1
|
Alrefaie K, Jawed N, Saleh A, Shibli F, Almealawy YF, Alrubaye SN, Andrew Awuah W, Abdul-Rahman T, Chaurasia B, Atallah O. Dandy-Walker syndrome: a bibliometric analysis of the most 100 cited articles. Ann Med Surg (Lond) 2024; 86:7278-7289. [PMID: 39649865 PMCID: PMC11623816 DOI: 10.1097/ms9.0000000000002725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Dandy-Walker syndrome (DWS), a complex neurodevelopmental disorder, has intrigued clinicians and researchers since its description by physicians Walter Dandy and Arthur Walker. Despite its recognition for nearly a century, understanding its etiology, pathogenesis, and clinical manifestations remains elusive. This bibliometric analysis aims to elucidate influential academic works on DWS. Methods In January 2024, the authors conducted a Scopus search for articles on DWS and identified the top 100 referenced publications. The Harzing Publish or Perish search engine was utilized with relevant terms, including 'Dandy-Walker', 'Dandy-Walker Syndrome', and 'Dandy-Walker Malformation'. Data from Scopus, including publication details and citation counts, were compiled and organized using Microsoft Excel. Statistical analysis and data visualization were performed using Python, with Pandas, Matplotlib, Seaborn, and NetworkX libraries employed for this purpose. Results The bibliometric analysis of DWS research revealed key insights. Significant research output was noted in the 2000-2009 and 1990-1999 decades. The cumulative citations totaled 6059, with an average of 2.60 citations per year per article. Leading authors included W B Dobyns, Kathleen J Millen, and G Pilu. Institutions such as the University of California and Harvard Medical School were prominent, with the United States being the predominant contributor. Major journals like the American Journal of Medical Genetics played significant roles. Conclusion This bibliometric study summarizes the most-cited articles on DWS, providing light on the field and its seminal works that have shaped both present-day clinical treatment and the trajectory of future research.
Collapse
Affiliation(s)
- Khadeja Alrefaie
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Bahrain
| | - Noyan Jawed
- Department of Neurosurgery, Rehman Medical Institute and College, Peshawar, Pakistan
| | - Aalaa Saleh
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Farah Shibli
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | | | | | | | | | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Gunasekaran PK, Saini L, Rajial T, Manjunathan S, Laxmi V, Gupta R, Kumar A, Parameswaran AS, Palayullakandi A, Budania A, Singh K. Chromosome Xp22.3 deletion syndrome with X-linked ichthyosis, Kallmann syndrome, short stature, generalized epilepsy, hearing loss, attention deficit hyperactivity disorder, and intellectual disability – A rare report with review of literature. J Neurosci Rural Pract 2024; 15:425-430. [DOI: 10.25259/jnrp_467_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
Chromosome Xp22.3 deletion syndrome is a very rare contiguous gene deletion syndrome with variable phenotype due to the deletion of genes from the distal short arm of the X chromosome (Xp), including the short-stature homeobox (SHOX), anosmin-1 (ANOS1), arylsulfatase (ARSL), neuroligin-4 (NLGN4), and steroid sulfatase (STS) genes. We have reviewed the available literature on the chromosome Xp22.3 deletion syndrome. A 10-year-old boy presented with global developmental delay, generalized epilepsy, decreased hearing, and hyperactivity. He had no significant family history. Examination revealed microcephaly, short stature, and dry and scaly skin lesions on the trunk. He had thick arched eyebrows, a depressed nasal bridge, a long philtrum, high arched palate, retrognathia, brachytelephalangy, brachymetatarsia, and mild scoliosis. Brainstem-evoked response audiometry testing revealed moderate hearing loss. Magnetic resonance imaging showed cerebellar tonsillar ectopia. Clinical exome sequencing revealed a likely pathogenic contiguous deletion (~8.10 Mb) spanning genomic location chrX:g.(_630898)_(8732037_)del encompassing ANOS1, ARSL, NLGN4X, SHOX, and STS genes. We have reviewed the available literature for reported associations of Chromosome Xp22.3 deletion syndrome and report a novel association of X-linked ichthyosis, Kallmann syndrome, global developmental delay, short stature, bilateral hearing loss, generalized epilepsy, attention deficit hyperactivity disorder, and intellectual disability.
Collapse
Affiliation(s)
| | - Lokesh Saini
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India,
| | - Tanuja Rajial
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India,
| | - Sujatha Manjunathan
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India,
| | - Veena Laxmi
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India,
| | - Rahul Gupta
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India,
| | - Ashna Kumar
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India,
| | - Arun Sree Parameswaran
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India,
| | - Achanya Palayullakandi
- Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India,
| | - Anil Budania
- Department of Dermatology Venereology and Leprosy, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India,
| | - Kuldeep Singh
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India,
| |
Collapse
|
3
|
Wren GH, Davies W. X-linked ichthyosis: New insights into a multi-system disorder. SKIN HEALTH AND DISEASE 2022; 2:e179. [PMID: 36479267 PMCID: PMC9720199 DOI: 10.1002/ski2.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
Background X-linked ichthyosis (XLI) is a rare genetic condition almostexclusively affecting males; it is characterised by abnormal desquamation and retentionhyperkeratosis, and presents with polygonal brown scales. Most cases resultfrom genetic deletions within Xp22.31 spanning the STS (steroid sulfatase)gene, with the remaining cases resulting from STS-specific mutations. For manyyears it has been recognised that individuals with XLI are at increased risk ofcryptorchidism and corneal opacities. Methods We discuss emerging evidence that such individuals are alsomore likely to be affected by a range of neurodevelopmental and psychiatrictraits, by cardiac arrhythmias, and by rare fibrotic and bleeding-relatedconditions. We consider candidate mechanisms that may confer elevatedlikelihood of these individual conditions, and propose a novel commonbiological risk pathway. Results Understanding the prevalence, nature and co-occurrence ofcomorbidities associated with XLI is critical for ensuring early identificationof symptoms and for providing the most effective genetic counselling andmultidisciplinary care for affected individuals. Conclusion Future work in males with XLI, and in new preclinical andcellular model systems, should further clarify underlying pathophysiologicalmechanisms amenable to therapeutic intervention.
Collapse
Affiliation(s)
| | - William Davies
- School of PsychologyCardiff UniversityCardiffUK
- School of MedicineCardiff UniversityCardiffUK
- Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| |
Collapse
|
4
|
Vriend I, Oegema R. Genetic causes underlying grey matter heterotopia. Eur J Paediatr Neurol 2021; 35:82-92. [PMID: 34666232 DOI: 10.1016/j.ejpn.2021.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Grey matter heterotopia (GMH) can cause of seizures and are associated with a wide range of neurodevelopmental disorders and syndromes. They are caused by a failure of neuronal migration during fetal development, leading to clusters of neurons that have not reached their final destination in the cerebral cortex. We have performed an extensive literature search in Pubmed, OMIM, and Google scholar and provide an overview of known genetic associations with periventricular nodular heterotopia (PNVH), subcortical band heterotopia (SBH) and other subcortical heterotopia (SUBH). We classified the heterotopias as PVNH, SBH, SUBH or other and collected the genetic information, frequency, imaging features and salient features in tables for every subtype of heterotopia. This resulted in 105 PVNH, 16 SBH and 25 SUBH gene/locus associations, making a total of 146 genes and chromosomal loci. Our study emphasizes the extreme genetic heterogeneity underlying GMH. It will aid the clinician in establishing an differential diagnosis and eventually a molecular diagnosis in GMH patients. A diagnosis enables proper counseling of prognosis and recurrence risks, and enables individualized patient management.
Collapse
Affiliation(s)
- Ilona Vriend
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Zhang M, Huang H, Lin N, He S, An G, Wang Y, Chen M, Chen L, Lin Y, Xu L. X-linked ichthyosis: Molecular findings in four pedigrees with inconspicuous clinical manifestations. J Clin Lab Anal 2020; 34:e23201. [PMID: 31944387 PMCID: PMC7246362 DOI: 10.1002/jcla.23201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 11/12/2022] Open
Abstract
Background X‐linked ichthyosis (XLI) is the second most common type of ichthyosis, which is characterized by wide and symmetric distribution of adherent, dry, and polygonal scales on the skin. Steroid sulfatase (STS) gene, which is located at chromosome Xp22.31, has been identified as the pathogenic gene of XLI. Methods In this study, chromosome karyotype analysis, bacterial artificial chromosomes‐on‐Beads™ (BoBs) assay, fluorescence in situ hybridization (FISH), and single nucleotide polymorphism array (SNP‐array) were employed for the prenatal diagnoses in three pregnant women with high‐risk serological screening results and a pregnant woman with mental retardation. Results STS deletion was identified at chromosome Xp22.31 in all four fetuses. Postnatal follow‐up confirmed the diagnosis of ichthyosis in two male fetuses and revealed normal dermatological manifestations in other two female fetuses carrying ichthyosis. Conclusion The results of the present study demonstrate that a combination of karyotypying, prenatal BoBs, FISH, and SNP‐array may avoid the missed detection of common microdeletions and ensure the accuracy of the detection results, which provides a feasible tool for the reliable etiological diagnosis and better genetic counseling of XLI.
Collapse
Affiliation(s)
- Min Zhang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hailong Huang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Na Lin
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shuqiong He
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Gang An
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meihuan Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lingji Chen
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuan Lin
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Ohyama A, Nakano H, Imanishi Y, Seto T, Tsuruta D, Fukai K. A novel missense mutation of the STS
gene in two siblings with X-linked ichthyosis, complicated by short stature, bone density reduction, epilepsy, and cryptorchidism. Clin Exp Dermatol 2018; 44:78-79. [DOI: 10.1111/ced.13741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Affiliation(s)
- A. Ohyama
- Department of Dermatology; Osaka City University Graduate School of Medicine; Osaka Japan
| | - H. Nakano
- Department of Dermatology; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Y. Imanishi
- Department of Metabolism, Endocrinology and Molecular Medicine; Osaka City University Graduate School of Medicine; Osaka Japan
| | - T. Seto
- Department of Pediatrics; Osaka City University Graduate School of Medicine; Osaka Japan
| | - D. Tsuruta
- Department of Dermatology; Osaka City University Graduate School of Medicine; Osaka Japan
| | - K. Fukai
- Department of Dermatology; Osaka City University Graduate School of Medicine; Osaka Japan
- Department of Dermatology; Osaka City General Hospital; Osaka Japan
| |
Collapse
|
7
|
Rodrigo-Nicolás B, Bueno-Martínez E, Martín-Santiago A, Cañueto J, Vicente A, Torrelo A, Noguera-Morel L, Duat-Rodríguez A, Jorge-Finnigan C, Palacios-Álvarez I, García-Hernández J, Sebaratnam D, González-Sarmiento R, Hernández-Martín A. Evidence of the high prevalence of neurological disorders in nonsyndromic X-linked recessive ichthyosis: a retrospective case series. Br J Dermatol 2018; 179:933-939. [DOI: 10.1111/bjd.16826] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
| | - E. Bueno-Martínez
- Molecular Medicine Unit-Department of Medicine; IBSAL and IBMCC and University Hospital of Salamanca; CSIC, University of Salamanca; Spain
| | - A. Martín-Santiago
- Department of Dermatology; Hospital Son Espases; Palma de Mallorca Spain
| | - J. Cañueto
- Department of Dermatology; Hospital Universitario de Salamanca; Salamanca Spain
| | - A. Vicente
- Department of Dermatology; Hospital Sant Joan de Deu; Barcelona Spain
| | - A. Torrelo
- Department of Dermatology; Hospital Infantil Niño Jesús; Madrid Spain
| | - L. Noguera-Morel
- Department of Dermatology; Hospital Infantil Niño Jesús; Madrid Spain
| | | | - C. Jorge-Finnigan
- Department of Dermatology; Hospital Infantil Niño Jesús; Madrid Spain
| | | | - J.L. García-Hernández
- Molecular Medicine Unit-Department of Medicine; IBSAL and IBMCC and University Hospital of Salamanca; CSIC, University of Salamanca; Spain
| | - D.F. Sebaratnam
- Department of Dermatology; Hospital Infantil Niño Jesús; Madrid Spain
| | - R. González-Sarmiento
- Molecular Medicine Unit-Department of Medicine; IBSAL and IBMCC and University Hospital of Salamanca; CSIC, University of Salamanca; Spain
| | | |
Collapse
|
8
|
Addis L, Sproviero W, Thomas SV, Caraballo RH, Newhouse SJ, Gomez K, Hughes E, Kinali M, McCormick D, Hannan S, Cossu S, Taylor J, Akman CI, Wolf SM, Mandelbaum DE, Gupta R, van der Spek RA, Pruna D, Pal DK. Identification of new risk factors for rolandic epilepsy: CNV at Xp22.31 and alterations at cholinergic synapses. J Med Genet 2018; 55:607-616. [PMID: 29789371 PMCID: PMC6119347 DOI: 10.1136/jmedgenet-2018-105319] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/18/2018] [Accepted: 04/28/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Rolandic epilepsy (RE) is the most common genetic childhood epilepsy, consisting of focal, nocturnal seizures and frequent neurodevelopmental impairments in speech, language, literacy and attention. A complex genetic aetiology is presumed in most, with monogenic mutations in GRIN2A accounting for >5% of cases. OBJECTIVE To identify rare, causal CNV in patients with RE. METHODS We used high-density SNP arrays to analyse the presence of rare CNVs in 186 patients with RE from the UK, the USA, Sardinia, Argentina and Kerala, India. RESULTS We identified 84 patients with one or more rare CNVs, and, within this group, 14 (7.5%) with recurrent risk factor CNVs and 15 (8.0%) with likely pathogenic CNVs. Nine patients carried recurrent hotspot CNVs including at 16p13.11 and 1p36, with the most striking finding that four individuals (three from Sardinia) carried a duplication, and one a deletion, at Xp22.31. Five patients with RE carried a rare CNV that disrupted genes associated with other epilepsies (KCTD7, ARHGEF15, CACNA2D1, GRIN2A and ARHGEF4), and 17 cases carried CNVs that disrupted genes associated with other neurological conditions or that are involved in neuronal signalling/development. Network analysis of disrupted genes with high brain expression identified significant enrichment in pathways of the cholinergic synapse, guanine-exchange factor activation and the mammalian target of rapamycin. CONCLUSION Our results provide a CNV profile of an ethnically diverse cohort of patients with RE, uncovering new areas of research focus, and emphasise the importance of studying non-western European populations in oligogenic disorders to uncover a full picture of risk variation.
Collapse
Affiliation(s)
- Laura Addis
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
- Neuroscience Discovery Research, Eli Lilly and Company, Surrey, UK
| | - William Sproviero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
| | - Sanjeev V Thomas
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Roberto H Caraballo
- Department of Neurology, Hospital de Pediatría Prof. Dr. J.P. Garrahan, Combate de los Pozos 1881, Buenos Aires, Argentina
| | - Stephen J Newhouse
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
- Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, University College London, London, UK
| | - Kumudini Gomez
- Department of Paediatrics, University Hospital Lewisham, Lewisham and Greenwich NHS Trust, London, UK
| | - Elaine Hughes
- Department of Paediatric Neurosciences, Evelina London Children’s Hospital, St Thomas’ Hospital, London, UK
| | - Maria Kinali
- Department of Paediatric Neurology, Chelsea and Westminster Hospital, London, UK
| | - David McCormick
- Department of Paediatric Neurosciences, Evelina London Children’s Hospital, St Thomas’ Hospital, London, UK
| | - Siobhan Hannan
- Department of Paediatric Neurology, Chelsea and Westminster Hospital, London, UK
| | - Silvia Cossu
- Neurosurgery Unit, Neuroscience and Neurorehabilitation Department, Bambino Gesù Children Hospital, Rome, Italy
- Neurology Unit, Pediatric Hospital A. Cao, Brotzu Hospital Trust, Cagliari, Italy
| | | | - Cigdem I Akman
- Division of Pediatric Neurology, College of Physicians and Surgeons of Columbia University, New York City, New York, USA
| | - Steven M Wolf
- Department of Neurology, Mount Sinai Health System, New York City, New York, USA
| | - David E Mandelbaum
- Departments of Pediatrics, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Rajesh Gupta
- Department of Paediatrics, Tunbridge Wells Hospital, Pembury, UK
| | - Rick A van der Spek
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dario Pruna
- Neurology Unit, Pediatric Hospital A. Cao, Brotzu Hospital Trust, Cagliari, Italy
| | - Deb K Pal
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
| |
Collapse
|
9
|
Papoulidis I, Vetro A, Paspaliaris V, Ziegler M, Kreskowski K, Daskalakis G, Papadopoulos V, Dagklis T, Liehr T, Thomaidis L, Manolakos E. A Girl with 10 Mb Distal Xp Deletion Arising from Maternal Pericentric Inversion: Clinical Data and Molecular Characterization. Curr Genomics 2018; 19:240-246. [PMID: 29606911 PMCID: PMC5850512 DOI: 10.2174/1389202918666170725102220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 11/22/2022] Open
Abstract
Background: Short arm deletions of the X-chromosome are challenging issues for genetic counseling due to their low penetrance in population. Female carriers of these deletions have milder phenotype than male ones, considering the intellectual ability and social skills, probably because of the X-chromosome inactivation phenomenon. Case report: A female patient with a 10Mb distal Xp deletion and an Xq duplication, showing mild intellectual disability, is described in this report. While the deletion arose from a maternal pericentric inversion, the duplication was directly transmitted from the mother who is phenotypically normal. Conclusion: This report underlines the usefulness of molecular cytogenetic technics in postnatal diagnosis.
Collapse
Affiliation(s)
- Ioannis Papoulidis
- Access to Genome P.C., Clinical Laboratory Genetics, Athens-Thessaloniki, Greece
| | - Annalisa Vetro
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Vassilis Paspaliaris
- Access to Genome P.C., Clinical Laboratory Genetics, Athens-Thessaloniki, Greece
| | - Monika Ziegler
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743Jena, Germany
| | - Katharina Kreskowski
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743Jena, Germany
| | - George Daskalakis
- Department of Obstetrics & Gynecology, "Alexandra" Hospital, University of Athens, Athens, Greece
| | | | - Themistoklis Dagklis
- 3 Obstetrics and Gynecology Clinic, Ippokrateion Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743Jena, Germany
| | - Loretta Thomaidis
- Developmental Assessment Unit, 2 Department of Pediatrics, P. & A. Kyriakou Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Manolakos
- Access to Genome P.C., Clinical Laboratory Genetics, Athens-Thessaloniki, Greece.,Developmental Assessment Unit, 2 Department of Pediatrics, P. & A. Kyriakou Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Department of Medical Genetics, University of Cagliari, Binaghi Hospital, Cagliari, Italy
| |
Collapse
|
10
|
Abstract
Examining sex differences in the brain has been historically contentious but is nonetheless important for advancing mental health for both girls and boys. Unfortunately, females in biomedical research remain underrepresented in most mental health conditions including autism spectrum disorders (ASD), even though equal inclusion of females would improve treatment for girls and yield benefits to boys. This review examines sex differences in the relationship between neuroanatomy and neurogenetics of ASD. Recent findings reveal that girls diagnosed with ASD exhibit more intellectual and behavioral problems compared to their male counterparts, suggesting that girls may be less likely diagnosed in the absence of such problems or that they require a higher mutational load to meet the diagnostic criteria. Thus far, the female biased effect of chromosome 4, 5p15.33, 8p, 9p24.1, 11p12-13, 15q, and Xp22.3 and the male biased effect of 1p31.3, 5q12.3, 7q, 9q33.3, 11q13.4, 13q33.3, 16p11.2, 17q11-21, Xp22.33/Yp11.31, DRD1, NLGN3, MAOA, and SHANK1 deletion have been discovered in ASD. The SNPs of genes such as RYR2, UPP2, and the androgen receptor gene have been shown to have sex-biasing factors in both girls and boys diagnosed with ASD. These sex-related genetic factors may drive sex differences in the neuroanatomy of these girls and boys, including abnormal enlargement in temporal gray and white matter volumes, and atypical reduction in cerebellar gray matter volumes and corpus callosum fibers projecting to the anterior frontal cortex in ASD girls relative to boys. Such factors may also be responsible for the attenuation of brain sexual differentiation in adult men and women with ASD; however, much remains to be uncovered or replicated. Future research should leverage further the association between neuroanatomy and genetics in girls for an integrated and interdisciplinary understanding of ASD.
Collapse
|
11
|
Malik A, Amer AB, Salama M, Haddad B, Alrifai MT, Balwi MA, Davies W, Eyaid W. X-linked ichthyosis associated with psychosis and behavioral abnormalities: a case report. J Med Case Rep 2017; 11:267. [PMID: 28934990 PMCID: PMC5609014 DOI: 10.1186/s13256-017-1420-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/08/2017] [Indexed: 01/21/2023] Open
Abstract
Background X-linked ichthyosis is a dermatological condition caused by deficiency for the enzyme steroid sulfatase. Previously, X-linked ichthyosis/steroid sulfatase deficiency has been associated with developmental and neurological phenotypes. Here, we show for the first time, that X-linked ichthyosis may be comorbid with an additional psychiatric phenotype (psychosis). Case presentation We report the case of an 11-year-old Saudi Arabian boy with X-linked ichthyosis associated with psychosis, mental retardation, autism spectrum disorder, inattentive attention deficit hyperactivity disorder, and epilepsy. Genetic analysis revealed a 1.68 Mb deletion encompassing STS in 95% of cells while biochemical analysis revealed correspondingly low steroid sulfatase activity consistent with a diagnosis of X-linked ichthyosis. The psychotic symptoms could be reasonably well controlled by administration of an atypical antipsychotic. Conclusions This report describes a case of comorbid X-linked ichthyosis and psychosis (most closely corresponding to early-onset schizophrenia) for the first time, and suggests that deficiency for steroid sulfatase and contiguous genes may increase vulnerability to psychosis as well as other psychological disorders.
Collapse
Affiliation(s)
- Amna Malik
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Ahmed Bait Amer
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Mohammed Salama
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Bander Haddad
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Muhammad T Alrifai
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Mohammed Al Balwi
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - William Davies
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK. .,School of Psychology, Cardiff University, Cardiff, UK. .,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK. .,MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Wafaa Eyaid
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia. .,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia. .,King AbdulAziz Medical City, Riyadh, Saudi Arabia. .,Department of Pediatrics MC 1510, King AbdulAziz Medical City, King Fahad National Guard Hospital, P.O Box 22490, Riyadh, 11426, Saudi Arabia.
| |
Collapse
|
12
|
Stambolliu E, Ioakeim-Ioannidou M, Kontokostas K, Dakoutrou M, Kousoulis AA. The Most Common Comorbidities in Dandy-Walker Syndrome Patients: A Systematic Review of Case Reports. J Child Neurol 2017. [PMID: 28635420 DOI: 10.1177/0883073817712589] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Dandy-Walker syndrome (DWS) is a rare neurologic multi-entity malformation. This review aimed at reporting its main nonneurologic comorbidities. METHODS Following PRISMA guidelines, search in Medline was conducted (2000-2014, keyword: dandy-walker). Age, sex, country, DWS type, consanguinity or siblings with DWS, and recorded coexistent conditions (by ICD10 category) were extracted for 187 patients (46.5% male, 43% from Asia) from 168 case reports. RESULTS Diagnosis was most often set in <1 year old (40.6%) or >12 years old (27.8%). One-third of cases had a chromosomal abnormality or syndrome (n = 8 PHACE), 27% had a cardiovascular condition (n = 7 Patent Ductus Arteriosus), 24% had a disease of eye and ear (n = 9 cataract); most common malignancy was nephroblastoma (n = 8, all Asian). Almost one-fifth had a mental illness diagnosis; only 6.4% had mild or severe intellectual disability. CONCLUSION The spread of comorbidities calls for early diagnosis and multidisciplinary research and practice, especially as many cases remain clinically asymptomatic for years.
Collapse
Affiliation(s)
- Emelina Stambolliu
- 1 Society of Junior Doctors, Athens, Greece.,2 Department of Internal Medicine, General Hospital of Kalavryta, Kalavryta, Greece
| | | | | | - Maria Dakoutrou
- 1 Society of Junior Doctors, Athens, Greece.,5 First Department of Paediatrics, "Aghia Sophia" Children's Hospital, University of Athens, Greece
| | - Antonis A Kousoulis
- 1 Society of Junior Doctors, Athens, Greece.,6 Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
13
|
Bai J, Qu Y, Cao Y, Li Y, Zhang W, Jin Y, Wang H, Song F. X-linked ichthyosis and Crigler-Najjar syndrome I: Coexistence in a male patient with two copy number variable regions of 2q37.1 and Xp22.3. Mol Med Rep 2015; 13:1135-40. [PMID: 26676689 PMCID: PMC4732863 DOI: 10.3892/mmr.2015.4674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 11/18/2015] [Indexed: 11/06/2022] Open
Abstract
X-linked ichthyosis (XLI) is an X-linked recessive skin disorder generally restricted to males, which arises from mutations in the steroid sulfatase (STS) gene located on Xp22.3. Crigler-Najjar syndrome (CN-I) is a rare autosomal recessive disease caused by the homozygous or compound heterozygous mutations in the UPD-glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1) gene on chromosome 2q37. A male patient was referred to the Department of Medical Genetics with of severe icterus and ichthyosis. The patient and his family members underwent genetic tests related to XLI and CN-I. Quantitative polymerase chain reaction on genomic DNA was performed to determine the gene copy number, while single nucleotide polymorphism array analysis was conducted to identify deletion mutations. Family pedigree analysis showed that the patient and his two cousins were all affected by ichthyosis, which was in accordance with the inheritance pattern of an X-linked recessive disease. In addition, the patient's serum bilirubin concentration (>340 mmol/l) was markedly greater than the normal level. The patient presented with kernicterus and phenobarbital treatment was ineffective. The clinical diagnosis of XLI was confirmed molecularly by laboratory evidence of a maternal 1.61 M deletion (including the STS gene) on ChrXp22.31. Coincidentally, the male patient was also confirmed to carry a rare maternal inherited microdeletion (374 Kb) comprising the entire UGT1A1 gene combined with a paternal UGT1A1 mutation (c.1253delT), a causative event of CN-I. To the best of our knowledge, this study reported for the first time the comorbidity of XLI and CN-I in a male patient. The results suggested that co-occurrence of these two recessive diseases in a patient may be incidental.
Collapse
Affiliation(s)
- Jinli Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Yujin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Yanyan Cao
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Yan Li
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Wenhui Zhang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Yuwei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| |
Collapse
|
14
|
Hand JL, Runke CK, Hodge JC. The phenotype spectrum of X-linked ichthyosis identified by chromosomal microarray. J Am Acad Dermatol 2015; 72:617-27. [DOI: 10.1016/j.jaad.2014.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/29/2022]
|
15
|
Olson HE, Poduri A, Pearl PL. Genetic forms of epilepsies and other paroxysmal disorders. Semin Neurol 2014; 34:266-79. [PMID: 25192505 DOI: 10.1055/s-0034-1386765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic mechanisms explain the pathophysiology of many forms of epilepsy and other paroxysmal disorders, such as alternating hemiplegia of childhood, familial hemiplegic migraine, and paroxysmal dyskinesias. Epilepsy is a key feature of well-defined genetic syndromes including tuberous sclerosis complex, Rett syndrome, Angelman syndrome, and others. There is an increasing number of single-gene causes or susceptibility factors associated with several epilepsy syndromes, including the early-onset epileptic encephalopathies, benign neonatal/infantile seizures, progressive myoclonus epilepsies, genetic generalized and benign focal epilepsies, epileptic aphasias, and familial focal epilepsies. Molecular mechanisms are diverse, and a single gene can be associated with a broad range of phenotypes. Additional features, such as dysmorphisms, head size, movement disorders, and family history may provide clues to a genetic diagnosis. Genetic testing can impact medical care and counseling. We discuss genetic mechanisms of epilepsy and other paroxysmal disorders, tools and indications for genetic testing, known genotype-phenotype associations, the importance of genetic counseling, and a look toward the future of epilepsy genetics.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Annapurna Poduri
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Phillip L Pearl
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
16
|
Olson H, Shen Y, Avallone J, Sheidley BR, Pinsky R, Bergin AM, Berry GT, Duffy FH, Eksioglu Y, Harris DJ, Hisama FM, Ho E, Irons M, Jacobsen CM, James P, Kothare S, Khwaja O, Lipton J, Loddenkemper T, Markowitz J, Maski K, Megerian JT, Neilan E, Raffalli PC, Robbins M, Roberts A, Roe E, Rollins C, Sahin M, Sarco D, Schonwald A, Smith SE, Soul J, Stoler JM, Takeoka M, Tan WH, Torres AR, Tsai P, Urion DK, Weissman L, Wolff R, Wu BL, Miller DT, Poduri A. Copy number variation plays an important role in clinical epilepsy. Ann Neurol 2014; 75:943-58. [PMID: 24811917 DOI: 10.1002/ana.24178] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To evaluate the role of copy number abnormalities detectable using chromosomal microarray (CMA) testing in patients with epilepsy at a tertiary care center. METHODS We identified patients with International Classification of Diseases, ninth revision (ICD-9) codes for epilepsy or seizures and clinical CMA testing performed between October 2006 and February 2011 at Boston Children's Hospital. We reviewed medical records and included patients who met criteria for epilepsy. We phenotypically characterized patients with epilepsy-associated abnormalities on CMA. RESULTS Of 973 patients who had CMA and ICD-9 codes for epilepsy or seizures, 805 patients satisfied criteria for epilepsy. We observed 437 copy number variants (CNVs) in 323 patients (1-4 per patient), including 185 (42%) deletions and 252 (58%) duplications. Forty (9%) were confirmed de novo, 186 (43%) were inherited, and parental data were unavailable for 211 (48%). Excluding full chromosome trisomies, CNV size ranged from 18kb to 142Mb, and 34% were >500kb. In at least 40 cases (5%), the epilepsy phenotype was explained by a CNV, including 29 patients with epilepsy-associated syndromes and 11 with likely disease-associated CNVs involving epilepsy genes or "hotspots." We observed numerous recurrent CNVs including 10 involving loss or gain of Xp22.31, a region described in patients with and without epilepsy. INTERPRETATION Copy number abnormalities play an important role in patients with epilepsy. Because the diagnostic yield of CMA for epilepsy patients is similar to the yield in autism spectrum disorders and in prenatal diagnosis, for which published guidelines recommend testing with CMA, we recommend the implementation of CMA in the evaluation of unexplained epilepsy.
Collapse
Affiliation(s)
- Heather Olson
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology and Neurogenetics Program, Department of Neurology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vreeburg M, Sallevelt SCEH, Stegmann APA, van Geel M, Detisch YJHA, Schrander-Stumpel CTRM, van Steensel MAM, Marcus-Soekarman D. Cutaneous clues for diagnosing X-chromosomal disorders. Clin Genet 2013; 85:328-35. [PMID: 23578112 DOI: 10.1111/cge.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 11/28/2022]
Abstract
In a multidisciplinary outpatient clinic for hereditary skin diseases and/or syndromes involving the skin, 7% (30 of 409) of patients were found to have an abnormality involving the X chromosome, a mutation in a gene located on the X chromosome or a clinical diagnosis of an X-linked monogenetic condition. The collaboration of a dermatologist and a clinical geneticist proves to be very valuable in recognizing and diagnosing these conditions. By combining their specific expertize in counselling an individual patient, X-linked diagnoses were recognized and could be confirmed by molecular and/or cytogenetic studies in 24 of 30 cases. Mosaicism plays an important role in many X-linked hereditary skin disorders. From our experience, we extracted clinical clues for specialists working in the field of genetics and/or dermatology for considering X-linked disorders involving the skin.
Collapse
|
18
|
Trent S, Davies W. Cognitive, behavioural and psychiatric phenotypes associated with steroid sulfatase deficiency. World J Transl Med 2013; 2:1-12. [DOI: 10.5528/wjtm.v2.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 02/05/2023] Open
Abstract
The enzyme steroid sulfatase (STS) desulfates a variety of steroid compounds thereby altering their activity. STS is expressed in the skin, and its deficiency in this tissue has been linked to the dermatological condition X-linked ichthyosis. STS is also highly expressed in the developing and adult human brain, and in a variety of steroidogenic organs (including the placenta and gonads); therefore it has the potential to influence brain development and function directly and/or indirectly (through influencing the hormonal milieu). In this review, we first discuss evidence from human and animal model studies suggesting that STS deficiency might predispose to neurobehavioural abnormalities and certain psychiatric disorders. We subsequently discuss potential mechanisms that may underlie these vulnerabilities. The data described herein have potential implications for understanding the complete spectrum of clinical phenotypes associated with X-linked ichthyosis, and may indicate novel pathogenic mechanisms underlying psychological dysfunction in developmental disorders such as attention deficit hyperactivity disorder and Turner syndrome.
Collapse
|
19
|
Willemsen MH, de Leeuw N, de Brouwer AP, Pfundt R, Hehir-Kwa JY, Yntema HG, Nillesen WM, de Vries BB, van Bokhoven H, Kleefstra T. Interpretation of clinical relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders and/or congenital anomalies. Eur J Med Genet 2012; 55:586-98. [DOI: 10.1016/j.ejmg.2012.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 05/05/2012] [Accepted: 05/05/2012] [Indexed: 01/01/2023]
|
20
|
Array-CGH characterization of a de novo t(X;Y)(p22;q11) in a female with short stature and mental retardation. Gene 2012; 504:107-10. [DOI: 10.1016/j.gene.2012.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/23/2012] [Accepted: 05/06/2012] [Indexed: 11/22/2022]
|
21
|
Abstract
This article focuses on constitutional sex chromosome abnormalities detected by conventional cytogenetics and fluorescence in situ hybridization. The author discusses the two general classifications of abnormalities: numerical and structural. Also included are descriptions of unique aspects of X and Y chromosomes, technological advances in detection, and future perspectives.
Collapse
Affiliation(s)
- Xu Li
- Department of Genetics, Kaiser Permanente, San Jose Medical Center, San Jose, CA 95123, USA.
| |
Collapse
|
22
|
Engelstad H, Carney G, S'aulis D, Rise J, Sanger WG, Rudd MK, Richard G, Carr CW, Abdul-Rahman OA, Rizzo WB. Large contiguous gene deletions in Sjögren-Larsson syndrome. Mol Genet Metab 2011; 104:356-61. [PMID: 21684788 PMCID: PMC3196763 DOI: 10.1016/j.ymgme.2011.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 11/29/2022]
Abstract
Sjögren-Larsson syndrome (SLS) is an autosomal recessive disorder characterized by ichthyosis, mental retardation, spasticity and mutations in the ALDH3A2 gene for fatty aldehyde dehydrogenase, an enzyme that catalyzes the oxidation of fatty aldehyde to fatty acid. More than 70 mutations have been identified in SLS patients, including small deletions or insertions, missense mutations, splicing defects and complex nucleotide changes. We now describe 2 SLS patients whose disease is caused by large contiguous gene deletions of the ALDH3A2 locus on 17p11.2. The deletions were defined using long distance inverse PCR and microarray-based comparative genomic hybridization. A 24-year-old SLS female was homozygous for a 352-kb deletion involving ALDH3A2 and 4 contiguous genes including ALDH3A1, which codes for the major soluble protein in cornea. Although lacking corneal disease, she showed severe symptoms of SLS with uncommon deterioration in oral motor function and loss of ambulation. The other 19-month-old female patient was a compound heterozygote for a 1.44-Mb contiguous gene deletion and a missense mutation (c.407C>T, P136L) in ALDH3A2. These studies suggest that large gene deletions may account for up to 5% of the mutant alleles in SLS. Geneticists should consider the possibility of compound heterozygosity for large deletions in patients with SLS and other inborn errors of metabolism, which has implications for carrier testing and prenatal diagnosis.
Collapse
Affiliation(s)
- Holly Engelstad
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bukvic N, Carri VD, Di Cosola ML, Pustorino G, Cesarano C, Chetta M, Santacroce R, Sarno M, Sessa F, Longo V, Novelli A, Gentile M, Margaglione M. Familial X;Y translocation with distinct phenotypic consequences: Characterization using FISH and array CGH. Am J Med Genet A 2010; 152A:1730-4. [PMID: 20578256 DOI: 10.1002/ajmg.a.33437] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
X;Y translocation is a relatively rare event in humans. Analyzed cytogenetically, the majority of these aberrations have breakpoints at Xp22 and Yq11. Females with t(X;Y)(p22;q11) are phenotypically normal except for short stature, while the males may have abnormalities. Aberrations that lead to nullisomy of the deleted region and complete loss of the respective genes have been recognized as a cause of variable contiguous gene syndromes in males. The phenotype depends on the extent and position of the deletion showing the variable association of apparently unrelated clinical manifestations such as ichthyosis, chondrodysplasia punctata, hypogonadotropic hypogonadism with anosmia, ocular albinism, short stature, and mental retardation. In addition, some patients have been reported with symptoms of attention deficit hyperactivity disorder. The extent of terminal Xp deletions is limited by the presence of male lethal genes in Xp22.2 at about 10-11 Mb from the telomere. The deletions in the majority of viable reported male patients extend to the STS ( approximately 7.0 Mb) or to the KAL1 ( approximately 8.5 Mb) loci. We present a clinical, cytogenetic, FISH, and array CGH study of a family with an Xp;Yq translocation. The chromosomal status is also discussed in the light of their phenotypic traits. The final karyotypes of the patients were designated as: Patient 1: 46,Y,der(X),t(X;Y)(p22;q12).ish der(X)(Xpter-,DXZ1+,Xqter+)mat.arr cgh Xp22.31p22.33(RP11-60P14 --> RP13-391G2)x0;arr cgh Yq11.221qter (RP11-235I1 --> RP11-270H4)x2.Patient 2: 46,X,der(X),t(X;Y)(p22;q12).ish der(X)(Xpter-,DXZ1+,Xqter+)mat.arr cgh Xp22.31p22.33(RP11-60P14 --> RP13-391G2)x1;arr cgh Yq11.221qter (RP11-235I1 --> RP11-270H4)x1.
Collapse
Affiliation(s)
- N Bukvic
- Genetica Medica, Dipartimento di Scienze Biomediche, Università degli Studi di Foggia, Foggia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mosterd K, Sommer A, van Marion A, Lacko M, Herbergs J, de Bondt BJ, van Steensel MAM, Kelleners-Smeets NWJ. Destructive basal cell carcinoma in a patient with basal cell nevus syndrome and an interstitial deletion of chromosome 9q22. Dermatol Surg 2010; 35:2051-3. [PMID: 20050151 DOI: 10.1111/j.1524-4725.2009.01373.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|