1
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, White K, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL induces cytokine production via the NFkB2 pathway promoting neutrophil chemotaxis and neutrophil-mediated immune-suppression in triple negative breast cancer cells. Cancer Lett 2025; 620:217692. [PMID: 40187604 PMCID: PMC12049148 DOI: 10.1016/j.canlet.2025.217692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown mechanisms modulating TRAIL activity in patients. We hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. RNAseq analysis of MDA-MB-231 cells along with validation in additional cell lines demonstrated that TRAIL induced cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, TRAIL dependent induction of the cytokines was predominantly mediated by death receptor 5, caspase-8 and the non-canonical NFKB2 pathway. These cytokines produced by TRAIL-treated TNBC cells enhanced chemotaxis of normal human donor isolated neutrophils. Using TNBC xenograft models, TRAIL induced activation of NFkB2 pathway, cytokine production and increased neutrophil recruitment into the tumors. Moreover, preincubation of neutrophils in supernatants from TRAIL-treated TNBC cells significantly impaired neutrophil function as measured by reduced respiratory burst and cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies showed that these neutrophils suppress T cell proliferation and augment Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and neutrophil-mediated immune suppression.
Collapse
Affiliation(s)
- Manjari Kundu
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yoshimi E Greer
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexei Lobanov
- Center for Cancer Research Collaborative Bioinformatics Resource (CCBR), NCI, NIH, Bethesda, MD, USA
| | - Lisa Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research (CCR), NCI, NIH, Frederick, MD, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Shashi Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - Karley White
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Donna Voeller
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah Weltz
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maggie Cam
- Center for Cancer Research Collaborative Bioinformatics Resource (CCBR), NCI, NIH, Bethesda, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - David A Wink
- Cancer Innovation Laboratory, Center for Cancer Research (CCR), NCI, NIH, Frederick, MD, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Chu X, Pu N, Yang X, Xie Y, Liu L, Jin Y. Subtypes of tumor-associated neutrophils and their roles in cancer immunotherapy. Crit Rev Oncol Hematol 2025; 212:104763. [PMID: 40334802 DOI: 10.1016/j.critrevonc.2025.104763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025] Open
Abstract
Neutrophils are essential components of the innate immune system. Tumor-associated neutrophils (TANs) are shaped by tumor microenvironment (TME), leading to significant heterogeneity in biological characteristics and functions. Recent advances in single-cell sequencing have revealed a wide array of TAN subtypes, while a comprehensive classification system is still lacking. This review aims to summarize the alterations observed in TAN subgroups following cancer immunotherapy, and identify the distinctions and commonalities between pro-tumor and anti-tumor subgroups. Current progress of preclinical and clinical studies is also highlighted, involving novel therapies targeting TANs.
Collapse
Affiliation(s)
- Xinyun Chu
- Department of Hepatobiliary & Pancreatic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, China; Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xue Yang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuqi Xie
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yun Jin
- Department of Hepatobiliary & Pancreatic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, China.
| |
Collapse
|
3
|
Cavalleri A, Xhahysa B, Mutti S, Ferraro RM, Mazzoldi EL, Farina M, Leoni A, Garuffo L, Trenta F, Re F, Radici V, Buttini EA, Morello E, Magliano G, Cancelli V, Giliani SC, Malagola M, Russo D, Bernardi S. Different In Vitro Models of Chronic Myeloid Leukemia Show Different Characteristics: Biological Replicates Are Not Biologically Equivalent. Cell Biol Int 2025; 49:570-586. [PMID: 40022557 PMCID: PMC11994880 DOI: 10.1002/cbin.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/11/2024] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
Chronic Myeloid Leukemia (CML) is characterized by the BCR::ABL1 fusion gene, driving uncontrolled myeloid cell proliferation. Furthermore, metabolic dysregulation contributes to disease progression. Despite the efficacy of tyrosine kinase inhibitors (TKIs), unresolved clinical needs persist, necessitating refined preclinical models. This study compared responses of three commonly used CML cell lines (K562, LAMA84, KCL22) to five TKIs (imatinib, nilotinib, dasatinib, bosutinib, ponatinib) and a Specifically Targeting the ABL Myristoyl Pocket (STAMP) inhibitor commonly used in clinical settings. Using morphological assessments, viability and metabolic activity assays, glutamate intake evaluations, and gene expression analyses we observed distinct responses among cell lines. TKIs and STAMP inhibitor treatments showed varying impacts on morphological features, cell viability, metabolic activity, and gene expression profiles, highlighting significant differences in cellular responses. This emphasizes the necessity of considering cellular heterogeneity in CML research. This comprehensive comparison provides valuable insights for refining preclinical models and enhancing translational relevance in CML research and treatment development. Understanding the diverse responses of CML cell lines to TKIs and STAMP inhibitor facilitates the selection of appropriate models for specific research questions, ultimately improving the accuracy and reliability of preclinical studies in CML.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Protein Kinase Inhibitors/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Proliferation/drug effects
- Pyridazines/pharmacology
- Dasatinib/pharmacology
- Imatinib Mesylate/pharmacology
- Quinolines/pharmacology
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- K562 Cells
- Pyrimidines/pharmacology
- Antineoplastic Agents/pharmacology
- Nitriles/pharmacology
- Aniline Compounds/pharmacology
- Imidazoles/pharmacology
Collapse
Affiliation(s)
- Alessia Cavalleri
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
- Centro di Ricerca Emato‐Oncologica AIL (CREA), ASST Spedali CiviliBresciaItaly
| | - Besjana Xhahysa
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
- Centro di Ricerca Emato‐Oncologica AIL (CREA), ASST Spedali CiviliBresciaItaly
| | - Silvia Mutti
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
- Centro di Ricerca Emato‐Oncologica AIL (CREA), ASST Spedali CiviliBresciaItaly
| | - Rosalba Monica Ferraro
- Department of Molecular and Translational MedicineUniversity of Brescia, “Angelo Nocivelli” Institute for molecular medicine, ASST Spedali CiviliBresciaItaly
| | - Elena Laura Mazzoldi
- Department of Molecular and Translational MedicineUniversity of Brescia, “Angelo Nocivelli” Institute for molecular medicine, ASST Spedali CiviliBresciaItaly
| | - Mirko Farina
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
| | - Alessandro Leoni
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
- Centro di Ricerca Emato‐Oncologica AIL (CREA), ASST Spedali CiviliBresciaItaly
| | - Luca Garuffo
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
- Centro di Ricerca Emato‐Oncologica AIL (CREA), ASST Spedali CiviliBresciaItaly
| | - Federica Trenta
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
- Centro di Ricerca Emato‐Oncologica AIL (CREA), ASST Spedali CiviliBresciaItaly
| | - Federica Re
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
- Centro di Ricerca Emato‐Oncologica AIL (CREA), ASST Spedali CiviliBresciaItaly
| | - Vera Radici
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
| | - Eugenia Accorsi Buttini
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
| | - Enrico Morello
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
| | - Gabriele Magliano
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
| | | | - Silvia Clara Giliani
- Department of Molecular and Translational MedicineUniversity of Brescia, “Angelo Nocivelli” Institute for molecular medicine, ASST Spedali CiviliBresciaItaly
| | - Michele Malagola
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
| | - Domenico Russo
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
| | - Simona Bernardi
- Department of Clinical and Experimental SciencesUniversity of Brescia, Unit of Blood Diseases and Bone Marrow Transplant, ASST Spedali CiviliBresciaItaly
- Centro di Ricerca Emato‐Oncologica AIL (CREA), ASST Spedali CiviliBresciaItaly
- National Center for Gene Therapy and Drug based on RNA Technology—CN3PadovaItaly
| |
Collapse
|
4
|
Cai W, Fan T, Xiao C, Deng Z, Liu Y, Li C, He J. Neutrophils in cancer: At the crucial crossroads of anti-tumor and pro-tumor. Cancer Commun (Lond) 2025. [PMID: 40296668 DOI: 10.1002/cac2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Neutrophils are important components of the immune system and play a key role in defending against pathogenic infections and responding to inflammatory cues, including cancer. Their dysregulation indicates potential disease risk factors. However, their functional importance in disease progression has often been underestimated due to their short half-life, especially as there is limited information on the role of intratumoral neutrophils. Recent studies on their prominent role in cancer have led to a paradigm shift in our understanding of the functional diversity of neutrophils. These studies highlight that neutrophils have emerged as key components of the tumor microenvironment, where they can play a dual role in promoting and suppressing cancer. Moreover, several approaches to therapeutically target neutrophils have emerged, and clinical trials are investigating their efficacy. In this review, we discussed the involvement of neutrophils in cancer initiation and progression. We summarized recent advances in therapeutic strategies targeting neutrophils and, most importantly, suggested future research directions that could facilitate the manipulation of neutrophils for therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
5
|
Chen F, Batirbek S, Espinosa V, Jin L, Wang K, Wu W, Johnson E, Lemenze A, Messyasz A, Siracusa M, Parker D, Rivera A, Gause WC. Helminth infection favors reprogramming and proliferation of lung neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645229. [PMID: 40196466 PMCID: PMC11974826 DOI: 10.1101/2025.03.25.645229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Neutrophils are a granulocytic population of myeloid cells that have critical effector functions during infectious disease but are generally thought to be short-lived and nonproliferative with markedly limited activation states. In these studies, we directly compared lung neutrophil activation following infection with different groups of pathogens including bacteria, fungi, and helminths. Our results demonstrate considerable heterogeneity depending on the type of infectious agent. In contrast to bacterial and fungal infection, after helminth infection neutrophils expressed markers associated with characteristic type 2 responses and unexpectedly upregulated genes associated with cell cycling and protein synthesis. Further studies showed reduced neutrophil cell death following helminth infection and increased proliferation, which was dependent on IL-4R signaling. This distinct subset of proliferating neutrophils expanded following helminth infection and was released from the endothelial niche to colocalize with invading parasites in the airways. These studies demonstrate a novel long-lived cycling phenotype for neutrophils following helminth infection.
Collapse
Affiliation(s)
- Fei Chen
- Center for Immunity and Inflammation, The State University of New Jersey, Newark, New Jersey, USA
- Department of Medicine, The State University of New Jersey, Newark, New Jersey, USA
| | - Suheyla Batirbek
- Center for Immunity and Inflammation, The State University of New Jersey, Newark, New Jersey, USA
- Department of Medicine, The State University of New Jersey, Newark, New Jersey, USA
| | - Vanessa Espinosa
- Center for Immunity and Inflammation, The State University of New Jersey, Newark, New Jersey, USA
- Department of Pediatrics, The State University of New Jersey, Newark, New Jersey, USA
| | - Lianhua Jin
- Center for Immunity and Inflammation, The State University of New Jersey, Newark, New Jersey, USA
- Department of Medicine, The State University of New Jersey, Newark, New Jersey, USA
| | - Keyi Wang
- Center for Immunity and Inflammation, The State University of New Jersey, Newark, New Jersey, USA
- Department of Pediatrics, The State University of New Jersey, Newark, New Jersey, USA
| | - Wenhui Wu
- Center for Immunity and Inflammation, The State University of New Jersey, Newark, New Jersey, USA
- Department of Medicine, The State University of New Jersey, Newark, New Jersey, USA
| | - Evan Johnson
- Department of Medicine, The State University of New Jersey, Newark, New Jersey, USA
- Center for Data Science, The State University of New Jersey, Newark, New Jersey, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, The State University of New Jersey, Newark, New Jersey, USA
- Department of Pathology, Immunology, and Laboratory Medicine, The State University of New Jersey, Newark, New Jersey, USA
| | - Adriana Messyasz
- Molecular and Genomics Informatics Core Facility, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA
| | - Mark Siracusa
- Center for Immunity and Inflammation, The State University of New Jersey, Newark, New Jersey, USA
- Department of Medicine, The State University of New Jersey, Newark, New Jersey, USA
| | - Dane Parker
- Center for Immunity and Inflammation, The State University of New Jersey, Newark, New Jersey, USA
- Department of Pathology, Immunology, and Laboratory Medicine, The State University of New Jersey, Newark, New Jersey, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, The State University of New Jersey, Newark, New Jersey, USA
- Department of Pediatrics, The State University of New Jersey, Newark, New Jersey, USA
| | - William C Gause
- Center for Immunity and Inflammation, The State University of New Jersey, Newark, New Jersey, USA
- Department of Medicine, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
6
|
Duda HC, Sprenzel CJ, Didier A, Scholz AM, Deeg CA, Degroote RL. Metabolic phenotype of bovine blood-derived neutrophils is altered in milk. Sci Rep 2025; 15:9401. [PMID: 40108313 PMCID: PMC11923088 DOI: 10.1038/s41598-025-93929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
In a healthy udder, immune cells from the peripheral bloodstream migrate into mammary tissue in low numbers to provide baseline immune surveillance, without triggering inflammation. In bovine intramammary inflammation, on the other hand, high amounts of leukocytes are recruited, causing severe inflammation. We were interested in leukocyte subpopulations and functional differences between blood- and milk-derived neutrophils from healthy and inflamed udder quarters. In this context, we found a distinct leukocyte subpopulation profile dependent on the health status of mammary gland quarters, with a predominant T cells population in heathy mammary gland quarters and a shift to macrophages and granulocytes in inflammation. Further, we detected divergent expression of major histocompatibility complex class II and interleukin 2 receptor CD25 on the surface of milk- and blood-derived neutrophils, pointing to antigen presentation and immune modulatory properties. Moreover, we observed differences in production of reactive oxygen species, deviant early and late apoptosis and functional changes in these cells, pointing to an altered metabolic phenotype in milk cells dependent on the health status of mammary gland quarters. These findings provide insights into the functional adaptations of neutrophils in different environments, highlighting the importance of metabolic alterations for immune cell function.
Collapse
Affiliation(s)
- Heidi C Duda
- Chair of Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
| | - Carolin J Sprenzel
- Chair of Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
| | - Andrea Didier
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 85764, Oberschleißheim, Germany
| | - Armin M Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764, Oberschleißheim, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
| | - Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany.
| |
Collapse
|
7
|
Gysemans C, Beya M, Pedace E, Mathieu C. Exploring Neutrophil Heterogeneity and Plasticity in Health and Disease. Biomedicines 2025; 13:597. [PMID: 40149573 PMCID: PMC11940349 DOI: 10.3390/biomedicines13030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Neutrophils, the most abundant polymorphonuclear leukocytes, are critical first responders to infection, and have historically been underappreciated in terms of their functional complexity within the immune response. Once viewed primarily as short-lived, innate immune cells with limited functional plasticity, recent research has illuminated their considerable heterogeneity and diverse functional roles, which extend beyond their involvement in steady-state immunity. This review seeks to provide an updated analysis of neutrophil development, maturation, heterogeneity, and plasticity, with a focus on how these characteristics influence immune modulation in both healthy and diseased tissues. Beginning with the origin of neutrophils, we explore their maturation into effector cells and their evolving roles in immune defense under homeostatic and disease-associated conditions. We then delve into their heterogeneity, discussing recent breakthroughs in neutrophil research that challenge the traditional view of neutrophils as a uniform population. We address the significant advances that have been made in identifying distinct neutrophil subsets, the emerging complexities of their plasticity, and the challenges that remain in fully understanding their functional diversity. Finally, we highlight future directions and opportunities for continued exploration in this rapidly advancing field, shedding light on how these insights could open new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Conny Gysemans
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| | - Mateson Beya
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| | - Erika Pedace
- Diabetes Unit, Department of Medicine, Surgery, and Neurosciences, University of Siena, 53100 Siena, Italy;
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Chantal Mathieu
- Leuven Diabetes Lab, Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (M.B.); (C.M.)
| |
Collapse
|
8
|
Yang C, Gao J, Gong K, Ma Q, Chen G. Comprehensive analysis of hub mRNA, lncRNA and miRNA, and associated ceRNA networks implicated in cobia (Rachycentron canadum) scales under hypoosmotic adaption. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101353. [PMID: 39586219 DOI: 10.1016/j.cbd.2024.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024]
Abstract
Salinity plays a vital role in fish aquaculture, profoundly influencing the growth and development of fish. Scales, as the protective outer layer of fish, function as a critical defense against external factors. In this study, we employed transcriptome sequencing to analyze the ceRNA expression profiles to reveal the effect of salinity acclimation on transcriptional expression changes in the scales of cobia (Rachycentron canadum). The results revealed that after being exposed to a salinity level of 15 ‰ for just one day (1D), a total of 407 mRNAs/genes were significantly regulated; 66 miRNAs were respectively significantly regulated; and 109 target genes of the differentially expressed miRNAs were significantly regulated; a total of 185 differently expressed lncRNAs and 292 differently expressed target genes (DetGenes) of differently expressed lncRNAs were also identified. After 7 days (7D), a total of 2195 mRNAs/genes were found to be significantly regulated and 82 miRNAs were significantly regulated; among the target genes of the differentially expressed miRNAs, 245 were regulated. Moreover, 438 differently expressed lncRNAs and 681 DetGenes of these lncRNAs were identified. Subsequent analysis through GO, KEGG pathway, in 1D vs. CG (control group), DeGenes, which first respond to changes in salinity, are mainly involved in negative regulation of macrophage differentiation, negative regulation of granulocyte differentiation and negative regulation of phagocytosis, and are mainly related to biological processes related to the immune function of fish. After a 7-day process, DeGenes were enriched in the collagen fibril organization, regulation of nodal signaling pathway and cell recognition biology processes. These biological processes are not only related to the immune function of fish, but more importantly, to the physiological structure of fish. By analyzing the co down-regulated miRNAs of 1D vs. CG, as well as 7D vs. CG, the functions of these miRNAs are mainly related to bone differentiation and development. In addition,ceRNA network uncovered that the effect of salinity is temporal. The first competing lncRNAs mainly regulated genes related to physiological processes and biological development, while target genes related to immunity and body defense were less competitive. On the contrary, after a period of salinity treatment, the types of competing lncRNAs involved changed.
Collapse
Affiliation(s)
- Changgeng Yang
- Life Science & Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Jingyi Gao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kailin Gong
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qian Ma
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
9
|
Saxena R, Gottlin EB, Campa MJ, He YW, Patz EF. Complement regulators as novel targets for anti-cancer therapy: A comprehensive review. Semin Immunol 2025; 77:101931. [PMID: 39826189 DOI: 10.1016/j.smim.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Cancer remains a formidable global health challenge requiring the continued exploration of innovative therapeutic approaches. While traditional treatment strategies including surgery, chemotherapy, and radiation therapy have had some success, primarily in early-stage disease, the quest for more targeted, personalized, safer, and effective therapies remains an ongoing pursuit. Over the past decade, significant advances in the field of tumor immunology have dramatically shifted a focus towards immunotherapy, although the ability to harness and coopt the immune system to treat cancer is still just beginning to be realized. One important area that has yet to be fully explored is the complement system, an integral part of innate immunity that has gathered attention recently as a source of potential targets for anti-cancer therapy. The complement system has a complex and context dependent role in cancer biology in that it not only contributes to immune surveillance but also may promote tumor progression. Complement regulators, including CD46, CD55, CD59, and complement factor H, exercise defined control over complement activation, and have also been acknowledged for their role in the tumor microenvironment. This review explores the intricate role of complement regulators in cancer development and progression, examining their potential as therapeutic targets, current strategies, challenges, and the evolving landscape of clinical research.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Koenderman L, Vrisekoop N. Neutrophils in cancer: from biology to therapy. Cell Mol Immunol 2025; 22:4-23. [PMID: 39653768 PMCID: PMC11686117 DOI: 10.1038/s41423-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
The view of neutrophils has shifted from simple phagocytic cells, whose main function is to kill pathogens, to very complex cells that are also involved in immune regulation and tissue repair. These cells are essential for maintaining and regaining tissue homeostasis. Neutrophils can be viewed as double-edged swords in a range of situations. The potent killing machinery necessary for immune responses to pathogens can easily lead to collateral damage to host tissues when inappropriately controlled. Furthermore, some subtypes of neutrophils are potent pathogen killers, whereas others are immunosuppressive or can aid in tissue healing. Finally, in tumor immunology, many examples of both protumorigenic and antitumorigenic properties of neutrophils have been described. This has important consequences for cancer therapy, as targeting neutrophils can lead to either suppressed or stimulated antitumor responses. This review will discuss the current knowledge regarding the pro- and antitumorigenic roles of neutrophils, leading to the concept of a confused state of neutrophil-driven pro-/antitumor responses.
Collapse
Affiliation(s)
- Leo Koenderman
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nienke Vrisekoop
- Dept. Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Sant'Ana AN, Dias CK, Nunes VBS, Farias MG, Alegretti AP, Portela P, Calvache ET, Meirelles MF, Daudt LE, Michalowski MB, Paz AA, Figueiró F. Prognostic value of myeloid-derived suppressor-like cells in acute myeloid leukemia: insights from immunophenotyping and clinical correlations. Immunol Res 2024; 73:11. [PMID: 39673675 DOI: 10.1007/s12026-024-09558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population that acts on both innate and adaptive immunity, fostering immune escape in tumors and contributing to cancer progression. Despite the lack of definitive markers for immunophenotyping MDSCs, particularly the polymorphonuclear (PMN-MDSC) subset, these cells seem to play a crucial role in acute myeloid leukemia (AML) patients' prognosis. Additionally, the maturation stage of MDSCs remains a subject of debate and is largely unknown within the AML context. In this study, we conducted a retrospective analysis of flow cytometry immunophenotyping data obtained at the diagnosis of AML patients. We explored how the enrichment of neutrophil maturation stages, the frequency of PMN-MDSC-like cells and monocytic MDSC-like population (M-MDSC-like), and the ratios of MDSC-like cells to T lymphocytes correlate with relevant prognostic indicators. Our findings revealed that CD45+CD33lowHLA-DR-CD36+ PMN-MDSC-like cells and mature CD13+CD11b+CD10+ neutrophils correlate poor survival in AML patients. Furthermore, PMN-MDSC-like cells, and their ratio to T lymphocytes, are elevated in patients with adverse-risk stratification. Similarly, the M-MDSC-like population is increased in FLT3-ITD mutation carrier patients. Notably, we observed confirmational evidence of CD36 relevance in the AML context, which has emerged recently as a potential marker for PMN-MDSCs. Our study highlights significant findings associating increased MDSC-like subsets and poor prognostic factors in AML.
Collapse
MESH Headings
- Humans
- Myeloid-Derived Suppressor Cells/immunology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Immunophenotyping
- Prognosis
- Female
- Male
- Middle Aged
- Adult
- Aged
- Neutrophils/immunology
- Retrospective Studies
- Flow Cytometry
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Antigens, CD/metabolism
- Aged, 80 and over
- T-Lymphocytes/immunology
- Young Adult
- Mutation
Collapse
Affiliation(s)
- Alexia N Sant'Ana
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Camila K Dias
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Vitória B S Nunes
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Mariela G Farias
- Unidade de Hematologia e Citometria de Fluxo, Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Ana P Alegretti
- Setor de Inovação, Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Pâmela Portela
- Unidade de Hematologia e Citometria de Fluxo, Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Ebellins T Calvache
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Maria F Meirelles
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Liane E Daudt
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Gradução em Saúde da Criança e do Adolescente, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Mariana B Michalowski
- Programa de Pós-Gradução em Saúde da Criança e do Adolescente, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Serviço de Oncologia Pediátrica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Alessandra A Paz
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Fabrício Figueiró
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
12
|
Remke M, Groll T, Metzler T, Urbauer E, Kövilein J, Schnalzger T, Ruland J, Haller D, Steiger K. Histomorphological scoring of murine colitis models: A practical guide for the evaluation of colitis and colitis-associated cancer. Exp Mol Pathol 2024; 140:104938. [PMID: 39418944 DOI: 10.1016/j.yexmp.2024.104938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND AND AIMS Histomorphology is a powerful and cost-efficient tool for evaluating inflammatory and neoplastic conditions. Inflammatory bowel disease (IBD) is a widespread condition with globally rising incidences, and a lot of research is done to better understand the pathogenesis of IBD and to identify potential therapeutic approaches. However, standardized and reproducible scores for the histomorphological evaluation of murine IBD models are lacking. Therefore, we aimed to develop an easy-to-use and reproducible score for standardized assessment of colitis and associated cancer models. METHODS In this study, samples from three different colitis models with and without associated cancer formation were analyzed to develop a universal, robust, and reproducible score for the grading of murine colitis models using the following three parameters: 1. Extent of leucocyte infiltration, 2. Tissue damage, 3. Architectural disruption of the mucosa. RESULTS A scoring system was established for different kinds of colitis models (genetically induced enterocolitis, genetically induced metabolic injury, and chemically induced colitis-associated cancer) and all stages of the disease, from mild inflammatory changes to severe inflammation with neoplastic changes as the extreme extent of IBD. The scoring scheme is easy to use, can easily be learned, and proves to have a high interrater reliability. CONCLUSIONS We propose a robust histological scoring system for the assessment of murine colitis and colitis-associated cancer models, giving more researchers access to conclusive and reliable histological assessment.
Collapse
Affiliation(s)
- Marianne Remke
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany; Comparative Experimental Pathology, School of Medicine and Health, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany; Member of the German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| | - Tanja Groll
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany; Comparative Experimental Pathology, School of Medicine and Health, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany
| | - Thomas Metzler
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany; Comparative Experimental Pathology, School of Medicine and Health, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany
| | - Elisabeth Urbauer
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Janine Kövilein
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Theresa Schnalzger
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany; Comparative Experimental Pathology, School of Medicine and Health, Technical University of Munich, Trogerstr. 18, 81675 Munich, Germany; Member of the German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
13
|
Prendecki M, Gurung A, Pisacano N, Pusey CD. The role of neutrophils in ANCA-associated vasculitis. Immunol Lett 2024; 270:106933. [PMID: 39362307 DOI: 10.1016/j.imlet.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) is a group of rare systemic autoimmune diseases characterised by necrotising inflammation of small blood vessels and usually associated with circulating ANCA. The pathophysiology of AAV is complex, involving many aspects of the innate and adaptive immune system. Neutrophils are central to the pathogenesis of AAV as they are both the target of the autoantibody and effector cells mediating vascular injury. We describe mechanisms for ANCA induced activation of neutrophils, the pathogenic mechanisms by which this leads to endothelial cell injury, and how neutrophil crosstalk modulates other aspects of the immune system in AAV.
Collapse
Affiliation(s)
- Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom.
| | - Angila Gurung
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Noelle Pisacano
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
14
|
Delhez N, Aboubakar Nana F, Houbion C, Bayard A, Bruger A, Vanhaver C, Brandau S, van der Bruggen P, Hirsch T. Deciphering neutrophil heterogeneity in human blood and tumors: Methods for isolating neutrophils and assessing their effect on T-cell proliferation. Methods Cell Biol 2024; 191:151-196. [PMID: 39824555 DOI: 10.1016/bs.mcb.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Neutrophils were historically considered a homogenous population of cells with functions limited to innate immunity against external threats. However, with the rise of immunotherapy, recent works have shown that neutrophils are also important actors in immuno-oncology. In this context, neutrophils appear as a more heterogenous population of cells. However, many reported neutrophil subpopulations, or neutrophils with various transcriptional states, lack functional characterization to confirm their suspected roles. Thus, we believe that functional assays remain essential to define the role of neutrophils in cancer. In this chapter, we present a T-cell proliferation assay based on the use of allogeneic T-cells to assess the suppressive capabilities of neutrophils isolated from human blood or tumor samples. Allogeneic T-cells are isolated in large quantities from the blood of non-cancerous donors and frozen in aliquots to be used in several experiments. This reduces variability by excluding other cancer-derived factors, which would be present if autologous T-cell were used and allows to isolate the effect of neutrophils on T-cell proliferation. Thawed T-cells have poor proliferative capacities and to initiate proliferation they require co-culture with mature dendritic cells that we generate from monocytes isolated from the same blood sample. Initially developed for lung cancer patients, our method to isolate low-density neutrophils (LDN) and normal-density neutrophils (NDN) can be used with any patient and adapted to other kind of samples (e.g., ascites, urine, …).
Collapse
Affiliation(s)
- Nicolas Delhez
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Frank Aboubakar Nana
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium; Pneumology Department, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Camille Houbion
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Alexandre Bayard
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Annika Bruger
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, West German Cancer Center, Essen, Germany
| | | | - Thibault Hirsch
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
15
|
Bhardwaj JS, Paliwal S, Singhvi G, Taliyan R. Immunological challenges and opportunities in glioblastoma multiforme: A comprehensive view from immune system lens. Life Sci 2024; 357:123089. [PMID: 39362586 DOI: 10.1016/j.lfs.2024.123089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, is the most common and deadly brain tumour. It has a poor prognosis and a low survival rate. GBM cells' immunological escape mechanism helps them resist advanced multimodal therapy. In physiological homeostasis, brain astrocytes and microglia suppress infections and clear the potential pathogen from the system. However, in severe pathological conditions like cancer, the immune response fails to eliminate mutated and rapidly over-proliferating GBM cells. The malignant cells' interactions with immune cells and the neoplasm's immunosuppressive environment enable the avoidance and their clearance. Immunotherapy efficiently addresses these difficulties, as shown by sufficient evidence. This review discusses how GBM cells inhibit and elude the immune system. These include MHC molecule expression alteration and PD-L1 and CTLA-4 immune checkpoint overexpression. Without co-stimulation, these changes induce effector T-cell tolerance and anergy. The review also covers how MDSCs, TAMs, Herpes Virus Entry Mediators, and Human cytomegalovirus protein decrease the effector immune response against glioblastoma. The latter part discusses various therapies that are available in the market or under clinical trials which revolves around combating resistance against the available multimodal therapies. The recent trends indicate that there are various monoclonal antibodies and peptide-based vaccines that can be utilized to overcome the immune evasion technique harbored by GBM cells. A strategic development of Immunotherapy considering these hallmarks of immune evasion may help in designing a therapy that may prove to be effective in killing the GBM cells thereby, improving the overall survival of GBM-affected patients.
Collapse
Affiliation(s)
- Jayant Singh Bhardwaj
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Shivangi Paliwal
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India.
| |
Collapse
|
16
|
Ji Y, Chen D, Shao M, Liu Z, Li M, Yu Q. The P-type calcium pump Spf1 regulates immune response by maintenance of the endoplasmic reticulum-plasma membrane contacts during Candida albicans systemic infection. Mycology 2024; 16:856-875. [PMID: 40415905 PMCID: PMC12096691 DOI: 10.1080/21501203.2024.2409299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/20/2024] [Indexed: 01/03/2025] Open
Abstract
Spf1 is an important P-type ATPase in Candida albicans, which functions as an endoplasmic reticulum calcium pump to maintain calcium homoeostasis. The deficiency of Spf1 attenuates the virulence of C. albicans. However, its impact on immune response remains to be investigated. This study discovered that deletion of SPF1 resulted in a reduction of endoplasmic reticulum-plasma membrane contacts, an important structure mediating material and information exchange. This effect was attributed to the reduced plasma membrane localisation of the crucial endoplasmic reticulum-plasma membrane tethering proteins Ist2 and Tcb1/3. The reduction of the contacts led to a decrease in secretion of the virulence factors phospholipase, secreted aspartyl protease (SAP), candidalysin, and the cell wall-anchored protein Hwp1 during infection. Immunofluorescence staining and quantitative PCR assays further showed that the SPF1 deletion led to a remarkable decrease in the levels of pro-inflammatory cytokines, suggesting the alleviation of the fungus-induced inflammatory response. Ultimately, the regulatory role of Spf1 in immune response significantly weakened the infectivity of C. albicans, and increased the survival rate of the hosts. This finding elucidated the role of fungal calcium pump-governed endoplasmic reticulum-plasma membrane contacts in regulation of immune response. It also makes it possible to regulate the host's immune response via control of SPF1 expression and functions, providing a theoretical basis for treating fungal infections.
Collapse
Affiliation(s)
- Yuchao Ji
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, China
| | - Dou Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, China
| | - Menglin Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingchun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, China
| | - Qilin Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL-induced cytokine production via NFKB2 pathway promotes neutrophil chemotaxis and immune suppression in triple negative breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604341. [PMID: 39091795 PMCID: PMC11291031 DOI: 10.1101/2024.07.19.604341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown modulatory mechanisms responsible for the lack of TRAIL activity in patients. Here, we hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. To test this, we performed an RNAseq analysis of MDA-MB-231 cells treated with TRAIL, followed by validation in additional TNBC cell lines. TRAIL significantly induces expression of multiple cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, the induction of these cytokines was predominantly mediated by death receptor 5, caspase 8 (but not caspase 8 enzymatic activity), and the non-canonical NFKB2 pathway. The cytokines produced by the TRAIL-treated TNBC cells enhanced chemotaxis of healthy human donor isolated neutrophils. In vivo , TRAIL treated TNBC murine xenograft tumors showed activation of the NFKB2 pathway, elevated production of CXCLs and IL-6, and increased neutrophil recruitment into the tumors. Moreover, donor isolated neutrophils preincubated in supernatants from TRAIL-treated TNBC cells exhibited impaired cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies with these neutrophils confirmed their suppressive effect on T cell proliferation and an increase in Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and immune suppression.
Collapse
|
18
|
Miao S, Rodriguez BL, Gibbons DL. The Multifaceted Role of Neutrophils in NSCLC in the Era of Immune Checkpoint Inhibitors. Cancers (Basel) 2024; 16:2507. [PMID: 39061147 PMCID: PMC11274601 DOI: 10.3390/cancers16142507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer is the most common cause of cancer-related death in both males and females in the U.S. and non-small-cell lung cancer (NSCLC) accounts for 85%. Although the use of first- or second-line immune checkpoint inhibitors (ICIs) exhibits remarkable clinical benefits, resistance to ICIs develops over time and dampens the efficacy of ICIs in patients. Tumor-associated neutrophils (TANs) have an important role in modulating the tumor microenvironment (TME) and tumor immune response. The major challenge in the field is to characterize the TANs in NSCLC TME and understand the link between TAN-related immunosuppression with ICI treatment response. In this review, we summarize the current studies of neutrophil interaction with malignant cells, T-cells, and other components in the TME. Ongoing clinical trials are aimed at utilizing reagents that have putative effects on tumor-associated neutrophils, in combination with ICI. Elevated neutrophil populations and neutrophil-associated factors could be potential therapeutic targets to enhance anti-PD1 treatment in NSCLC.
Collapse
Affiliation(s)
- Shucheng Miao
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
- The University of Texas MD Anderson Cancer Center, UTHealth at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Bertha Leticia Rodriguez
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
| | - Don L. Gibbons
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
- The University of Texas MD Anderson Cancer Center, UTHealth at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
19
|
Burgos J, Benítez-Martínez A, Mancebo C, Massana N, Astorga-Gamaza A, Castellvi J, Landolfi S, Curran A, Garcia-Perez JN, Falcó V, Buzón MJ, Genescà M. Intraepithelial CD15 infiltration identifies high-grade anal dysplasia in people with HIV. JCI Insight 2024; 9:e175251. [PMID: 38900571 PMCID: PMC11383605 DOI: 10.1172/jci.insight.175251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
Men who have sex with men (MSM) with HIV are at high risk for squamous intraepithelial lesion (SIL) and anal cancer. Identifying local immunological mechanisms involved in the development of anal dysplasia could aid treatment and diagnostics. Here, we studied 111 anal biopsies obtained from 101 MSM with HIV, who participated in an anal screening program. We first assessed multiple immune subsets by flow cytometry, in addition to histological examination, in a discovery cohort. Selected molecules were further evaluated by immunohistochemistry in a validation cohort. Pathological samples were characterized by the presence of resident memory T cells with low expression of CD103 and by changes in natural killer cell subsets, affecting residency and activation. Furthermore, potentially immunosuppressive subsets, including CD15+CD16+ mature neutrophils, gradually increased as the anal lesion progressed. Immunohistochemistry verified the association between the presence of CD15 in the epithelium and SIL diagnosis for the correlation with high-grade SIL. A complex immunological environment with imbalanced proportions of resident effectors and immune-suppressive subsets characterized pathological samples. Neutrophil infiltration, determined by CD15 staining, may represent a valuable pathological marker associated with the grade of dysplasia.
Collapse
Affiliation(s)
- Joaquín Burgos
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Aleix Benítez-Martínez
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Cristina Mancebo
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Núria Massana
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Josep Castellvi
- Pathology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Stefania Landolfi
- Pathology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Adrià Curran
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jorge N Garcia-Perez
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María J Buzón
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
20
|
Yaseen MM, Abuharfeil NM, Darmani H. MDSC expansion during HIV infection: regulators, ART and immune reconstitution. Genes Immun 2024; 25:242-253. [PMID: 38605259 DOI: 10.1038/s41435-024-00272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) become expanded in different pathological conditions including human immunodeficiency virus (HIV) infection and this may worsen the disease status and accelerate disease progression. In HIV infection, MDSCs suppress anti-HIV immune responses and hamper immune reconstitution. Understanding the factors and mechanisms of MDSC expansion during HIV infection is central to understanding the pathophysiology of HIV infection. This may pave the way to developing new therapeutic targets or strategies. In this work we addressed (i) the mechanisms that regulate MDSC expansion, (ii) the impact of antiretroviral therapy (ART) on the frequency of MDSCs during HIV infection; (iii) the impact of MDSCs on immune reconstitution during successful ART; and (iv) the potential of MDSCs as a therapeutic target.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
21
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
22
|
Miková E, Černý V, Novotná O, Petrásková P, Boráková K, Hel Z, Hrdý J. Immature neutrophils in cord blood exert increased expression of genes associated with antimicrobial function. Front Immunol 2024; 15:1368624. [PMID: 38596677 PMCID: PMC11002259 DOI: 10.3389/fimmu.2024.1368624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction The immune systems of both the mother and the newborn face significant challenges during birth. Proper immune regulation after birth is essential for the survival of neonates. Numerous studies have demonstrated that the neonatal immune system is relatively immature, particularly in its adaptive arm, placing the primary responsibility for immune surveillance on innate immunity. Methods Given the significant role of neutrophils in protecting the neonate after birth, we conducted a study investigating the properties of neutrophils in newborn cord blood using various methodological approaches. Results Our findings demonstrate the presence of immature low-density neutrophils in the cord blood, which are likely responsible for the observed elevated expression of genes coding for proteins essential to antimicrobial response, including myeloperoxidase, neutrophils elastase, and defensins. Discussion We propose that these cells function normally and support the protection of newborns early after birth. Furthermore, our results suggest that the mode of delivery might significantly influence the programming of neutrophil function. The presented findings emphasize the importance of distinct neutrophil subpopulations in neonatal immunity and their potential impact on early postnatal health.
Collapse
Affiliation(s)
- Eliška Miková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Viktor Černý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Olga Novotná
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Petra Petrásková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Kristýna Boráková
- Department of Neonatology, Institute for the Care of Mother and Child, Prague, Czechia
| | - Zdenek Hel
- Pathology Department, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
23
|
Pettinella F, Mariotti B, Lattanzi C, Bruderek K, Donini M, Costa S, Marini O, Iannoto G, Gasperini S, Caveggion E, Castellucci M, Calzetti F, Bianchetto-Aguilera F, Gardiman E, Giani M, Dusi S, Cantini M, Vassanelli A, Pavone D, Milella M, Pilotto S, Biondani P, Höing B, Schleupner MC, Hussain T, Hadaschik B, Kaspar C, Visco C, Tecchio C, Koenderman L, Bazzoni F, Tamassia N, Brandau S, Cassatella MA, Scapini P. Surface CD52, CD84, and PTGER2 mark mature PMN-MDSCs from cancer patients and G-CSF-treated donors. Cell Rep Med 2024; 5:101380. [PMID: 38242120 PMCID: PMC10897522 DOI: 10.1016/j.xcrm.2023.101380] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Precise molecular characterization of circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is hampered by their mixed composition of mature and immature cells and lack of specific markers. Here, we focus on mature CD66b+CD10+CD16+CD11b+ PMN-MDSCs (mPMN-MDSCs) from either cancer patients or healthy donors receiving G-CSF for stem cell mobilization (GDs). By RNA sequencing (RNA-seq) experiments, we report the identification of a distinct gene signature shared by the different mPMN-MDSC populations under investigation, also validated in mPMN-MDSCs from GDs and tumor-associated neutrophils (TANs) by single-cell RNA-seq (scRNA-seq) experiments. Analysis of such a gene signature uncovers a specific transcriptional program associated with mPMN-MDSC differentiation and allows us to identify that, in patients with either solid or hematologic tumors and in GDs, CD52, CD84, and prostaglandin E receptor 2 (PTGER2) represent potential mPMN-MDSC-associated markers. Altogether, our findings indicate that mature PMN-MDSCs distinctively undergo specific reprogramming during differentiation and lay the groundwork for selective immunomonitoring, and eventually targeting, of mature PMN-MDSCs.
Collapse
Affiliation(s)
- Francesca Pettinella
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Barbara Mariotti
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Chiara Lattanzi
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Kirsten Bruderek
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, 45122 Essen, Germany
| | - Marta Donini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sara Costa
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Olivia Marini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Giulia Iannoto
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sara Gasperini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Elena Caveggion
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Federica Calzetti
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Elisa Gardiman
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Matteo Giani
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Stefano Dusi
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Maurizio Cantini
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Aurora Vassanelli
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Denise Pavone
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Michele Milella
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Pamela Biondani
- Section of Oncology, University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Benedikt Höing
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | | | - Timon Hussain
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Cordelia Kaspar
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Carlo Visco
- Section of Hematology and Bone Marrow Transplant Unit, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Leo Koenderman
- Department of Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Flavia Bazzoni
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, 45122 Essen, Germany; German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
| | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Patrizia Scapini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
24
|
Han X, Song X, Xiao Z, Zhu G, Gao R, Ni B, Li J. Study on the mechanism of MDSC-platelets and their role in the breast cancer microenvironment. Front Cell Dev Biol 2024; 12:1310442. [PMID: 38404689 PMCID: PMC10884319 DOI: 10.3389/fcell.2024.1310442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key immunosuppressive cells in the tumor microenvironment (TME) that play critical roles in promoting tumor growth and metastasis. Tumor-associated platelets (TAPs) help cancer cells evade the immune system and promote metastasis. In this paper, we describe the interaction between MDSCs and TAPs, including their generation, secretion, activation, and recruitment, as well as the effects of MDSCs and platelets on the generation and changes in the immune, metabolic, and angiogenic breast cancer (BC) microenvironments. In addition, we summarize preclinical and clinical studies, traditional Chinese medicine (TCM) therapeutic approaches, and new technologies related to targeting and preventing MDSCs from interacting with TAPs to modulate the BC TME, discuss the potential mechanisms, and provide perspectives for future development. The therapeutic strategies discussed in this review may have implications in promoting the normalization of the BC TME, reducing primary tumor growth and distant lung metastasis, and improving the efficiency of anti-tumor therapy, thereby improving the overall survival (OS) and progression-free survival (PFS) of patients. However, despite the significant advances in understanding these mechanisms and therapeutic strategies, the complexity and heterogeneity of MDSCs and side effects of antiplatelet agents remain challenging. This requires further investigation in future prospective cohort studies.
Collapse
Affiliation(s)
- Xinpu Han
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Hematology-Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotong Song
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhigang Xiao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruike Gao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Department of Oncology, First Hospital of Heilongjiang University of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jie Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Saxena R, Gottlin EB, Campa MJ, Bushey RT, Guo J, Patz EF, He YW. Complement factor H: a novel innate immune checkpoint in cancer immunotherapy. Front Cell Dev Biol 2024; 12:1302490. [PMID: 38389705 PMCID: PMC10883309 DOI: 10.3389/fcell.2024.1302490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
The elimination of cancer cells critically depends on the immune system. However, cancers have evolved a variety of defense mechanisms to evade immune monitoring, leading to tumor progression. Complement factor H (CFH), predominately known for its function in inhibiting the alternative pathway of the complement system, has recently been identified as an important innate immunological checkpoint in cancer. CFH-mediated immunosuppression enhances tumor cells' ability to avoid immune recognition and produce an immunosuppressive tumor microenvironment. This review explores the molecular underpinnings, interactions with immune cells, clinical consequences, and therapeutic possibilities of CFH as an innate immune checkpoint in cancer control. The difficulties and opportunities of using CFH as a target in cancer immunotherapy are also explored.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Ryan T Bushey
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Jian Guo
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
26
|
Yang C, Zhu R, Zhang Y, Ying L, Wang J, Liu P, Su D. [Research Progress of Granulocytic Myeloid-derived Suppressor Cells
in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:65-72. [PMID: 38296627 PMCID: PMC10895289 DOI: 10.3779/j.issn.1009-3419.2023.106.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Granulocytic myeloid-derived suppressor cells (G-MDSCs) are one of the main subgroups of MDSCs, which are widely enriched in most cancers. It can inhibit the killing function of T-lymphocyte through the expression of arginase-1 (Arg-1) and reactive oxygen species (ROS), reshape the tumor immune microenvironment, and promote the occurrence and development of tumors. In recent years, more and more studies have found that G-MDSCs are significantly correlated with the prognosis and immunotherapy efficacy of patients with non-small cell lung cancer, and the use of drugs specifically targeting the recruitment, differentiation and function of G-MDSCs can effectively inhibit tumor progression. This article reviews the immunosuppressive effect of G-MDSCs in non-small cell lung cancer and the progress of related pathway targeting drugs.
.
Collapse
Affiliation(s)
- Chaodan Yang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuting Zhang
- Postgraduate Training Base Alliance of Wenzhou Medical
University, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Lisha Ying
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiamin Wang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Liu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Dan Su
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
27
|
Chang YT, Lin CY, Chen CJ, Hwang E, Alshetaili A, Yu HP, Fang JY. Neutrophil-targeted combinatorial nanosystems for suppressing bacteremia-associated hyperinflammation and MRSA infection to improve survival rates. Acta Biomater 2024; 174:331-344. [PMID: 38061677 DOI: 10.1016/j.actbio.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/02/2024]
Abstract
There is currently no specific and effective treatment for bacteremia-mediated sepsis. Hence, this study engineered a combinatorial nanosystem containing neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles to enable the dual mitigation of bacteremia-associated inflammation and methicillin-resistant Staphylococcus aureus (MRSA) infection. The targeted nanoparticles were developed by conjugating anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibody fragment on the nanoparticulate surface. The particle size and zeta potential of the as-prepared nanosystem were about 200 nm and -25 mV, respectively. The antibody-conjugated nanoparticles showed a three-fold increase in neutrophil internalization compared to the unfunctionalized nanoparticles. As a selective phosphodiesterase (PDE) 4 inhibitor, the roflumilast in the nanocarriers largely inhibited cytokine/chemokine release from the activated neutrophils. The fusidic acid-loaded nanocarriers were vital to eliminate biofilm MRSA colony by 3 log units. The nanoparticles drastically decreased the intracellular bacterial count compared to the free antibiotic. The in vivo mouse bioimaging demonstrated prolonged retention of the nanosystem in the circulation with limited organ distribution and liver metabolism. In the mouse bacteremia model, the multifunctional nanosystem produced a 1‒2 log reduction of MRSA burden in peripheral organs and blood. The functionalized nanosystem arrested the cytokine/chemokine overexpression greater than the unfunctionalized nanocarriers and free drugs. The combinatory nanosystem also extended the median survival time from 50 to 103 h. No toxicity from the nanoformulation was found based on histology and serum biochemistry. Furthermore, our data proved that the active neutrophil targeting by the versatile nanosystem efficiently alleviated MRSA infection and organ dysfunction caused by bacteremia. STATEMENT OF SIGNIFICANCE: Bacteremia-mediated sepsis poses a significant challenge in clinical practice, as there is currently no specific and effective treatment available. In our study, we have developed a novel combinatorial nanosystem to address this issue. Our nanosystem consists of neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles, enabling the simultaneous mitigation of bacteremia-associated inflammation and MRSA infection. Our nanosystem demonstrated the decreased neutrophil activation, effective inhibition of cytokine release, elimination of MRSA biofilm colonies, and reduced intracellular bacterial counts. In vivo experiments showed prolonged circulation, limited organ distribution, and increased survival rates in a mouse bacteremia model. Importantly, our nanosystem exhibited no toxicity based on comprehensive assessments.
Collapse
Affiliation(s)
- Yen-Tzu Chang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
28
|
Zanghì A, Di Filippo PS, Avolio C, D’Amico E. Myeloid-derived Suppressor Cells and Multiple Sclerosis. Curr Neuropharmacol 2024; 23:36-57. [PMID: 38988152 PMCID: PMC11519824 DOI: 10.2174/1570159x22999240710142942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 07/12/2024] Open
Abstract
Myeloid-Derived Suppressor Cells (MDSCs) are a heterogeneous population of immature myeloid cells that play important roles in maintaining immune homeostasis and regulating immune responses. MDSCs can be divided into two main subsets based on their surface markers and functional properties: granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs). Recently greatest attention has been paid to innate immunity in Multiple Sclerosis (MS), so the aim of our review is to provide an overview of the main characteristics of MDSCs in MS and its preclinical model by discussing the most recent data available. The immunosuppressive functions of MDSCs can be dysregulated in MS, leading to an exacerbation of the autoimmune response and disease progression. Antigen-specific peptide immunotherapy, which aims to restore tolerance while avoiding the use of non-specific immunosuppressive drugs, is a promising approach for autoimmune diseases, but the cellular mechanisms behind successful therapy remain poorly understood. Therefore, targeting MDSCs could be a promising therapeutic approach for MS. Various strategies for modulating MDSCs have been investigated, including the use of pharmacological agents, biological agents, and adoptive transfer of exogenous MDSCs. However, it remained unclear whether MDSCs display any therapeutic potential in MS and how this therapy could modulate different aspects of the disease. Collectively, all the described studies revealed a pivotal role for MDSCs in the regulation of MS.
Collapse
Affiliation(s)
- Aurora Zanghì
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Emanuele D’Amico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
29
|
Hisamune R, Yamakawa K, Kayano K, Ushio N, Wada T, Taniguchi K, Takasu A. Phenotypic changes in immune cells induced by granulocyte and monocyte adsorptive apheresis in patients with severe COVID-19: An ex vivo study. Acute Med Surg 2024; 11:e70003. [PMID: 39211524 PMCID: PMC11359707 DOI: 10.1002/ams2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Aims SARS-CoV-2 causes systemic immune dysfunction, leading to severe respiratory dysfunction and multiorgan dysfunction. Granulocyte and monocyte adsorptive apheresis (GMA) therapy is designed to regulate an excessive inflammatory response and has been proposed as a potential therapeutic strategy for coronavirus disease 2019 (COVID-19). We aimed to investigate a targeted subset of granulocytes and monocytes to be removed after GMA therapy in patients with severe COVID-19 infection. Methods We established an ex vivo experimental system to study the effects of GMA. Blood samples were collected into EDTA-treated tubes and a mixture of blood samples and cellulose acetate beads was used in GMA. After GMA, blood samples were removed, and the granulocyte and monocyte subtypes before and after GMA were determined by CyTOF mass cytometry. To analyze mass cytometry data with a self-organizing map, hierarchical clustering was used to determine the appropriate number of metaclusters from t-distributed stochastic neighbor embedding. Results We included seven patients with severe COVID-19 and four age- and sex-matched volunteers. Granulocyte subsets removed by GMA strongly expressed CD11b, CD16, and CD66b, and weakly expressed CD11c, consistent with mature and activated neutrophils. Monocyte subsets strongly expressed CD14, weakly expressed CD33 and CD45RO, and did not express CD16. These subsets were indicated to promote the release of inflammatory cytokines and activate T cells. Conclusions The identification of the granulocyte and monocyte subsets removed after GMA in patients with severe COVID-19 may help explain the potential mechanism underlying the effectiveness of GMA in COVID-19 and other inflammatory diseases.
Collapse
Affiliation(s)
- Ryo Hisamune
- Department of Emergency and Critical Care MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Kazuma Yamakawa
- Department of Emergency and Critical Care MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Katsuhide Kayano
- Department of Emergency and Critical Care MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Noritaka Ushio
- Department of Emergency and Critical Care MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care MedicineHokkaido University Faculty of MedicineSapporoJapan
| | - Kohei Taniguchi
- Translational Research Program, Department of General and Gastroenterological SurgeryOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Akira Takasu
- Department of Emergency and Critical Care MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| |
Collapse
|
30
|
Vanhaver C, Aboubakar Nana F, Delhez N, Luyckx M, Hirsch T, Bayard A, Houbion C, Dauguet N, Brochier A, van der Bruggen P, Bruger AM. Immunosuppressive low-density neutrophils in the blood of cancer patients display a mature phenotype. Life Sci Alliance 2024; 7:e202302332. [PMID: 37931958 PMCID: PMC10628041 DOI: 10.26508/lsa.202302332] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
The presence of human neutrophils in the tumor microenvironment is strongly correlated to poor overall survival. Most previous studies have focused on the immunosuppressive capacities of low-density neutrophils (LDN), also referred to as granulocytic myeloid-derived suppressor cells, which are elevated in number in the blood of many cancer patients. We observed two types of LDN in the blood of lung cancer and ovarian carcinoma patients: CD45high LDN, which suppressed T-cell proliferation and displayed mature morphology, and CD45low LDN, which were immature and non-suppressive. We simultaneously evaluated the classical normal-density neutrophils (NDN) and, when available, tumor-associated neutrophils. We observed that NDN from cancer patients suppressed T-cell proliferation, and NDN from healthy donors did not, despite few transcriptomic differences. Hence, the immunosuppression mediated by neutrophils in the blood of cancer patients is not dependent on the cells' density but rather on their maturity.
Collapse
Affiliation(s)
| | - Frank Aboubakar Nana
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC)/Pôle de Pneumologie, Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Delhez
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Mathieu Luyckx
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
- Service de Gynécologie et Andrologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Centre de Chirurgie Oncologique, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Thibault Hirsch
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Alexandre Bayard
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Camille Houbion
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Dauguet
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Alice Brochier
- Hematology Department of Laboratory Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Annika M Bruger
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
31
|
Len JS, Koh CWT, Chan KR. The Functional Roles of MDSCs in Severe COVID-19 Pathogenesis. Viruses 2023; 16:27. [PMID: 38257728 PMCID: PMC10821470 DOI: 10.3390/v16010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Severe COVID-19 is a major cause of morbidity and mortality worldwide, especially among those with co-morbidities, the elderly, and the immunocompromised. However, the molecular determinants critical for severe COVID-19 progression remain to be fully elucidated. Meta-analyses of transcriptomic RNAseq and single-cell sequencing datasets comparing severe and mild COVID-19 patients have demonstrated that the early expansion of myeloid-derived suppressor cells (MDSCs) could be a key feature of severe COVID-19 progression. Besides serving as potential early prognostic biomarkers for severe COVID-19 progression, several studies have also indicated the functional roles of MDSCs in severe COVID-19 pathogenesis and possibly even long COVID. Given the potential links between MDSCs and severe COVID-19, we examine the existing literature summarizing the characteristics of MDSCs, provide evidence of MDSCs in facilitating severe COVID-19 pathogenesis, and discuss the potential therapeutic avenues that can be explored to reduce the risk and burden of severe COVID-19. We also provide a web app where users can visualize the temporal changes in specific genes or MDSC-related gene sets during severe COVID-19 progression and disease resolution, based on our previous study.
Collapse
Affiliation(s)
- Jia Soon Len
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Clara W. T. Koh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| |
Collapse
|
32
|
Root SH, Matthews BG, Torreggiani E, Aguila HL, Kalajzic I. Hematopoietic and stromal DMP1-Cre labeled cells form a unique niche in the bone marrow. Sci Rep 2023; 13:22403. [PMID: 38104230 PMCID: PMC10725438 DOI: 10.1038/s41598-023-49713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Skeletogenesis and hematopoiesis are interdependent. Niches form between cells of both lineages where microenvironmental cues support specific lineage commitment. Because of the complex topography of bone marrow (BM), the identity and function of cells within specialized niches has not been fully elucidated. Dentin Matrix Protein 1 (DMP1)-Cre mice have been utilized in bone studies as mature osteoblasts and osteocytes express DMP1. DMP1 has been identified in CXCL12+ cells and an undefined CD45+ population. We crossed DMP1-Cre with Ai9 reporter mice and analyzed the tdTomato+ (tdT+) population in BM and secondary hematopoietic organs. CD45+tdT+ express myeloid markers including CD11b and are established early in ontogeny. CD45+tdT+ cells phagocytose, respond to LPS and are radioresistant. Depletion of macrophages caused a significant decrease in tdT+CD11b+ myeloid populations. A subset of CD45+tdT+ cells may be erythroid island macrophages (EIM) which are depleted after G-CSF treatment. tdT+CXCL12+ cells are in direct contact with F4/80 macrophages, express RANKL and form a niche with B220+ B cells. A population of resident cells within the thymus are tdT+ and express myeloid markers and RANKL. In conclusion, in addition to targeting osteoblast/osteocytes, DMP1-Cre labels unique cell populations of macrophage and stromal cells within BM and thymus niches and expresses key microenvironmental factors.
Collapse
Affiliation(s)
- Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
- Division of Pediatric Dentistry, MC1610, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Brya G Matthews
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Elena Torreggiani
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | | | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
33
|
Yu C, Hsieh K, Cherry DR, Nehlsen AD, Resende Salgado L, Lazarev S, Sindhu KK. Immune Escape in Glioblastoma: Mechanisms of Action and Implications for Immune Checkpoint Inhibitors and CAR T-Cell Therapy. BIOLOGY 2023; 12:1528. [PMID: 38132354 PMCID: PMC10741174 DOI: 10.3390/biology12121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Glioblastoma, the most common primary brain cancer in adults, is characterized by a poor prognosis and resistance to standard treatments. The advent of immunotherapy has revolutionized the treatment of several cancers in recent years but has failed to demonstrate benefit in patients with glioblastoma. Understanding the mechanisms by which glioblastoma exerts tumor-mediated immune suppression in both the tumor microenvironment and the systemic immune landscape is a critical step towards developing effective immunotherapeutic strategies. In this review, we discuss the current understanding of immune escape mechanisms in glioblastoma that compromise the efficacy of immunotherapies, with an emphasis on immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy. In parallel, we review data from preclinical studies that have identified additional therapeutic targets that may enhance overall treatment efficacy in glioblastoma when administered alongside existing immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kunal K. Sindhu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.Y.); (D.R.C.); (A.D.N.); (L.R.S.); (S.L.)
| |
Collapse
|
34
|
Salafranca J, Ko JK, Mukherjee AK, Fritzsche M, van Grinsven E, Udalova IA. Neutrophil nucleus: shaping the past and the future. J Leukoc Biol 2023; 114:585-594. [PMID: 37480361 PMCID: PMC10673716 DOI: 10.1093/jleuko/qiad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023] Open
Abstract
Neutrophils are innate immune cells that are key to protecting the host against infection and maintaining body homeostasis. However, if dysregulated, they can contribute to disease, such as in cancer or chronic autoinflammatory disorders. Recent studies have highlighted the heterogeneity in the neutrophil compartment and identified the presence of immature neutrophils and their precursors in these pathologies. Therefore, understanding neutrophil maturity and the mechanisms through which they contribute to disease is critical. Neutrophils were first characterized morphologically by Ehrlich in 1879 using microscopy, and since then, different technologies have been used to assess neutrophil maturity. The advances in the imaging field, including state-of-the-art microscopy and machine learning algorithms for image analysis, reinforce the use of neutrophil nuclear morphology as a fundamental marker of maturity, applicable for objective classification in clinical diagnostics. New emerging approaches, such as the capture of changes in chromatin topology, will provide mechanistic links between the nuclear shape, chromatin organization, and transcriptional regulation during neutrophil maturation.
Collapse
Affiliation(s)
- Julia Salafranca
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jacky Ka Ko
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Ananda K Mukherjee
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Marco Fritzsche
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Erinke van Grinsven
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Irina A Udalova
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
35
|
Zhou C, Liu Y, Li Y, Shi L. Recent advances and prospects in nanomaterials for bacterial sepsis management. J Mater Chem B 2023; 11:10778-10792. [PMID: 37901894 DOI: 10.1039/d3tb02220j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Bacterial sepsis is a life-threatening condition caused by bacteria entering the bloodstream and triggering an immune response, underscoring the importance of early recognition and prompt treatment. Nanomedicine holds promise for addressing sepsis through improved diagnostics, nanoparticle biosensors for detection and imaging, enhanced antibiotic delivery, combating resistance, and immune modulation. However, challenges remain in ensuring safety, regulatory compliance, scalability, and cost-effectiveness before clinical implementation. Further research is needed to optimize design, efficacy, safety, and regulatory strategies for effective utilization of nanomedicines in bacterial sepsis diagnosis and treatment. This review highlights the significant potential of nanomedicines, including improved drug delivery, enhanced diagnostics, and immunomodulation for bacterial sepsis. It also emphasizes the need for further research to optimize design, efficacy, safety profiles, and address regulatory challenges to facilitate clinical translation.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
| | - Yong Liu
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yuanfeng Li
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Khan RS, Lalor PF, Thursz M, Newsome PN. The role of neutrophils in alcohol-related hepatitis. J Hepatol 2023; 79:1037-1048. [PMID: 37290590 DOI: 10.1016/j.jhep.2023.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Alcohol-related liver disease is a major cause of liver disease-associated mortality, with inpatient care being a major contributor to its clinical and economic burden. Alcohol-related hepatitis (AH) is an acute inflammatory form of alcohol-related liver disease. Severe AH is associated with high short-term mortality, with infection being a common cause of death. The presence of AH is associated with increased numbers of circulating and hepatic neutrophils. We review the literature on the role of neutrophils in AH. In particular, we explain how neutrophils are recruited to the inflamed liver and how their antimicrobial functions (chemotaxis, phagocytosis, oxidative burst, NETosis) may be altered in AH. We highlight evidence for the existence of 'high-density' and 'low-density' neutrophil subsets. We also describe the potentially beneficial roles of neutrophils in the resolution of injury in AH through their effects on macrophage polarisation and hepatic regeneration. Finally, we discuss how manipulation of neutrophil recruitment/function may be used as a therapeutic strategy in AH. For example, correction of gut dysbiosis in AH could help to prevent excess neutrophil activation, or treatments could aim to enhance miR-223 function in AH. The development of markers that can reliably distinguish neutrophil subsets and of animal models that accurately reproduce human disease will be crucial for facilitating translational research in this important field.
Collapse
Affiliation(s)
- Reenam S Khan
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Patricia F Lalor
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark Thursz
- Hepatology Unit, Imperial College School of Medicine, St. Mary's Hospital, London, W21NY, England, UK
| | - Philip N Newsome
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
37
|
Kut C, Midthune D, Lee E, Fair P, Cheunkarndee T, McNutt T, DeWeese T, Fakhry C, Kipnis V, Quon H. Developing the POTOMAC Model: A Novel Prediction Model to Study the Impact of Lymphopenia Kinetics on Survival Outcomes in Head and Neck Cancer Via an Ensemble Tree-Based Machine Learning Approach. JCO Clin Cancer Inform 2023; 7:e2300058. [PMID: 38096467 PMCID: PMC10735077 DOI: 10.1200/cci.23.00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE Lymphopenia is associated with poor survival outcomes in head and neck squamous cell carcinoma (HNSCC), yet there is no consensus on whether we should limit lymphopenia risks during treatment. To fully elucidate the prognostic role of baseline versus treatment-related lymphopenia, a robust analysis is necessary to investigate the relative importance of various lymphopenia metrics (LMs) in predicting survival outcomes. METHODS In this prospective cohort study, 363 patients were eligible for analysis (patients with newly diagnosed, nonmetastatic HNSCC treated with neck radiation with or without chemotherapy in 2015-2019). Data were acquired on 28 covariates: seven baseline, five disease, seven treatment, and nine LMs, including static and time-varying features for absolute lymphocyte count (ALC), neutrophil-to-lymphocyte ratio, and immature granulocytes (IGs). IGs were included, given their hypothesized role in inhibiting lymphocyte function. Overall, there were 4.0% missing data. Median follow-up was 2.9 years. We developed a model (POTOMAC) to predict survival outcomes using a random survival forest (RSF) procedure. RSF uses an ensemble approach to reduce the risk of overfitting and provides internal validation of the model using data that are not used in model development. The ability to predict survival risk was assessed using the AUC for the predicted risk score. RESULTS POTOMAC predicted 2-year survival with AUCs at 0.78 for overall survival (primary end point) and 0.73 for progression-free survival (secondary end point). Top modifiable risk factors included radiation dose and max ALC decrease. Top baseline risk factors included age, Charlson Comorbidity Index, Karnofsky Performance Score, and baseline IGs. Top-ranking LMs had superior prognostic performance when compared with human papillomavirus status, chemotherapy type, and dose (up to 2, 8, and 65 times higher in variable importance score). CONCLUSION POTOMAC provides important insights into potential approaches to reduce mortality in patients with HNSCC treated by chemoradiation but needs to be validated in future studies.
Collapse
Affiliation(s)
- Carmen Kut
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Doug Midthune
- Biometric Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Emerson Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Peyton Fair
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Tia Cheunkarndee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Todd McNutt
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Theodore DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Carole Fakhry
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Victor Kipnis
- Biometric Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Harry Quon
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
38
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
39
|
Zhu Y, Neelamegham S. Knockout studies using CD34+ hematopoietic cells suggest that CD44 is a physiological human neutrophil E-selectin ligand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553923. [PMID: 37645985 PMCID: PMC10462143 DOI: 10.1101/2023.08.18.553923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The recruitment of peripheral blood neutrophils at sites of inflammation involves a multistep cascade, starting with E- and P-selectin expressed on the inflamed vascular endothelium binding sialofucosylated glycans on leukocytes. As the glycoconjugate biosynthesis pathways in different cells are distinct, the precise carbohydrate ligands of selectins varies both across species, and between different immune cell populations in a given species. To study this aspect in human neutrophils, we developed a protocol to perform CRISPR/Cas9 gene-editing on CD34+ hHSCs (human hematopoietic stem/progenitor cells) as they are differentiated towards neutrophil lineage. This protocol initially uses a cocktail of SCF (stem-cell factor), IL-3 (interleukin-3) and FLT-3L (FMS-like tyrosine kinase 3 ligand) to expand the stem/progenitor cells followed by directed differentiation to neutrophils using G-CSF (granulocyte colony-stimulating factor). Microfluidics based assays were performed on a confocal microscope platform to characterize the rolling phenotype of each edited cell type in mixed populations. These studies demonstrated that CD44, but not CD43, is a major E-selectin ligand on human neutrophils. The loss of function results were validated by developing sialofucosylated recombinant CD44. This glycosylated protein supported both robust E-selectin binding in a cell-free assay, and it competitively blocked neutrophil adhesion to E-selectin on inflamed endothelial cells. Together, the study establishes important methods to study human neutrophil biology and determines that sialoflucosylated-CD44 is a physiological human E-selectin ligand.
Collapse
Affiliation(s)
- Yuqi Zhu
- Department of Chemical and Biological Engineering, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
- Department of Medicine School of Engineering and Applies Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
| |
Collapse
|
40
|
Wallace KME, Hart DW, Venter F, van Vuuren AKJ, Bennett NC. The best of both worlds: no apparent trade-off between immunity and reproduction in two group-living African mole-rat species. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220310. [PMID: 37381852 PMCID: PMC10291439 DOI: 10.1098/rstb.2022.0310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/22/2023] [Indexed: 06/30/2023] Open
Abstract
Co-operatively breeding mammals often exhibit a female reproductive skew and suppression of the subordinate non-breeding group members. According to evolutionary theory and the immunity-fertility axis, an inverse relationship between reproductive investment and survival (through immunocompetence) is expected. As such, this study investigated if a trade-off between immunocompetence and reproduction arises in two co-operatively breeding African mole-rat species, namely the Damaraland mole-rat (Fukomys damarensis) and common mole-rat (Cryptomys hottentotus hottentotus), which possess female reproductive division of labour. This study also attempted to investigate the relationship between the immune and endocrine systems in Damaraland mole-rats. There was no trade-off between reproduction and immunocompetence in co-operatively breeding African mole-rat species, and in the case of the Damaraland mole-rats, breeding females (BFs) possessed increased immunocompetence compared with non-breeding females (NBFs). Furthermore, the increased levels of progesterone possessed by Damaraland mole-rat BFs compared with NBFs appear to be correlated to increased immunocompetence. In comparison, BF and NBF common mole-rats possess similar immunocompetence. The species-specific differences in the immunity-fertility axis may be due to variations in the strengths of reproductive suppression in each species. This article is part of the theme issue 'Evolutionary ecology of inequality'.
Collapse
Affiliation(s)
- K. M. E. Wallace
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Daniel W. Hart
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - F. Venter
- Department of Biochemistry, Genetics and Microbiology and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - A. K. Janse van Vuuren
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - N. C. Bennett
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
41
|
Zhang J, Jiang S, Li S, Jiang J, Mei J, Chen Y, Ma Y, Liu Y, Liu Y. Nanotechnology: A New Strategy for Lung Cancer Treatment Targeting Pro-Tumor Neutrophils. ENGINEERING 2023; 27:106-126. [DOI: 10.1016/j.eng.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Andreas N, Geißler K, Priese J, Guntinas-Lichius O, Kamradt T. Age-related changes of the innate immune system of the palatine tonsil in a healthy cohort. Front Immunol 2023; 14:1183212. [PMID: 37457697 PMCID: PMC10344772 DOI: 10.3389/fimmu.2023.1183212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Although tonsillectomy is performed frequently, the role of palatine tonsils in life long immune protection or tolerance is still debated and the consequences of their removal for the immune system are of general interest. We analysed the tonsillar myeloid compartment in healthy subjects across a wide range of age (64% male; age range: 3 - 85 years) and compared its composition to the peripheral blood. We could observe a strong accumulation of all granulocyte subsets in the aging tonsil, which was most pronounced for basophils and mast cells. On functional level, an increase of CD163 and CD206 expression among monocytes and an increase of neutrophils expressing the inhibitory FcγRIIb correlated with increasing age. While the age-related shift of the leukocyte composition towards monocytes in blood is not reflected in tonsils, the increasing immunoregulatory phenotype of tonsilar monocytes is potentially counteracting the phenomenon of inflammaging at higher age.
Collapse
Affiliation(s)
- Nico Andreas
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Katharina Geißler
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Juliane Priese
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | | | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital, Jena, Germany
| |
Collapse
|
43
|
Gullotta GS, De Feo D, Friebel E, Semerano A, Scotti GM, Bergamaschi A, Butti E, Brambilla E, Genchi A, Capotondo A, Gallizioli M, Coviello S, Piccoli M, Vigo T, Della Valle P, Ronchi P, Comi G, D'Angelo A, Maugeri N, Roveri L, Uccelli A, Becher B, Martino G, Bacigaluppi M. Age-induced alterations of granulopoiesis generate atypical neutrophils that aggravate stroke pathology. Nat Immunol 2023; 24:925-940. [PMID: 37188941 DOI: 10.1038/s41590-023-01505-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Aging accounts for increased risk and dismal outcome of ischemic stroke. Here, we investigated the impact of age-related changes in the immune system on stroke. Upon experimental stroke, compared with young mice, aged mice had increased neutrophil clogging of the ischemic brain microcirculation, leading to worse no-reflow and outcomes. Aged mice showed an enhanced granulopoietic response to stroke that led to the accumulation of CD101+CD62Llo mature and CD177hiCD101loCD62Llo and CD177loCD101loCD62Lhi immature atypical neutrophils in the blood, endowed with increased oxidative stress, phagocytosis and procoagulant features. Production of CXCL3 by CD62Llo neutrophils of the aged had a key role in the development and pathogenicity of aging-associated neutrophils. Hematopoietic stem cell rejuvenation reverted aging-associated neutropoiesis and improved stroke outcome. In elderly patients with ischemic stroke, single-cell proteome profile of blood leukocytes identified CD62Llo neutrophil subsets associated with worse reperfusion and outcome. Our results unveil how stroke in aging leads to a dysregulated emergency granulopoiesis impacting neurological outcome.
Collapse
Affiliation(s)
- Giorgia Serena Gullotta
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Aurora Semerano
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Andrea Bergamaschi
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Erica Butti
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Brambilla
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Angela Genchi
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessia Capotondo
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Gallizioli
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | | | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS, Policlinico San Donato, Milan, Italy
| | - Tiziana Vigo
- IRCCS, Ospedale Policlinico San Martino, Genova, Italy
| | - Patrizia Della Valle
- Coagulation Service and Thrombosis Research Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Paola Ronchi
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (HSR-TIGET), IRCCS San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Armando D'Angelo
- Coagulation Service and Thrombosis Research Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Norma Maugeri
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Luisa Roveri
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Antonio Uccelli
- IRCCS, Ospedale Policlinico San Martino, Genova, Italy
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
44
|
Zhu Y, Tao C, Goh C, Shrestha A. Innovative biomaterials for the treatment of periodontal disease. FRONTIERS IN DENTAL MEDICINE 2023; 4:1163562. [PMID: 39916927 PMCID: PMC11797777 DOI: 10.3389/fdmed.2023.1163562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 02/09/2025] Open
Abstract
Periodontitis is a multifactorial disease that involves the destruction of hard and soft tissues surrounding the tooth. Routine periodontal treatment includes mechanical debridement (surgical and non-surgical) and the systemic administration of antibiotics. In contrast, severe and chronic periodontitis involves aggressive tissue destruction and bone resorption, and the damage is usually irreversible. In these severe cases, bone grafts, the delivery of growth hormones, and guided tissue regeneration can all be used to stimulate periodontal regeneration. However, these approaches do not result in consistent and predictable treatment outcomes. As a result, advanced biomaterials have evolved as an adjunctive approach to improve clinical performance. These novel biomaterials are designed to either prolong the release of antibacterial agents or osteogenic molecules, or to act as immunomodulators to promote healing. The first half of this review briefly summarizes the key immune cells and their underlying cellular pathways implicated in periodontitis. Advanced biomaterials designed to promote periodontal regeneration will be highlighted in the second half. Finally, the limitations of the current experimental design and the challenges of translational science will be discussed.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Chen Tao
- Stomatological Hospital of Chongqing, Key Laboratory of Oral Diseases and Biomaterial Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Dentistry, Mt. Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
45
|
Moscvin M, Evans B, Bianchi G. Dissecting molecular mechanisms of immune microenvironment dysfunction in multiple myeloma and precursor conditions. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:17. [PMID: 38213954 PMCID: PMC10783205 DOI: 10.20517/2394-4722.2022.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Multiple myeloma (MM) is a disease of clonally differentiated plasma cells. MM is almost always preceded by precursor conditions, monoclonal gammopathy of unknown significance (MGUS), and smoldering MM (SMM) through largely unknown molecular events. Genetic alterations of the malignant plasma cells play a critical role in patient clinical outcomes. Del(17p), t(4;14), and additional chromosomal alterations such as del(1p32), gain(1q) and MYC translocations are involved in active MM evolution. Interestingly, these genetic alterations appear strikingly similar in transformed plasma cell (PC) clones from MGUS, SMM, and MM stages. Recent studies show that effectors of the innate and adaptive immune response show marked dysfunction and skewing towards a tolerant environment that favors disease progression. The MM myeloid compartment is characterized by myeloid-derived suppressor cells (MDSCs), dendritic cells as well as M2-like phenotype macrophages that promote immune evasion. Major deregulations are found in the lymphoid compartment as well, with skewing towards immune tolerant Th17 and Treg and inhibition of CD8+ cytotoxic and CD4+ activated effector T cells. In summary, this review will provide an overview of the complex cross-talk between MM plasma cells and immune cells in the microenvironment and the molecular mechanisms promoting progression from precursor states to full-blown myeloma.
Collapse
Affiliation(s)
- Maria Moscvin
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Evans
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
| | - Giada Bianchi
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
46
|
Kuo CW, Su PL, Huang TH, Lin CC, Chen CW, Tsai JS, Liao XM, Chan TY, Shieh CC. Cigarette smoke increases susceptibility of alveolar macrophages to SARS-CoV-2 infection through inducing reactive oxygen species-upregulated angiotensin-converting enzyme 2 expression. Sci Rep 2023; 13:7894. [PMID: 37193781 DOI: 10.1038/s41598-023-34785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
Alveolar macrophages (AMs) are the drivers of pulmonary cytokine storm in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aimed to investigate clinical-regulatory factors for the entrance protein of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) in AMs. Human AMs were collected from 56 patients using bronchoalveolar lavage. ACE2 expression in AMs was positively correlated with smoking pack-year (Spearman's r = 0.347, P = 0.038). In multivariate analysis, current smoking was associated with increased ACE2 in AMs (β-coefficient: 0.791, 95% CI 0.019-1.562, P = 0.045). In vitro study, ex-vivo human AMs with higher ACE2 were more susceptible to SARS-CoV-2 pseudovirus (CoV-2 PsV). Treating human AMs using cigarette smoking extract (CSE) increases the ACE2 and susceptibility to CoV-2 PsV. CSE did not significantly increase the ACE2 in AMs of reactive oxygen species (ROS) deficient Cybb-/- mice; however, exogenous ROS increased the ACE2 in Cybb-/- AMs. N-acetylcysteine (NAC) decreases ACE2 by suppressing intracellular ROS in human AMs. In conclusion, cigarette smoking increases the susceptibility to SARS-CoV-2 by increasing ROS-induced ACE2 expression of AMs. Further investigation into the preventive effect of NAC on the pulmonary complications of COVID-19 is required.
Collapse
Affiliation(s)
- Chin-Wei Kuo
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lan Su
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tang-Hsiu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chung Lin
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chian-Wei Chen
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jeng-Shiuan Tsai
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Xin-Min Liao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yi Chan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan.
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
47
|
Rambault M, Gilbert FB, Roussel P, Tessier A, David V, Germon P, Winter N, Remot A. Neutrophils expressing major histocompatibility complex class II molecules circulate in blood and milk during mastitis and show high microbicidal activity. J Dairy Sci 2023; 106:4245-4256. [PMID: 37080786 DOI: 10.3168/jds.2022-22728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/23/2022] [Indexed: 04/22/2023]
Abstract
Bovine mastitis is mainly caused by bacterial infection and is responsible for important economic losses as well as alterations of the health and welfare of animals. The increase in somatic cell count (SCC) in milk during mastitis is mainly due to the influx of neutrophils, which have a crucial role in the elimination of pathogens. For a long time, these first-line defenders have been viewed as microbe killers, with a limited role in the orchestration of the immune response. However, their role is more complex: we recently characterized a bovine neutrophil subset expressing major histocompatibility complex class II (MHC-II) molecules (MHC-IIpos), usually distributed on antigen-presenting cells, as having regulatory capacities in cattle. In this study, our objective was to evaluate the implication of different neutrophils subsets in the mammary gland immunity during clinical and subclinical mastitis. Using flow cytometry, we analyzed the presence of MHC-IIpos neutrophils in blood and in milk during clinical mastitis at different time points of inflammation (n = 10 infected quarters) and during subclinical mastitis, defined as the presence of bacteria and an SCC >150,000 cells/mL (n = 27 infected quarters). Our results show, for the first time, that in blood and milk, neutrophils are a heterogeneous population and encompass at least 2 subsets distinguishable by their expression of MHC-II. In milk without mastitis, we observed higher production of reactive oxygen species and higher phagocytosis capacity of MHC-IIpos neutrophils compared with their MHC-IIneg counterparts, indicating the high bactericidal capacities of MHC-IIpos neutrophils. MHC-IIpos neutrophils are enriched in milk compared with blood during subclinical mastitis but not during clinical mastitis. Moreover, we observed a positive and highly significant correlation between MHC-IIpos neutrophils and T lymphocytes present in milk during subclinical mastitis. Our experiments involved a total of 47 cows (40 Holstein and 7 Normande cows). To conclude, our study opens the way to the discovery of new biomarkers of mastitis inflammation.
Collapse
Affiliation(s)
- Marion Rambault
- INRAE, UMR ISP, 37380, Nouzilly, France; Institut de l'élevage, 75012, Paris, France
| | | | | | | | | | | | | | - Aude Remot
- INRAE, UMR ISP, 37380, Nouzilly, France.
| |
Collapse
|
48
|
Wang S, Zhao X, Wu S, Cui D, Xu Z. Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies. Biomark Res 2023; 11:34. [PMID: 36978204 PMCID: PMC10049909 DOI: 10.1186/s40364-023-00475-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The immunosuppressive tumor microenvironment (TME) supports the development of tumors and limits tumor immunotherapy, including hematological malignancies. Hematological malignancies remain a major public health issue with high morbidity and mortality worldwide. As an important component of immunosuppressive regulators, the phenotypic characteristics and prognostic value of myeloid-derived suppressor cells (MDSCs) have received much attention. A variety of MDSC-targeting therapeutic approaches have produced encouraging outcomes. However, the use of various MDSC-targeted treatment strategies in hematologic malignancies is still difficult due to the heterogeneity of hematologic malignancies and the complexity of the immune system. In this review, we summarize the biological functions of MDSCs and further provide a summary of the phenotypes and suppressive mechanisms of MDSC populations expanded in various types of hematological malignancy contexts. Moreover, we discussed the clinical correlation between MDSCs and the diagnosis of malignant hematological disease, as well as the drugs targeting MDSCs, and focused on summarizing the therapeutic strategies in combination with other immunotherapies, such as various immune checkpoint inhibitors (ICIs), that are under active investigation. We highlight the new direction of targeting MDSCs to improve the therapeutic efficacy of tumors.
Collapse
Affiliation(s)
- Shifen Wang
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyun Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siwen Wu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhenshu Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
49
|
Cabalag CS, Prall OWJ, Ciciulla J, Galea LA, Thio N, Jayawardana M, Leong TYM, Milne JV, Fujihara KM, Chong L, Hii MW, Arnau GM, Neeson PJ, Phillips WA, Duong CP, Clemons NJ. Tumor-Infiltrating Neutrophils after Neoadjuvant Therapy are Associated with Poor Prognosis in Esophageal Cancer. Ann Surg Oncol 2023; 30:1614-1625. [PMID: 36183015 PMCID: PMC9908700 DOI: 10.1245/s10434-022-12562-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND In esophageal cancer (EC), there is a paucity of knowledge regarding the interplay between the tumor immune microenvironment and response to neoadjuvant treatment and, therefore, which factors may influence outcomes. Thus, our goal was to investigate the changes in the immune microenvironment with neoadjuvant treatment in EC by assessing the expression of immune related genes and their association with prognosis. METHODS We examined the transcriptome of paired pre- and post-neoadjuvant treated EC specimens. Based on these findings, we validated the presence of tumor-infiltrating neutrophils using CD15+ immunohistochemistry in a discovery cohort of patients with residual pathologic disease. We developed a nomogram as a predictor of progression-free survival (PFS) incorporating the variables CD15+ cell count, tumor regression grade, and tumor grade. RESULTS After neoadjuvant treatment, there was an increase in genes related to myeloid cell differentiation and a poor prognosis associated with high neutrophil (CD15+) counts. Our nomogram incorporating CD15+ cell count was predictive of PFS with a C-index of 0.80 (95% confidence interval [CI] 0.68-0.9) and a concordance probability estimate (CPE) of 0.77 (95% CI 0.69-0.86), which indicates high prognostic ability. The C-index and CPE of the validation cohort were 0.81 (95% CI 0.69-0.91) and 0.78 (95% CI 0.7-0.86), respectively. CONCLUSIONS Our nomogram incorporating CD15+ cell count can potentially be used to identify patients at high risk of recurrent disease and thus stratify patients who will benefit most from adjuvant treatment.
Collapse
Affiliation(s)
- Carlos S Cabalag
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| | - Owen W J Prall
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - John Ciciulla
- Department of Anatomical Pathology, Melbourne Pathology, Sonic Healthcare, Melbourne, VIC, Australia
| | - Laurence A Galea
- Department of Anatomical Pathology, Melbourne Pathology, Sonic Healthcare, Melbourne, VIC, Australia
| | - Niko Thio
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Madawa Jayawardana
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Trishe Y M Leong
- Department of Anatomical Pathology, St Vincent's Hospital, Fitzroy, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Julia V Milne
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Kenji M Fujihara
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Lynn Chong
- Department of Surgery (St Vincent's Hospital), University of Melbourne, Fitzroy, VIC, Australia
- Department of Upper GI and Hepatobiliary Surgery, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Michael W Hii
- Department of Surgery (St Vincent's Hospital), University of Melbourne, Fitzroy, VIC, Australia
- Department of Upper GI and Hepatobiliary Surgery, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Gisela Mir Arnau
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul J Neeson
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Wayne A Phillips
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery (St Vincent's Hospital), University of Melbourne, Fitzroy, VIC, Australia
| | - Cuong P Duong
- Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Nicholas J Clemons
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
50
|
Trtić N, Mori M, Matsui S, Nakamura N, Fukamachi H, Kurosawa M, Morisaki H, Maruoka Y, Mayers M, Okahashi N, Kuwata H, Itsumi M. Oral commensal bacterial flora is responsible for peripheral differentiation of neutrophils in the oral mucosa in the steady state. J Oral Biosci 2023; 65:119-125. [PMID: 36464149 DOI: 10.1016/j.job.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVES Commensal bacteria in the host body play a fundamental role in the differentiation and maintenance of the immune system. Studies on intestinal immunity have revealed that, under steady-state conditions, microflora have an important role in the maintenance of health. However, the role of oral commensal bacteria on the oral immune system is still unclear. Here, we clarify the interactions between commensal bacteria and the oral mucosal immune system under steady-state conditions. METHODS We used germ-free mice that had never been exposed to bacteria and conventional mice grown with normal bacterial flora. Oral cells were isolated from the oral mucosa, stained with specific antibodies, and analyzed by flow cytometry. For the detection of myeloperoxidase and intracellular cytokines, oral cells were stimulated with N-formyl-methionine-leucyl-phenylalanine and phorbol 12-myristate 13-acetate/ionomycin, respectively. RESULTS We found that the oral mucosa harbored more neutrophils in germ-free mice than in conventional mice. However, the majority of neutrophils in the germ-free oral mucosa exhibited an immature phenotype. Other immune cells, including macrophages, T cells, and B cells, in the oral mucosa of germ-free mice showed similar differentiation to those in conventional mice. These results indicate that in the steady-state oral mucosa, the normal commensal flora promote the peripheral differentiation of neutrophils. CONCLUSIONS The presence of commensal flora is critical for the development of adequate immune system in the oral mucosa.
Collapse
Affiliation(s)
- Nataša Trtić
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Department of Periodontology and Oral Medicine, Faculty of Medicine, University of Banja Luka, Bulevar Vojvode Petra Bojovica 2, Banja Luka, 78000, Bosnia and Herzegovina
| | - Mina Mori
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Department of Special Needs Dentistry, Division of Medical and Dental Cooperative Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo, 145-8515, Japan
| | - Shohei Matsui
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Department of Special Needs Dentistry, Division of Medical and Dental Cooperative Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo, 145-8515, Japan
| | - Natsuno Nakamura
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Department of Special Needs Dentistry, Division of Dentistry for Persons with Disabilities, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo, 145-8515, Japan
| | - Haruka Fukamachi
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Mie Kurosawa
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hirobumi Morisaki
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yasubumi Maruoka
- Department of Special Needs Dentistry, Division of Medical and Dental Cooperative Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo, 145-8515, Japan
| | - Mie Mayers
- Department of Special Needs Dentistry, Division of Medical and Dental Cooperative Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo, 145-8515, Japan
| | - Nobuo Okahashi
- Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Momoe Itsumi
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|