei Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Hao Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Jingyi Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Zhiying Liao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Xiaopeng Xu
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Zhuo Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
| | - Huisheng Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Ma X, Dai L, Tan C, Li J, He X, Wang Y, Xue J, Huang M, Ren J, Xia Y, Wu Q, Zhao H, Chan WY, Feng B. β-catenin mediates endodermal commitment of human ES cells via distinct transactivation functions. Cell Biosci 2024; 14:96. [PMID: 39049023 PMCID: PMC11267888 DOI: 10.1186/s13578-024-01279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND β-catenin, acting as the core effector of canonical Wnt signaling pathway, plays a pivotal role in controlling lineage commitment and the formation of definitive endoderm (DE) during early embryonic development. Despite extensive studies using various animal and cell models, the β-catenin-centered regulatory mechanisms underlying DE formation remain incompletely understood, partly due to the rapid and complex cell fate transitions during early differentiation. RESULTS In this study, we generated new CTNNB1-/- human ES cells (hESCs) using CRISPR-based insertional gene disruption approach and systematically rescued the DE defect in these cells by introducing various truncated or mutant forms of β-catenin. Our analysis showed that a truncated β-catenin lacking both N- and C-terminal domains (ΔN148C) could robustly rescue the DE formation, whereas hyperactive β-catenin mutants with S33Y mutation or N-terminal deletion (ΔN90) had limited ability to induce DE lineage. Notably, the ΔN148C mutant exhibited significant nuclear translocation that was positively correlated with successful DE rescue. Transcriptomic analysis further uncovered that two weak β-catenin mutants lacking the C-terminal transactivation domain (CTD) activated primitive streak (PS) genes, whereas the hyperactive β-catenin mutants activated mesoderm genes. CONCLUSION Our study uncovered an unconventional regulatory function of β-catenin through weak transactivation, indicating that the levels of β-catenin activity determine the lineage bifurcation from mesendoderm into endoderm and mesoderm.
Collapse
Affiliation(s)
- Xun Ma
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Liujiang Dai
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Chunlai Tan
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiangchuan Li
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiangjun He
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Junyi Xue
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Min Huang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Jianwei Ren
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China
| | - Wai-Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
36
|
Li Y, Xu M, Chen J, Huang J, Cao J, Chen H, Zhang J, Luo Y, Wang Y, Sun J. Ameliorating and refining islet organoids to illuminate treatment and pathogenesis of diabetes mellitus. Stem Cell Res Ther 2024; 15:188. [PMID: 38937834 PMCID: PMC11210168 DOI: 10.1186/s13287-024-03780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
Diabetes mellitus, a significant global public health challenge, severely impacts human health worldwide. The organoid, an innovative in vitro three-dimensional (3D) culture model, closely mimics tissues or organs in vivo. Insulin-secreting islet organoid, derived from stem cells induced in vitro with 3D structures, has emerged as a potential alternative for islet transplantation and as a possible disease model that mirrors the human body's in vivo environment, eliminating species difference. This technology has gained considerable attention for its potential in diabetes treatment. Despite advances, the process of stem cell differentiation into islet organoid and its cultivation demonstrates deficiencies, prompting ongoing efforts to develop more efficient differentiation protocols and 3D biomimetic materials. At present, the constructed islet organoid exhibit limitations in their composition, structure, and functionality when compared to natural islets. Consequently, further research is imperative to achieve a multi-tissue system composition and improved insulin secretion functionality in islet organoid, while addressing transplantation-related safety concerns, such as tumorigenicity, immune rejection, infection, and thrombosis. This review delves into the methodologies and strategies for constructing the islet organoid, its application in diabetes treatment, and the pivotal scientific challenges within organoid research, offering fresh perspectives for a deeper understanding of diabetes pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Yushan Li
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meiqi Xu
- Department of Biomedical Engineering, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jiali Chen
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiansong Huang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaying Cao
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huajing Chen
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiayi Zhang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yukun Luo
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
37
|
Annicchiarico A, Barile B, Buccoliero C, Nicchia GP, Brunetti G. Alternative therapeutic strategies in diabetes management. World J Diabetes 2024; 15:1142-1161. [PMID: 38983831 PMCID: PMC11229975 DOI: 10.4239/wjd.v15.i6.1142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetes is a heterogeneous metabolic disease characterized by elevated blood glucose levels resulting from the destruction or malfunction of pancreatic β cells, insulin resistance in peripheral tissues, or both, and results in a non-sufficient production of insulin. To adjust blood glucose levels, diabetic patients need exogenous insulin administration together with medical nutrition therapy and physical activity. With the aim of improving insulin availability in diabetic patients as well as ameliorating diabetes comorbidities, different strategies have been investigated. The first approaches included enhancing endogenous β cell activity or transplanting new islets. The protocol for this kind of intervention has recently been optimized, leading to standardized procedures. It is indicated for diabetic patients with severe hypoglycemia, complicated by impaired hypoglycemia awareness or exacerbated glycemic lability. Transplantation has been associated with improvement in all comorbidities associated with diabetes, quality of life, and survival. However, different trials are ongoing to further improve the beneficial effects of transplantation. Furthermore, to overcome some limitations associated with the availability of islets/pancreas, alternative therapeutic strategies are under evaluation, such as the use of mesenchymal stem cells (MSCs) or induced pluripotent stem cells for transplantation. The cotransplantation of MSCs with islets has been successful, thus providing protection against proinflammatory cytokines and hypoxia through different mechanisms, including exosome release. The use of induced pluripotent stem cells is recent and requires further investigation. The advantages of MSC implantation have also included the improvement of diabetes-related comorbidities, such as wound healing. Despite the number of advantages of the direct injection of MSCs, new strategies involving biomaterials and scaffolds have been developed to improve the efficacy of mesenchymal cell delivery with promising results. In conclusion, this paper offered an overview of new alternative strategies for diabetes management while highlighting some limitations that will need to be overcome by future approaches.
Collapse
Affiliation(s)
- Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
38
|
Wang Q, Huang YX, Liu L, Zhao XH, Sun Y, Mao X, Li SW. Pancreatic islet transplantation: current advances and challenges. Front Immunol 2024; 15:1391504. [PMID: 38887292 PMCID: PMC11180903 DOI: 10.3389/fimmu.2024.1391504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Diabetes is a prevalent chronic disease that traditionally requires severe reliance on medication for treatment. Oral medication and exogenous insulin can only temporarily maintain blood glucose levels and do not cure the disease. Most patients need life-long injections of exogenous insulin. In recent years, advances in islet transplantation have significantly advanced the treatment of diabetes, allowing patients to discontinue exogenous insulin and avoid complications.Long-term follow-up results from recent reports on islet transplantation suggest that they provide significant therapeutic benefit although patients still require immunotherapy, suggesting the importance of future transplantation strategies. Although organ shortage remains the primary obstacle for the development of islet transplantation, new sources of islet cells, such as stem cells and porcine islet cells, have been proposed, and are gradually being incorporated into clinical research. Further research on new transplantation sites, such as the subcutaneous space and mesenteric fat, may eventually replace the traditional portal vein intra-islet cell infusion. Additionally, the immunological rejection reaction in islet transplantation will be resolved through the combined application of immunosuppressant agents, islet encapsulation technology, and the most promising mesenchymal stem cells/regulatory T cell and islet cell combined transplantation cell therapy. This review summarizes the progress achieved in islet transplantation, and discusses the research progress and potential solutions to the challenges faced.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yu-xi Huang
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University, Taizhou, Zhejiang, China
| | - Yi Sun
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
39
|
Azad A, Altunbas HA, Manguoglu AE. From islet transplantation to beta-cell regeneration: an update on beta-cell-based therapeutic approaches in type 1 diabetes. Expert Rev Endocrinol Metab 2024; 19:217-227. [PMID: 38693782 DOI: 10.1080/17446651.2024.2347263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Type 1 diabetes (T1D) mellitus is an autoimmune disease in which immune cells, predominantly effector T cells, destroy insulin-secreting beta-cells. Beta-cell destruction led to various consequences ranging from retinopathy and nephropathy to neuropathy. Different strategies have been developed to achieve normoglycemia, including exogenous glucose compensation, whole pancreas transplantation, islet transplantation, and beta-cell replacement. AREAS COVERED The last two decades of experience have shown that indigenous glucose compensation through beta-cell regeneration and protection is a peerless method for T1D therapy. Tremendous studies have tried to find an unlimited source for beta-cell regeneration, on the one hand, and beta-cell protection against immune attack, on the other hand. Recent advances in stem cell technology, gene editing methods, and immune modulation approaches provide a unique opportunity for both beta-cell regeneration and protection. EXPERT OPINION Pluripotent stem cell differentiation into the beta-cell is considered an unlimited source for beta-cell regeneration. Devising engineered pancreas-specific regulatory T cells using Chimeric Antigen Receptor (CAR) technology potentiates an effective immune tolerance induction for beta-cell protection. Beta-cell regeneration using pluripotent stem cells and beta-cell protection using pancreas-specific engineered regulatory T cells promises to develop a curative protocol in T1D.
Collapse
Affiliation(s)
- Asef Azad
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hasan Ali Altunbas
- Department of Endocrinology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ayse Esra Manguoglu
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
40
|
Chen S, Wu P, Zhang T, Zhang J, Gao H. Global scientific trends on the islet transplantation in the 21st century: A bibliometric and visualized analysis. Medicine (Baltimore) 2024; 103:e37945. [PMID: 38669398 PMCID: PMC11049693 DOI: 10.1097/md.0000000000037945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Islet transplantation (IT) has emerged as a significant research area for the treatment of diabetes mellitus and has witnessed a surge in scholarly attention. Despite its growing importance, there is a lack of bibliometric analyses that encapsulate the evolution and scientific underpinnings of this field. This study aims to fill this gap by conducting a comprehensive bibliometric analysis to delineate current research hotspots and forecast future trajectories within the IT domain with a particular focus on evidence-based medicine practices. METHODS This analysis scrutinized literature from January 1, 2000, to October 1, 2023, using the Web of Science Core Collection (WoSCC). Employing bibliometric tools such as VOSviewer, CiteSpace, and the R package "bibliometrix," we systematically evaluated the literature to uncover scientific trends and collaboration networks in IT research. RESULTS The analysis revealed 8388 publications from 82 countries, predominantly the United States and China. However, global cross-institutional collaboration in IT research requires further strengthening. The number of IT-related publications has increased annually. Leading research institutions in this field include Harvard University, the University of Alberta, the University of Miami, and the University of Minnesota. "Transplantation" emerges as the most frequently cited journal in this area. Shapiro and Ricordi were the most prolific authors, with 126 and 121 publications, respectively. Shapiro also led to co-citations, totaling 4808. Key research focuses on IT sites and procedures as well as novel therapies in IT. Emerging research hotspots are identified by terms like "xenotransplantation," "apoptosis," "stem cells," "immunosuppression," and "microencapsulation." CONCLUSIONS The findings underscore a mounting anticipation for future IT research, which is expected to delve deeper into evidence-based methodologies for IT sites, procedures, and novel therapeutic interventions. This shift toward evidence-based medicine underscores the field's commitment to enhancing the efficacy and safety of IT for diabetes treatment, signaling a promising direction for future investigations aimed at optimizing patient outcomes.
Collapse
Affiliation(s)
- Sheng Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - PeiZhong Wu
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Ting Zhang
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Jianqiang Zhang
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongjun Gao
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
41
|
Liu S, Zhang Y, Luo Y, Liu J. Traditional and emerging strategies using hepatocytes for pancreatic regenerative medicine. J Diabetes 2024; 16:e13545. [PMID: 38599852 PMCID: PMC11006621 DOI: 10.1111/1753-0407.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 04/12/2024] Open
Abstract
Although pancreas and islet cell transplantation are the only ways to prevent the late complications of insulin-dependent diabetes, a shortage of donors is a major obstacle to tissue and organ transplantation. Stem cell therapy is an effective treatment for diabetes and other pancreatic-related diseases, which can be achieved by inducing their differentiation into insulin-secreting cells. The liver is considered an ideal source of pancreatic cells due to its similar developmental origin and strong regenerative ability as the pancreas. This article reviews the traditional and emerging strategies using hepatocytes for pancreatic regenerative medicine and evaluates their advantages and challenges. Gene reprogramming and chemical reprogramming technologies are traditional strategies with potential to improve the efficiency and specificity of cell reprogramming and promote the transformation of hepatocytes into islet cells. At the same time, organoid technology, as an emerging strategy, has received extensive attention. Biomaterials provide a three-dimensional culture microenvironment for cells, which helps improve cell survival and differentiation efficiency. In addition, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing technology has brought new opportunities and challenges to the development of organoid technology.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - YuYing Zhang
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - YunFei Luo
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - JianPing Liu
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
42
|
Christiansen JR, Kirkeby A. Clinical translation of pluripotent stem cell-based therapies: successes and challenges. Development 2024; 151:dev202067. [PMID: 38564308 PMCID: PMC11057818 DOI: 10.1242/dev.202067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The translational stem cell research field has progressed immensely in the past decade. Development and refinement of differentiation protocols now allows the generation of a range of cell types, such as pancreatic β-cells and dopaminergic neurons, from human pluripotent stem cells (hPSCs) in an efficient and good manufacturing practice-compliant fashion. This has led to the initiation of several clinical trials using hPSC-derived cells to replace lost or dysfunctional cells, demonstrating evidence of both safety and efficacy. Here, we highlight successes from some of the hPSC-based trials reporting early signs of efficacy and discuss common challenges in clinical translation of cell therapies.
Collapse
Affiliation(s)
- Josefine Rågård Christiansen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
- Wallenberg Center for Molecular Medicine, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
43
|
Kioulaphides S, García AJ. Encapsulation and immune protection for type 1 diabetes cell therapy. Adv Drug Deliv Rev 2024; 207:115205. [PMID: 38360355 PMCID: PMC10948298 DOI: 10.1016/j.addr.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Type 1 Diabetes (T1D) involves the autoimmune destruction of insulin-producing β-cells in the pancreas. Exogenous insulin injections are the current therapy but are user-dependent and cannot fully recapitulate physiological insulin secretion dynamics. Since the emergence of allogeneic cell therapy for T1D, the Edmonton Protocol has been the most promising immunosuppression protocol for cadaveric islet transplantation, but the lack of donor islets, poor cell engraftment, and required chronic immunosuppression have limited its application as a therapy for T1D. Encapsulation in biomaterials on the nano-, micro-, and macro-scale offers the potential to integrate islets with the host and protect them from immune responses. This method can be applied to different cell types, including cadaveric, porcine, and stem cell-derived islets, mitigating the issue of a lack of donor cells. This review covers progress in the efforts to integrate insulin-producing cells from multiple sources to T1D patients as a form of cell therapy.
Collapse
Affiliation(s)
- Sophia Kioulaphides
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
44
|
Taneera J, Saber-Ayad MM. Preservation of β-Cells as a Therapeutic Strategy for Diabetes. Horm Metab Res 2024; 56:261-271. [PMID: 38387480 DOI: 10.1055/a-2239-2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The preservation of pancreatic islet β-cells is crucial in diabetes mellitus, encompassing both type 1 and type 2 diabetes. β-cell dysfunction, reduced mass, and apoptosis are central to insufficient insulin secretion in both types. Research is focused on understanding β-cell characteristics and the factors regulating their function to develop novel therapeutic approaches. In type 1 diabetes (T1D), β-cell destruction by the immune system calls for exploring immunosuppressive therapies, non-steroidal anti-inflammatory drugs, and leukotriene antagonists. Islet transplantation, stem cell therapy, and xenogeneic transplantation offer promising strategies for type 1 diabetes treatment. For type 2 diabetes (T2D), lifestyle changes like weight loss and exercise enhance insulin sensitivity and maintain β-cell function. Additionally, various pharmacological approaches, such as cytokine inhibitors and protein kinase inhibitors, are being investigated to protect β-cells from inflammation and glucotoxicity. Bariatric surgery emerges as an effective treatment for obesity and T2D by promoting β-cell survival and function. It improves insulin sensitivity, modulates gut hormones, and expands β-cell mass, leading to diabetes remission and better glycemic control. In conclusion, preserving β-cells offers a promising approach to managing both types of diabetes. By combining lifestyle modifications, targeted pharmacological interventions, and advanced therapies like stem cell transplantation and bariatric surgery, we have a significant chance to preserve β-cell function and enhance glucose regulation in diabetic patients.
Collapse
Affiliation(s)
- Jalal Taneera
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha M Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
45
|
Wang Y, Chen H, Li Y, Hao H, Liu J, Chen Y, Meng J, Zhang S, Gu W, Lyu Z, Zang L, Mu Y. Predictive factors that influence the clinical efficacy of umbilical cord-derived mesenchymal stromal cells in the treatment of type 2 diabetes mellitus. Cytotherapy 2024; 26:311-316. [PMID: 38219142 DOI: 10.1016/j.jcyt.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Our previous single-center, randomized, double-blinded, placebo-controlled phase 2 study evaluated the safety and effectiveness of human umbilical cord mesenchymal stromal cell (UC-MSC) transfusion for treating patients with type 2 diabetes mellitus (T2DM). Indeed, this potential treatment strategy was able to reduce insulin use by half in a considerable number of patients. However, many other patients' responses to UC-MSC transfusion were insignificant. The selection of patients who might benefit from UC-MSC treatment is crucial from a clinical standpoint. METHODS In this post hoc analysis, 37 patients who received UC-MSC transfusions were divided into two groups based on whether their glycated hemoglobin (hemoglobin A1c, or HbA1c) level was less than 7% after receiving UC-MSC treatment. The baseline differences between the two groups were summarized, and potential factors influencing efficacy of UC-MSCs for T2DM were analyzed by univariate and multivariate logistic regression. The correlations between the relevant hormone levels and the treatment effect were further analyzed. RESULTS At the 9-week follow-up, 59.5% of patients achieved their targeted HbA1c level. Male patients with lower baseline HbA1c and greater C-peptide area under the curve (AUCC-pep) values responded favorably to UC-MSC transfusion, according to multivariate analysis. The effectiveness of UC-MSCs transfusion was predicted by AUCC-pep (cutoff value: 14.22 ng/h/mL). Further investigation revealed that AUCC-pep was increased in male patients with greater baseline testosterone levels. CONCLUSIONS Male patients with T2DM with greater AUCC-pep may be more likely to respond clinically to UC-MSC therapy, and further large-scale multi-ethnic clinical studies should be performed to confirm the conclusion.
Collapse
Affiliation(s)
- Yuepeng Wang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; School of Medicine, Nankai University, Tianjin, China
| | - Haixu Chen
- Institute of Geriatrics & National Clinical Research Center of Geriatrics Disease, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yijun Li
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haojie Hao
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiejie Liu
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yulong Chen
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junhua Meng
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Saichun Zhang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Zang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
46
|
Hu X, White K, Olroyd AG, DeJesus R, Dominguez AA, Dowdle WE, Friera AM, Young C, Wells F, Chu EY, Ito CE, Krishnapura H, Jain S, Ankala R, McGill TJ, Lin A, Egenberger K, Gagnon A, Michael Rukstalis J, Hogrebe NJ, Gattis C, Basco R, Millman JR, Kievit P, Davis MM, Lanier LL, Connolly AJ, Deuse T, Schrepfer S. Hypoimmune induced pluripotent stem cells survive long term in fully immunocompetent, allogeneic rhesus macaques. Nat Biotechnol 2024; 42:413-423. [PMID: 37156915 PMCID: PMC10940156 DOI: 10.1038/s41587-023-01784-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Genetic engineering of allogeneic cell therapeutics that fully prevents rejection by a recipient's immune system would abolish the requirement for immunosuppressive drugs or encapsulation and support large-scale manufacturing of off-the-shelf cell products. Previously, we generated mouse and human hypoimmune pluripotent (HIP) stem cells by depleting HLA class I and II molecules and overexpressing CD47 (B2M-/-CIITA-/-CD47+). To determine whether this strategy is successful in non-human primates, we engineered rhesus macaque HIP cells and transplanted them intramuscularly into four allogeneic rhesus macaques. The HIP cells survived unrestricted for 16 weeks in fully immunocompetent allogeneic recipients and differentiated into several lineages, whereas allogeneic wild-type cells were vigorously rejected. We also differentiated human HIP cells into endocrinologically active pancreatic islet cells and showed that they survived in immunocompetent, allogeneic diabetic humanized mice for 4 weeks and ameliorated diabetes. HIP-edited primary rhesus macaque islets survived for 40 weeks in an allogeneic rhesus macaque recipient without immunosuppression, whereas unedited islets were quickly rejected.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Sana Biotechnology, Inc., South San Francisco, CA, USA
| | - Kathy White
- Sana Biotechnology, Inc., South San Francisco, CA, USA
| | - Ari G Olroyd
- Sana Biotechnology, Inc., South San Francisco, CA, USA
| | | | | | | | | | - Chi Young
- Sana Biotechnology, Inc., South San Francisco, CA, USA
| | - Frank Wells
- Sana Biotechnology, Inc., South San Francisco, CA, USA
| | - Elaine Y Chu
- Sana Biotechnology, Inc., South San Francisco, CA, USA
| | | | | | - Surbhi Jain
- Sana Biotechnology, Inc., South San Francisco, CA, USA
| | - Ramya Ankala
- Sana Biotechnology, Inc., South San Francisco, CA, USA
| | | | - August Lin
- Sana Biotechnology, Inc., South San Francisco, CA, USA
| | | | | | | | - Nathaniel J Hogrebe
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Corie Gattis
- Sana Biotechnology, Inc., South San Francisco, CA, USA
| | - Ron Basco
- Sana Biotechnology, Inc., South San Francisco, CA, USA
| | | | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Mark M Davis
- Howard Hughes Medical Institute, Institute for Immunity, Transplantation and Infection, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew J Connolly
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Tobias Deuse
- Transplant and Stem Cell Immunobiology (TSI) Lab, Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
47
|
Song Y, Lu S, Gao F, Wei T, Ma W. The application of organoid models in research into metabolic diseases. Diabetes Obes Metab 2024; 26:809-819. [PMID: 38100156 DOI: 10.1111/dom.15390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 02/06/2024]
Abstract
Metabolic diseases have become a major threat to human health worldwide as a result of changing lifestyles. The exploration of the underlying molecular mechanisms of metabolic diseases and the development of improved therapeutic methods have been hindered by the lack of appropriate human experimental models. Organoids are three-dimensional in vitro models of self-renewing cells that spontaneously self-organize into structures similar to the corresponding in vivo tissues, recapitulating the original tissue function. Off-body organoid technology has been successfully applied to disease modelling, developmental biology, regenerative medicine, and tumour precision medicine. This new generation of biological models has received widespread attention. This article focuses on the construction process and research progress with regard to organoids related to metabolic diseases in recent years, and looks forward to their prospective applications.
Collapse
Affiliation(s)
- Yufan Song
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Sumei Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Fei Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tianshu Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wanshan Ma
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
48
|
Aglan HA, Kotob SE, Mahmoud NS, Kishta MS, Ahmed HH. Bone marrow stem cell-derived β-cells: New issue for diabetes cell therapy. Tissue Cell 2024; 86:102280. [PMID: 38029457 DOI: 10.1016/j.tice.2023.102280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
This investigation aimed to establish the promising role of insulin-producing cells (IPCs) growing from bone marrow-mesenchymal stem cells (BM-MSCs) in relieving hyperglycemia induced in rats. BM-MSCs were differentiated into IPCs using three different protocols. The efficiency of BM-MSCs differentiation into IPCs in vitro was confirmed by detecting IPCs specific gene expression (Foxa-2, PDX-1 and Ngn-3) and insulin release assay. The in vivo study design included 3 groups of male Wistar rats; negative control group, diabetic group and IPCs-transfused group (5 ×106 cells of the most functional IPCs/rat). One month after IPCs infusion, serum glucose, insulin, c-peptide and visfatin levels as well as pancreatic glucagon level were quantified. Gene expression analysis of pancreatic Foxa-2 and Sox-17, IGF-1 and FGF-10 was done. Additionally, histological investigation of pancreatic tissue sections was performed. Our data clarified that, the most functional IPCs are those generated from BM-MSCs using differentiation protocol 3 as indicated by the significant up-regulation of Foxa-2, PDX-1 and Ngn-3 gene expression levels. These findings were further emphasized by releasing of a significant amount of insulin in response to glucose load. The transplantation of the IPCs in diabetic rats elicited significant decline in serum glucose, visfatin and pancreatic glucagon levels along with significant rise in serum insulin and c-peptide levels. Moreover, it triggered significant up-regulation in the expression levels of pancreatic Foxa-2, Sox-17, IGF-1 and FGF-10 genes versus the untreated diabetic counterpart. The histopathological examination of pancreatic tissue almost assisted the biochemical and molecular genetic analyses. These results disclose that the cell therapy holds potential to develop a new cure for DM based on the capability of BM-MSCs to generate β-cell phenotype using specific protocol.
Collapse
Affiliation(s)
- Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt.
| | - Soheir E Kotob
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Nadia S Mahmoud
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
49
|
Zou Y, Li S, Chen W, Xu J. Urine-derived stem cell therapy for diabetes mellitus and its complications: progress and challenges. Endocrine 2024; 83:270-284. [PMID: 37801228 DOI: 10.1007/s12020-023-03552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Diabetes mellitus (DM) is a chronic and relentlessly progressive metabolic disease characterized by a relative or absolute deficiency of insulin in the body, leading to increased production of advanced glycosylation end products that further enhance oxidative and nitrosative stresses, often leading to multiple macrovascular (cardiovascular disease) and microvascular (e.g., diabetic nephropathy, diabetic retinopathy, and neuropathy) complications, representing the ninth leading cause of death worldwide. Existing medical treatments do not provide a complete cure for DM; thus, stem cell transplantation therapy has become the focus of research on DM and its complications. Urine-derived stem cells (USCs), which are isolated from fresh urine and have biological properties similar to those of mesenchymal stem cells (MSCs), were demonstrated to exert antiapoptotic, antifibrotic, anti-inflammatory, and proangiogenic effects through direct differentiation or paracrine mechanisms and potentially treat patients with DM. USCs also have the advantages of simple noninvasive sample collection procedures, minimal ethical issues, low cost, and easy cell isolation methods and thus have received more attention in regenerative therapies in recent years. This review outlines the biological properties of USCs and the research progress and current limitations of their role in DM and related complications. In summary, USCs have shown good versatility in treating hyperglycemia-impaired target organs in preclinical models, and many challenges remain in translating USC therapies to the clinic.
Collapse
Affiliation(s)
- Yun Zou
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shanshan Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
50
|
D'Addio F, Assi E, Maestroni A, Rossi G, Usuelli V, Petrazzuolo A, Nardini M, Loretelli C, Ben Nasr M, Fiorina P. TMEM219 regulates the transcription factor expression and proliferation of beta cells. Front Endocrinol (Lausanne) 2024; 15:1306127. [PMID: 38318298 PMCID: PMC10839017 DOI: 10.3389/fendo.2024.1306127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Pancreatic beta cells replenishment is considered the next therapeutic option for type 1 diabetes; while stimulating endogenous beta cells proliferation is the "holy grail" for those patients with exhausted beta cell mass. Here we are demonstrating that the pro-apoptotic receptor TMEM219 is expressed in fetal pancreas, in beta cell precursors and in in vitro embryonic-derived endocrine progenitors. TMEM219 signaling negatively regulates beta cells at early stages and induces Caspase 8-mediated cell death. Pharmacological blockade of TMEM219 further rescued beta cell precursor and proliferation markers, and decreased cell death, both in islets and in in vitro-derived endocrine progenitors, allowing for beta cell preservation. While addressing the upstream controlling TMEM219 expression, we determined the TMEM219 miRNet; indeed, one of those miRNAs, miR-129-2, is highly expressed in human islets, particularly in patients at risk or with established type 1 diabetes. miR-129-2 mimic downregulated TMEM219 expression in islets, in in vitro embryonic-derived endocrine progenitors and in highly proliferating insulinoma-derived cells. Moreover, miR-129-2 inhibitor induced a TMEM219 overexpression in insulinoma-derived cells, which restored cell proliferation and functional markers, thus acting as endogenous regulator of TMEM219 expression. The TMEM219 upstream regulator miR129-2 controls the fate of beta cell precursors and may unleash their regenerative potentials to replenish beta cells in type 1 diabetes.
Collapse
Affiliation(s)
- Francesca D'Addio
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Emma Assi
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Anna Maestroni
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Giada Rossi
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Vera Usuelli
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Adriana Petrazzuolo
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Marta Nardini
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Cristian Loretelli
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Moufida Ben Nasr
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Fiorina
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|