1
|
Varlamova EG, Gudkov SV, Blinova EV, Blinov DS, Turovsky EA. Anticancer signal transduction pathways of selenium nanoparticles in mouse colorectal cancer model. Biochem Biophys Res Commun 2025; 769:151962. [PMID: 40347624 DOI: 10.1016/j.bbrc.2025.151962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/23/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Despite significant advances in the treatment of colon cancer, this disease is extremely common, often requiring serious surgery followed by long-term drug treatment. Colon and rectal cancer remain dangerous forms of cancer due to the high degree of metastasis. The development and study of the effectiveness of anticancer drugs based on nanoparticles is an urgent task of modern biomedicine. Of particular interest are attempts to move research from the in vitro level to the in vivo level of preclinical studies. In the presented study, mice were subcutaneously implanted with MC-38 cell line, a tumor was grown, and selenium nanoparticles (SeNPs) with a diameter of 100 nm obtained using the laser ablation method were administered intraperitoneally. Using morphometric measurements, it was found that injections of 1 μg/g or 10 μg/g SeNPs inhibited weight loss of mice during cancer development, reduced tumor size by 2-2.5 times, and suppressed metastasis by 1.5-3 times. Analysis of selenium levels in mouse blood, liver and tumor samples by atomic absorption spectrometry after the end of SeNPs treatment showed that the nanoparticles increased selenium levels in the blood and liver of mice without a significant dose-dependence, whereas in tumors a dose-dependent increase in selenium concentration was detected from the concentration of nanoparticles, with 10 μg/g SeNPs causing a more pronounced increase in selenium concentration. Using PCR and Western blot analysis, it was possible to establish that SeNPs injections led to an increase in the expression of genes encoding anti-inflammatory and anti-hypoxic proteins, but reduced the expression of antioxidant selenium-containing proteins and proteins responsible for the proliferation of cancer cells. Both concentrations of SeNPs led to similar effects, but increasing the concentration of nanoselenium to 10 μg/g affected the expression of a larger number of genes and the effects on expression were more "bright". Thus, the complex of presented experiments showed that injections of selenium nanoparticles in concentrations of 1 μg/g or 10 μg/g are capable to transport by the bloodstream and accumulating in the highest concentration in colon adenocarcinoma, compared with liver, which indicates the targeting of SeNPs in relation to tumors even without functionalization by specific molecules. As a result, there was a change in the expression patterns of genes and a number of proteins, and as a result, there was a decrease in tumor volume, normalization of mouse weight and maintenance of positive dynamics throughout the entire observation period.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991, Moscow, Russia
| | | | - Dmitrii S Blinov
- All-Union Research Center for Biological Active Compounds Safety, 23 Kirova St., 142450, StarajaKupavna, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| |
Collapse
|
2
|
Ma Y, Wang Y, Wang S, Wang H, Zhao Y, Peng C, Liu X, Yang J. Regulatory roles of non-coding RNAs in programmed cell death pathways and drug resistance in gastrointestinal stromal tumors. Clin Exp Med 2025; 25:150. [PMID: 40347390 PMCID: PMC12065685 DOI: 10.1007/s10238-025-01667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/02/2025] [Indexed: 05/12/2025]
Abstract
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors of the gastrointestinal tract, primarily driven by KIT or PDGFRA mutations. Programmed cell death (PCD), including apoptosis, autophagy, and ferroptosis, plays a crucial role in GIST pathogenesis, progression, and treatment response. Non-coding RNAs (ncRNAs) have emerged as key regulators of PCD pathways, influencing GIST proliferation, metastasis, and drug resistance, particularly in response to tyrosine kinase inhibitors (TKIs) such as imatinib. Apoptosis suppression is strongly associated with poor prognosis, while autophagy contributes to tumor dormancy and TKI resistance. Ferroptosis, a novel iron-dependent cell death pathway, represents a promising therapeutic target. Recent evidence suggests that ncRNAs modulate these PCD pathways through interactions with key molecular regulators such as miR-494, miR-30a, and lncRNAs, which affect signaling networks including PI3K/AKT, MAPK, and mTOR. Furthermore, ncRNAs have mediated secondary resistance to imatinib by promoting autophagic flux and altering ferroptosis sensitivity. Understanding the molecular interplay between ncRNAs and PCD in GIST provides novel insights into disease mechanisms and offers potential therapeutic strategies to overcome drug resistance. Targeting ncRNA-mediated regulation of apoptosis, autophagy, and ferroptosis may enhance treatment efficacy and improve patient outcomes. Future research should focus on elucidating the mechanistic roles of ncRNAs in PCD pathways to develop innovative diagnostic and therapeutic approaches for GIST.
Collapse
Affiliation(s)
- Yuxuan Ma
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuhao Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Shu Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
| | - Haoyuan Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Zhao
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Chaosheng Peng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Liu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianjun Yang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
3
|
Li Z, Koch KE, Thompson DT, Van der Heide DM, Chang J, Franke CM, Suraju MO, Beck AC, Lorenzen AW, White JR, Bartschat NI, Kulak MV, Meyerholz DK, Kenny C, Weigel RJ. Sumoylated Etv1 establishes mouse mammary cancer stem cells that support tumorigenesis by non-stem cancer cells. Dev Cell 2025:S1534-5807(25)00207-2. [PMID: 40315856 DOI: 10.1016/j.devcel.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/05/2024] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
The small ubiquitin-like modifier (SUMO) pathway is required for maintenance of cancer stem cells/tumor-initiating cells (CSCs/TICs), which drive tumorigenesis when transplanted into immunocompromised mice. We found that inhibition of the SUMO pathway blocked Neu-mediated mammary oncogenesis and inhibited the function of CSCs/TICs without effects on normal mammary stem cells. Transcriptomic analysis implicated SUMO-conjugated Etv1 as being critical for oncogenesis. After SUMO pathway inhibition, a SUMO-mimetic Etv1 protein, created by a fusion with SUMO1 or SUMO2, established a stem-like cell capable of tumorigenesis, whereas a SUMO-resistant Etv1 protein established a proliferative, non-tumorigenic cell. In mixing experiments, stem-like cells induced tumorigenesis by non-stem cells. We conclude that SUMO-conjugated Etv1 is necessary to maintain the CSC/TIC phenotype and that crosstalk between stem and non-stem cells is crucial for tumorigenesis. The findings demonstrate dynamic interactions between heterogeneous cell types to drive tumorigenesis, which has implications for future cancer therapeutic development.
Collapse
Affiliation(s)
- Zhijie Li
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Kelsey E Koch
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Jeremy Chang
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Anna C Beck
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | - Jeffrey R White
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | - Mikhail V Kulak
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Colin Kenny
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Ronald J Weigel
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
4
|
Wang JZ, Chen H. Hepatic hemangiomas mimicking gastrointestinal stromal tumors: A case report. World J Clin Cases 2025; 13:101668. [PMID: 40242228 PMCID: PMC11718579 DOI: 10.12998/wjcc.v13.i11.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Hepatic hemangiomas can be challenging to diagnose, particularly when they present with atypical features that mimic other conditions, such as gastrointestinal stromal tumors (GISTs). This case highlights the diagnostic difficulties encountered when imaging subepithelial lesions, especially when conventional methods such as computed tomography (CT) and endoscopic ultrasound (EUS) are used. CASE SUMMARY A 44-year-old woman presented with intermittent abdominal distension and heartburn for three months. Her medical history included iron deficiency anemia, menorrhagia, and previous cholecystectomy. One week prior to admission, an endoscopy suggested a bulging gastric fundus, which was likely a GIST, along with chronic nonatrophic gastritis and bile reflux. CT and EUS revealed nodules in the gastric fundus, which were initially considered benign tumors with a differential diagnosis of stromal tumor or leiomyoma. During surgery, unexpected lesions were found in the liver pressing against the gastric fundus, leading to laparoscopic liver resection. Postoperative pathology confirmed the diagnosis of hepatic cavernous hemangiomas. The patient recovered well and was discharged five days later, with normal follow-up results at three months. CONCLUSION This case underscores the challenges in the preoperative diagnosis of GISTs, particularly the limitations of the use of CT and EUS for the evaluation of subepithelial lesions. While CT is the primary tool for visualizing abdominal tumors, it is difficult to detect smaller lesions and assess the layers of the gastrointestinal wall on CT. EUS is recommended for the evaluation of nodules smaller than 2 cm and is useful for distinguishing GISTs from other lesions; however, its accuracy with regard to the differential diagnosis is relatively low. In this case, the gastric distension observed on imaging led to the compression of a liver tumor against the stomach, resulting in the misinterpretation of the tumor as a gastric wall lesion.
Collapse
Affiliation(s)
- Ji-Ze Wang
- Department of Surgical Oncology, Oncology Center, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Hao Chen
- Department of Surgical Oncology, Oncology Center, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
5
|
Sun J, Borowska D, Furniss JJ, Sutton K, Macqueen DJ, Vervelde L. Cellular landscape of avian intestinal organoids revealed by single cell transcriptomics. Sci Rep 2025; 15:11362. [PMID: 40175530 PMCID: PMC11965369 DOI: 10.1038/s41598-025-95721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Studies of the avian gastrointestinal tract, where nutrient absorption and key host-pathogen interactions occur, have been strongly enabled by the development of intestinal organoid models. Here we report a single cell transcriptomic atlas of intestinal organoid cells derived from embryos of broiler and layer chickens, capturing mesenchymal, epithelial, endothelial, immune and neuronal cell lineages. Eight inferred mesenchymal subpopulations reflect anatomically distinct intestinal layers, including fibroblasts, telocytes, myofibroblasts, smooth myocytes, pericytes, and interstitial cells of Cajal. Identified heterogeneity within the epithelial lineage included enterocytes, goblet cells, Paneth cells, tuft cells, and diverse enteroendocrine cell subtypes. Additionally, we identified candidate macrophages, monocytes, γδ T cells, NK cells and granulocytes. Layer and broiler organoids showed significant differences in cell-specific transcriptome, most pronounced in epithelial cells, pointing to divergent selection on intestinal physiology. Our analysis finally provides a catalogue of novel cell marker genes to enable future research of chicken intestinal organoids.
Collapse
Affiliation(s)
- Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Dominika Borowska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - James J Furniss
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Kate Sutton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
- Royal GD, Deventer, The Netherlands.
| |
Collapse
|
6
|
Cicala CM, Matito J, Quindos M, Gómez-Peregrina D, Romero-Lozano P, Fernández-Suárez P, Valverde C, González M, Landolfi S, Pérez-Albert P, Gros L, Vivancos A, Serrano C. Targeted Next-Generation Sequencing in Succinate Dehydrogenase-Deficient GI Stromal Tumor Identifies Actionable Alterations in the PI3K/mTOR Pathway. JCO Precis Oncol 2025; 9:e2400497. [PMID: 39787462 DOI: 10.1200/po-24-00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
PURPOSE Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options. Therefore, it is critical to identify novel actionable alterations in SDH-deficient GIST. PATIENTS AND METHODS We performed a single-center, retrospective analysis of patients with SDH-deficient GIST together with next-generation sequencing (NGS) analysis from their respective tumor samples to identify mutations and copy number alterations and chromosomal alterations. NGS-tailored treatment was implemented whenever possible. RESULTS Seventeen tumor samples from 14 patients with SDH-deficient GIST underwent NGS. Mutational load was low, although three patients (21%) displayed molecular events in relapse samples leading to PI3K/mTOR pathway hyperactivation. mTOR inhibition with everolimus obtained a sustained tumor response in a heavily pretreated patient. Other alterations, largely present in late-stage patients, uncovered genes involved in cell cycle regulation, telomere maintenance, and DNA damage repair. Chromosomal arm-level alterations differed from the canonical cytogenetic progression in KIT/PDGFRA-mutant GIST. CONCLUSION This molecular landscape of SDH-deficient GIST uncovers novel molecular alterations, mostly in relapse and/or previously pretreated patients. The identification of genetic events leading to PI3K/mTOR dysregulation together with the remarkable activity of everolimus in one patient showcases the clinical relevance of this pathway, validates the utility of NGS in this population, and poses everolimus as a novel therapeutic alternative. Several other alterations were found at the genetic and genomic levels, underscoring novel biological processes likely involved during tumor evolution.
Collapse
Affiliation(s)
- Carlo María Cicala
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Judit Matito
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María Quindos
- Medical Oncology Department, Complexo Hospitalario Universitario de A Coruña. Biomedical Research Institute (INIBIC), A Coruña, Spain
| | - David Gómez-Peregrina
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paula Romero-Lozano
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Paula Fernández-Suárez
- Abdominal Imaging, Radiodiagnostic Department, Complexo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Claudia Valverde
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Macarena González
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Stefania Landolfi
- Pathology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Paula Pérez-Albert
- Paediatric Oncology and Hematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Childhood Cancer and Blood Disorders Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Luis Gros
- Paediatric Oncology and Hematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Childhood Cancer and Blood Disorders Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
7
|
Chen R, Ren Z, Bai L, Hu X, Chen Y, Ye Q, Hu Y, Shi J. Novel antibody-drug conjugates based on DXd-ADC technology. Bioorg Chem 2024; 151:107697. [PMID: 39121594 DOI: 10.1016/j.bioorg.2024.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
In recent years, antibody-drug conjugate (ADC) technology, which uses monoclonal antibodies (mAbs) to specifically deliver effective cytotoxic payloads to tumor cells, has become a promising method of tumor targeted therapy. ADCs are a powerful class of biopharmaceuticals that link antibodies targeting specific antigens and small molecule drugs with potent cytotoxicity via a linker, thus enabling selective destruction of cancer cells while minimizing systemic toxicity. DXd is a topoisomerase I inhibitor that induces DNA damage leading to cell cycle arrest, making it an option for ADC payloads. The DXd-ADC technology, developed by Daiichi Sankyo, is a cutting-edge platform that produces a new generation of ADCs with improved therapeutic metrics and has shown significant therapeutic potential in various types of cancer. This review provides a comprehensive assessment of drugs developed with DXd-ADC technology, with a focus on mechanisms of action, pharmacokinetics studies, preclinical data, and clinical outcomes for DS-8201a, U3-1402, DS-1062a, DS-7300a, DS-6157a, and DS-6000a. By integrating existing data, we aim to provide valuable insights into the current therapeutic status and future prospects of these novel agents.
Collapse
Affiliation(s)
- Rong Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhiwen Ren
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuefang Hu
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture, Academy of Agricultural Planning and Engineering Mara, Beijing 100121, China
| | - Yuchen Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Qiang Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Yuan Hu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
Seitz H. A new perspective on microRNA-guided gene regulation specificity, and its potential generalization to transcription factors and RNA-binding proteins. Nucleic Acids Res 2024; 52:9360-9368. [PMID: 39149906 PMCID: PMC11381331 DOI: 10.1093/nar/gkae694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Our conception of gene regulation specificity has undergone profound changes over the last 20 years. Previously, regulators were considered to control few genes, recognized with exquisite specificity by a 'lock and key' mechanism. However, recently genome-wide exploration of regulator binding site occupancy (whether on DNA or RNA targets) revealed extensive lists of molecular targets for every studied regulator. Such poor biochemical specificity suggested that each regulator controls many genes, collectively contributing to biological phenotypes. Here, I propose a third model, whereby regulators' biological specificity is only partially due to 'lock and key' biochemistry. Rather, regulators affect many genes at the microscopic scale, but biological consequences for most interactions are attenuated at the mesoscopic scale: only a few regulatory events propagate from microscopic to macroscopic scale; others are made inconsequential by homeostatic mechanisms. This model is well supported by the microRNA literature, and data suggest that it extends to other regulators. It reconciles contradicting observations from biochemistry and comparative genomics on one hand and in vivo genetics on the other hand, but this conceptual unification is obscured by common misconceptions and counter-intuitive modes of graphical display. Profound understanding of gene regulation requires conceptual clarification, and better suited statistical analyses and graphical representation.
Collapse
Affiliation(s)
- Hervé Seitz
- Institut de Génétique Humaine (UMR 9002), CNRS, 141, rue de la Cardonille, 34396 Montpellier, France
| |
Collapse
|
9
|
Gómez-Peregrina D, Cicala CM, Serrano C. Monitoring advanced gastrointestinal stromal tumor with circulating tumor DNA. Curr Opin Oncol 2024; 36:282-290. [PMID: 38726808 DOI: 10.1097/cco.0000000000001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW This review explores the role of circulating tumor (ct)DNA as a biomarker for clinical decision-making and monitoring purposes in metastatic gastrointestinal stromal tumor (GIST) patients. We discuss key insights from recent clinical trials and anticipate the future perspectives of ctDNA profiling within the clinical landscape of GIST. RECENT FINDINGS The identification and molecular characterization of KIT/platelet-derived growth factor receptor alpha (PDGFRA) mutations from ctDNA in metastatic GIST is feasible and reliable. Such identification through ctDNA serves as a predictor of clinical outcomes to tyrosine-kinase inhibitors (TKIs) in metastatic patients. Additionally, conjoined ctDNA analysis from clinical trials reveal the evolving mutational landscapes and increase in intratumoral heterogeneity across treatment lines. Together, this data positions ctDNA determination as a valuable tool for monitoring disease progression and guiding therapy in metastatic patients. These collective efforts culminated in the initiation of a ctDNA-based randomized clinical trial in GIST, marking a significant milestone in integrating ctDNA testing into the clinical care of GIST patients. SUMMARY The dynamic field of ctDNA technologies is rapidly evolving and holds significant promise for research. Several trials have successfully validated the clinical utility of ctDNA in metastatic GIST, laying the foundations for its prospective integration into the routine clinical management of GIST patients.
Collapse
Affiliation(s)
- David Gómez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
| | - Carlo Maria Cicala
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
10
|
Zhang W, Wang S, Zhang H, Meng Y, Jiao S, An L, Zhou Z. Modeling human gastric cancers in immunocompetent mice. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0124. [PMID: 38940675 PMCID: PMC11271222 DOI: 10.20892/j.issn.2095-3941.2024.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Gastric cancer (GC) is a major cause of cancer-related mortality worldwide. GC is determined by multiple (epi)genetic and environmental factors; can occur at distinct anatomic positions of the stomach; and displays high heterogeneity, with different cellular origins and diverse histological and molecular features. This heterogeneity has hindered efforts to fully understand the pathology of GC and develop efficient therapeutics. In the past decade, great progress has been made in the study of GC, particularly in molecular subtyping, investigation of the immune microenvironment, and defining the evolutionary path and dynamics. Preclinical mouse models, particularly immunocompetent models that mimic the cellular and molecular features of human GC, in combination with organoid culture and clinical studies, have provided powerful tools for elucidating the molecular and cellular mechanisms underlying GC pathology and immune evasion, and the development of novel therapeutic strategies. Herein, we first briefly introduce current progress and challenges in GC study and subsequently summarize immunocompetent GC mouse models, emphasizing the potential application of genetically engineered mouse models in antitumor immunity and immunotherapy studies.
Collapse
Affiliation(s)
- Weihong Zhang
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shilong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Meng
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liwei An
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
11
|
Li K, Wang Q, Tang X, Akakuru OU, Li R, Wang Y, Zhang R, Jiang Z, Yang Z. Advances in Prostate Cancer Biomarkers and Probes. CYBORG AND BIONIC SYSTEMS 2024; 5:0129. [PMID: 40353136 PMCID: PMC12063729 DOI: 10.34133/cbsystems.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/25/2024] [Indexed: 01/03/2025] Open
Abstract
Prostate cancer is one of the most prevalent malignant tumors in men worldwide, and early diagnosis is essential to improve patient survival. This review provides a comprehensive discussion of recent advances in prostate cancer biomarkers, including molecular, cellular, and exosomal biomarkers. The potential of various biomarkers such as gene fusions (TMPRSS2-ERG), noncoding RNAs (SNHG12), proteins (PSA, PSMA, AR), and circulating tumor cells (CTCs) in the diagnosis, prognosis, and targeted therapies of prostate cancer is emphasized. In addition, this review systematically explores how multi-omics data and artificial intelligence technologies can be used for biomarker discovery and personalized medicine applications. In addition, this review provides insights into the development of specific probes, including fluorescent, electrochemical, and radionuclide probes, for sensitive and accurate detection of prostate cancer biomarkers. In conclusion, this review provides a comprehensive overview of the status and future directions of prostate cancer biomarker research, emphasizing the potential for precision diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Keyi Li
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, Liaoning, P. R. China
- School of Medical Technology,
Beijing Institute of Technology, Beijing, P. R. China
| | - Qiao Wang
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, Liaoning, P. R. China
| | - Xiaoying Tang
- School of Medical Technology,
Beijing Institute of Technology, Beijing, P. R. China
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering,
University of Calgary, Alberta T2N 1N4, Canada
| | - Ruobing Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing, P. R. China
| | - Yan Wang
- School of Medical Technology,
Beijing Institute of Technology, Beijing, P. R. China
| | - Renran Zhang
- School of Medical Technology,
Beijing Institute of Technology, Beijing, P. R. China
| | - Zhenqi Jiang
- School of Medical Technology,
Beijing Institute of Technology, Beijing, P. R. China
| | - Zhuo Yang
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, Liaoning, P. R. China
| |
Collapse
|
12
|
Buteyn NJ, Burke CG, Sartori VJ, Deering-Gardner E, DeBruine ZJ, Kamarudin D, Chandler DP, Monovich AC, Perez MW, Yi JS, Ries RE, Alonzo TA, Ryan RJ, Meshinchi S, Triche TJ. EZH2-driven immune evasion defines high-risk pediatric AML with t(16;21) FUS::ERG gene fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594150. [PMID: 38798454 PMCID: PMC11118270 DOI: 10.1101/2024.05.14.594150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite decades of research, acute myeloid leukemia (AML) remains a remarkably lethal malignancy. While pediatric AML (pAML) carries a more favorable prognosis than adult AML, the past 25 years of large clinical trials have produced few improvements in pAML survival. Nowhere is this more evident than in patients carrying a t(16;21)(p11;q22) translocation, which yields the FUS::ERG fusion transcript. Patients with FUS::ERG-positive AML are often primary refractory, and most responders quickly relapse. In COG clinical trials, allogeneic stem cell transplantation was of no benefit to FUS::ERG pAML patients; 100% of transplanted patients succumbed to their disease. Expression of major histocompatibility complex (MHC) class I & II and costimulatory molecules is absent at diagnosis in FUS::ERG AML, mirroring the epigenetic mechanism of post-transplant relapse seen in adult AML and its associated dismal outcomes. Here we show that this class-defining immune-repressive phenotype is driven by overexpression of the EZH2 histone lysine methyltransferase in vitro and in multiple clinical cohorts. We show that treatment with the FDA-approved EZH2 inhibitor tazemetostat along with IFN-γ reverses this phenotype, re-establishes MHC presentation, and severely impairs the viability of FUS::ERG AML cells. EZH2 inhibitors may thus provide the first targeted therapeutic option for patients with this high-risk subtype of pAML, with particular benefit as a bridge to successful allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Nathaniel J Buteyn
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | - Connor G Burke
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | - Vincent J Sartori
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | | | - Zachary J DeBruine
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | - Dahlya Kamarudin
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | - Darrell P Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
| | | | - Monika W Perez
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Joanna S Yi
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Todd A Alonzo
- Children's Oncology Group, Monrovia, CA
- Department of Translational Genomics, University of Southern California, Los Angeles, CA
| | - Russell Jh Ryan
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Children's Oncology Group, Monrovia, CA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Timothy J Triche
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI
- Department of Translational Genomics, University of Southern California, Los Angeles, CA
- Department of Pediatrics, College of Human Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
13
|
Wong EWP, Sahin M, Yang R, Lee U, Zhan YA, Misra R, Tomas F, Alomran N, Polyzos A, Lee CJ, Trieu T, Fundichely AM, Wiesner T, Rosowicz A, Cheng S, Liu C, Lallo M, Merghoub T, Hamard PJ, Koche R, Khurana E, Apostolou E, Zheng D, Chen Y, Leslie CS, Chi P. TAD hierarchy restricts poised LTR activation and loss of TAD hierarchy promotes LTR co-option in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596845. [PMID: 38895201 PMCID: PMC11185511 DOI: 10.1101/2024.05.31.596845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Transposable elements (TEs) are abundant in the human genome, and they provide the sources for genetic and functional diversity. The regulation of TEs expression and their functional consequences in physiological conditions and cancer development remain to be fully elucidated. Previous studies suggested TEs are repressed by DNA methylation and chromatin modifications. The effect of 3D chromatin topology on TE regulation remains elusive. Here, by integrating transcriptome and 3D genome architecture studies, we showed that haploinsufficient loss of NIPBL selectively activates alternative promoters at the long terminal repeats (LTRs) of the TE subclasses. This activation occurs through the reorganization of topologically associating domain (TAD) hierarchical structures and recruitment of proximal enhancers. These observations indicate that TAD hierarchy restricts transcriptional activation of LTRs that already possess open chromatin features. In cancer, perturbation of the hierarchical chromatin topology can lead to co-option of LTRs as functional alternative promoters in a context-dependent manner and drive aberrant transcriptional activation of novel oncogenes and other divergent transcripts. These data uncovered a new layer of regulatory mechanism of TE expression beyond DNA and chromatin modification in human genome. They also posit the TAD hierarchy dysregulation as a novel mechanism for alternative promoter-mediated oncogene activation and transcriptional diversity in cancer, which may be exploited therapeutically.
Collapse
|
14
|
Cicala CM, Olivares-Rivas I, Aguirre-Carrillo JA, Serrano C. KIT/PDGFRA inhibitors for the treatment of gastrointestinal stromal tumors: getting to the gist of the problem. Expert Opin Investig Drugs 2024; 33:159-170. [PMID: 38344849 DOI: 10.1080/13543784.2024.2318317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Approximately 90% of gastrointestinal stromal tumors (GISTs) are driven by activating mutations in receptor tyrosine-kinases KIT or PDGFRA. Despite the outstanding results of first-line imatinib in advanced GIST, resistance ultimately occurs mainly through secondary mutations in KIT/PDGFRA. Other tyrosine-kinase inhibitors (TKIs) with a broader spectrum of activity against these mutations are approved after imatinib failure. However, response rates and progression-free survival are drastically lower compared to imatinib. Notably, imatinib also triggers early tolerance adaptation mechanisms, which precede the occurrence of secondary mutations. AREAS COVERED In this review, we outline the current landscape of KIT inhibitors, discuss the novel agents, and present additional biological pathways that may be therapeutically exploitable. EXPERT OPINION The development of broad-spectrum and highly selective TKIs able to induce a sustained KIT/PDGFRA inhibition is the pillar of preclinical and clinical investigation in GIST. However, it is now recognized that the situation is more intricate, with various factors interacting with KIT and PDGFRA, playing a crucial role in the response and resistance to treatments. Future strategies in the management of advanced GIST should integrate driver inhibition with the blockade of other molecules to enhance cell death and establish enduring responses in patients.
Collapse
Affiliation(s)
- Carlo María Cicala
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Iván Olivares-Rivas
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - César Serrano
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
15
|
Wen J, Wan L, Dong X. Prognostic value of PRR11 and immune cell infiltration in Ewing sarcoma. PLoS One 2024; 19:e0299720. [PMID: 38427643 PMCID: PMC10906862 DOI: 10.1371/journal.pone.0299720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
Ewing's sarcoma (ES) is the second most common bone and soft tissue malignancy in children and adolescents with a poor prognosis. The identification of genes with prognostic value may contribute to the prediction and treatment of this disease. The GSE17679, GSE68776, GSE63155, and GSE63156 datasets were downloaded from the Gene Expression Omnibus database and qualified. Prognostic value of differentially expressed genes (DEGs) between the normal and tumor groups and immune cell infiltration were explored by several algorithms. A prognostic model was established and validated. Finally, functional analyses of the DEGs were performed. Proline rich 11 (PRR11) and mast cell infiltration were noted as the key indicators for the prognosis of ES. Kaplan-Meier and scatter plots for the training and two validation sets showed that patients in the low-PRR11 expression group were associated with better outcomes than those in the high-PRR11 expression group. The concordance indices and calibration analyses of the prognostic model indicated good predictive accuracy in the training and validation sets. The area under the curve values obtained through the receiver operating characteristic analysis for 1-, 3-, 5-year prediction were ≥ 0.75 in the three cohorts, suggesting satisfactory sensitivity and specificity of the model. Decision curve analyses suggested that patients could benefit more from the model than the other strategies. Functional analyses suggested that DEGs were mainly clustered in the cell cycle pathway. PRR11 and mast cell infiltration are potential prognostic indicators in ES. PRR11 possibly affects the prognosis of patients with ES through the cell cycle pathway.
Collapse
Affiliation(s)
- Jian Wen
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, Hunan, China
| | - Xieping Dong
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Zhou S, Abdihamid O, Tan F, Zhou H, Liu H, Li Z, Xiao S, Li B. KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST. Cell Commun Signal 2024; 22:153. [PMID: 38414063 PMCID: PMC10898159 DOI: 10.1186/s12964-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/25/2023] [Indexed: 02/29/2024] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.
Collapse
Affiliation(s)
- Shishan Zhou
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87
| | - Omar Abdihamid
- Garissa Cancer Center, Garissa County Referral Hospital, Kismayu road, Garissa town, P.O BOX, 29-70100, Kenya
| | - Fengbo Tan
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Haiyan Zhou
- Division of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heli Liu
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Zhi Li
- Center for Molecular Medicine of Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, Hunan, China, 410008
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, 410008, MA, USA
| | - Bin Li
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87#.
| |
Collapse
|
17
|
Mirovic M, Stojanovic MD, Jovanovic M, Stankovic V, Milosev D, Zdravkovic N, Milosevic B, Cvetkovic A, Spasic M, Vekic B, Jovanovic I, Stojanovic BS, Petrovic M, Bogut A, Peulic M, Stojanovic B. Exploring Perforated Jejunal GIST: A Rare Case Report and Review of Molecular and Clinical Literature. Curr Issues Mol Biol 2024; 46:1192-1207. [PMID: 38392194 PMCID: PMC10887764 DOI: 10.3390/cimb46020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
This case report details a rare instance of a perforated jejunal gastrointestinal stromal tumor (GIST) in a 76-year-old female patient. The patient presented with acute abdominal pain and distension without any changes in bowel habits or episodes of nausea and vomiting. Initial diagnostics, including abdominal plain radiography and ultrasonography, were inconclusive; however, a computed tomography (CT) scan revealed pneumoperitoneum and an irregular fluid collection suggestive of small intestine perforations. Surgical intervention uncovered a 35 mm jejunal GIST with a 10 mm perforation. Histopathological examination confirmed a mixed cell type GIST with high malignancy potential, further substantiated by immunohistochemistry markers CD117, DOG1, and vimentin. Molecular analysis illuminated the role of key oncogenes, primarily KIT and PDGFRA mutations, emphasizing the importance of molecular diagnostics in GIST management. Despite the severity of the presentation, the patient's postoperative recovery was favorable, highlighting the effectiveness of prompt surgical and multidisciplinary approaches in managing complex GIST cases.
Collapse
Affiliation(s)
- Milos Mirovic
- Department of General Surgery, Clinical Hospital Center Kotor, 85330 Kotor, Montenegro
| | - Milica Dimitrijevic Stojanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vesna Stankovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Danijela Milosev
- Department of Pathology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Natasa Zdravkovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Milosevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Cvetkovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marko Spasic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Berislav Vekic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojana S Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marko Petrovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ana Bogut
- City Medical Emergency Department, 11000 Belgrade, Serbia
| | - Miodrag Peulic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
18
|
Hu J, Hameed MR, Agaram NP, Whiting KA, Qin LX, Villano AM, O'Connor RB, Rozenberg JM, Cohen S, Prendergast K, Kryeziu S, White RL, Posner MC, Socci ND, Gounder MM, Singer S, Crago AM. PDGFRβ Signaling Cooperates with β-Catenin to Modulate c-Abl and Biologic Behavior of Desmoid-Type Fibromatosis. Clin Cancer Res 2024; 30:450-461. [PMID: 37943631 PMCID: PMC10792363 DOI: 10.1158/1078-0432.ccr-23-2313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE This study sought to identify β-catenin targets that regulate desmoid oncogenesis and determine whether external signaling pathways, particularly those inhibited by sorafenib (e.g., PDGFRβ), affect these targets to alter natural history or treatment response in patients. EXPERIMENTAL DESIGN In vitro experiments utilized primary desmoid cell lines to examine regulation of β-catenin targets. Relevance of results was assessed in vivo using Alliance trial A091105 correlative biopsies. RESULTS CTNNB1 knockdown inhibited hypoxia-regulated gene expression in vitro and reduced levels of HIF1α protein. ChIP-seq identified ABL1 as a β-catenin transcriptional target that modulated HIF1α and desmoid cell proliferation. Abrogation of either CTNNB1 or HIF1A inhibited desmoid cell-induced VEGFR2 phosphorylation and tube formation in endothelial cell co-cultures. Sorafenib inhibited this activity directly but also reduced HIF1α protein expression and c-Abl activity while inhibiting PDGFRβ signaling in desmoid cells. Conversely, c-Abl activity and desmoid cell proliferation were positively regulated by PDGF-BB. Reduction in PDGFRβ and c-Abl phosphorylation was commonly observed in biopsy samples from patients after treatment with sorafenib; markers of PDGFRβ/c-Abl pathway activation in baseline samples were associated with tumor progression in patients on the placebo arm and response to sorafenib in patients receiving treatment. CONCLUSIONS The β-catenin transcriptional target ABL1 is necessary for proliferation and maintenance of HIF1α in desmoid cells. Regulation of c-Abl activity by PDGF signaling and targeted therapies modulates desmoid cell proliferation, thereby suggesting a reason for variable biologic behavior between tumors, a mechanism for sorafenib activity in desmoids, and markers predictive of outcome in patients.
Collapse
Affiliation(s)
- Jia Hu
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera R. Hameed
- Bone and Soft Tissue Pathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Narasimhan P. Agaram
- Bone and Soft Tissue Pathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Karissa A. Whiting
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Li-Xuan Qin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony M. Villano
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachael B. O'Connor
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Julian M. Rozenberg
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sonia Cohen
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine Prendergast
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sara Kryeziu
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard L. White
- Department of Surgery, Levine Cancer Center, Atrium Health, Carolinas Medical Center, Charlotte, North Carolina
| | | | - Nicholas D. Socci
- Bioinformatics Core, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mrinal M. Gounder
- Sarcoma Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Samuel Singer
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Aimee M. Crago
- Kristen Ann Carr Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Weill Cornell Medical College, New York, New York
| |
Collapse
|
19
|
Liu J, Li J, Zhu Y, Jing R, Ding S, Zhang J, Zhao L, Chen Y, Shen J. Advances in Drug Therapy for Gastrointestinal Stromal Tumour. Curr Med Chem 2024; 31:3057-3073. [PMID: 37151058 DOI: 10.2174/0929867330666230505163151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/05/2023] [Accepted: 03/03/2023] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Gastrointestinal stromal tumour (GIST) is a common gastrointestinal sarcoma located in the stromal cells of the digestive tract, and molecular studies have revealed the pathogenesis of mutations in KIT and PDGFRA genes. Since imatinib opened the era of targeted therapy for GIST, tyrosine kinase inhibitors (TKIs) that can treat GIST have been developed successively. However, the lack of new drugs with satisfactory therapeutic standards has made addressing resistance a significant challenge for TKIs in the face of the resistance to first-line and second-line drugs. Therefore, we need to find as many drugs and new treatments that block mutated genes as possible. METHODS We conducted a comprehensive collection of literature using databases, integrated and analysed the selected literature based on keywords and the comprehensive nature of the articles, and finally wrote articles based on the content of the studies. RESULTS In this article, we first briefly explained the relationship between GIST and KIT/ PDGFRα and then introduced the related drug treatment. The research progress of TKIs was analyzed according to the resistance of the drugs. CONCLUSION This article describes the research progress of some TKIs and briefly introduces the currently approved TKIs and some drugs under investigation that may have better therapeutic effects, hoping to provide clues to the research of new drugs.
Collapse
Affiliation(s)
- Ju Liu
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
- API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
- Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
| | - Jiawei Li
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Yan Zhu
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Rui Jing
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Shi Ding
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
- API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
- Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China
| | - Jifang Zhang
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Leyan Zhao
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Ye Chen
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
- API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
- Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
| | - Jiwei Shen
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
- API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
- Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
| |
Collapse
|
20
|
Li C, Wang Q, Jiang KW, Ye YJ. Hallmarks and novel insights for gastrointestinal stromal tumors: A bibliometric analysis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:107079. [PMID: 37826966 DOI: 10.1016/j.ejso.2023.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Due to the increasing recognition of gastrointestinal stromal tumor (GIST), novel insights have appeared in both preclinical and clinical research and begun to reshape the field. This study aims to map the research landscape through bibliometric analysis and provide a brief overview for the future of the GIST field. METHODS We searched the Web of Science Core Collection without publication data restrictions for GISTs and performed a bibliometric analysis with CiteSpace and VOSviewer software. RESULTS In sum, 5,911 of 13,776 records were included, and these studies were published in 948 journals and written by 24,965 authors from 4,633 institutions in 100 countries. Referring to published reviews and bibliometric analysis, we classified the future trends in four groups. In epidemiological study, precise incidence and clinicopathological features in different regions and races might become potential hotspots. Novel therapy, such as drugs, modified strategies, radioligand therapy, was persistent hotspots in GIST fields, and ctDNA-guided diagnosis, monitoring, and treatment might meet future clinical needs. The debate over serosa surgery vs. mucosa surgery will remain active for a long time in GIST surgery, and function reserve surgery, biology-based surgery will play an important role in future. Moreover, rare GIST type, like NF-1-associated GIST, Carney triads and SDH mutant GIST, need more studies in pathogenesis and genetic mutation to provide appropriate treatment for this orphan GIST patients. CONCLUSIONS Potential hotspots in future GIST trends might involve epidemiology, agents, resection therapy and rare type GIST, moreover, researchers could pay more attention in these four fields.
Collapse
Affiliation(s)
- Chen Li
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, China
| | - Quan Wang
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Ke-Wei Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, China.
| | - Ying-Jiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
21
|
Nagano H, Ohyama S, Sato A, Igarashi J, Yamamoto T, Kadoya M, Kobayashi M. Jejunal gastrointestinal stromal tumor that developed in a patient with neurofibromatosis type 1: a case report. Diagn Pathol 2023; 18:110. [PMID: 37789344 PMCID: PMC10546696 DOI: 10.1186/s13000-023-01398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is known to be associated with the frequent occurrence of unique gastrointestinal stromal tumors (GISTs), preferably occurring in the small intestine, with no mutations in the c-kit proto-oncogene or platelet-derived growth factor receptor-alpha (PDGFRA), with a high tendency for multifocal development, indolent nature, with low proliferation activity and favorable prognosis. CASE PRESENTATION A woman in her forties visited her local doctor complaining of menstrual pain; a large mass was detected in her lower abdomen, and she was referred to our hospital. The patient had hundreds of skin warts and café au lait spots. The patient's mother had been diagnosed with type 1 neurofibromatosis. The patient met the diagnostic criteria for NF1 and was diagnosed with NF1. Ultrasonography showed a large heterogeneous cystic mass with various echo patterns, solid compartments and multiple septations. Magnetic resonance imaging showed a multilocular cystic mass with liquid content exhibiting various intensities, including that of blood. A small round solid mass was also observed close to the cystic tumor. Contrast-enhanced computed tomography showed that the round solid mass showed strong enhancement in the early phase, unlike the cystic tumor component. Open laparotomy revealed a multicystic exophytic tumor measuring 11.5 cm originating from the jejunal wall, 20 cm distal to the duodenojejunal flexure. A solid tumor measuring 2.1 cm was also found on the anal side of the large tumor. We resected the short segment of the jejunum, including the two lesions. Microscopic findings revealed that the cystic and solid tumors consisted of spindle-shaped tumor cells showing little atypia with a fascicular or bundle arrangement. Nuclear mitosis was scarce. Immunostaining of the tumor cells showed positive staining for KIT and DOG1 and negative staining for S100 and desmin. The NF1 patient was diagnosed with multiple GISTs accompanied by intratumoral hemorrhagic denaturation arising from the jejunum. The TNM staging was pT4N0M0, stage IIIA. CONCLUSION We report a case of GISTs associated with NF1 that showed a jejunal origin, multifocal development and few mitotic figures. The recurrence risk, survival prognosis and need for adjuvant chemotherapy, particularly in cases where the initial GIST exhibits a very indolent pathology in NF1-related GISTs, remain to be elucidated.
Collapse
Affiliation(s)
- Hideki Nagano
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan.
| | - Shigekazu Ohyama
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Atsushi Sato
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Jun Igarashi
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Tomoko Yamamoto
- Department of Surgery, Marunouchi Hospital, 1-7-45, Nagisa Matsumoto, Nagano, 390-0841, Japan
| | - Masumi Kadoya
- Department of Radiology, Marunouchi Hospital, Matsumoto Nagano, Japan
| | - Mikiko Kobayashi
- Department of Pathology, Marunouchi Hospital, Matsumoto Nagano, Japan
| |
Collapse
|
22
|
George S, Heinrich MC, Somaiah N, Oppelt P, McLeod R, Nishioka S, Kundu MG, Qian X, Kumar P, Laadem A, Lau Y, Tran BP, Fallon M, Dosunmu O, Shi J, Naito Y. A Phase I, Multicenter, Open-Label, First-in-Human Study of DS-6157a in Patients with Advanced Gastrointestinal Stromal Tumor. Clin Cancer Res 2023; 29:3659-3667. [PMID: 37363962 PMCID: PMC10502450 DOI: 10.1158/1078-0432.ccr-23-0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE To evaluate DS-6157a, an antibody-drug conjugate targeting G protein-coupled receptor 20 (GPR20), in gastrointestinal stromal tumors (GIST). PATIENTS AND METHODS In this phase I multicenter, open-label, multiple-dose study, patients with previously treated advanced GIST received intravenous DS-6157a on Day 1 of 21-day cycles, with a starting dose of 1.6 mg/kg. The primary objective evaluated the safety and tolerability of DS-6157a, while determining dose-limiting toxicity (DLT) and the MTD. Secondary objectives included plasma pharmacokinetics parameters, plasma antidrug antibodies (ADA), and efficacy. RESULTS A total of 34 patients enrolled. DS-6157a was well tolerated, with DLTs in 4 patients (11.8%) at doses of 6.4 mg/kg, 9.6 mg/kg, and 12.8 mg/kg; the MTD was determined to be 6.4 mg/kg. Treatment-emergent adverse events (TEAE) grade ≥3 occurred in 17 patients (50.0%), including decreased platelet count (23.5%), anemia (20.6%), decreased neutrophil count (14.7%), and decreased white blood cell count (11.8%). Four patients (11.8%) experienced serious adverse events related to DS-6157a. Six patients died with 5 due to disease progression and 1 due to DS-6157a-related TEAE. Tumor shrinkage was observed in 7 patients (20.6%), and 1 patient (2.9%) achieved a partial response. Plasma concentrations and exposure of intact DS-6157a, DXd, and total anti-GPR20 antibody all demonstrated a dose-dependent profile. No treatment-emergent ADAs were observed. CONCLUSIONS Targeting GPR20 with DS-6157a was tolerated in patients with advanced GIST with tumor shrinkage demonstrated in KIT/PDGFRA wild-type GIST. However, the study did not proceed further due to lower efficacy outcomes than anticipated.
Collapse
Affiliation(s)
- Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael C. Heinrich
- Division of Hematology and Medical Oncology, Portland VA Health Care System and OHSU Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Oppelt
- Department of Medicine, Oncology Division, Section of Medical Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | - Yvonne Lau
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | | | | | - Ololade Dosunmu
- Medical & Clinical Science, Sarah Cannon Research Institute, Nashville, Tennessee
| | - Julia Shi
- Sarah Cannon Development Innovations, Nashville, Tennessee
| | - Yoichi Naito
- Department of General Internal Medicine/Developmental Therapeutics/Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
23
|
Dermawan JK, Rubin BP. The spectrum and significance of secondary (co-occurring) genetic alterations in sarcomas: the hallmarks of sarcomagenesis. J Pathol 2023; 260:637-648. [PMID: 37345731 DOI: 10.1002/path.6140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Bone and soft tissue tumors are generally classified into complex karyotype sarcomas versus those with recurrent genetic alterations, often in the form of gene fusions. In this review, we provide an overview of important co-occurring genomic alterations, organized by biological mechanisms and covering a spectrum of genomic alteration types: mutations (single-nucleotide variations or indels) in oncogenes or tumor suppressor genes, copy number alterations, transcriptomic signatures, genomic complexity indices (e.g. CINSARC), and complex genomic structural variants. We discuss the biological and prognostic roles of these so-called secondary or co-occurring alterations, arguing that recognition and detection of these alterations may be significant for our understanding and management of mesenchymal tumors. On a related note, we also discuss major recurrent alterations in so-called complex karyotype sarcomas. These secondary alterations are essential to sarcomagenesis via a variety of mechanisms, such as inactivation of tumor suppressors, activation of proliferative signal transduction, telomere maintenance, and aberrant regulation of epigenomic/chromatin remodeling players. The use of comprehensive genomic profiling, including targeted next-generation sequencing panels or whole-exome sequencing, may be incorporated into clinical workflows to offer more comprehensive, potentially clinically actionable information. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
24
|
Toriumi K, Onodera Y, Takehara T, Mori T, Hasei J, Shigi K, Iwawaki N, Ozaki T, Akagi M, Nakanishi M, Teramura T. LRRC15 expression indicates high level of stemness regulated by TWIST1 in mesenchymal stem cells. iScience 2023; 26:106946. [PMID: 37534184 PMCID: PMC10391581 DOI: 10.1016/j.isci.2023.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/09/2023] [Accepted: 05/19/2023] [Indexed: 08/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are used as a major source for cell therapy, and its application is expanding in various diseases. On the other hand, reliable method to evaluate quality and therapeutic properties of MSC is limited. In this study, we focused on TWIST1 that is a transcription factor regulating stemness of MSCs and found that the transmembrane protein LRRC15 tightly correlated with the expression of TWIST1 and useful to expect TWIST1-regulated stemness of MSCs. The LRRC15-positive MSC populations in human and mouse bone marrow tissues highly expressed stemness-associated transcription factors and therapeutic cytokines, and showed better therapeutic effect in bleomycin-induced pulmonary fibrosis model mice. This study provides evidence for the important role of TWIST1 in the MSC stemness, and for the utility of the LRRC15 protein as a marker to estimate stem cell quality in MSCs before cell transplantation.
Collapse
Affiliation(s)
- Kensuke Toriumi
- Department of Orthopedic Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Yuta Onodera
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka-sayama, Osaka, Japan
| | - Toshiyuki Takehara
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka-sayama, Osaka, Japan
| | - Tatsufumi Mori
- Life Science Institute, Kindai University, Osaka-sayama, Osaka, Japan
| | - Joe Hasei
- Department of Orthopedic Surgery, Okayama University Faculty of Medicine, Okayama, Okayama, Japan
| | - Kanae Shigi
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka-sayama, Osaka, Japan
| | - Natsumi Iwawaki
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka-sayama, Osaka, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Faculty of Medicine, Okayama, Okayama, Japan
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | | | - Takeshi Teramura
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka-sayama, Osaka, Japan
| |
Collapse
|
25
|
Weng H, Feng W, Li F, Huang D, Lin L, Wang Z. Transcription factor ETV1-induced lncRNA MAFG-AS1 promotes migration, invasion, and epithelial-mesenchymal transition of pancreatic cancer cells by recruiting IGF2BP2 to stabilize ETV1 expression. Growth Factors 2023:1-13. [PMID: 37428861 DOI: 10.1080/08977194.2023.2227272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2023] [Indexed: 07/12/2023]
Abstract
We investigated the mechanism of ETS-translocation variant 1 (ETV1)/lncRNA-MAFG-AS1 in pancreatic cancer (PC). MAFG-AS1 and ETV1 levels in PC cell lines and HPNE cells were determined using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB). After transfection with sh-MAFG-AS1, PC cell invasion, migration, proliferation, and epithelial-mesenchymal transition (EMT)-related proteins were measured by 5-ethynyl-2'-deoxyuridine (EdU), Transwell assay, and WB. The binding between ETV1 and MAFG-AS1 was studied using dual-luciferase assay and chromatin immunoprecipitation. The interactions between MAFG-AS1, IGF2BP2, and ETV1 were tested. Combined experiments were further performed using sh-MAFG-AS1 and pcDNA-ETV1 simultaneously. ETV1/MAFG-AS1 was highly expressed in PC cells. Blocking MAFG-AS1 inhibited the malignant behaviors of PC cells. ETV1 induced MAFG-AS1 transcription in PC cells. MAFG-AS1 stabilized ETV1 mRNA by recruiting IGF2BP2. ETV1 overexpression partially antagonized the suppression of silencing MAFG-AS1 on PC cells. ETV1-induced MAFG-AS1 stabilized the ETV1 expression by recruiting IGF2BP2 and promoted PC cell migration, invasion, proliferation, and EMT.
Collapse
Affiliation(s)
- Hanqin Weng
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Weijian Feng
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Fengling Li
- Department of Anesthesiology, Dongguan People's Hospital, Dongguan, China
| | - Dong Huang
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Liangyi Lin
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Zaiguo Wang
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| |
Collapse
|
26
|
Schafer C, Young D, Singh H, Jayakrishnan R, Banerjee S, Song Y, Dobi A, Petrovics G, Srivastava S, Srivastava S, Sesterhenn IA, Chesnut GT, Tan SH. Development and characterization of an ETV1 rabbit monoclonal antibody for the immunohistochemical detection of ETV1 expression in cancer tissue specimens. J Immunol Methods 2023; 518:113493. [PMID: 37196930 PMCID: PMC10802095 DOI: 10.1016/j.jim.2023.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Aberrant ETV1 overexpression arising from gene rearrangements or mutations occur frequently in prostate cancer, round cell sarcomas, gastrointestinal stromal tumors, gliomas, and other malignancies. The absence of specific monoclonal antibodies (mAb) has limited its detection and our understanding of its oncogenic function. METHODS An ETV1 specific rabbit mAb (29E4) was raised using an immunogenic peptide. Key residues essential for its binding were probed by ELISA and its binding kinetics were measured by surface plasmon resonance imaging (SPRi). Its selective binding to ETV1 was assessed by immunoblots and immunofluorescence assays (IFA), and by both single and double-immuno-histochemistry (IHC) assays on prostate cancer tissue specimens. RESULTS Immunoblot results showed that the mAb is highly specific and lacked cross-reactivity with other ETS factors. A minimal epitope with two phenylalanine residues at its core was found to be required for effective mAb binding. SPRi measurements revealed an equilibrium dissociation constant in the picomolar range, confirming its high affinity. ETV1 (+) tumors were detected in prostate cancer tissue microarray cases evaluated. IHC staining of whole-mounted sections revealed glands with a mosaic staining pattern of cells that are partly ETV1 (+) and interspersed with ETV1 (-) cells. Duplex IHC, using ETV1 and ERG mAbs, detected collision tumors containing glands with distinct ETV1 (+) and ERG (+) cells. CONCLUSIONS The selective detection of ETV1 by the 29E4 mAb in immunoblots, IFA, and IHC assays using human prostate tissue specimens reveals a potential utility for the diagnosis, the prognosis of prostate adenocarcinoma and other cancers, and the stratification of patients for treatment by ETV1 inhibitors.
Collapse
Affiliation(s)
- Cara Schafer
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Denise Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Harpreet Singh
- Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Rahul Jayakrishnan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Sreedatta Banerjee
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Yingjie Song
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | | | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Urology Service, Walter Reed National Military Medical Center, Bethesda, MD, 20852, USA
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| |
Collapse
|
27
|
Venkataraman V, George S, Cote GM. Molecular Advances in the Treatment of Advanced Gastrointestinal Stromal Tumor. Oncologist 2023:oyad167. [PMID: 37315115 PMCID: PMC10400151 DOI: 10.1093/oncolo/oyad167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Most gastrointestinal stromal tumors (GIST) are driven by activating mutations in Proto-oncogene c-KIT (KIT) or PDGFRA receptor tyrosine kinases (RTK). The emergence of effective therapies targeting these mutations has revolutionized the management of advanced GIST. However, following initiation of first-line imatinib, a tyrosine kinase inhibitor (TKI), nearly all patients will develop resistance within 2 years through the emergence of secondary resistance mutations in KIT, typically in the Adenosine Triphosphate (ATP)-binding site or activation loop of the kinase domain. Moreover, some patients have de novo resistance to imatinib, such as those with mutations in PDGFRA exon 18 or those without KIT or PDGFRA mutation. To target resistance, research efforts are primarily focused on developing next-generation inhibitors of KIT and/or PDGFRA, which can inhibit alternate receptor conformations or unique mutations, and compounds that impact complimentary pathogenic processes or epigenetic events. Here, we review the literature on the medical management of high-risk localized and advanced GIST and provide an update on clinical trial approaches to this disease.
Collapse
Affiliation(s)
- Vinayak Venkataraman
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
- Mass General Hospital Cancer Center, Center for Sarcoma and Connective Tissue Oncology, Boston, MA, USA
| | - Suzanne George
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
| | - Gregory M Cote
- Mass General Hospital Cancer Center, Center for Sarcoma and Connective Tissue Oncology, Boston, MA, USA
| |
Collapse
|
28
|
Di Vito A, Ravegnini G, Gorini F, Aasen T, Serrano C, Benuzzi E, Coschina E, Monesmith S, Morroni F, Angelini S, Hrelia P. The multifaceted landscape behind imatinib resistance in gastrointestinal stromal tumors (GISTs): A lesson from ripretinib. Pharmacol Ther 2023:108475. [PMID: 37302758 DOI: 10.1016/j.pharmthera.2023.108475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are rare mesenchymal sarcomas and the gold-standard treatment is represented by tyrosine kinase inhibitors (TKIs). Unfortunately, first-line treatment with the TKI imatinib usually promotes partial response or stable disease rather than a complete response, and resistance appears in most patients. Adaptive mechanisms are immediately relevant at the beginning of imatinib therapy, and they may represent the reason behind the low complete response rates observed in GISTs. Concurrently, resistant subclones can silently continue to grow or emerge de novo, becoming the most representative populations. Therefore, a slow evolution of the primary tumor gradually occurs during imatinib treatment, enriching heterogeneous imatinib resistant clonal subpopulations. The identification of secondary KIT/PDGFRA mutations in resistant GISTs prompted the development of novel multi-targeted TKIs, leading to the approval of sunitinib, regorafenib, and ripretinib. Although ripretinib has broad anti-KIT and -PDGFRA activity, it failed to overcome sunitinib as second-line treatment, suggesting that imatinib resistance is more multifaceted than initially thought. The present review summarizes several biological aspects suggesting that heterogeneous adaptive and resistance mechanisms can also be driven by KIT or PDGFRA downstream mediators, alternative kinases, as well as ncRNAs, which are not targeted by any TKI, including ripretinib. This may explain the modest effect observed with ripretinib and all anti-GIST agents in patients.
Collapse
Affiliation(s)
- Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Cesar Serrano
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain; Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Eva Benuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Emma Coschina
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Sarah Monesmith
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy; Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, University of Bologna, Bologna, Italy.
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
29
|
Ruiz-Demoulin S, Trenquier E, Dekkar S, Deshayes S, Boisguérin P, Serrano C, de Santa Barbara P, Faure S. LIX1 Controls MAPK Signaling Reactivation and Contributes to GIST-T1 Cell Resistance to Imatinib. Int J Mol Sci 2023; 24:ijms24087138. [PMID: 37108337 PMCID: PMC10138740 DOI: 10.3390/ijms24087138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST), the most common sarcoma, is mainly caused by an oncogenic mutation in the KIT receptor tyrosine kinase. Targeting KIT using tyrosine kinase inhibitors, such as imatinib and sunitinib, provides substantial benefit; however, in most patients, the disease will eventually progress due to KIT secondary mutations leading to treatment failure. Understanding how GIST cells initially adapt to KIT inhibition should guide the selection of appropriate therapies to overcome the emergence of resistance. Several mechanisms have been broadly implicated in the resistance to imatinib anti-tumoral effects, including the reactivation of MAPK signaling upon KIT/PDGFRA targeted inhibition. This study provides evidence that LImb eXpression 1 (LIX1), a protein we identified as a regulator of the Hippo transducers YAP1 and TAZ, is upregulated upon imatinib or sunitinib treatment. LIX1 silencing in GIST-T1 cells impaired imatinib-induced MAPK signaling reactivation and enhanced imatinib anti-tumor effect. Our findings identified LIX1 as a key regulator of the early adaptative response of GIST cells to targeted therapies.
Collapse
Affiliation(s)
- Salomé Ruiz-Demoulin
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Eva Trenquier
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Sanaa Dekkar
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Sébastien Deshayes
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Prisca Boisguérin
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Pascal de Santa Barbara
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Sandrine Faure
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| |
Collapse
|
30
|
McCarthy N, Tie G, Madha S, He R, Kraiczy J, Maglieri A, Shivdasani RA. Smooth muscle contributes to the development and function of a layered intestinal stem cell niche. Dev Cell 2023; 58:550-564.e6. [PMID: 36924771 PMCID: PMC10089980 DOI: 10.1016/j.devcel.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Abstract
Wnt and Rspondin (RSPO) signaling drives proliferation, and bone morphogenetic protein inhibitors (BMPi) impede differentiation, of intestinal stem cells (ISCs). Here, we identify the mouse ISC niche as a complex, multi-layered structure that encompasses distinct mesenchymal and smooth muscle populations. In young and adult mice, diverse sub-cryptal cells provide redundant ISC-supportive factors; few of these are restricted to single cell types. Niche functions refine during postnatal crypt morphogenesis, in part to oppose the dense aggregation of differentiation-promoting BMP+ sub-epithelial myofibroblasts at crypt-villus junctions. Muscularis mucosae, a specialized muscle layer, first appears during this period and supplements neighboring RSPO and BMPi sources. Components of this developing niche are conserved in human fetuses. The in vivo ablation of mouse postnatal smooth muscle increases BMP signaling activity, potently limiting a pre-weaning burst of crypt fission. Thus, distinct and progressively specialized mesenchymal cells together create the milieu that is required to propagate crypts during rapid organ growth and to sustain adult ISCs.
Collapse
Affiliation(s)
- Neil McCarthy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ruiyang He
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Kraiczy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Adrianna Maglieri
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Li D, Zhan Y, Wang N, Tang F, Lee CJ, Bayshtok G, Moore AR, Wong EW, Pachai MR, Xie Y, Sher J, Zhao JL, Khudoynazarova M, Gopalan A, Chan J, Khurana E, Shepherd P, Navone NM, Chi P, Chen Y. ETV4 mediates dosage-dependent prostate tumor initiation and cooperates with p53 loss to generate prostate cancer. SCIENCE ADVANCES 2023; 9:eadc9446. [PMID: 37018402 PMCID: PMC10075989 DOI: 10.1126/sciadv.adc9446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/07/2023] [Indexed: 05/20/2023]
Abstract
The mechanisms underlying ETS-driven prostate cancer initiation and progression remain poorly understood due to a lack of model systems that recapitulate this phenotype. We generated a genetically engineered mouse with prostate-specific expression of the ETS factor, ETV4, at lower and higher protein dosage through mutation of its degron. Lower-level expression of ETV4 caused mild luminal cell expansion without histologic abnormalities, and higher-level expression of stabilized ETV4 caused prostatic intraepithelial neoplasia (mPIN) with 100% penetrance within 1 week. Tumor progression was limited by p53-mediated senescence and Trp53 deletion cooperated with stabilized ETV4. The neoplastic cells expressed differentiation markers such as Nkx3.1 recapitulating luminal gene expression features of untreated human prostate cancer. Single-cell and bulk RNA sequencing showed that stabilized ETV4 induced a previously unidentified luminal-derived expression cluster with signatures of cell cycle, senescence, and epithelial-to-mesenchymal transition. These data suggest that ETS overexpression alone, at sufficient dosage, can initiate prostate neoplasia.
Collapse
Affiliation(s)
- Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Zhan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Naitao Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fanying Tang
- Sandra and Edward Meyer Cancer Center and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriella Bayshtok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amanda R. Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elissa W. P. Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohini R. Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuanyuan Xie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jessica Sher
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jimmy L. Zhao
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Makhzuna Khudoynazarova
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Peter Shepherd
- Genitourinary Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Nora M. Navone
- Genitourinary Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
32
|
Ohmoto M, Jyotaki M, Yee KK, Matsumoto I. A Transcription Factor Etv1/Er81 Is Involved in the Differentiation of Sweet, Umami, and Sodium Taste Cells. eNeuro 2023; 10:ENEURO.0236-22.2023. [PMID: 37045597 PMCID: PMC10131560 DOI: 10.1523/eneuro.0236-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Taste cells are maintained by continuous turnover throughout a lifetime, yet the mechanisms of taste cell differentiation, and how taste sensations remain constant despite this continuous turnover, remain poorly understood. Here, we report that a transcription factor Etv1 (also known as Er81) is involved in the differentiation of taste cells responsible for the preference for sweet, umami, and salty tastes. Molecular analyses revealed that Etv1 is expressed by a subset of taste cells that depend on Skn-1a (also known as Pou2f3) for their generation and express T1R genes (responsible for sweet and umami tastes) or Scnn1a (responsible for amiloride-sensitive salty taste). Etv1CreERT2/CreERT2 mice express Etv1 isoform(s) but not Etv1 in putative proprioceptive neurons as comparable to wild-type mice, yet lack expression of Etv1 or an isoform in taste cells. These Etv1CreERT2/CreERT2 mice have the same population of Skn-1a-dependent cells in taste buds as wild-type mice but have altered gene expression in taste cells, with regional differences. They have markedly decreased electrophysiological responses of chorda tympani nerves to sweet and umami tastes and to amiloride-sensitive salty taste evoked by sodium cation, but they have unchanged responses to bitter or sour tastes. Our data thus show that Etv1 is involved in the differentiation of the taste cells responsible for sweet, umami, and salty taste preferences.
Collapse
Affiliation(s)
- Makoto Ohmoto
- Monell Chemical Senses Center, Philadelphia, PA 19104
| | | | - Karen K Yee
- Monell Chemical Senses Center, Philadelphia, PA 19104
| | | |
Collapse
|
33
|
Li C, Gao Z, Cui Z, Liu Z, Bian Y, Sun H, Wang N, He Z, Li B, Li F, Li Z, Wang L, Zhang D, Yang L, Xu Z, Xu H. Deubiquitylation of Rab35 by USP32 promotes the transmission of imatinib resistance by enhancing exosome secretion in gastrointestinal stromal tumours. Oncogene 2023; 42:894-910. [PMID: 36725886 DOI: 10.1038/s41388-023-02600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Imatinib is a tyrosine kinase inhibitor that is widely used to combat gastrointestinal stromal tumours (GISTs). However, secondary resistance to imatinib is an important challenge in GIST treatment. Recent studies have demonstrated that cancer-derived nanosized exosomes play a key role in intercellular communication, but little is known about the roles of exosomes in imatinib-resistant GISTs. Here, we reveal that exosomes released from imatinib-resistant GISTs transmit drug resistance to imatinib-sensitive tumours. By using iTRAQ technology, we demonstrate that Ras-related protein Rab-35 (Rab35) is upregulated differentially in imatinib-resistant GISTs. Loss of Rab35 decreases exosome secretion, thereby hampering the transmission of imatinib resistance to sensitive tumours. Mechanistically, we showed that the ubiquitin‒proteasome system is involved in elevated Rab35 expression and that ubiquitin-specific protease 32 (USP32), a deubiquitylating enzyme, is bound to Rab35. Further experiments demonstrate that this protease protects Rab35 from proteasomal degradation by reducing Lys48 (K48)-ubiquitination. Additionally, we found that the transcription factor ETV1, which is a lineage survival factor in GISTs, promotes USP32 expression. Collectively, our results reveal that exosomes transmit imatinib resistance in GISTs and that deubiquitylation plays a key role in regulating the transmission process. The USP32-Rab35 axis provides a potential target for interventions to reduce the occurrence of imatinib resistance in GISTs.
Collapse
Affiliation(s)
- Chao Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhishuang Gao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhiwei Cui
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zonghang Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Yibo Bian
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haoyu Sun
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Nuofan Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhongyuan He
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Fengyuan Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zheng Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Linjun Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China.
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China.
| |
Collapse
|
34
|
Guo X, Li Y, Wan B, Lv Y, Wang X, Liu G, Wang P. ETV1 inhibition depressed M2 polarization of tumor-associated macrophage and cell process in gastrointestinal stromal tumor via down-regulating PDE3A. J Clin Biochem Nutr 2023; 72:139-146. [PMID: 36936869 PMCID: PMC10017324 DOI: 10.3164/jcbn.22-47] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/13/2022] [Indexed: 01/15/2023] Open
Abstract
M2-type polarization of tumor associated-macrophage (TAM) is involved in the malignancy of gastrointestinal stromal tumor (GIST) progression. ETS variant 1 (ETV1) has been previously validated to regulate GIST pathogenesis. Our study intended to explore the role and mechanism of ETV1 in mediating the M2-polarization of TAM in GIST progression. First, we analyzed the correlation between ETV1 expression and M2-polarization in GIST tissues. IL-4 was used to treat THP-1-derived TAM cells and IL-4-stimulated TAM were co-cultured with GIST-T1 cells to mimic the GIST microenvironment. A loss-of-function assay was performed to explore the role of ETV1. Results showed that ETV1 elevation was positively correlated with M2-polarization. IL-4-induced TAM promoted ETV1 expression, silencing ETV1 inhibited proliferation, invasion and KIT activation in IL-4-treated GIST cells, while cell apoptosis was enhanced. Besides, co-culture of ETV1-silenced GIST cells significantly depressed M2-polarization in TAM, presented as decreased levels of CD206, Agr-1 and cytokines, as well as the proportion of CD206-positive TAM. PDE3A was positively correlated with ETV1 and M2-polarization. Overexpressing PDE3A reversed the inhibitory effects of ETV1 silencing. Generally, ETV1 inhibition depressed M2-polarization of TAM in GIST and its promotion on pathological aggravation via down-regulating PDE3A. This evidence may provide a new target for GIST regulation.
Collapse
Affiliation(s)
- Xueyan Guo
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Yulong Li
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Bingbing Wan
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Yifei Lv
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Xue Wang
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Guisheng Liu
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Ping Wang
- Department of Gastroenterology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Teo AYT, Lim VY, Yang VS. MicroRNAs in the Pathogenesis, Prognostication and Prediction of Treatment Resistance in Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15030577. [PMID: 36765536 PMCID: PMC9913386 DOI: 10.3390/cancers15030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Soft tissue sarcomas are highly aggressive malignant neoplasms of mesenchymal origin, accounting for less than 1% of adult cancers, but comprising over 20% of paediatric solid tumours. In locally advanced, unresectable, or metastatic disease, outcomes from even the first line of systemic treatment are invariably poor. MicroRNAs (miRNAs), which are short non-coding RNA molecules, target and modulate multiple dysregulated target genes and/or signalling pathways within cancer cells. Accordingly, miRNAs demonstrate great promise for their utility in diagnosing, prognosticating and improving treatment for soft tissue sarcomas. This review aims to provide an updated discussion on the known roles of specific miRNAs in the pathogenesis of sarcomas, and their potential use in prognosticating outcomes and prediction of therapeutic resistance.
Collapse
Affiliation(s)
- Andrea York Tiang Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivian Yujing Lim
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Valerie Shiwen Yang
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
36
|
Laurenge A, Huillard E, Bielle F, Idbaih A. Cell of Origin of Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:85-101. [PMID: 36587383 DOI: 10.1007/978-3-031-14732-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A better understanding of cellular and molecular biology of primary central nervous system (CNS) tumors is a critical step toward the design of innovative treatments. In addition to improving knowledge, identification of the cell of origin in tumors allows for sharp and efficient targeting of specific tumor cells promoting and driving oncogenic processes. The World Health Organization identifies approximately 150 primary brain tumor subtypes with various ontogeny and clinical outcomes. Identification of the cell of origin of each tumor type with its lineage and differentiation level is challenging. In the current chapter, we report the suspected cell of origin of various CNS primary tumors including gliomas, glioneuronal tumors, medulloblastoma, meningioma, atypical teratoid rhabdoid tumor, germinomas, and lymphoma. Most of them have been pinpointed through transgenic mouse models and analysis of molecular signatures of tumors. Identification of the cell or cells of origin in primary brain tumors will undoubtedly open new therapeutic avenues, including the reactivation of differentiation programs for therapeutic perspectives.
Collapse
Affiliation(s)
- Alice Laurenge
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau-Paris Brain Institute, ICM, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Emmanuelle Huillard
- INSERM, CNRS, APHP, Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Paris, France
| | - Franck Bielle
- AP-HP, SIRIC CURAMUS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de La Moelle Épinière, ICM, Service de Neuropathologie Escourolle, 75013, Paris, France
| | - Ahmed Idbaih
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau-Paris Brain Institute, ICM, Service de Neurologie 2-Mazarin, 75013, Paris, France.
| |
Collapse
|
37
|
Guo J, Feng S, Yu H, Ou B, Jiang D, Zhuang W, Ding C, Chen X, Zhang M, Ling Y, Zeng Y, Qiu H. Transcriptomic study of gastrointestinal stromal tumors with liver metastasis. Front Genet 2023; 14:1007135. [PMID: 36911388 PMCID: PMC9996342 DOI: 10.3389/fgene.2023.1007135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: GIST (gastrointestinal stromal tumor) is the most prominent mesenchymal neoplasms of the gastrointestinal tract, and liver is the most common metastasis site for GIST. The molecular mechanism leading to liver metastasis of GIST is currently unclear. Methods: With the goal of revealing the underlying mechanism, we performed whole-genome gene expression profiling on 18 pairs of RNA samples comprised of GIST tissues (with liver metastasis) and corresponding non-tumor tissues. After identifying differentially expressed gene, functional annotation and signal pathway analyses were conducted. GSE13861, datasets that compare GIST (without liver metastasis) with adjacent tissues, served as a comparison. Results: A total of 492 up-regulated genes and 629 down-regulated genes were identified as differentially expressed genes between liver metastasis tissues and non-tumor tissues. We characterized expression patterns of DEGs identified from our cohort and GSE13861 that show signatures of enrichment for functionality. In subsequent gene set enrichment analysis, differentially expressed genes were mainly enriched in Epithelial Mesenchymal Transition in both datasets. 493 genes were overlapped among our whole-genome gene expression profiling results and GSE13861, consisting 188 up-regulated genes and 305 down-regulated genes. By using CytoHubba plugin of Cytoscape, CDH1, CD34, KIT, PROM1, SOX9, FGF2, CD24, ALDH1A1, JAG1 and NES were identified as top ten hub genes in tumorigenesis and liver metastasis of GIST. higher expression levels of FGF2, JAG1, CD34, ALDH1A1 and the lower expression level of CDH1 were respectively associated with unfavorable overall survival. Meanwhile higher expression levels of CD34, FGF2, KIT, JAG1, ALDH1A were correlated with worse disease-free survival. Discussion: The present study may help to provide candidate pathways and targets for treatment of GIST and prevention methods to liver metastasis.
Collapse
Affiliation(s)
- Jianrong Guo
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shoucheng Feng
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hong Yu
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Biyi Ou
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dan Jiang
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei Zhuang
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chao Ding
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaojiang Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Miaoquan Zhang
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yudong Ling
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi Zeng
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Haibo Qiu
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
38
|
Proaño-Pérez E, Serrano-Candelas E, Mancia C, Navinés-Ferrer A, Guerrero M, Martin M. SH3BP2 Silencing Increases miRNAs Targeting ETV1 and Microphthalmia-Associated Transcription Factor, Decreasing the Proliferation of Gastrointestinal Stromal Tumors. Cancers (Basel) 2022; 14:cancers14246198. [PMID: 36551682 PMCID: PMC9777313 DOI: 10.3390/cancers14246198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. Gain of function in receptor tyrosine kinases type III, KIT, or PDGFRA drives the majority of GIST. Previously, our group reported that silencing of the adaptor molecule SH3 Binding Protein 2 (SH3BP2) downregulated KIT and PDGFRA and microphthalmia-associated transcription factor (MITF) levels and reduced tumor growth. This study shows that SH3BP2 silencing also decreases levels of ETV1, a required factor for GIST growth. To dissect the SH3BP2 pathway in GIST cells, we performed a miRNA array in SH3BP2-silenced GIST cell lines. Among the most up-regulated miRNAs, we found miR-1246 and miR-5100 to be predicted to target MITF and ETV1. Overexpression of these miRNAs led to a decrease in MITF and ETV1 levels. In this context, cell viability and cell cycle progression were affected, and a reduction in BCL2 and CDK2 was observed. Interestingly, overexpression of MITF enhanced cell proliferation and significantly rescued the viability of miRNA-transduced cells. Altogether, the KIT-SH3BP2-MITF/ETV1 pathway deserves to be considered in GIST cell survival and proliferation.
Collapse
Affiliation(s)
- Elizabeth Proaño-Pérez
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Faculty of Health Sciences, Technical University of Ambato, Ambato 180105, Ecuador
| | - Eva Serrano-Candelas
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cindy Mancia
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Arnau Navinés-Ferrer
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mario Guerrero
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Margarita Martin
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Correspondence:
| |
Collapse
|
39
|
Zhang T, Wang Y, Xie M, Ji X, Luo X, Chen X, Zhang B, Liu D, Feng Y, Sun M, Huang W, Xia L. HGF-mediated elevation of ETV1 facilitates hepatocellular carcinoma metastasis through upregulating PTK2 and c-MET. J Exp Clin Cancer Res 2022; 41:275. [PMID: 36109787 PMCID: PMC9479266 DOI: 10.1186/s13046-022-02475-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Metastasis is a major determinant of death in patients with hepatocellular carcinoma (HCC). Dissecting key molecular mediators that promote this malignant feature may help yield novel therapeutic insights. Here, we investigated the role of E-twenty-six transformation-specific variant 1 (ETV1), a member of the E-twenty-six transformation-specific (ETS) family, in HCC metastasis. Methods The clinical significance of ETV1 and its target genes in two independent cohorts of HCC patients who underwent curative resection were assessed by Kaplan–Meier analysis and Multivariate Cox proportional hazards model. Luciferase reporter assay and chromatin immunoprecipitation assay were used to detect the transcriptional regulation of target gene promoters by ETV1. The effect of ETV1 on invasiveness and metastasis of HCC were detected by transwell assays and the orthotopically metastatic model. Results ETV1 expression was frequently elevated in human HCC specimens. Increased ETV1 expression was associated with the malignant biological characteristics and poor prognosis of HCC patients. ETV1 facilitated invasion and metastasis of HCC cells in vitro and in vivo. Mechanistically, ETV1 promoted HCC metastasis via upregulating metastasis-related genes, including protein tyrosine kinase 2 (PTK2) and MET. Down-regulated the expression of PTK2 or tyrosine protein kinase Met (c-MET) decreased ETV1-mediated HCC metastasis. Hepatocyte growth factor (HGF) upregulated ETV1 expression through activating c-MET-ERK1/2-ELK1 pathway. Notably, in two independent cohorts, patients with positive coexpression of ETV1/PTK2 or ETV1/c-MET had worse prognosis. Furthermore, the combination of PTK2 inhibitor defactinib and c-MET inhibitor capmatinib significantly suppressed HCC metastasis induced by ETV1. Conclusion This study uncovers functional and prognostic roles for ETV1 in HCC and exposes a positive feedback loop of HGF-ERK1/2-ETV1-c-MET. Targeting this pathway may provide a potential therapeutic intervention for ETV1-overexpressing HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02475-2.
Collapse
|
40
|
Yan J, Chen Y, Patel AJ, Warda S, Lee CJ, Nixon BG, Wong EW, Miranda-Román MA, Yang N, Wang Y, Pachai MR, Sher J, Giff E, Tang F, Khurana E, Singer S, Liu Y, Galbo PM, Maag JL, Koche RP, Zheng D, Antonescu CR, Deng L, Li MO, Chen Y, Chi P. Tumor-intrinsic PRC2 inactivation drives a context-dependent immune-desert microenvironment and is sensitized by immunogenic viruses. J Clin Invest 2022; 132:e153437. [PMID: 35852856 PMCID: PMC9433107 DOI: 10.1172/jci153437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Immune checkpoint blockade (ICB) has demonstrated clinical success in "inflamed" tumors with substantial T cell infiltrates, but tumors with an immune-desert tumor microenvironment (TME) fail to benefit. The tumor cell-intrinsic molecular mechanisms of the immune-desert phenotype remain poorly understood. Here, we demonstrated that inactivation of the polycomb-repressive complex 2 (PRC2) core components embryonic ectoderm development (EED) or suppressor of zeste 12 homolog (SUZ12), a prevalent genetic event in malignant peripheral nerve sheath tumors (MPNSTs) and sporadically in other cancers, drove a context-dependent immune-desert TME. PRC2 inactivation reprogramed the chromatin landscape that led to a cell-autonomous shift from primed baseline signaling-dependent cellular responses (e.g., IFN-γ signaling) to PRC2-regulated developmental and cellular differentiation transcriptional programs. Further, PRC2 inactivation led to diminished tumor immune infiltrates through reduced chemokine production and impaired antigen presentation and T cell priming, resulting in primary resistance to ICB. Intratumoral delivery of inactivated modified vaccinia virus Ankara (MVA) enhanced tumor immune infiltrates and sensitized PRC2-loss tumors to ICB. Our results identify molecular mechanisms of PRC2 inactivation-mediated, context-dependent epigenetic reprogramming that underline the immune-desert phenotype in cancer. Our studies also point to intratumoral delivery of immunogenic viruses as an initial therapeutic strategy to modulate the immune-desert TME and capitalize on the clinical benefit of ICB.
Collapse
Affiliation(s)
- Juan Yan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
| | - Yuedan Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Amish J. Patel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
| | - Sarah Warda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
| | - Briana G. Nixon
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
- Immunology Program, Sloan Kettering Institute
| | - Elissa W.P. Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
| | - Miguel A. Miranda-Román
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, and
| | - Ning Yang
- Dermatology Service, Department of Medicine, MSK Cancer Center, New York, New York, USA
| | - Yi Wang
- Dermatology Service, Department of Medicine, MSK Cancer Center, New York, New York, USA
| | - Mohini R. Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
| | - Jessica Sher
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
| | - Emily Giff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
| | - Fanying Tang
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
- Institute for Computational Biomedicine
- Meyer Cancer Center, and
| | - Ekta Khurana
- Institute for Computational Biomedicine
- Meyer Cancer Center, and
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Sam Singer
- Department of Surgery, MSK Cancer Center, New York, New York, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Phillip M. Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jesper L.V. Maag
- Center for Epigenetics Research, MSK Cancer Center, New York, New York, USA
| | - Richard P. Koche
- Center for Epigenetics Research, MSK Cancer Center, New York, New York, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Neurology, and
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Liang Deng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
- Dermatology Service, Department of Medicine, MSK Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Ming O. Li
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
- Immunology Program, Sloan Kettering Institute
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, and
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
- Department of Medicine, MSK Cancer Center, New York, New York, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering (MSK) Cancer Center, New York, New York, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
- Department of Medicine, MSK Cancer Center, New York, New York, USA
| |
Collapse
|
41
|
Hemming ML, Benson MR, Loycano MA, Anderson JA, Andersen JL, Taddei ML, Krivtsov AV, Aubrey BJ, Cutler JA, Hatton C, Sicinska E, Armstrong SA. MOZ and Menin-MLL Complexes Are Complementary Regulators of Chromatin Association and Transcriptional Output in Gastrointestinal Stromal Tumor. Cancer Discov 2022; 12:1804-1823. [PMID: 35499757 PMCID: PMC9453853 DOI: 10.1158/2159-8290.cd-21-0646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/23/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is commonly characterized by activating mutations in the receptor tyrosine kinase KIT. Tyrosine kinase inhibitors are the only approved therapy for GIST, and complementary treatment strategies are urgently needed. As GIST lacks oncogene amplification and relies upon an established network of transcription factors, we hypothesized that unique chromatin-modifying enzymes are essential in orchestrating the GIST epigenome. We identified through genome-scale CRISPR screening that MOZ and Menin-MLL chromatin regulatory complexes are cooperative and unique dependencies in GIST. These complexes were enriched at GIST-relevant genes and regulated their transcription. Inhibition of MOZ and Menin-MLL complexes decreased GIST cell proliferation by disrupting interactions with transcriptional/chromatin regulators, such as DOT1L. MOZ and Menin inhibition caused significant reductions in tumor burden in vivo, with superior effects observed with combined Menin and KIT inhibition. These results define unique chromatin regulatory dependencies in GIST and identify potential therapeutic strategies for clinical application. SIGNIFICANCE Although many malignancies rely on oncogene amplification, GIST instead depends upon epigenetic regulation of KIT and other essential genes. Utilizing genome-scale CRISPR dependency screens, we identified complementary chromatin-modifying complexes essential to GIST and characterize the consequences of their disruption, elucidating a novel therapeutic approach to this disease. This article is highlighted in the In This Issue feature, p. 1599.
Collapse
Affiliation(s)
- Matthew L. Hemming
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Morgan R. Benson
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael A. Loycano
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Justin A. Anderson
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica L. Andersen
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Madeleine L. Taddei
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrei V. Krivtsov
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon J. Aubrey
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jevon A. Cutler
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charlie Hatton
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott A. Armstrong
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Tang F, Xu D, Wang S, Wong CK, Martinez-Fundichely A, Lee CJ, Cohen S, Park J, Hill CE, Eng K, Bareja R, Han T, Liu EM, Palladino A, Di W, Gao D, Abida W, Beg S, Puca L, Meneses M, De Stanchina E, Berger MF, Gopalan A, Dow LE, Mosquera JM, Beltran H, Sternberg CN, Chi P, Scher HI, Sboner A, Chen Y, Khurana E. Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets. Science 2022; 376:eabe1505. [PMID: 35617398 PMCID: PMC9299269 DOI: 10.1126/science.abe1505] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In castration-resistant prostate cancer (CRPC), the loss of androgen receptor (AR) dependence leads to clinically aggressive tumors with few therapeutic options. We used ATAC-seq (assay for transposase-accessible chromatin sequencing), RNA-seq, and DNA sequencing to investigate 22 organoids, six patient-derived xenografts, and 12 cell lines. We identified the well-characterized AR-dependent and neuroendocrine subtypes, as well as two AR-negative/low groups: a Wnt-dependent subtype, and a stem cell-like (SCL) subtype driven by activator protein-1 (AP-1) transcription factors. We used transcriptomic signatures to classify 366 patients, which showed that SCL is the second most common subtype of CRPC after AR-dependent. Our data suggest that AP-1 interacts with the YAP/TAZ and TEAD proteins to maintain subtype-specific chromatin accessibility and transcriptomic landscapes in this group. Together, this molecular classification reveals drug targets and can potentially guide therapeutic decisions.
Collapse
Affiliation(s)
- Fanying Tang
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Duo Xu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,State Key Laboratory of Reproductive Medicine, Urology department, the First Affiliated Hospital of Nanjing Medical University, Nanjing 211116, China
| | - Chen Khuan Wong
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Martinez-Fundichely
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sandra Cohen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jane Park
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Corinne E. Hill
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenneth Eng
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Teng Han
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric Minwei Liu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA.,Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ann Palladino
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Wei Di
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shaham Beg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Loredana Puca
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Maximiliano Meneses
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael F. Berger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lukas E. Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Juan Miguel Mosquera
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Himisha Beltran
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Cora N. Sternberg
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Howard I. Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Sboner
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY 10065, USA.,Corresponding authors. (E.K.); (Y.C.)
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA.,Corresponding authors. (E.K.); (Y.C.)
| |
Collapse
|
43
|
Klug LR, Khosroyani HM, Kent JD, Heinrich MC. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol 2022; 19:328-341. [PMID: 35217782 PMCID: PMC11488293 DOI: 10.1038/s41571-022-00606-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
When gastrointestinal stromal tumour (GIST), the most common form of sarcoma, was first recognized as a distinct pathological entity in the 1990s, patients with advanced-stage disease had a very poor prognosis owing to a lack of effective medical therapies. The discovery of KIT mutations as the first and most prevalent drivers of GIST and the subsequent development of the first KIT tyrosine kinase inhibitor (TKI), imatinib, revolutionized the treatment of patients with this disease. We can now identify the driver mutation in 99% of patients with GIST via molecular diagnostic testing, and therapies have been developed to treat many, but not all, molecular subtypes of the disease. At present, seven drugs are approved by the FDA for the treatment of advanced-stage GIST (imatinib, sunitinib, regorafenib, ripretinib, avapritinib, larotrectinib and entrectinib), all of which are TKIs. Although these agents can be very effective for treating certain GIST subtypes, challenges remain and new therapeutic approaches are needed. In this Review, we discuss the molecular subtypes of GIST and the evolution of current treatments, as well as their therapeutic limitations. We also highlight emerging therapeutic approaches that might overcome clinical challenges through novel strategies predicated on the biological features of the distinct GIST molecular subtypes.
Collapse
Affiliation(s)
- Lillian R Klug
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Homma M Khosroyani
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jason D Kent
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael C Heinrich
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
44
|
Chi P, Qin LX, Camacho N, Kelly CM, D'Angelo SP, Dickson MA, Gounder MM, Keohan ML, Movva S, Nacev BA, Rosenbaum E, Thornton KA, Crago AM, Francis JH, Martindale M, Phelan HT, Biniakewitz MD, Lee CJ, Singer S, Hwang S, Berger MF, Chen Y, Antonescu CR, Tap WD. Phase Ib Trial of the Combination of Imatinib and Binimetinib in Patients with Advanced Gastrointestinal Stromal Tumors. Clin Cancer Res 2022; 28:1507-1517. [PMID: 35110417 PMCID: PMC9012681 DOI: 10.1158/1078-0432.ccr-21-3909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE This phase Ib trial was designed to evaluate the safety and early efficacy signal of the combination of imatinib and binimetinib in patients with imatinib-resistant advanced gastrointestinal stromal tumors (GISTs). PATIENTS AND METHODS This trial used a standard 3 + 3 design to determine the recommended phase II dose (RP2D). Additional patients were enrolled on an expansion cohort at the RP2D enriching for succinate dehydrogenase (SDH)-deficient GISTs to explore potential efficacy. RESULTS The trial enrolled nine patients in the dose-escalation cohort and 14 in the dose-expansion cohort including six with SDH-deficient GISTs. Imatinib 400 mg daily with binimetinib 45 mg twice daily was established as the RP2D. Dose-limiting toxicity (DLT) was asymptomatic grade 4 creatinine phosphokinase (CPK) elevation. The most common non-DLT grade 3/4 toxicity was asymptomatic CPK elevation (69.6%). Other common ≥grade 2 toxicities included peripheral edema (17.4%), acneiform rash (21.7%), anemia (30.4%), hypophosphatemia (39.1%), and aspartate aminotransferase (AST) increase (17.4%). Two serious adverse events occurred (grade 2 dropped head syndrome and grade 3 central retinal vein occlusion). No unexpected toxicities were observed. Limited clinical activity was observed in KIT-mutant GIST. For SDH-deficient GISTs, one of five had confirmed RECIST1.1 partial response (PR). The median progression-free survival (mPFS) in patients with SDH-deficient GIST was 45.1 months [95% confidence interval (CI), 15.8-not estimable (NE)]; the median overall survival (mOS) was not reached (95% CI, 31.6 months-NE). One patient with a refractory metastatic SDH-deficient GIST had an exceptional pathologic response and durable clinical benefit. CONCLUSIONS The combination of imatinib and binimetinib is safe with manageable toxicity and has encouraging activity in SDH-deficient but not imatinib-refractory KIT/PDGFRA-mutant GISTs. The observed clinical benefits provide a motivation for a larger trial of the combination strategy in SDH-deficient GISTs.
Collapse
Affiliation(s)
- Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Li-Xuan Qin
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Niedzica Camacho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ciara M. Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Sandra P. D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mark A. Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mary L. Keohan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Sujana Movva
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Benjamin A. Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Evan Rosenbaum
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Katherine A. Thornton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Aimee M. Crago
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Jasmine H. Francis
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York
| | - Moriah Martindale
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Haley T. Phelan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Sinchun Hwang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F. Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
45
|
Chi P, Qin LX, Nguyen B, Kelly CM, D'Angelo SP, Dickson MA, Gounder MM, Keohan ML, Movva S, Nacev BA, Rosenbaum E, Thornton KA, Crago AM, Yoon S, Ulaner G, Yeh R, Martindale M, Phelan HT, Biniakewitz MD, Warda S, Lee CJ, Berger MF, Schultz ND, Singer S, Hwang S, Chen Y, Antonescu CR, Tap WD. Phase II Trial of Imatinib Plus Binimetinib in Patients With Treatment-Naive Advanced Gastrointestinal Stromal Tumor. J Clin Oncol 2022; 40:997-1008. [PMID: 35041493 PMCID: PMC8937014 DOI: 10.1200/jco.21.02029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Dual targeting of the gastrointestinal stromal tumor (GIST) lineage-specific master regulators, ETV1 and KIT, by MEK and KIT inhibitors were synergistic preclinically and may enhance clinical efficacy. This trial was designed to test the efficacy and safety of imatinib plus binimetinib in first-line treatment of GIST. METHODS In this trial (NCT01991379), treatment-naive adult patients with confirmed advanced GISTs received imatinib (400 mg once daily) plus binimetinib (30 mg twice daily), 28-day cycles. The primary end point was RECIST1.1 best objective response rate (ORR; complete response plus partial response [PR]). The study was designed to detect a 20% improvement in the ORR over imatinib alone (unacceptable rate of 45%; acceptable rate of 65%), using an exact binomial test, one-sided type I error of 0.08 and type II error of 0.1, and a planned sample size of 44 patients. Confirmed PR or complete response in > 24 patients are considered positive. Secondary end points included Choi and European Organisation for Research and Treatment of Cancer Response Rate, progression-free survival (PFS), overall survival (OS), pathologic responses, and toxicity. RESULTS Between September 15, 2014, and November 15, 2020, 29 of 42 evaluable patients with advanced GIST had confirmed RECIST1.1 PR. The best ORR was 69.0% (two-sided 95% CI, 52.9 to 82.4). Thirty-nine of 41 (95.1%) had Choi PR approximately 8 weeks. Median PFS was 29.9 months (95% CI, 24.2 to not estimable); median OS was not reached (95% CI, 50.4 to not estimable). Five of eight patients with locally advanced disease underwent surgery after treatment and achieved significant pathologic response (≥ 90% treatment effect). There were no unexpected toxicities. Grade 3 and 4 toxicity included asymptomatic creatinine phosphokinase elevation (79.1%), hypophosphatemia (14.0%), neutrophil decrease (9.3%), maculopapular rash (7.0%), and anemia (7.0%). CONCLUSION The study met the primary end point. The combination of imatinib and binimetinib is effective with manageable toxicity and warrants further evaluation in direct comparison with imatinib in frontline treatment of GIST.
Collapse
Affiliation(s)
- Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Li-Xuan Qin
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bastien Nguyen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ciara M. Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Sandra P. D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mark A. Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mary L. Keohan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Sujana Movva
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Benjamin A. Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Evan Rosenbaum
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Katherine A. Thornton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Aimee M. Crago
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Sam Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Gary Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA
| | - Randy Yeh
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA
| | - Moriah Martindale
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Haley T. Phelan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Sarah Warda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael F. Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus D. Schultz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Sinchun Hwang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | | | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
46
|
Ni B, Li Q, Zhuang C, Huang P, Xia X, Yang L, Ma X, Huang C, Zhao W, Tu L, Shen Y, Zhu C, Zhang Z, Zhao E, Wang M, Cao H. The nerve-tumour regulatory axis GDNF-GFRA1 promotes tumour dormancy, imatinib resistance and local recurrence of gastrointestinal stromal tumours by achieving autophagic flux. Cancer Lett 2022; 535:215639. [PMID: 35288241 DOI: 10.1016/j.canlet.2022.215639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Complete surgical resection, accessible therapeutic targets and effective tyrosine kinase inhibitors (TKIs) have not completely cured gastrointestinal stromal tumours (GISTs), with most patients suffering from residual tumours and recurrence. The existence of nerve infiltration in GIST provides a way for tumour cells to escape local resection and systemic targeted therapy, which may challenge the previous understanding of its behaviour patterns and inspire the development of more radical excision and more precise targeted therapy. Moreover, tumour dormancy has emerged as a major cause of drug resistance and tumour relapse. Among these pathways, the nerve-tumour regulatory axis GDNF-GFRA1 is activated in GISTs, assists tumour cells in achieving dormancy and protects them from apoptosis under environmental stress by enhancing autophagic flux. The concrete mechanism is that the GDNF-regulating interaction between GFRA1 and the lysosomal calcium channel MCOLN1 activates Ca2+-dependent TFEB signalling. Activated TFEB transcriptionally regulates intracellular lysosome levels, which could achieve feedback upregulation of cellular autophagy flux during TKI treatment. This dormancy-transition axis fills parts of the mechanistic vacancy before the onset of secondary mutations, and strategies for TKIs combined with targeting GFRA1-dependent autophagy have distinct promise as prospective clinical therapies.
Collapse
Affiliation(s)
- Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Zhuang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiqi Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Xia
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linxi Yang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinli Ma
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyi Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Tu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanying Shen
- Department of Pathology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Enhao Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ming Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
47
|
Qian C, Li D, Chen Y. ETS factors in prostate cancer. Cancer Lett 2022; 530:181-189. [PMID: 35033589 PMCID: PMC8832285 DOI: 10.1016/j.canlet.2022.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
The ETS family of proteins consists of 28 transcription factors, many of which play critical roles in both normal tissue development and homeostasis and have been implicated in development and progression of a variety of cancers. In prostate cancer, gene fusion and overexpression of ETS factors ERG, FLI1, ETV1, ETV4 and ETV5 have been found in half of prostate cancer patients in Caucasian men and define the largest genetic subtype of prostate cancer. This review summarizes the data on the discovery, modeling, molecular taxonomy, lineage plasticity and therapeutic targeting of ETS family members in prostate cancer.
Collapse
Affiliation(s)
- Cheng Qian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, NY, 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
48
|
Xu K, Zhang Q, Chen M, Li B, Wang N, Li C, Gao Z, Zhang D, Yang L, Xu Z, Li X, Xu H. N 6-methyladenosine modification regulates imatinib resistance of gastrointestinal stromal tumor by enhancing the expression of multidrug transporter MRP1. Cancer Lett 2022; 530:85-99. [PMID: 35032557 DOI: 10.1016/j.canlet.2022.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/23/2021] [Accepted: 01/08/2022] [Indexed: 12/29/2022]
Abstract
N6-methyladenosine (m6A) is a frequently occurring mRNA modification, which regulates mRNA stability, splicing, and translation. However, its role in drug resistance of gastrointestinal stromal tumor (GIST) is not known. Here, we report that m6A modification levels are elevated in imatinib-resistant GIST cells and tissues, and that methyltransferase METTL3 is one of the main protein responsible for this aberrant modification. Increased METTL3 levels contributed to imatinib resistance and worse progression-free survival of GIST patients. Mechanistic studies revealed that METTL3-mediated m6A modification of the 5'UTR of the multidrug transporter MRP1 mRNA promoted drug resistance of GIST by stimulating MRP1 mRNA translation, via binding with YTHDF1 and eEF-1. Further, METTL3 transcription in Imatinib resistant GIST cells was activated by ETV1, leading to the increased m6A methylation of MRP1 mRNA. This is the first report showing a novel regulatory mechanism whereby ETV1, METTL3, and the YTHDF1/eEF-1 complex mediate the translation of MRP1 mRNA in an m6A-dependent manner to regulate the intracellular concentration of imatinib and drug resistance of GIST. These findings highlight MRP1 as a new potential therapeutic target for imatinib resistance of GIST.
Collapse
Affiliation(s)
- Kangjing Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Qiang Zhang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang Affiliated to Kangda College, Nanjing Medical University, Lianyungang, 222002, China
| | - Ming Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Nuofan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Chao Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhishuang Gao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, China.
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China.
| |
Collapse
|
49
|
García-Valverde A, Rosell J, Sayols S, Gómez-Peregrina D, Pilco-Janeta DF, Olivares-Rivas I, de Álava E, Maurel J, Rubió-Casadevall J, Esteve A, Gut M, Valverde C, Barretina J, Carles J, Demetri GD, Fletcher JA, Arribas J, Serrano C. E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor. Oncogene 2021; 40:6614-6626. [PMID: 34621020 DOI: 10.1038/s41388-021-02049-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 01/13/2023]
Abstract
KIT/PDGFRA oncogenic tyrosine kinase signaling is the central oncogenic event in most gastrointestinal stromal tumors (GIST), which are human malignant mesenchymal neoplasms that often feature myogenic differentiation. Although targeted inhibition of KIT/PDGFRA provides substantial clinical benefit, GIST cells adapt to KIT/PDGFRA driver suppression and eventually develop resistance. The specific molecular events leading to adaptive resistance in GIST remain unclear. By using clinically representative in vitro and in vivo GIST models and GIST patients' samples, we found that the E3 ubiquitin ligase Atrogin-1 (FBXO32)-the main effector of muscular atrophy in cachexia-resulted in the most critical gene derepressed in response to KIT inhibition, regardless the type of KIT primary or secondary mutation. Atrogin-1 in GISTs is transcriptionally controlled by the KIT-FOXO3a axis, thus indicating overlap with Atrogin-1 regulation mechanisms in nonneoplastic muscle cells. Further, Atrogin-1 overexpression was a GIST-cell-specific pro-survival mechanism that enabled the adaptation to KIT-targeted inhibition by apoptosis evasion through cell quiescence. Buttressed on these findings, we established in vitro and in vivo the preclinical proof-of-concept for co-targeting KIT and the ubiquitin pathway to maximize the therapeutic response to first-line imatinib treatment.
Collapse
Affiliation(s)
- Alfonso García-Valverde
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jordi Rosell
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - David Gómez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Daniel F Pilco-Janeta
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Iván Olivares-Rivas
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital /CSIC/University of Sevilla/CIBERONC, Sevilla, Spain.,Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Sevilla, Spain
| | - Joan Maurel
- Medical Oncology Department, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Anna Esteve
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Claudia Valverde
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jordi Barretina
- Institut Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Institut Català d'Oncologia, Badalona, Spain
| | - Joan Carles
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - George D Demetri
- Sarcoma and Bone Cancer Treatment Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joaquín Arribas
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.,Growth Factors Laboratory, Vall d'Hebron Institute of Oncology (VHIO) and CIBERONC, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain. .,Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain.
| |
Collapse
|
50
|
Dermawan JK, Rubin BP. Molecular Pathogenesis of Gastrointestinal Stromal Tumor: A Paradigm for Personalized Medicine. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:323-344. [PMID: 34736340 DOI: 10.1146/annurev-pathol-042220-021510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past three to four decades, the molecular pathogenesis of gastrointestinal stromal tumors (GISTs) has been elucidated in great detail. In this review, we discuss the biological genesis of GISTs, identification of the various primary activating driver mutations (focusing on KIT and PDGFRA), oncogene addiction and targeted therapies with imatinib and other tyrosine kinase inhibitors, and the subsequent characterization of the various mechanisms of drug resistance. We illustrate how GIST has become a quintessential paradigm for personalized medicine. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; ,
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; ,
| |
Collapse
|