1
|
Gopang M, Yazdi MD, Moyer A, Smith DM, Meliker JR. "Low-to-moderate arsenic exposure: a global systematic review of cardiovascular disease risks". Environ Health 2025; 24:29. [PMID: 40346670 PMCID: PMC12065288 DOI: 10.1186/s12940-025-01184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
High arsenic (As) exposure (≥ 100 µg/l) is associated with cardiovascular (CVD) outcomes, however, the CVD risk from low-to-moderate As exposure (< 100 µg/l) has been less explored. There is a paucity of systematic reviews that comprehensively evaluate both urine and water As exposure metrics in assessing As-related CVD outcomes within the general population. To fill this gap, this review sought to update and consolidate data regarding the correlation between low-to-moderate As exposure and specific CVD outcomes, including stroke, ischemic heart disease (IHD), acute myocardial infarction (AMI), and heart failure (HF). A search for peer-reviewed articles indexed in PubMed, Embase, CINAHL, the Global Medicos Index, and Web of Science and unpublished dissertations in Prospero until October 31, 2024, was performed. Nineteen studies were included. Relative risks were pooled by contrasting the highest v/s lowest exposure groups across studies. Positive associations were observed between urine As and stroke incidence, and water As with IHD incidence. Associations between water As and IHD and AMI mortality were suggestive and became stronger after excluding ecological studies. Sex-stratified analyses suggested an increased risk for all groups with strongest indication of an increased risk of AMI mortality in men. Increased risk was suggested for HF but only two studies assessed this outcome. These findings underscore potential risk for CVD outcomes in relation to low-to-moderate As exposure, and highlight the necessity for additional rigorous, well-structured studies to more clearly delineate the possible effects of low-to-moderate As exposure on different CVD outcomes.
Collapse
Affiliation(s)
- Meroona Gopang
- Program of Public Health, Stony Brook University, NY, USA.
| | - Mahdieh Danesh Yazdi
- Program of Public Health, Stony Brook University, NY, USA
- Department of Family, Population, and Preventive Medicine, Stony Brook University, NY, USA
| | - Anne Moyer
- Department of Psychology, Stony Brook University, NY, USA
| | - Dylan M Smith
- Program of Public Health, Stony Brook University, NY, USA
- Department of Family, Population, and Preventive Medicine, Stony Brook University, NY, USA
| | - Jaymie R Meliker
- Program of Public Health, Stony Brook University, NY, USA
- Department of Family, Population, and Preventive Medicine, Stony Brook University, NY, USA
| |
Collapse
|
2
|
Bibha K, Akhigbe TM, Hamed MA, Akhigbe RE. Metabolic Derangement by Arsenic: a Review of the Mechanisms. Biol Trace Elem Res 2024; 202:1972-1982. [PMID: 37670201 DOI: 10.1007/s12011-023-03828-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Studies have implicated arsenic exposure in various pathological conditions, including metabolic disorders, which have become a global phenomenon, affecting developed, developing, and under-developed nations. Despite the huge risks associated with arsenic exposure, humans remain constantly exposed to it, especially through the consumption of contaminated water and food. This present study provides an in-depth insight into the mechanistic pathways involved in the metabolic derangement by arsenic. Compelling pieces of evidence demonstrate that arsenic induces metabolic disorders via multiple pathways. Apart from the initiation of oxidative stress and inflammation, arsenic prevents the phosphorylation of Akt at Ser473 and Thr308, leading to the inhibition of PDK-1/Akt insulin signaling, thereby reducing GLUT4 translocation through the activation of Nrf2. Also, arsenic downregulates mitochondrial deacetylase Sirt3, decreasing the ability of its associated transcription factor, FOXO3a, to bind to the agents that support the genes for manganese superoxide dismutase and PPARg co-activator (PGC)-1a. In addition, arsenic activates MAPKs, modulates p53/ Bcl-2 signaling, suppresses Mdm-2 and PARP, activates NLRP3 inflammasome and caspase-mediated apoptosis, and induces ER stress, and ox-mtDNA-dependent mitophagy and autophagy. More so, arsenic alters lipid metabolism by decreasing the presence of 3-hydroxy-e-methylglutaryl-CoA synthase 1 and carnitine O-octanoyl transferase (Crot) and increasing the presence of fatty acid-binding protein-3 mRNA. Furthermore, arsenic promotes atherosclerosis by inducing endothelial damage. This cascade of pathophysiological events promotes metabolic derangement. Although the pieces of evidence provided by this study are convincing, future studies evaluating the involvement of other likely mechanisms are important. Also, epidemiological studies might be necessary for the translation of most of the findings in animal models to humans.
Collapse
Affiliation(s)
- K Bibha
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - T M Akhigbe
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| |
Collapse
|
3
|
Kaur G, Desai KP, Chang IY, Newman JD, Mathew RO, Bangalore S, Venditti FJ, Sidhu MS. A Clinical Perspective on Arsenic Exposure and Development of Atherosclerotic Cardiovascular Disease. Cardiovasc Drugs Ther 2023; 37:1167-1174. [PMID: 35029799 PMCID: PMC12117844 DOI: 10.1007/s10557-021-07313-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 11/03/2022]
Abstract
Cardiovascular risk has traditionally been defined by modifiable and non-modifiable risk factors, such as tobacco use, hyperlipidemia, and family history. However, chemicals and pollutants may also play a role in cardiovascular disease (CVD) risk. Arsenic is a naturally occurring element that is widely distributed in the Earth's crust. Inorganic arsenic (iAs) has been implicated in the pathogenesis of atherosclerosis, with chronic high-dose exposure to iAs (> 100 µg/L) being linked to CVD; however, whether low-to-moderate dose exposures of iAs (< 100 µg/L) are associated with the development of CVD is unclear. Due to limitations of the existing literature, it is difficult to define a threshold for iAs toxicity. Studies demonstrate that the effect of iAs on CVD is far more complex with influences from several factors, including diet, genetics, metabolism, and traditional risk factors such as hypertension and smoking. In this article, we review the existing data of low-to-moderate dose iAs exposure and its effect on CVD, along with highlighting the potential mechanisms of action.
Collapse
Affiliation(s)
- Gurleen Kaur
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Karan P Desai
- Division of Cardiovascular Medicine, University of Maryland, Baltimore, MD, USA
| | | | - Jonathan D Newman
- Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Roy O Mathew
- Division of Nephrology, Loma Linda VA Health Care System, Loma Linda, CA, USA
| | - Sripal Bangalore
- Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Ferdinand J Venditti
- Division of Cardiology, Department of Medicine, Albany Medical College and Albany Medical Center, Albany, NY, USA
| | - Mandeep S Sidhu
- Division of Cardiology, Department of Medicine, Albany Medical College and Albany Medical Center, Albany, NY, USA.
| |
Collapse
|
4
|
Jiang M, Ma X, Zheng Y, Yang Z, Guo J, Huang C, Liu Q. Association between Arsenic Methylation in Early Pregnancy and Gestational Diabetes Mellitus: A Prospective Cohort Study. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:343-351. [PMID: 39474282 PMCID: PMC11503887 DOI: 10.1021/envhealth.3c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 12/09/2024]
Abstract
The metabolism of arsenic (As) plays a crucial role in its health effects. However, the impact of arsenic methylation during early pregnancy on gestational diabetes mellitus (GDM) remains unclear. This study aimed to investigate the associations between As methylation in the first and second trimesters and the incidence of GDM by conducting a prospective cohort study in Chongqing, China. Urine samples from first (n = 131) and second (n = 53) trimester pregnant women were analyzed for arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) concentrations. Logistic regressions assessed associations between the concentrations of As species, methylation indices, and GDM risk. As species concentrations showed no significant differences between GDM and non-GDM groups. Higher MMA% (OR = 1.11; 95% CI = 1.02, 1.22) and lower secondary methylation index (SMI) (OR = 0.81; 95% CI = 0.71, 0.93) correlated with GDM risk, primarily in the first trimester. MMA% decreased and DMA% and SMI increased from the first to the second trimester. Results of stratified analyses revealed these associations in women under 28 or with normal BMIs (18-24 kg/m2). The study underscores inefficient arsenic methylation as a GDM risk, modified by age and BMI, with the first trimester as a critical period.
Collapse
Affiliation(s)
- Min Jiang
- College
of Resources and Environment, Southwest
University, Chongqing 400716, China
| | - Xiujuan Ma
- Department
of Obstetrics, The Ninth People’s
Hospital of Chongqing, Chongqing 400700, China
| | - Yin Zheng
- Department
of Obstetrics, The Ninth People’s
Hospital of Chongqing, Chongqing 400700, China
| | - Zhengmei Yang
- Department
of Obstetrics, The Ninth People’s
Hospital of Chongqing, Chongqing 400700, China
| | - Juanjuan Guo
- Research
Center of Stem Cells and Aging, Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of
Sciences, Chongqing 400714, China
| | - Chengzhi Huang
- Key
Laboratory of Luminescence Analysis and Molecular Sensing, Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Chongqing
Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing
Science and Technology Commission, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, China
| | - Qingqing Liu
- College
of Resources and Environment, Southwest
University, Chongqing 400716, China
- Key
Laboratory of Luminescence Analysis and Molecular Sensing, Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Chongqing
Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing
Science and Technology Commission, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Linking the Low-Density Lipoprotein-Cholesterol (LDL) Level to Arsenic Acid, Dimethylarsinic, and Monomethylarsonic: Results from a National Population-Based Study from the NHANES, 2003–2020. Nutrients 2022; 14:nu14193993. [PMID: 36235646 PMCID: PMC9573665 DOI: 10.3390/nu14193993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Arsenic (As) contamination is a global public health problem. Elevated total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) are risk factors for cardiovascular diseases, but data on the association of urinary arsenic species’ level and LDL-C are limited. We performed an association analysis based on urinary arsenic species and blood TC and LDL-C in US adults. Methods: Urinary arsenic, arsenic acid (AA), dimethylarsinic (DMA), monomethylarsonic (MMA), TC, LDL-C, and other key covariates were obtained from the available National Health and Nutrition Examination Survey (NHANES) data from 2003 to 2020. Multiple linear regression analysis and generalized linear model are used to analyze linear and nonlinear relationships, respectively. Results: In total, 6633 adults aged 20 years were enrolled into the analysis. The median total urinary arsenic level was 7.86 µg/L. A positive association of urinary arsenic concentration quartiles was observed with TC (β: 2.42 95% CI 1.48, 3.36). The OR for TC of participants in the 80th versus 20th percentiles of urinary total arsenic was 1.34 (95% CI 1.13, 1.59). The OR for LDL-C of participants in the 80th versus 20th percentiles of urinary total arsenic was 1.36 (95% CI 1.15, 1.62). For speciated arsenics analysis, the OR for arsenic acid and TC was 1.35 (95% CI 1.02, 1.79), whereas the OR for DMA and LDL-L was 1.20 (95% CI 1.03, 1.41), and the OR for MMA and LDL-L was 1.30 (95% CI 1.11, 1.52). Conclusions: Urinary arsenic and arsenic species were positively associated with increased LDL-C concentration. Prevention of exposure to arsenic and arsenic species maybe helpful for the control of TC and LDL-C level in adults.
Collapse
|
6
|
Domingo-Relloso A, Makhani K, Riffo-Campos AL, Tellez-Plaza M, Klein KO, Subedi P, Zhao J, Moon KA, Bozack AK, Haack K, Goessler W, Umans JG, Best LG, Zhang Y, Herreros-Martinez M, Glabonjat RA, Schilling K, Galvez-Fernandez M, Kent JW, Sanchez TR, Taylor KD, Craig Johnson W, Durda P, Tracy RP, Rotter JI, Rich SS, Berg DVD, Kasela S, Lappalainen T, Vasan RS, Joehanes R, Howard BV, Levy D, Lohman K, Liu Y, Daniele Fallin M, Cole SA, Mann KK, Navas-Acien A. Arsenic Exposure, Blood DNA Methylation, and Cardiovascular Disease. Circ Res 2022; 131:e51-e69. [PMID: 35658476 PMCID: PMC10203287 DOI: 10.1161/circresaha.122.320991] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Epigenetic dysregulation has been proposed as a key mechanism for arsenic-related cardiovascular disease (CVD). We evaluated differentially methylated positions (DMPs) as potential mediators on the association between arsenic and CVD. METHODS Blood DNA methylation was measured in 2321 participants (mean age 56.2, 58.6% women) of the Strong Heart Study, a prospective cohort of American Indians. Urinary arsenic species were measured using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. We identified DMPs that are potential mediators between arsenic and CVD. In a cross-species analysis, we compared those DMPs with differential liver DNA methylation following early-life arsenic exposure in the apoE knockout (apoE-/-) mouse model of atherosclerosis. RESULTS A total of 20 and 13 DMPs were potential mediators for CVD incidence and mortality, respectively, several of them annotated to genes related to diabetes. Eleven of these DMPs were similarly associated with incident CVD in 3 diverse prospective cohorts (Framingham Heart Study, Women's Health Initiative, and Multi-Ethnic Study of Atherosclerosis). In the mouse model, differentially methylated regions in 20 of those genes and DMPs in 10 genes were associated with arsenic. CONCLUSIONS Differential DNA methylation might be part of the biological link between arsenic and CVD. The gene functions suggest that diabetes might represent a relevant mechanism for arsenic-related cardiovascular risk in populations with a high burden of diabetes.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
- Department of Statistics and Operations Research, University of Valencia, Spain
| | - Kiran Makhani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Angela L. Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Vicerrectoría Académica, Universidad de La Frontera, Temuco, Chile
- Department of Computer Science, ETSE, University of Valencia, Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Kathleen Oros Klein
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Pooja Subedi
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Katherine A. Moon
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anne K. Bozack
- Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry for Health and Environment, University of Graz, Austria
| | | | - Lyle G. Best
- Missouri Breaks Industries and Research Inc., Eagle Butte, SD, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, OK, USA
| | | | - Ronald A. Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Marta Galvez-Fernandez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Jack W. Kent
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Peter Durda
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Russell P. Tracy
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - David Van Den Berg
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA; Sections of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, department of Epidemiology, Boston University Schools of medicine and Public health, Boston, MA, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Framingham Heart Study, Framingham, MA
| | | | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Framingham Heart Study, Framingham, MA
| | - Kurt Lohman
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Yongmei Liu
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - M Daniele Fallin
- Departments of Mental Health and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Shelley A. Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Koren K. Mann
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
7
|
Yue Y, Nair N, Quinones S, Kordas K, Desai G. Associations of total urinary arsenic with total cholesterol and high-density lipoprotein among 12-17-year-old participants from the 2009-2016 NHANES cycles: A cross-sectional study. Int J Hyg Environ Health 2022; 242:113950. [PMID: 35298926 DOI: 10.1016/j.ijheh.2022.113950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Hypertension and diabetes are highly prevalent among US adults. Arsenic exposure is associated with these cardiometabolic morbidities but the relationship between arsenic exposure and cholesterol markers of cardiometabolic disease has not been elucidated, especially at younger ages, when many chronic diseases may initiate. This study examined the association of total urinary arsenic with total cholesterol (TC) and high-density lipoprotein cholesterol (HDL) and explored effect modification by weight status. METHODS The study sample consisted of 12-17-year-old participants with complete data from the 2009-2016 National Health and Nutrition Examination Survey cycles. The cross-sectional associations of creatinine-adjusted total urinary arsenic with TC and HDL were assessed using multivariable linear regression models with survey weights. Three models were built, adjusting for varying combinations of age, gender, race/ethnicity, weight status, survey cycle, family income to poverty ratio, reference person education level, arsenobetaine, and dimethylarsinic acid (DMA). Model adjustments for arsenobetaine approximated inorganic arsenic exposure, and further adjustment for DMA approximated unmethylated inorganic arsenic exposure. We also explored weight status (underweight/healthy, overweight, and obese) as a potential effect modifier of these relationships using stratified analyses and interaction tests. RESULTS The final analytical sample consisted of 1,177 12-17-year-old participants. After adjusting for covariates and arsenobetaine, creatinine-adjusted arsenic was positively associated with HDL levels (β = 0.063; 95% CI: 0.007, 0.119). Upon further adjustment for DMA, creatinine-adjusted arsenic was positively associated with HDL levels (β = 0.079; 95% CI: 0.015, 0.143) and TC levels (β = 0.258; 95% CI: 0.002, 0.515). No effect modification by weight status was observed. CONCLUSIONS We found a positive association of approximated unmethylated inorganic arsenic exposure with TC, and contrary to our expectation, with HDL. There was no effect modification by weight status. Our findings should be confirmed by conducting longitudinal studies among adolescents exposed to low-level arsenic and focusing specifically on urinary inorganic arsenic concentrations.
Collapse
Affiliation(s)
- Yihua Yue
- Department of Epidemiology and Environmental Health, University at Buffalo, SUNY, Buffalo, NY, USA.
| | - Nisha Nair
- Department of Epidemiology and Environmental Health, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Sarah Quinones
- Department of Epidemiology and Environmental Health, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, SUNY, Buffalo, NY, USA
| |
Collapse
|
8
|
A Machine Learning Approach for Spatial Mapping of the Health Risk Associated with Arsenic-Contaminated Groundwater in Taiwan's Lanyang Plain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111385. [PMID: 34769900 PMCID: PMC8582990 DOI: 10.3390/ijerph182111385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
Groundwater resources are abundant and widely used in Taiwan’s Lanyang Plain. However, in some places the groundwater arsenic (As) concentrations far exceed the World Health Organization’s standards for drinking water quality. Measurements of the As concentrations in groundwater show considerable spatial variability, which means that the associated risk to human health would also vary from region to region. This study aims to adapt a back-propagation neural network (BPNN) method to carry out more reliable spatial mapping of the As concentrations in the groundwater for comparison with the geostatistical ordinary kriging (OK) method results. Cross validation is performed to evaluate the prediction performance by dividing the As monitoring data into three sets. The cross-validation results show that the average determination coefficients (R2) for the As concentrations obtained with BPNN and OK are 0.55 and 0.49, whereas the average root mean square errors (RMSE) are 0.49 and 0.54, respectively. Given the better prediction performance of the BPNN, it is recommended as a more reliable tool for the spatial mapping of the groundwater As concentration. Subsequently, the As concentrations estimated obtained using the BPNN are applied to develop a spatial map illustrating the risk to human health associated with the ingestion of As-containing groundwater based on the noncarcinogenic hazard quotient (HQ) and carcinogenic target risk (TR) standards established by the U.S. Environmental Protection Agency. Such maps can be used to demarcate the areas where residents are at higher risk due to the ingestion of As-containing groundwater, and prioritize the areas where more intensive monitoring of groundwater quality is required. The spatial mapping of As concentrations from the BPNN was also used to demarcate the regions where the groundwater is suitable for farmland and fishponds based on the water quality standards for As for irrigation and aquaculture.
Collapse
|
9
|
Weerasundara L, Ok YS, Bundschuh J. Selective removal of arsenic in water: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115668. [PMID: 33017746 DOI: 10.1016/j.envpol.2020.115668] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 05/28/2023]
Abstract
Selective removal of arsenic (As) is the key challenge for any of As removal mechanisms as this not only increases the efficiency of removal of the main As species (neutral As(III) and As(V) hydroxyl-anions) but also allows for a significant reduction of waste as it does not co-remove other solutes. Selective removal has a number of benefits: it increases the capacity and lifetime of units while lowering the cost of the process. Therefore, a sustainable selective mitigation method should be considered concerning the economic resources available, the ability of infrastructure to sustain water treatment, and the options for reuse and/or safe disposal of treatment residuals. Several methods of selective As removal have been developed, such as precipitation, adsorption and modified iron and ligand exchange. The biggest challenge in selective removal of As is the presence of phosphate in water which is chemically comparable with As(V). There are two types of mechanisms involved with As removal: Coulombic or ion exchange; and Lewis acid-base interaction. Solution pH is one of the major controlling factors limiting removal efficiency since most of the above-mentioned methods depend on complexation through electrostatic effects. The different features of two different As species make the selective removal process more difficult, especially under natural conditions. Most of the selective As removal methods involve hydrated Fe(III) oxides through Lewis acid-base interaction. Microbiological methods have been studied recently for selective removal of As, and although there have been only a small number of studies, the method shows remarkable results and indicates positive prospects for the future.
Collapse
Affiliation(s)
- Lakshika Weerasundara
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| | - Yong-Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Arsenic is associated with cancer, heart disease, diabetes, and other outcomes that are also related to obesity. These similar effects raise the possibility that arsenic plays a role in obesity causation. They also raise the possibility that obesity may be an important effect modifier of arsenic-caused disease. This review summarizes the complex relationship between arsenic and obesity, with an emphasis on current research from human studies. RECENT FINDINGS Experimental studies provide some evidence that arsenic could play a role in obesity pathogenesis. To date, however, these associations have not been confirmed in human studies. In contrast, several epidemiologic studies have shown that the risks of arsenic-caused disease are markedly higher in obese individuals, highlighting obesity as an important susceptibility factor. Arsenic exposure and obesity are prevalent and widespread. Research identifying vulnerable populations, including obese individuals, could lead to new interventions having broad public health effects.
Collapse
Affiliation(s)
- Stephanie M Eick
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Craig Steinmaus
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, 2470 Telegraph Ave., Suite 301, Berkeley, CA, 94704, USA.
| |
Collapse
|
11
|
Xu L, Mondal D, Polya DA. Positive Association of Cardiovascular Disease (CVD) with Chronic Exposure to Drinking Water Arsenic (As) at Concentrations below the WHO Provisional Guideline Value: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072536. [PMID: 32272785 PMCID: PMC7178156 DOI: 10.3390/ijerph17072536] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 01/25/2023]
Abstract
To the best of our knowledge, a dose-response meta-analysis of the relationship between cardiovascular disease (CVD) and arsenic (As) exposure at drinking water As concentrations lower than the WHO provisional guideline value (10 µg/L) has not been published yet. We conducted a systematic review and meta-analyses to estimate the pooled association between the relative risk of each CVD endpoint and low-level As concentration in drinking water both linearly and non-linearly using a random effects dose-response model. In this study, a significant positive association was found between the risks of most CVD outcomes and drinking water As concentration for both linear and non-linear models (p-value for trend < 0.05). Using the preferred linear model, we found significant increased risks of coronary heart disease (CHD) mortality and CVD mortality as well as combined fatal and non-fatal CHD, CVD, carotid atherosclerosis disease and hypertension in those exposed to drinking water with an As concentration of 10 µg/L compared to the referent (drinking water As concentration of 1 µg/L) population. Notwithstanding limitations included, the observed significant increased risks of CVD endpoints arising from As concentrations in drinking water between 1 µg/L and the 10 µg/L suggests further lowering of this guideline value should be considered.
Collapse
Affiliation(s)
- Lingqian Xu
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester M13 9PL, UK; (L.X.); (D.A.P.)
| | - Debapriya Mondal
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
- Correspondence: ; Tel.: +44-161-295-4137
| | - David A. Polya
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester M13 9PL, UK; (L.X.); (D.A.P.)
| |
Collapse
|
12
|
Shi H, Wang J, Yuan J, Tan X, Wang X, Chen C, Feng S. Biomonitoring human urinary levels of 26 metal elements in multi-race coexistence region of Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134752. [PMID: 31812390 DOI: 10.1016/j.scitotenv.2019.134752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
The human biological monitoring of metals (metalloids) is of importance, which concentrations could indicate a wide range of health related information. Reference values (RVs) of metals (metalloids) in specific matix of populations are critically required when performing a statistical evaluation accurately. Recent studies show that RVs of metals (metalloids) are influenced by many multiple factors, including lifestyle, diet, dissimilar environment, location, as well as race. However, it is virtually absent across many nations/regions, especially multi-race coexistence regions. The aim of the work was to establish RVs of metals (metalloids) in urine of adult in Xinjiang, China. Totally 178 urine samples from healthy volunteers were collected and analyzed by inductively coupled plasma mass spectrometer or optical emission spectrometer (ICP-MS/OES). RVs of 26 metals (metalloids) in urine for adult of Xinjiang, China were then established. Effects of race, gender and age on RVs were investigated using partial least squares discriminant analysis and student T-test. The result demonstrated that above factors showed mild influence for the establishment of RVs. The RVs derived from total 178 urine adult samples (Han and Uygur half of each) can be applied for different race, gender and age periods. Moreover, it was observed that three metals (metalloids), As, Sc and Ba significantly varied between some subgroups. The established RVs will be valuable for future health or environmental evaluation, and can serve as a theoretical reference for RVs establishment in multi-race coexistence region.
Collapse
Affiliation(s)
- Haizhu Shi
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jingjing Wang
- Technical Center of Urumqi Customs, Urumqi, 830000, China
| | - Jie Yuan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaopei Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xinxing Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Cheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Technical Center of Urumqi Customs, Urumqi, 830000, China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
13
|
Pichler G, Grau-Perez M, Tellez-Plaza M, Umans J, Best L, Cole S, Goessler W, Francesconi K, Newman J, Redon J, Devereux R, Navas-Acien A. Association of Arsenic Exposure With Cardiac Geometry and Left Ventricular Function in Young Adults. Circ Cardiovasc Imaging 2020; 12:e009018. [PMID: 31060373 DOI: 10.1161/circimaging.119.009018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Arsenic exposure has been related to numerous adverse cardiovascular outcomes. The aim of this study was to investigate the cross-sectional and prospective association between arsenic exposure with echocardiographic measures of left ventricular (LV) geometry and functioning. METHODS A total of 1337 young adult participants free of diabetes mellitus and cardiovascular disease were recruited from the SHFS (Strong Heart Family Study). The sum of inorganic and methylated arsenic concentrations in urine (ΣAs) at baseline was used as a biomarker of arsenic exposure. LV geometry and functioning were assessed using transthoracic echocardiography at baseline and follow-up. RESULTS Mean follow-up was 5.6 years, and median (interquartile range) of ΣAs was 4.2 (2.8-6.9) µg/g creatinine. Increased arsenic exposure was associated with prevalent LV hypertrophy, with an odds ratio (95% CI) per a 2-fold increase in ΣAs of 1.47 (1.05-2.08) in all participants and of 1.58 (1.04-2.41) among prehypertensive or hypertensive individuals. Measures of LV geometry, including LV mass index, left atrial systolic diameter, interventricular septum, and LV posterior wall thickness, were positively and significantly related to arsenic exposure. Among measures of LV functioning, stroke volume, and ejection fraction were associated with arsenic exposure. CONCLUSIONS Arsenic exposure was related to an increase in LV wall thickness and LV hypertrophy in young American Indians with a low burden of cardiovascular risk factors. The relationship was stronger in participants with prehypertension or hypertension, suggesting that potential cardiotoxic effects of arsenic might be more pronounced in individuals already undergoing cardiovascular adaptive mechanisms following elevated systemic blood pressure.
Collapse
Affiliation(s)
- Gernot Pichler
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, NY (G.P., M.G.-P., A.N.-A.).,Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research INCLIVA, Valencia, Spain (G.P., M.G.-P., M.T.-P., J.R.).,Division of Cardiology, Department of Internal Medicine, Hospital Hietzing, Vienna, Austria (G.P.)
| | - Maria Grau-Perez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, NY (G.P., M.G.-P., A.N.-A.).,Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research INCLIVA, Valencia, Spain (G.P., M.G.-P., M.T.-P., J.R.).,Department of Statistics and Operational Research, University of Valencia, Spain (M.G.-P.)
| | - Maria Tellez-Plaza
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research INCLIVA, Valencia, Spain (G.P., M.G.-P., M.T.-P., J.R.).,Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (M.T.-P.).,Department of Chronic Diseases Epidemiology, National Center for Epidemiology, National Institutes for Health Carlos III, Madrid, Spain (M.T.-P.)
| | - Jason Umans
- MedStar Health Research Institute, and Georgetown University (J.U.).,Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC (J.U.)
| | - Lyle Best
- Missouri Breaks Industries Research, Inc, Timber Lake (L.B.)
| | - Shelley Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio (S.C.)
| | - Walter Goessler
- Institute of Chemistry-Analytical Chemistry, University of Graz, Austria (W.G., K.F.)
| | - Kevin Francesconi
- Institute of Chemistry-Analytical Chemistry, University of Graz, Austria (W.G., K.F.)
| | - Jonathan Newman
- Division of Cardiology and Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine, NY (J.N.)
| | - Josep Redon
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research INCLIVA, Valencia, Spain (G.P., M.G.-P., M.T.-P., J.R.).,CIBER 03/06 Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain (J.R.)
| | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, NY (G.P., M.G.-P., A.N.-A.)
| |
Collapse
|
14
|
Mao K, Zhang H, Wang Z, Cao H, Zhang K, Li X, Yang Z. Nanomaterial-based aptamer sensors for arsenic detection. Biosens Bioelectron 2019; 148:111785. [PMID: 31689596 DOI: 10.1016/j.bios.2019.111785] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
Abstract
Arsenic (As) is a highly toxic contaminant in the environment and a serious carcinogen for the human being. The toxicity of arsenic significantly threatens environmental and human health. The effective removing technology for arsenic remains challenging, and one of the reasons is due to the lack of powerful detection method in the complex environmental matrix. There is thus an urgent need to develop novel analytical methods for arsenic, preferably with the potential for the field-testing. To combat arsenic pollution and maintain a healthy environment and eco-system, many analytical methods have been developed for arsenic detection in various samples. Among these strategies, biosensors hold great promise for rapid detection of arsenic, in particular, nanomaterials-based aptamer sensors have attracted significant attention due to their simplicity, high sensitivity and rapidness. In this paper, we reviewed the recent development and applications of aptamer sensors (aptasensors) based-on nanomaterial for arsenic detection, in particular with emphasis on the works using optical and electrochemical technologies. We also discussed the recent novel technology in aptasensors development for arsenic detection, including nucleic acid amplification for signal enhancement and device integration for the portability of arsenic sensors. We are hoping this review could inspire further researches in developing novel nanotechnologies based aptasensors for possible on-site detection of arsenic.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kuankuan Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| |
Collapse
|
15
|
Veenema R, Casin KM, Sinha P, Kabir R, Mackowski N, Taube N, Bedja D, Chen R, Rule A, Kohr MJ. Inorganic arsenic exposure induces sex-disparate effects and exacerbates ischemia-reperfusion injury in the female heart. Am J Physiol Heart Circ Physiol 2019; 316:H1053-H1064. [PMID: 30822117 DOI: 10.1152/ajpheart.00364.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Arsenic is a common contaminant in drinking water throughout the world, and recent studies support a link between inorganic arsenic (iAS) exposure and ischemic heart disease in men and women. Female hearts exhibit an estrogen-dependent reduction in susceptibility to myocardial ischemic injury compared with males, and as such, female hearts may be more susceptible to the endocrine-disrupting effects of iAS exposure. However, iAS exposure and susceptibility to ischemic heart injury have not been examined in mechanistic studies. Male and female mice (8 wk) were exposed to environmentally relevant concentrations of sodium arsenite (0, 10, 100, and 1,000 parts/billion) via drinking water for 4 wk. Pre- and postexposure echocardiography was performed, and postexposure plasma was collected for 17β-estradiol measurement. Hearts were excised and subjected to ischemia-reperfusion (I/R) injury via Langendorff perfusion. Exposure to 1,000 parts/billion iAS led to sex-disparate effects, such that I/R injury was exacerbated in female hearts but unexpectedly attenuated in males. Assessment of echocardiographic parameters revealed statistically significant structural remodeling in iAS-treated female hearts with no change in function; males showed no change. Plasma 17β-estradiol levels were not significantly altered by iAS in male or female mice versus nontreated controls. Although total eNOS protein levels did not change in whole heart homogenates from iAS-treated male or female mice, eNOS phosphorylation (Ser1177) was significantly elevated in iAS-treated male hearts. These results suggest that iAS exposure can induce sex-disparate effects and modulate susceptibility to ischemic heart injury by targeting distinct sex-dependent pathways. NEW & NOTEWORTHY This is the first mechanistic study examining iAS exposure on myocardial ischemia-reperfusion injury in male and female mice. Following iAS exposure, ischemia-reperfusion injury was exacerbated in female hearts but attenuated in males. iAS treatment induced statistically significant cardiac remodeling in females, with no change in males. iAS treatment also enhanced phosphorylated eNOS levels at Ser1177, but only in male hearts. These results suggest that iAS alters susceptibility to myocardial I/R injury through distinct sex-dependent pathways.
Collapse
Affiliation(s)
- Ryne Veenema
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| | - Kevin M Casin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| | - Prithvi Sinha
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| | - Raihan Kabir
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| | - Nathan Mackowski
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| | - Nicole Taube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| | - Djahida Bedja
- Cardiology Division, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Rui Chen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| |
Collapse
|
16
|
Sahu S, Sheet T, Banerjee R. Interaction landscape of a 'C αNN' motif with arsenate and arsenite: a potential peptide-based scavenger of arsenic. RSC Adv 2019; 9:1062-1074. [PMID: 35517606 PMCID: PMC9059529 DOI: 10.1039/c8ra08225a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/08/2018] [Indexed: 12/01/2022] Open
Abstract
Arsenic (As) is a toxic metalloid that has drawn immense attention from the scientific community recently due to its fatal effects through its unwanted occurrence in ground water around the globe. The presence of an excess amount of water soluble arsenate and/or arsenite salt (permissible limit 10 μg L-1 as recommended by the WHO) in water has been correlated with several human diseases. Although arsenate (HAsO4 2-) is a molecular analogue of phosphate (HPO4 2-), phosphate is indispensable for life, while arsenic and its salts are toxic. Therefore, it is worthwhile to focus on the removal of arsenic from water. Towards this end, the design of peptide-based scaffolds for the recognition of arsenate and arsenite would add a new dimension. Utilizing the stereochemical similarity between arsenate (HAsO4 2-) and phosphate (HPO4 2-), we successfully investigated the recognition of arsenate and arsenite with a naturally occurring novel phosphate binding 'CαNN' motif and its related designed analogues. Using computational as well as biophysical approaches, for the first time, we report here that a designed peptide-based scaffold based on the 'CαNN' motif can recognize anions of arsenic in a thermodynamically favorable manner in a context-free system. This peptide-based arsenic binding agent has the potential for future development as a scavenger of arsenic anions to obtain arsenic free water.
Collapse
Affiliation(s)
- Subhankar Sahu
- Department of Biotechnology and Head Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly Known as West Bengal University of Technology) BF-142, Salt Lake Kolkata 700064 West Bengal India
| | - Tridip Sheet
- Department of Biotechnology and Head Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly Known as West Bengal University of Technology) BF-142, Salt Lake Kolkata 700064 West Bengal India
| | - Raja Banerjee
- Department of Biotechnology and Head Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly Known as West Bengal University of Technology) BF-142, Salt Lake Kolkata 700064 West Bengal India
| |
Collapse
|
17
|
Hosseinzadeh A, Houshmand G, Goudarzi M, Sezavar SH, Mehrzadi S, Mansouri E, Kalantar M. Ameliorative effect of gallic acid on sodium arsenite-induced spleno-, cardio- and hemato-toxicity in rats. Life Sci 2018; 217:91-100. [PMID: 30472295 DOI: 10.1016/j.lfs.2018.11.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/17/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022]
Abstract
AIM Arsenic is an important toxic chemical affecting millions of people around the world. Exposure to inorganic arsenic results in various health problems including skin lesions, hypertension, hematological disturbance, cardiovascular disease, spleen enlargement and cancer. Gallic acid (GA) is an important phenolic compound possessing various pharmacological properties including anti-inflammatory, antioxidant and free radical scavenging activities. The present study investigated effects of GA against sodium arsenite (SA)-induced spleno-, cardio- and hemato-toxicity. MAIN METHODS Thirty-five adult male Wistar rats were randomly divided into five groups; group I received normal saline (2 ml/kg/day, p.o.) for 21 days, group II received SA (10 mg/kg/day, p.o.) for 14 days, group III and IV were treated with GA (10 and 30 mg/kg/day, respectively) for 7 days prior to receive SA and treatment was continued up to 21 days in parallel with SA administration, group V received GA (30 mg/kg/day, p.o.) for 21 days. The level of MDA, NO and glutathione (GSH) and the activity of glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase were measured in heart and spleen tissues. Creatine kinase-MB (CK-MB) activity and hematological and histopathological parameters were also assessed. KEY FINDINGS GA significantly decreased SA-induced elevation of MDA and NO levels and reduction of GSH level and GPx and SOD activity in heart and spleen tissues. Furthermore, GA improved SA-induced alteration in hematological and histopathological parameters and reduced SA-induced elevation of serum CK-MB activity. SIGNIFICANCE Our results suggest that GA inhibits SA-induced spleno-, cardio- and hemato-toxicity through reducing oxidative stress.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Houshmand
- Department of Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Hashem Sezavar
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
18
|
Soldatova E, Sun Z, Maier S, Drebot V, Gao B. Shallow groundwater quality and associated non-cancer health risk in agricultural areas (Poyang Lake basin, China). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:2223-2242. [PMID: 29574657 DOI: 10.1007/s10653-018-0094-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Owing to their accessibility, shallow groundwater is an essential source of drinking water in rural areas while usually being used without control by authorities. At the same time, this type of water resource is one of the most vulnerable to pollution, especially in regions with extensive agricultural activity. These factors increase the probability of adverse health effects in the population as a result of the consumption of shallow groundwater. In the present research, shallow groundwater quality in the agricultural areas of Poyang Lake basin was assessed according to world and national standards for drinking water quality. To evaluate non-cancer health risk from drinking groundwater, the hazard quotient from exposure to individual chemicals and hazard index from exposure to multiple chemicals were applied. It was found that, in shallow groundwater, the concentrations of 11 components (NO3-, NH4+, Fe, Mn, As, Al, rare NO2-, Se, Hg, Tl and Pb) exceed the limits referenced in the standards for drinking water. According to the health risk assessment, only five components (NO3-, Fe, As, rare NO2- and Mn) likely provoke non-cancer effects. The attempt to evaluate the spatial distribution of human health risk from exposure to multiple chemicals shows that the most vulnerable area is associated with territory characterised by low altitude where reducing or near-neutral conditions are formed (lower reaches of Xiushui and Ganjiang Rivers). The largest health risk is associated with the immune system and adverse dermal effects.
Collapse
Affiliation(s)
- Evgeniya Soldatova
- National Research Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk, Russia, 634050.
| | - Zhanxue Sun
- East China University of Technology, 418 Guanglan Avenue, Nanchang, 330013, China
| | - Sofya Maier
- National Research Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk, Russia, 634050
| | - Valeriia Drebot
- National Research Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk, Russia, 634050
| | - Bai Gao
- East China University of Technology, 418 Guanglan Avenue, Nanchang, 330013, China
| |
Collapse
|
19
|
Zhou T, Niu W, Yuan Z, Guo S, Song Y, Di C, Xu X, Tan X, Yang L. ABCA1 Is Coordinated with ABCB1 in the Arsenic-Resistance of Human Cells. Appl Biochem Biotechnol 2018; 187:365-377. [PMID: 29951962 DOI: 10.1007/s12010-018-2800-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/30/2018] [Indexed: 11/30/2022]
Abstract
Arsenic is one of the most widespread global environmental toxicants associated with endemic poisoning. ATP-binding cassette (ABC) proteins are transmembrane channels that transport and dispose of lipids and metabolic products across the plasma membrane. The majority of ABC family members (including ABCB1 and ABCC1) are reported to play a role in the development of arsenic and drug resistance in mammals. Previously, we established a human arsenic-resistant ECV-304 (AsRE) cell line and identified ABCA1 as a novel arsenic resistance gene. In the current study, we further investigated the potential contribution of ABCA1, ABCB1, and ABCC1 to arsenic resistance through measurement of survival rates and arsenic accumulation in AsRE cells with RNA interference. The arsenic resistance capacity of ABCC1 was the strongest among the three genes, while those of ABCA1 and ABCB1 were similar. Double or triple gene knockdown of ABCA1, ABCB1, and ABCC1 via RNA interference led to a decrease significant in arsenic resistance when ABCA1/ABCB1 or ABCB1/ABCC1 were simultaneously silenced. Interestingly, no differences were evident between cells with ABCA1/ABCC1 and ABCC1 only knockdown. Our findings suggest that ABCA1 and ABCB1 proteins display similar arsenic resistance capabilities and possibly coordinate to promote arsenic resistance in AsRE cells.
Collapse
Affiliation(s)
- Tong Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Wanqiang Niu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhen Yuan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Shuli Guo
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Xinjiang, People's Republic of China
| | - Yang Song
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoling Xu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiaohua Tan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| | - Lei Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China. .,School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China. .,Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Xinjiang, People's Republic of China.
| |
Collapse
|
20
|
Dahlawi S, Naeem A, Iqbal M, Farooq MA, Bibi S, Rengel Z. Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review. CHEMOSPHERE 2018; 194:171-188. [PMID: 29202269 DOI: 10.1016/j.chemosphere.2017.11.149] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/21/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Growing rice on arsenic (As)-contaminated soil or irrigating with As-contaminated water leads to significant accumulation of As in grains. Moreover, rice accumulates more As into grains than other cereal crops. Thus, rice consumption has been identified as a major route of human exposure to As in many countries. Inorganic As species are carcinogenic and could pose a considerable health risk to humans even at low dietary concentration. Genotypic variation and concentration of nutrients such as iron, manganese, phosphate, sulfur and silicon are the two main factors that affect As accumulation in rice grains. Therefore, in addition to better growth and yield of plants, application of specific nutrients in optimum quantities offers an added benefit of decreasing As content in rice grains. These nutrient elements influence speciation of As in rhizosphere, compete with As for root uptake and interfere with As translocations to the shoot and ultimately accumulation in grains. This papers critically appraises the methods, forms and rate of application, mechanisms and extent of efficiency of different mineral nutrients in decreasing As accumulation in rice grains.
Collapse
Affiliation(s)
- Saad Dahlawi
- Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Institute for Research and Medical Consultation (IRMC), Imam Abdulrehman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Asif Naeem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan; Nuclear Institute of Agriculture and Biology, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Muhammad Ansar Farooq
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sadia Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zed Rengel
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
21
|
Chi L, Gao B, Tu P, Liu CW, Xue J, Lai Y, Ru H, Lu K. Individual susceptibility to arsenic-induced diseases: the role of host genetics, nutritional status, and the gut microbiome. Mamm Genome 2018; 29:63-79. [PMID: 29429126 DOI: 10.1007/s00335-018-9736-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/17/2018] [Indexed: 01/16/2023]
Abstract
Arsenic (As) contamination in water or food is a global issue affecting hundreds of millions of people. Although As is classified as a group 1 carcinogen and is associated with multiple diseases, the individual susceptibility to As-related diseases is highly variable, such that a proportion of people exposed to As have higher risks of developing related disorders. Many factors have been found to be associated with As susceptibility. One of the main sources of the variability found in As susceptibility is the variation in the host genome, namely, polymorphisms of many genes involved in As transportation, biotransformation, oxidative stress response, and DNA repair affect the susceptibility of an individual to As toxicity and then influence the disease outcomes. In addition, lifestyles and many nutritional factors, such as folate, vitamin C, and fruit, have been found to be associated with individual susceptibility to As-related diseases. Recently, the interactions between As exposure and the gut microbiome have been of particular concern. As exposure has been shown to perturb gut microbiome composition, and the gut microbiota has been shown to also influence As metabolism, which raises the question of whether the highly diverse gut microbiota contributes to As susceptibility. Here, we review the literature and summarize the factors, such as host genetics and nutritional status, that influence As susceptibility, and we also present potential mechanisms of how the gut microbiome may influence As metabolism and its toxic effects on the host to induce variations in As susceptibility. Challenges and future directions are also discussed to emphasize the importance of characterizing the specific role of these factors in interindividual susceptibility to As-related diseases.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bei Gao
- NIH West Coast Metabolomics Center, University of California, Davis, CA, 95616, USA
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jingchuan Xue
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27607, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Mohammed T, Mohammed E, Bascombe S. The evaluation of total mercury and arsenic in skin bleaching creams commonly used in Trinidad and Tobago and their potential risk to the people of the Caribbean. J Public Health Res 2017; 6:1097. [PMID: 29291194 PMCID: PMC5736993 DOI: 10.4081/jphr.2017.1097] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 11/23/2022] Open
Abstract
Background. Skin lightening is very popular among women and some men of the Caribbean, and its popularity appears to be growing. The lightening of skin colour is done to produce a lighter complexion which is believed to increase attractiveness, social standing and improves one’s potential of being successful. Design and Methods. Fifteen (15) common skin lightening creams found in pharmacies and cosmetic retailers throughout Trinidad and Tobago were evaluated for Mercury by Cold Vapor Atomic Absorption Spectrophotometry (CVAAS) and Arsenic by Hydride Generation Atomic Absorption Spectrophotometry (HGAAS). The results obtained were compared to global standards and previous research. Results. Fourteen (14) of the fifteen samples analysed contained Mercury in the range of 0.473 μg/g to 0.766 μg/g. One sample had a Mercury content of 14,507.74±490.75 μg/g which was over 14,000 times higher than the USFDA limit for mercury in cosmetics of 1 μg/g. All samples contained Arsenic in the range 1.016 μg/g to 6.612 μg/g, which exceeds the EU limit for cosmetics of 0 μg/g. Conclusions. All the samples analysed contained significant amounts of Mercury and Arsenic and none of them can be considered safe for prolonged human use. The samples that contained Mercury levels which were lower than the USFDA limit contained Arsenic levels which exceeded the EU standard of 0 μg/g in cosmetics. The popularity of these skin lightening creams in the Caribbean region places the population at elevated risk of chronic Mercury and Arsenic poisoning and possibly acute Mercury Poisoning.
|