1
|
Díaz L, Restelli L, Valencia E, Atalay DI, Abarca JM, Gil AC, Fernández E. Effectiveness of low-level laser therapy on temporomandibular disorders. A systematic review of randomized clinical trials. Photodiagnosis Photodyn Ther 2025; 53:104558. [PMID: 40096874 DOI: 10.1016/j.pdpdt.2025.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE This study aimed to systematically evaluate the efficacy of LLLT in the management of TMD, focusing on its impact on pain reduction and functional improvement. Additionally, this review sought to identify the most effective laser parameters (wavelength, energy density, and duration of therapy) and compare LLLT outcomes with conventional treatment modalities. METHODS A comprehensive search was conducted across PubMed, Scopus, Web of Science, and EBSCO databases until December 2024. Randomized controlled trials (RCTs) that evaluated LLLT's effects on pain (via Visual Analog Scale) and vertical aperture (VA) were included. The risk of bias was assessed using Cochrane's RoB 2 tool. RESULTS This systematic review analyzed 44 randomized clinical trials (RCTs) with 1,816 participants, confirming that low-level laser therapy (LLLT) significantly reduces pain intensity (60-70 % decrease on the Visual Analog Scale) and improves mandibular function (10-20 % increase in maximum mouth opening). The most effective laser wavelengths ranged from 810 to 940 nm, with energy densities of 3-12 J/cm². Longer treatment durations (>4 weeks) provided more sustained benefits. Compared to occlusal splints, NSAIDs, and TENS, LLLT showed superior or comparable pain relief with fewer side effects. However, variability in laser parameters and protocols remains a limitation. CONCLUSION LLLT is a safe and effective non-invasive treatment for TMD, offering substantial benefits in pain management and functional recovery. Standardized protocols based on optimized dosimetry are needed to enhance clinical outcomes further.
Collapse
Affiliation(s)
- Leonardo Díaz
- Department of Prosthodontics, Faculty of Dentistry, University of Chile, Santiago, Chile; Department of Stomatology, Faculty of Dentistry, Universidad de Sevilla, Sevilla, Spain; Perioplastic Institute, Santiago, Chile
| | - Lukas Restelli
- Postgraduate School, Faculty of Dentistry, University of Chile, Chile
| | - Emilia Valencia
- Department of Prosthodontics, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Damla Ilhan Atalay
- Department of Oral & Maxillofacial Surgery, Istanbul Kent University, Istanbul, Turkey
| | | | - Alain Chalple Gil
- Universidad Autónoma de Chile, Facultad de Ciencias de la Salud, Santiago, Chile
| | - Eduardo Fernández
- Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Chile; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Woo K, Kim YS, Abueva C, Woo SH. Reprogramming Macrophage Phenotypes With Photobiomodulation for Improved Inflammation Control in ENT Organ Tissues. Clin Exp Otorhinolaryngol 2025; 18:1-13. [PMID: 39700888 PMCID: PMC11917203 DOI: 10.21053/ceo.2024.00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024] Open
Abstract
Photobiomodulation (PBM), a noninvasive phototherapy that utilizes wavelengths between red and near-infrared light, has emerged as a promising approach for controlling inflammation by modulating macrophage polarization. This review investigates the therapeutic potential of PBM in treating ENT-specific inflammatory conditions, such as chronic rhinosinusitis and otitis media, focusing on its effects on macrophage phenotypes and evidence from preclinical studies. By promoting mitochondrial activity, increasing adenosine triphosphate production, and modulating reactive oxygen species, PBM has been shown to shift macrophages from a pro-inflammatory to an anti-inflammatory phenotype. Studies have demonstrated that PBM enhances tissue repair, reduces inflammatory markers, and promotes wound healing. Moreover, PBM facilitates the polarization of M2 macrophages, a crucial factor in resolving mucosal inflammation in the nasal, pharyngeal, and middle ear cavities, as well as restoring tissue homeostasis. The anti-inflammatory effects of PBM are attributed to its ability to influence several molecular mechanisms involved in inflammation regulation, particularly in ENT organ tissues, where recurrent inflammation can lead to chronic conditions such as otitis media or sinusitis. Furthermore, this review compares PBM to competing methods for reprogramming macrophages and treating inflammation, highlighting its advantages of minimal toxicity, simplicity, and precision in controlling ENT immune responses.
Collapse
Affiliation(s)
- Ken Woo
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yeon Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | | | - Seung Hoon Woo
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
3
|
Chunyan F, Zhenbin J, Weiyi J, Haiyan M, Jinrong Z, Yue W, Song W, Chunyan S. The influence of near-infrared therapy on arteriovenous fistula patency in haemodialysis patients: A multicentre, randomised, controlled clinical trial. J Vasc Access 2025; 26:315-321. [PMID: 38708826 DOI: 10.1177/11297298241251501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Arteriovenous fistula (AVF) is the preferred vascular access for patients undergoing haemodialysis (HD). AVF malfunction remains a major clinical problem and is a significant independent risk factor for death. Although far-infrared (FIR) therapy has been shown to reduce complications and improve the patency rate of AVFs in various studies, it has been cautiously recommended by the Kidney Disease Outcome Quality Initiative (KDOQI) guidelines for AVF care due to insufficient evidence. Therefore, it is necessary to identify more effective methods for preventing AVF dysfunction. Many in vitro studies and few clinical studies have examined the effects of near-infrared (NIR) therapy on the vasculature. This study will examine the effects of NIR therapy on AVF. METHODS A randomised, controlled, open-label, multicentre trial will compare the effect of NIR on AVF patency after 1 year of therapy with that of a control group of patients with existing AVF. One group of patients received NIR treatment above their AVFs, whereas the control group received regular care. The primary outcome is the primary fistula patency rate within 12 months. In addition, acute changes in inflammatory, vasodilatory and haemodynamic parameters after a single treatment in the first 40 participants will be examined. This study was registered in the Clinical Trials Registry (ChiCTR2300071305) at https://register.clinicaltrials.gov/. DISCUSSIONS This study will explore the long-term and acute effects of NIR on AVFs. The study findings will provide information that can be used to develop new technical support for the prevention of AVF dysfunction in patients undergoing haemodialysis.
Collapse
Affiliation(s)
- Feng Chunyan
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Jiang Zhenbin
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Jin Weiyi
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Men Haiyan
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Zhu Jinrong
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Wang Yue
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Wang Song
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Su Chunyan
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Vasconcelos MR, Cardoso-Silva L, Barbosa ACL, Borsatto MC, Corona SAM. Influence of Intravascular Laser Irradiation of Blood (ILIB) on inflammatory cytokines and nitric oxide in vivo: a systematic review. Lasers Med Sci 2024; 39:85. [PMID: 38433159 DOI: 10.1007/s10103-024-04031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
The use of Intravascular Laser Irradiation of Blood (ILIB) as a treatment or adjunct tool has been used around the world since the 1980s. So that more professionals can deliver benefits to their patients in different areas of health, it is necessary to understand in depth the mechanisms of laser action at the molecular level, for correct indication and success in the treatment. To analyze works that evaluated the influence of ILIB on inflammatory cytokines and nitric oxide (NO) in animals and humans. The literature search was carried out between February and April 2023 in Pubmed, Medline, Web of Science, SciELO, Lilacs database. The risk of bias was assessed using the bias table where the authors performed the analyzes of all articles with the risk of bias domains. The methodology was defined following the PRISMA guidelines (Preferred Systematic Reviews and MetaAnalysis Report). The search retrieved 135 possibly relevant articles. After removing duplicates, according to the eligibility criteria, evaluation of titles and review of abstracts, in the end, 6 articles were included. An increase in anti-inflammatory cytokines, a decrease in pro-inflammatory cytokines and an increase in NO can be observed. The wavelengths used ranged from 660 to 808 nm when using a low intensity laser and when using a VIP light source 480-3400 nm, they also differed in terms of the light emission pattern. ILIB may be a complementary treatment option for patients who have comorbidities that lead to systemic inflammation.
Collapse
Affiliation(s)
- Milena Rodrigues Vasconcelos
- Department of Clinical Oncology, Stem Cells and Cell Therapy, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | - Lana Cardoso-Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Carolina Loyola Barbosa
- Department of Periodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Cristina Borsatto
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
5
|
Oishi JC, de Moraes LHO, Filho JCC, de Moraes TF, Terroni B, de Castro CA, Almeida-Lopes L, Rodrigues GJ. Long-term effects of photobiomodulation therapy on blood pressure in obese rats induced by a high-fat diet. Lasers Med Sci 2024; 39:20. [PMID: 38165554 DOI: 10.1007/s10103-023-03950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024]
Abstract
The main cardiovascular disease risk associated with obesity is hypertension. The therapeutic use of photobiomodulation therapy (PBM) is suggested for the treatment of wound healing, osteoarthritis, and arterial diseases. However, few studies have measured how red laser (at 660 nm) acts over hypertension, and any of those studies used experimental obesity model. The aim of the study was an attempt to evaluate the long-term effect of PBM on systolic blood pressure in an animal model of obesity, induced by a high-fat diet (HFD). Our results indicate that PBM carried out 3 days a week was able to prevent the increase in blood pressure (133.75 ± 4.82 mmHg, n = 8) induced by a high-fat diet (150.00 ± 4.57 mmHg, n = 8; p < 0.05), restore nitric oxide levels (control: 31.7 ± 5.5 μM, n = 8; HFD + PBM: 29.9 ± 3.7 μM, n = 8 > HFD: 22.2 ± 2.9 μM, n = 8, p < 0.05), decrease lipoperoxidation (control: 1.65 ± 0.25 nM, n = 8; HFD + PBM: 2.05 ± 0.55 nM, n = 8 < HFD: 3.20 ± 0.47 nM, n = 8; p < 0.05), and improve endothelial function (pD2 control: 7.39 ± 0.08, n = 8 > pD2 HFD + PBM: 7.15 ± 0.07, n = 8 > HFD: 6.94 ± 0.07, n = 8; p < 0.05). Our results indicate that PBM prevents the elevation of blood pressure in an obese animal model by a mechanism that involves improvement of endothelial function through an antioxidant effect.
Collapse
Affiliation(s)
- Jorge Camargo Oishi
- Universidade Federal de São Carlos, UFSCar. Rod. Washington Luis, Km 235, São Carlos, SP, CEP:13565-905, Brazil
| | - Luis Henrique Oliveira de Moraes
- Universidade Federal de São Carlos, UFSCar. Rod. Washington Luis, Km 235, São Carlos, SP, CEP:13565-905, Brazil.
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Julio Cesar Conceição Filho
- Universidade Federal de São Carlos, UFSCar. Rod. Washington Luis, Km 235, São Carlos, SP, CEP:13565-905, Brazil
| | - Thiago Francisco de Moraes
- Universidade Federal de São Carlos, UFSCar. Rod. Washington Luis, Km 235, São Carlos, SP, CEP:13565-905, Brazil
| | - Barbara Terroni
- Department of Pharmaceutical Science, Universidade Estadual Paulista "Julio de Mesquita Filho", Araraquara, São Paulo, Brazil
| | - Cynthia Aparecida de Castro
- Universidade Federal de São Carlos, UFSCar. Rod. Washington Luis, Km 235, São Carlos, SP, CEP:13565-905, Brazil
| | - Luciana Almeida-Lopes
- Núcleo de Pesquisa e Ensino de Fototerapia nas Ciências da Saúde - NUPEN, Rua Sebastião de Moraes, 831, São Carlos, SP, CEP:13562-030, Brazil
| | - Gerson Jhonatan Rodrigues
- Universidade Federal de São Carlos, UFSCar. Rod. Washington Luis, Km 235, São Carlos, SP, CEP:13565-905, Brazil
| |
Collapse
|
6
|
Cardoso Soares P, de Freitas PM, Eduardo CDP, Azevedo LH. Photobiomodulation, Transmucosal Laser Irradiation of Blood, or B complex as alternatives to treat Covid-19 Related Long-Term Taste Impairment: double-blind randomized clinical trial. Lasers Med Sci 2023; 38:261. [PMID: 37947919 DOI: 10.1007/s10103-023-03917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
COVID-19 Related Long-Term Taste Impairment (CRLTTI) is a condition that can be expressed after COVID-19 contagion, lasting for months or even years, affecting the routine and quality of life of individuals. Participants expressing CRLTTI, with a minimum of 2 months, attested by PCR-RT test were assessed for taste and smell, and underwent experimental treatments in 6 distinct groups: Photobiomodulation (PBM) in tongue dorsum and lateral (660 nm, 808 nm, association of 660 and 808 nm), Transmucosal Laser Irradiation of Blood (TLIB)-ventral surface of tongue (660 nm), B complex supplementation, and Sham laser. No intergroup statistical differences were observed at the final evaluation, despite the tendencies of better results with PBM and TLIB observed. PBM, TLIB, and B complex might be treatment options in the management of CRLTTI, despite the lack of total remission of taste and smell perception after 8 sessions (PBM and TLIB) or 30 days of B complex supplementation.
Collapse
Affiliation(s)
- Pedro Cardoso Soares
- Special Laboratory of Lasers in Dentistry, School of Dentistry, Universidade de São Paulo, São Paulo, Brazil.
| | - Patrícia Moreira de Freitas
- Special Laboratory of Lasers in Dentistry, School of Dentistry, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos de Paula Eduardo
- Special Laboratory of Lasers in Dentistry, School of Dentistry, Universidade de São Paulo, São Paulo, Brazil
| | - Luciane Hiramatsu Azevedo
- Special Laboratory of Lasers in Dentistry, School of Dentistry, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Ziaeipour S, Norouzian M, Abbaszadeh HA, Aliaghaei A, Nazarian H, Karamian A, Tabeie F, Naserzadeh P, Abdi S, Abdollahifar MA, Paktinat S. Photobiomodulation therapy reverses spermatogenesis arrest in hyperthermia-induced azoospermia mouse model. Lasers Med Sci 2023; 38:114. [PMID: 37103593 DOI: 10.1007/s10103-023-03780-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Testicular heat stress leads to impairment of spermatogenesis in mammals. Involved mechanism in this vulnerability to heat-induced injury remains unclear, and research is being conducted to find an approach to reverse spermatogenesis arrest caused by hyperthermia. Recently, different studies have utilized photobiomodulation therapy (PBMT) therapy for the improvement of sperm criteria and fertility. This study aimed at evaluating the effect of PBMT on the improvement of spermatogenesis in mouse models of hyperthermia-induced azoospermia. A total of 32 male NMRI mice were equally divided into four groups consisting of control, hyperthermia, hyperthermia + Laser 0.03 J/cm2, and hyperthermia + Laser 0.2 J/cm2. To induce scrotal hyperthermia, mice were anesthetized and placed in a hot water bath at 43 °C for 20 min for 5 weeks. Then, PBMT was operated for 21 days using 0.03 J/cm2 and 0.2 J/cm2 laser energy densities in the Laser 0.03 and Laser 0.2 groups, respectively. Results revealed that PBMT with lower intensity (0.03 J/cm2) increased succinate dehydrogenase (SDH) activity and glutathione (GSH)/oxidized glutathione (GSSG) ratio in hyperthermia-induced azoospermia mice. At the same time, low-level PBMT reduced reactive oxygen species (ROS), mitochondrial membrane potential, and lipid peroxidation levels in the azoospermia model. These alterations accompanied the restoration of spermatogenesis manifested by the elevated number of testicular cells, increased volume and length of seminiferous tubules, and production of mature spermatozoa. After conducting experiments and analyzing the results, it has been revealed that the use of PBMT at a dosage of 0.03 J/cm2 has shown remarkable healing effects in the heat-induced azoospermia mouse model.
Collapse
Affiliation(s)
- Sanaz Ziaeipour
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Mohsen Norouzian
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Hojjat-Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Amin Karamian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Faraj Tabeie
- Department of Basic Sciences, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Amin Abdollahifar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran.
| | - Shahrokh Paktinat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran.
| |
Collapse
|
8
|
Hauck M, Schardong J, Donini G, Normann TC, Plentz RDM. Effects of photobiomodulation therapy (PBMT) over endothelial function in healthy individuals: a preliminary crossover clinical trial. Lasers Med Sci 2023; 38:104. [PMID: 37072603 DOI: 10.1007/s10103-023-03762-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/05/2023] [Indexed: 04/20/2023]
Abstract
Photobiomodulation therapy (PBMT) causes stimulatory effects that raise cell metabolism. The study aimed to evaluate the effects of PBMT on the endothelial function of healthy individuals. It was a controlled, randomized, crossover, triple-blind trial with 22 healthy volunteers (female: 77.3%), aged 25.45 years which were randomly divided into three groups. PBMT with gallium-aluminum-arsenide (GaAlAs) diode laser (810 nm, continuous-wave mode, 1000 mW, 0.28 cm2) was applied over the radial and ulnar artery regions in two parallel spots: group 1-30 J (n = 22, 107 J/cm2) per spot; group 2-60 J (n = 22, 214 J/cm2) per spot; and group 3-placebo (n = 22, sham). The endothelial function was measured before and immediately after PBMT by the flow-mediated dilation technique (%FMD) with high-resolution ultrasound. Statistical analysis was made with ANOVA for repeated measures, the effect size was measured by Cohen's d, and results are presented as mean and standard error (or 95% confidence intervals). A p-value < 0.05 was considered statistically significant. The %FMD increases 10.4% with 60 J (mean difference = 0.496 mm, 95% CI = 0.42 to 0.57, p < 0.001), 7.3% with 30 J (mean difference = 0.518 mm, 95% CI = 0.44 to 0.59, p < 0.001), and 4.7% with placebo (mean difference = 0.560 mm, 95% CI = 0.48 to 0.63, p < 0.001). We found a small effect size (p = 0.702; d de Cohen = 0.24) without statistical difference between interventions. PBMT with the energy density of 60 J and 30 J did not improve endothelial function.Trial registration number: NCT03252184 (01/09/2017).
Collapse
Affiliation(s)
- Melina Hauck
- Graduate Programm in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Zip Code: 90050-170, Porto Alegre, Brazil.
- Graduate Programm in Rehabilitation Sciences of Universidade Federal de Santa Catarina (UFSC), Zip Code: 88.905-120, Araranguá, Brazil.
| | - Jociane Schardong
- Complexo Hospitalar Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Zip Code: 90020-090, Brazil
| | - Gabriela Donini
- Graduate in Physiotherapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Zip Code: 90050-170, Brazil
| | - Tatiana Coser Normann
- Health Multidisciplinary Residency Programm in Urgency and Emergency, Hospital de Pronto Socorro de Porto Alegre (HPS), Porto Alegre, Zip Code: 90040-192, Brazil
| | - Rodrigo Della Méa Plentz
- Graduate Programm in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Zip Code: 90050-170, Porto Alegre, Brazil
- Complexo Hospitalar Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Zip Code: 90020-090, Brazil
- Physiotherapy Department, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Zip Code: 90050-170, Brazil
| |
Collapse
|
9
|
Giolo FP, Santos GS, Pacheco VF, Huber SC, Malange KF, Rodrigues BL, Bassora F, Mosaner T, Azzini G, Ribeiro LL, Parada CA, Lana JFSD. Photobiomodulation therapy for osteoarthritis: Mechanisms of action. World J Transl Med 2022; 10:29-42. [DOI: 10.5528/wjtm.v10.i3.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
Photobiomodulation (PBM) is a non-invasive therapeutic modality with demonstrated effects in many fields related to regenerative medicine. In the field of orthopedics, in particular, PBM at various wavelengths has demonstrated the capacity to trigger multiple biological effects associated with protective mechanisms in musculoskeletal tissues. The articles cited in this review show that devices operating close to or within the near infrared range at low intensities can provoke responses which favor the shift in the predominant catabolic microenvironment typically seen in degenerative joint diseases, especially osteoarthritis (OA). These responses include proliferation, differentiation and expression of proteins associated with stable cell cycles. Additionally, PBM can also modulate oxidative stress, inflammation and pain by exerting regulatory effects on immune cells and blocking the transmission of pain through sensory neuron fibers, without adverse events. Collectively, these effects are essential in order to control the progression of OA, which is in part attributed to exacerbated inflammation and degradative enzymatic reactions which gradually contribute to the destruction of joint tissues. PBM may offer medical experts ease of application, financial viability, efficacy and lack of serious adverse events. Therefore, it may prove to be a suitable ally in the management of mild to moderate degrees of OA. This review explores and discusses the principal biological mechanisms of PBM and how the produced effects may contribute to the amelioration of osteoarthritic progression. Literature was reviewed using PubMed and Google Scholar in order to find studies describing the mechanisms of PBM. The investigation included a combination of nomenclature such as: “photobiomodulation”, “phototherapy”, “laser therapy”, “PBM”, “osteoarthritis”, low level light therapy”, “inflammation” and “cartilage”. We considered only articles written in English, with access to the full text.
Collapse
Affiliation(s)
- Fábio Pericinoto Giolo
- Department of Physical Therapy, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Gabriel Silva Santos
- Biomedical Science, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Victor Fontes Pacheco
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Stephany Cares Huber
- Biomedical Science, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Kaue Franco Malange
- Neurobiology of Pain and Regenerative Medicine, The University of Campinas, Campinas 13083-862, Brazil
| | - Bruno Lima Rodrigues
- Biomedical Science, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Fernanda Bassora
- Department of Hematology, The University of Campinas, Campinas 13083-878, Brazil
| | - Tomas Mosaner
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Gabriel Azzini
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Lucas Leite Ribeiro
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, Brazil
| | - Carlos Amilcar Parada
- Neurobiology of Pain and Regenerative Medicine, The University of Campinas, Campinas 13083-862, Brazil
| | | |
Collapse
|
10
|
Abstract
Low-level laser therapy (LLLT) has become an important part of the therapeutic process in various diseases. However, despite the broad use of LLLT in everyday clinical practice, the full impact of LLLT on cell life processes has not been fully understood. This paper presents the current state of knowledge concerning the mechanisms of action of LLLT on cells. A better understanding of the molecular processes occurring within the cell after laser irradiation may result in introducing numerous novel clinical applications of LLLT and potentially increases the safety profile of this therapy.
Collapse
|
11
|
Colombo E, Signore A, Aicardi S, Zekiy A, Utyuzh A, Benedicenti S, Amaroli A. Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review. Biomedicines 2021; 9:biomedicines9030274. [PMID: 33803396 PMCID: PMC7998572 DOI: 10.3390/biomedicines9030274] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Under physiological conditions, endothelial cells are the main regulator of arterial tone homeostasis and vascular growth, sensing and transducing signals between tissue and blood. Disease risk factors can lead to their unbalanced homeostasis, known as endothelial dysfunction. Red and near-infrared light can interact with animal cells and modulate their metabolism upon interaction with mitochondria's cytochromes, which leads to increased oxygen consumption, ATP production and ROS, as well as to regulate NO release and intracellular Ca2+ concentration. This medical subject is known as photobiomodulation (PBM). We present a review of the literature on the in vitro and in vivo effects of PBM on endothelial dysfunction. METHODS A search strategy was developed consistent with the PRISMA statement. The PubMed, Scopus, Cochrane, and Scholar electronic databases were consulted to search for in vitro and in vivo studies. RESULTS Fifty out of >12,000 articles were selected. CONCLUSIONS The PBM can modulate endothelial dysfunction, improving inflammation, angiogenesis, and vasodilatation. Among the studies, 808 nm and 18 J (0.2 W, 2.05 cm2) intracoronary irradiation can prevent restenosis as well as 645 nm and 20 J (0.25 W, 2 cm2) can stimulate angiogenesis. PBM can also support hypertension cure. However, more extensive randomised controlled trials are necessary.
Collapse
Affiliation(s)
- Esteban Colombo
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
| | - Antonio Signore
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
- Department of Therapeutic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Stefano Aicardi
- Department for the Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Angelina Zekiy
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
| | - Anatoliy Utyuzh
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
| | - Stefano Benedicenti
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
| | - Andrea Amaroli
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
- Correspondence: ; Tel.: +39-010-3537309
| |
Collapse
|
12
|
Hanna R, Dalvi S, Sălăgean T, Bordea IR, Benedicenti S. Phototherapy as a Rational Antioxidant Treatment Modality in COVID-19 Management; New Concept and Strategic Approach: Critical Review. Antioxidants (Basel) 2020; 9:E875. [PMID: 32947974 PMCID: PMC7555229 DOI: 10.3390/antiox9090875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
The COVID-19 pandemic has taken the entire globe by storm. The pathogenesis of this virus has shown a cytokine storm release, which contributes to critical or severe multi-organ failure. Currently the ultimate treatment is palliative; however, many modalities have been introduced with effective or minimal outcomes. Meanwhile, enormous efforts are ongoing to produce safe vaccines and therapies. Phototherapy has a wide range of clinical applications against various maladies. This necessitates the exploration of the role of phototherapy, if any, for COVID-19. This critical review was conducted to understand COVID-19 disease and highlights the prevailing facts that link phototherapy utilisation as a potential treatment modality for SARS-CoV-2 viral infection. The results demonstrated phototherapy's efficacy in regulating cytokines and inflammatory mediators, increasing angiogenesis and enhancing healing in chronic pulmonary inflammatory diseases. In conclusion, this review answered the following research question. Which molecular and cellular mechanisms of action of phototherapy have demonstrated great potential in enhancing the immune response and reducing host-viral interaction in COVID-19 patients? Therefore, phototherapy is a promising treatment modality, which needs to be validated further for COVID-19 by robust and rigorous randomised, double blind, placebo-controlled, clinical trials to evaluate its impartial outcomes and safety.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
- Department of Oral Surgery, Dental Institute, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
- Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur 441110, India
| | - Tudor Sălăgean
- Department of Land Measurements and Exact Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania;
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
| |
Collapse
|
13
|
Ferreira MVL. Response to: Can Transdermal Photobiomodulation Help Us at the Time of COVID-19? PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:326-327. [PMID: 32579493 DOI: 10.1089/photob.2020.4895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Camacho AD. Author's Response to Ferreira: Can Transdermal Photobiomodulation Help Us at the Time of COVID-19? An Update. Photobiomodul Photomed Laser Surg 2020; 38:328-331. [PMID: 32579491 DOI: 10.1089/photob.2020.4899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
15
|
Domínguez A, Velásquez SA, David MA. Can Transdermal Photobiomodulation Help Us at the Time of COVID-19? Photobiomodul Photomed Laser Surg 2020; 38:258-259. [PMID: 32330404 DOI: 10.1089/photob.2020.4870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
16
|
Domínguez A, Velásquez SA, David MA. Can Transdermal Photobiomodulation Help Us at the Time of COVID-19? Photobiomodul Photomed Laser Surg 2020; 38:258-259. [DOI: doi.org/10.1089/photob.2020.4870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2023] Open
|
17
|
Li Y, Xu Q, Shi M, Gan P, Huang Q, Wang A, Tan G, Fang Y, Liao H. Low-level laser therapy induces human umbilical vascular endothelial cell proliferation, migration and tube formation through activating the PI3K/Akt signaling pathway. Microvasc Res 2020; 129:103959. [DOI: 10.1016/j.mvr.2019.103959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/16/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022]
|
18
|
Ahrabi B, Rezaei Tavirani M, Khoramgah MS, Noroozian M, Darabi S, Khoshsirat S, Abbaszadeh HA. The Effect of Photobiomodulation Therapy on the Differentiation, Proliferation, and Migration of the Mesenchymal Stem Cell: A Review. J Lasers Med Sci 2019; 10:S96-S103. [PMID: 32021681 DOI: 10.15171/jlms.2019.s17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: The purpose of this study is to investigate the effect of a low-power laser on the proliferation, migration, differentiation of different types of mesenchymal stem cells (MSCs) in different studies. Methods: The relevant articles that were published from 2004 to 2019 were collected from the sources of PubMed, Scopus, and only the articles specifically examining the effect of a lowpower laser on the proliferation, differentiation, and migration of the MSCs were investigated. Results: After reviewing the literature, only 42 articles were found relevant. Generally, most of the studies demonstrated that different laser parameters increased the proliferation, migration, and differentiation of the MSCs, except the results of two studies which were contradictory. In fact, changing the parameters of a low-power laser would affect the results. On the other hand, the source of the stem cells was reported as a key factor. In addition, the combination of lasers with other therapeutic approaches was found to be more effective. Conclusion: The different parameters of lasers has been found to be effective in the proliferation, differentiation, and migration of the MSCs and in general, a low-power laser has a positive effect on the MSCs, helping to improve different disease models.
Collapse
Affiliation(s)
- Behnaz Ahrabi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Khoramgah
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Noroozian
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Shahrokh Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
De Moraes TF, Filho JCC, Oishi JC, Almeida-Lopes L, Parizotto NA, Rodrigues GJ. Energy-dependent effect trial of photobiomodulation on blood pressure in hypertensive rats. Lasers Med Sci 2019; 35:1041-1046. [PMID: 31664552 DOI: 10.1007/s10103-019-02883-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
Abstract
The main purpose of this work was to construct an energy-dependent response curve of photobiomodulation on arterial pressure in hypertension animal model. To reach this objective, we have used a two-kidney one clip (2K-1C) rat model. Animals received acute laser light irradiation (660 nm) on abdominal region using different energy (0.6, 1.8, 3.6, 7.2, 13.8, 28.2, 55.8, and 111.6 J), the direct arterial pressure was measured by femoral cannulation, and systolic arterial pressure (SAP), diastolic arterial pressure (DAP), heart rate (HR), and time of effect were obtained. Our results indicated that 660 nm laser light presents an energy-dependent hypotensive effect, and 28.2 J energy irradiation reached the maximum hypotensive effect, inducing a decreased SAP, DAP, and HR (decrease in SAP: - 19.23 ± 1.82 mmHg, n = 11; DAP: - 9.57 ± 2.23 mmHg, n = 11; HR: - 39.15 ± 5.10 bpm, n = 11; and time of hypotensive effect: 3068.00 ± 719.00 s, n = 11). The higher energy irradiation evaluated (111.6 J) did not induce a hypotensive effect and induced an increase in HR (21.69 ± 7.89 bpm, n = 7). Taken together, our results indicate that red laser energy irradiation from 7.2 to 55.8 J is the effective therapeutic window to reduce SAP, DAP, MAP, and HR and induce a long-lasting hypotensive effect in rats, with effect loss at higher energy irradiation (111.6 J).
Collapse
Affiliation(s)
- T F De Moraes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rod. Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - J C C Filho
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rod. Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - J C Oishi
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rod. Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - L Almeida-Lopes
- Nucleus of Research and Teaching of Phototherapy in Health Sciences - NUPEN, São Carlos, SP, Brazil
| | - N A Parizotto
- Department of Physical Therapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - G J Rodrigues
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rod. Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
20
|
Brauncajs M, Ksiąszczyk K, Lewandowska-Polak A, Gorzela K, Grzegorczyk J. Impact of low-level laser therapy on the dynamics of pressure ulcer-induced changes considering an infectious agent and cathelicidin LL-37 concentration: a preliminary study. Postepy Dermatol Alergol 2018; 35:582-586. [PMID: 30618525 PMCID: PMC6320475 DOI: 10.5114/ada.2018.77609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Low-level laser therapy is used in managing chronic wounds including pressure ulcers. Less is known about its impact on the healing process if an inhibitive agent e.g. bacterial infection takes place. Modulating non-specific immunity processes might eliminate bacteria if laser therapy is applied. AIM To investigate the impact of low-level laser therapy on pressure ulcer dynamics considering an infectious agent and cathelicidin LL-37 concentration. MATERIAL AND METHODS The study comprised 6 patients with pressure ulcers ranging from stage II to III in Torrance classification and 12 patients without pressure ulcers. Venous blood sample and decubitus wound swab were taken - in study groups A at baseline and after 2 weeks; in control group B once - at a specific point of time. The swabs served for species identification. Drug susceptibility of isolated pathogens and cathelicidin LL-37 in serum concentration were measured. RESULTS In study group A, the following bacteria predominantly occurred: S. aureus, E. faecalis, P. mirabilis, P. aeruginosa, while in control group B, excluding one MRSA case, S. hominis, S. epidermidis, D. nishinomiyaensis, A. haemolyticus (physiological flora) were present. HLGR resistance mechanisms were detected when analyzing drug susceptibility panels. Study group A findings demonstrated a statistically significant difference between the levels of cathelicidin LL-37 concentration at baseline and at the end. CONCLUSIONS There is insufficient information to accurately determine the effect of LLLT on pressure ulcer dynamics considering an infectious agent. These effects may occur if innate immunity processes are modulated so that laser therapy might eliminate bacteria indirectly.
Collapse
Affiliation(s)
- Małgorzata Brauncajs
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz, Poland
| | | | - Anna Lewandowska-Polak
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland
| | | | - Janina Grzegorczyk
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Rizzi M, Migliario M, Tonello S, Rocchetti V, Renò F. Photobiomodulation induces in vitro re-epithelialization via nitric oxide production. Lasers Med Sci 2018; 33:1003-1008. [DOI: 10.1007/s10103-018-2443-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
|
22
|
Machado AF, Micheletti JK, Vanderlei FM, Nakamura FY, Leal-Junior ECP, Netto Junior J, Pastre CM. Effect of low-level laser therapy (LLLT) and light-emitting diodes (LEDT) applied during combined training on performance and post-exercise recovery: protocol for a randomized placebo-controlled trial. Braz J Phys Ther 2017; 21:296-304. [PMID: 28579190 PMCID: PMC5537481 DOI: 10.1016/j.bjpt.2017.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous studies have shown positive results of phototherapy for improving performance and accelerating recovery; however, the effects of phototherapy during training and after a primary adaptation remain unclear. The aim of this randomized controlled trial is to analyze the effects of phototherapy and combined training on clinical, functional, and psychological outcomes and on vascular endothelial growth factor. METHODS This randomized placebo-controlled trial by stratified sample will involve 45 healthy male participants. In phase 1, the participants will undergo six weeks of combined training (sprints and squats). In phase 2, participants will be allocated through stratified randomization (based on adaptation capacity) into three groups: active phototherapy group (AG), placebo group (PG), and non-treatment control group (CG). A new six-week training program will then start and the participants will receive the recovery strategy between sprints and squats. The primary outcome will be maximal isometric contraction. The secondary outcomes include strength and power testing, maximal incremental test, squat jump, sprint test, muscle soreness, pain threshold, perceptions of exertion and recovery, psychological questionnaire, and vascular endothelial growth factor. CONCLUSIONS This will be the first trial to include phototherapy during training. We believe that this strategy will combine the ergogenic and prophylactic effects in the same session. Furthermore, an application protocol performed after primary adaptation may reflect the real effect of the technique.
Collapse
Affiliation(s)
- Aryane Flauzino Machado
- Postgraduate Program in Physical Therapy, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - Jéssica Kirsch Micheletti
- Postgraduate Program in Physical Therapy, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - Franciele Marques Vanderlei
- Postgraduate Program in Physical Therapy, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | | | - Ernesto Cesar Pinto Leal-Junior
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Jayme Netto Junior
- Postgraduate Program in Physical Therapy, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - Carlos Marcelo Pastre
- Postgraduate Program in Physical Therapy, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil.
| |
Collapse
|