1
|
Salmazo MIDBF, Alonso JCC, de Arruda Camargo GC, de Oliveira G, da Silva Santos A, Ávila M, Roberto IM, de Freitas LLL, Bottene MC, Lestingi JFP, Caria PHF, Durán N, Kobarg J, Fávaro WJ. Clinical and immunohistochemical effects of OncoTherad (MRB-CFI-1) nanoimmunotherapy on SERBP1, HABP4, CD44 and Ki-67 in BCG-unresponsive non-muscle invasive bladder cancer. Tissue Cell 2025; 93:102783. [PMID: 39938427 DOI: 10.1016/j.tice.2025.102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Non-muscle-invasive bladder cancer (NMIBC) is a malignancy with a high recurrence and progression rate, particularly in patients who fail to respond to standard Bacillus Calmette-Guérin (BCG) therapy. OncoTherad (MRB-CFI-1) nanoimmunotherapy has emerged as a promising therapeutic option, with potential to modulate immune responses and inhibit tumor progression. This study evaluated the clinical efficacy of OncoTherad (MRB-CFI-1) nanoimmunotherapy in patients with BCG-unresponsive NMIBC and investigated correlations between therapeutic outcomes and histopathological and molecular findings. In this retrospective cross-sectional study, 20 patients with BCG-unresponsive NMIBC were treated with OncoTherad (MRB-CFI-1) across two clinical centers. Bladder tissue samples were collected before and after treatment, and immunohistochemical analyses were performed to assess the expression of SERBP1, HABP4, CD44, and Ki-67. Primary endpoints included pathological complete response (pCR), recurrence-free survival (RFS), and duration of response (DoR), which were analyzed in relation to immunohistochemical biomarker findings. Our results demonstrated that high Ki-67 proliferative index and elevated immunoreactivity for CD44 and SERBP1 were associated with shorter RFS. Treatment with OncoTherad (MRB-CFI-1) significantly reduced (p < 0.05) the immunoreactivity of SERBP1 and CD44, which was accompanied by a marked decrease in Ki-67 proliferative index, indicating effective suppression of tumor activity. Conversely, a significant increase (p < 0.05) in HABP4 immunoreactivity was observed, suggesting a protective role against NMIBC recurrence and progression. A pCR was achieved in 65 % of patients, with a median RFS of 21.1 months and a median DoR of 15.7 months, underscoring the clinical efficacy of OncoTherad (MRB-CFI-1). These findings suggest that OncoTherad (MRB-CFI-1) nanoimmunotherapy offers a novel and effective treatment strategy for patients with BCG-unresponsive NMIBC, providing a promising alternative to radical cystectomy and significantly improving patient outcomes.
Collapse
Affiliation(s)
- Maria Izabel de Barros Frazão Salmazo
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - João Carlos Cardoso Alonso
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil; Paulínia Municipal Hospital, Paulínia City, São Paulo State, Brazil
| | - Gabriela Cardoso de Arruda Camargo
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Gabriela de Oliveira
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - André da Silva Santos
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Monaliza Ávila
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Isadora Manzato Roberto
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Leandro Luiz Lopes de Freitas
- Pathology Department, Medical School, Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | | | - Jean Felipe Prodocimo Lestingi
- São Vicente de Paulo Charity Hospital, Jundiaí City, São Paulo State, Brazil; Division of Urology, University of Sao Paulo Medical School, São Paulo City, São Paulo State, Brazil
| | - Paulo Henrique Ferreira Caria
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Jörg Kobarg
- Laboratory of Signal Mechanisms, School of Pharmaceutical Sciences (FCF), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil
| | - Wagner José Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas City, São Paulo State, Brazil.
| |
Collapse
|
2
|
Hoseini ZS, Zeinalilathori S, Fathi-karkan S, Zeinali S, Rahdar A, Siddiqui B, Kharaba Z, Pandey S. Cell-targeting nanomedicine for bladder cancer: A cellular bioengineering approach for precise drug delivery. J Drug Deliv Sci Technol 2024; 101:106220. [DOI: 10.1016/j.jddst.2024.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Lin CC, Yang JM, Hsu TH, Lee HL. Intravesical Instillation of Hyaluronic Acid With Epidermal Growth Factor for Restoring Urothelial Denudation and Alleviating Oxidative Stress in Lipopolysaccharide-Induced Interstitial Cystitis of Rats. Int Neurourol J 2024; 28:106-114. [PMID: 38956770 PMCID: PMC11222823 DOI: 10.5213/inj.2448028.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE To investigate the efficacy of an intravesical instillation of hyaluronic acid (HA) combined with epidermal growth factor (EGF) for the treatment of interstitial cystitis (IC) using a lipopolysaccharide (LPS)-induced IC animal model. METHODS A total of 24 female Sprague-Dawley rats were randomized to 4 groups: sham control, IC, HA, and treatment (HA/ EGF) groups. A polyethylene-50 tube was placed inside the bladder of each animal. IC was induced by twice-weekly instillations of LPS for 3 weeks, which resulted in chronic injury of the urothelium. Animals in the sham control group only received saline instillation. Treatment solutions of HA and HA/EGF were given on days 0, 7, and 14 after IC induction (400 μL of HA in a concentration of 0.4 mg/0.5 mL and 400 μL of NewEpi, a commercialized HA/EGF mixture containing 2 μg of EGF and 0.4 mg of sodium hyaluronate). Animals were sacrificed on day 21 for further examinations. RESULTS The HA/EGF group showed visible improvement in hematuria with a significant reduction of red blood cells in the urine compared to the HA group. Histological examination revealed that HA/EGF treatment reversed the abnormalities developed in IC, including infiltration of inflammatory cells, irregular re-epithelialization, and fibrotic tissue. Moreover, HA/ EGF significantly reduced the levels of proinflammation cytokines (tumor necrosis factor-α, interleukin [IL]-6, and IL-1β) and substantially lowered the elevated oxidative stress biomarker malondialdehyde, yet restored the levels of antioxidant enzymes glutathione peroxidase and superoxide dismutase, with superior results than HA treatment. Cystometry studies indicated that HA/EGF significantly prolonged intercontraction interval and increased micturition volume. CONCLUSION HA/EGF has been demonstrated as a more effective treatment for enhancing the urothelium lining and reducing inflammatory changes to alleviate clinical symptoms associated with IC in rats, compared to HA alone.
Collapse
Affiliation(s)
- Chih-Chieh Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jenn-Ming Yang
- Department of Obstetrics and Gynecology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hsiang Hsu
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hua-Lin Lee
- Department of Obstetrics and Gynecology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Municipal WanFang Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Yehya A, Youssef J, Hachem S, Ismael J, Abou-Kheir W. Tissue-specific cancer stem/progenitor cells: Therapeutic implications. World J Stem Cells 2023; 15:323-341. [PMID: 37342220 PMCID: PMC10277968 DOI: 10.4252/wjsc.v15.i5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Surgical resection, chemotherapy, and radiation are the standard therapeutic modalities for treating cancer. These approaches are intended to target the more mature and rapidly dividing cancer cells. However, they spare the relatively quiescent and intrinsically resistant cancer stem cells (CSCs) subpopulation residing within the tumor tissue. Thus, a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs' resistant features. Based on their unique expression profile, the identification, isolation, and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence. Yet, targeting CSCs is limited mainly by the irrelevance of the utilized cancer models. A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids (PDOs) as a tool for establishing pre-clinical tumor models. Herein, we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors. Additionally, we highlight the advantage and relevance of the three-dimensional PDOs culture model as a platform for modeling cancer, evaluating the efficacy of CSC-based therapeutics, and predicting drug response in cancer patients.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sana Hachem
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jana Ismael
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
5
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Takagi K, Matsumoto K, Taniguchi D, Machino R, Uchida F, Hara R, Oishi K, Yamane Y, Iwatake M, Eguchi M, Mochizuki Y, Nakayama K, Nagayasu T. Regeneration of the ureter using a scaffold-free live-cell structure created with the bio-three-dimensional printing technique. Acta Biomater 2022:S1742-7061(22)00662-6. [DOI: 10.1016/j.actbio.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
|
7
|
Elbadawy M, Fujisaka K, Yamamoto H, Tsunedomi R, Nagano H, Ayame H, Ishihara Y, Mori T, Azakami D, Uchide T, Fukushima R, Abugomaa A, Kaneda M, Yamawaki H, Shinohara Y, Omatsu T, Mizutani T, Usui T, Sasaki K. Establishment of an experimental model of normal dog bladder organoid using a three-dimensional culture method. Biomed Pharmacother 2022; 151:113105. [PMID: 35605292 DOI: 10.1016/j.biopha.2022.113105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Dog bladder cancer (BC) is mostly muscle-invasive (MI) with poor prognosis, and its pathogenesis is close to human MIBC. Three-dimensional (3D) organoid culture ensures novel knowledge on cancer diseases including BC. Recently, we have established dog BC organoids (BCO) using their urine samples. BCO recapitulated the epithelial structures, characteristics, and drug sensitivity of BC-diseased dogs. However, organoids from dog normal bladder epithelium are not established yet. Therefore, the present study aimed to establish dog normal bladder organoids (NBO) for further understanding the pathogenesis of dog BC and human MIBC. The established NBO underwent various analyzes including cell marker expressions, histopathological structures, cancer-related gene expression patterns, and drug sensitivity. NBO could be produced non-invasively with a continuous culturing and recapitulated the structures and characteristics of the dog's normal bladder mucosal tissues. Different drug sensitivities were observed in each NBO. The analysis of RNA sequencing revealed that several novel genes were changed in NBO compared with BCO. NBO showed a higher expression of p53 and E-cadherin, but a lower expression of MDM2 and Twist1 compared with BCO. These results suggest that NBO could be a promising experimental 3D model for studying the developmental mechanisms of dog BC and human MIBC.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Elqaliobiya, Egypt.
| | - Kodai Fujisaka
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hiromi Ayame
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, Gifu 501-1193, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Surgery, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryuji Fukushima
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23 ban-cho, Towada, Aomori 034-8628, Japan
| | - Yuta Shinohara
- Pet Health & Food Division, Iskara Industry CO., LTD, 1-14-2, Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Tsutomu Omatsu
- Center for Infectious Diseases of Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Center for Infectious Diseases of Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
8
|
Novel Insights on Plant Extracts to Prevent and Treat Recurrent Urinary Tract Infections. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Urinary tract infections (UTI) represent one of the most widespread infections, and frequent recurrent episodes, induced mostly by uropathogenic Escherichia coli, make them increasingly difficult to treat. Long-term antibiotic therapy is an effective approach to treat recurrent UTI but generates adverse effects, including the emergence of pathogenic strains resistant to the vast majority of antibiotics. These drawbacks have enhanced the interest toward new alternatives based on plant extracts to prevent and treat recurrent UTI, especially in a synergistic antibiotic approach. Therefore, this review highlights the potential of some medicinal plants to be used in the management of recurrent UTI, including plants that have been approved for the treatment of urinary infections and promising, but less studied, plant candidates with proven anti-uropathogenic activity. Pomegranate (Punica granatum L.), black chokeberry (Aronia melanocarpa Michx.), and cornelian cherry (Cornus mas L.) have great potential to be used for prevention or in a combined antibiotic therapy to cure UTI, but more studies and clinical trials in specific population groups are required. Further progress in developing plant-based products to cure rUTI will be supported by advances in UTI pathogenesis and human-based models for a better understanding of their pharmacological activities.
Collapse
|
9
|
A three dimensional computer model of urothelium and bladder cancer initiation, progress and collective invasion. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Xu C, Sun M, Zhang X, Xu Z, Miyamoto H, Zheng Y. Activation of Glucocorticoid Receptor Inhibits the Stem-Like Properties of Bladder Cancer via Inactivating the β-Catenin Pathway. Front Oncol 2020; 10:1332. [PMID: 32850423 PMCID: PMC7419687 DOI: 10.3389/fonc.2020.01332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Glucocorticoid receptor (GR) signaling pathway has been shown to involve epithelial -to- mesenchymal transition which was implicated in the regulation of bladder cancer stem cells (CSCs) in our previous study. Herein, we aim to figure out how GR affects the stem-like properties of bladder cancer cells. Methods: We used dexamethasone (DEX) treatment or gene-knockdown/-knockout techniques to activate or silence the GR pathway, respectively. Then we applied immunohistochemical staining and flow cytometry to assess the associations between the expression levels of GR and a stem cell surface marker CD44. Stem-like properties were assessed by reactive oxygen species (ROS), sphere-formation and side population assays. The expression levels of cancer stem cell-associated molecules were assessed by quantitative PCR and Western blotting. Tumor growth was compared using mouse xenograft models. Results: In GR-positive bladder cancer cells, DEX significantly reduced the expression of CD44 as well as pluripotency transcription factors including β-catenin and its downstream target (C-MYC, Snail, and OCT-4), the rate of sphere formation, and the proportion of side populations, and induced the intracellular levels of ROS. By contrast, GR silencing in bladder cancer cells showed the opposite effects. In xenograft-bearing mice, GR silencing resulted in the enhancement of tumor growth. Conclusions: These data suggested that GR activity was inversely associated with the stem-like properties of bladder cancer cells, potentially via inactivating the β-catenin pathway.
Collapse
Affiliation(s)
- Congcong Xu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Urology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mingwei Sun
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Xu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Yichun Zheng
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Lokeshwar VB, Morera DS, Hasanali SL, Yates TJ, Hupe MC, Knapp J, Lokeshwar SD, Wang J, Hennig MJP, Baskar R, Escudero DO, Racine RR, Dhir N, Jordan AR, Hoye K, Azih I, Manoharan M, Klaassen Z, Kavuri S, Lopez LE, Ghosh S, Lokeshwar BL. A Novel Splice Variant of HYAL-4 Drives Malignant Transformation and Predicts Outcome in Patients with Bladder Cancer. Clin Cancer Res 2020; 26:3455-3467. [PMID: 32094233 PMCID: PMC7334064 DOI: 10.1158/1078-0432.ccr-19-2912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/13/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Poor prognosis of patients with muscle-invasive bladder cancer that often metastasizes drives the need for discovery of molecular determinants of bladder cancer progression. Chondroitin sulfate proteoglycans, including CD44, regulate cancer progression; however, the identity of a chondroitinase (Chase) that cleaves chondroitin sulfate from proteoglycans is unknown. HYAL-4 is an understudied gene suspected to encode a Chase, with no known biological function. We evaluated HYAL-4 expression and its role in bladder cancer. EXPERIMENTAL DESIGN In clinical specimens, HYAL-4 wild-type (Wt) and V1 expression was evaluated by RT-qPCR, IHC, and/or immunoblotting; a novel assay measured Chase activity. Wt and V1 were stably expressed or silenced in normal urothelial and three bladder cancer cell lines. Transfectants were analyzed for stem cell phenotype, invasive signature and tumorigenesis, and metastasis in four xenograft models, including orthotopic bladder. RESULTS HYAL-4 expression, specifically a novel splice variant (V1), was elevated in bladder tumors; Wt expression was barely detectable. V1 encoded a truncated 349 amino acid protein that was secreted. In bladder cancer tissues, V1 levels associated with metastasis and cancer-specific survival with high efficacy and encoded Chase activity. V1 cleaved chondroitin-6-sulfate from CD44, increasing CD44 secretion. V1 induced stem cell phenotype, motility/invasion, and an invasive signature. CD44 knockdown abrogated these phenotypes. V1-expressing urothelial cells developed angiogenic, muscle-invasive tumors. V1-expressing bladder cancer cells formed tumors at low density and formed metastatic bladder tumors when implanted orthotopically. CONCLUSIONS Our study discovered the first naturally-occurring eukaryotic/human Chase and connected it to disease pathology, specifically cancer. V1-Chase is a driver of malignant bladder cancer and potential predictor of outcome in patients with bladder cancer.
Collapse
Affiliation(s)
- Vinata B Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| | - Daley S Morera
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Sarrah L Hasanali
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Travis J Yates
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Marie C Hupe
- Department of Urology, University-Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Judith Knapp
- Department of Urology, University-Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Soum D Lokeshwar
- Honors Program in Medical Education, University of Miami-Miller School of Medicine, Miami, Florida
| | - Jiaojiao Wang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Martin J P Hennig
- Department of Urology, University-Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Rohitha Baskar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Diogo O Escudero
- Molecular Cell and Developmental Biology Graduate Program, University of Miami-Miller School of Medicine, Miami, Florida
| | - Ronny R Racine
- Department of Urology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Neetika Dhir
- Department of Urology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Andre R Jordan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Kelly Hoye
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Ijeoma Azih
- Clinical Trials Office, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Murugesan Manoharan
- Division of Urologic Oncology Surgery, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Zachary Klaassen
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Sravan Kavuri
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Luis E Lopez
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Santu Ghosh
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Bal L Lokeshwar
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
12
|
Knockdown of UTX/KDM6A Enriches Precursor Cell Populations in Urothelial Cell Cultures and Cell Lines. Cancers (Basel) 2020; 12:cancers12041023. [PMID: 32326336 PMCID: PMC7226239 DOI: 10.3390/cancers12041023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022] Open
Abstract
The histone demethylase UTX (gene: KDM6A) directs cell and tissue differentiation during development. Deleterious mutations in KDM6A occur in many human cancers, most frequently in urothelial carcinoma. The consequences of these mutations are poorly understood; plausibly, they may disturb urothelial differentiation. We therefore investigated the effects of UTX siRNA-mediated knockdown in two in vitro models of urothelial differentiation; namely, primary cultures of urothelial epithelial cells treated with troglitazone and PD153035 and the immortalized urothelial cell line HBLAK treated with high calcium and serum. In both models, efficient UTX knockdown did not block morphological and biochemical differentiation. An apparent delay was due to a cytotoxic effect on the cell cultures before the initiation of differentiation, which induced apoptosis partly in a p53-dependent manner. As a consequence, slowly cycling, smaller, KRT14high precursor cells in the HBLAK cell line were enriched at the expense of more differentiated, larger, proliferating KRT14low cells. UTX knockdown induced apoptosis and enriched KRT14high cells in the BFTC-905 papillary urothelial carcinoma cell line as well. Our findings suggest an explanation for the frequent occurrence of KDM6A mutations across all stages and molecular subtypes of urothelial carcinoma, whereby loss of UTX function does not primarily impede later stages of urothelial differentiation, but favors the expansion of precursor populations to provide a reservoir of potential tumor-initiating cells.
Collapse
|
13
|
Abugomaa A, Elbadawy M, Yamawaki H, Usui T, Sasaki K. Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for Bladder Cancer. Cells 2020; 9:235. [PMID: 31963556 PMCID: PMC7016964 DOI: 10.3390/cells9010235] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer (BC) is a complex and highly heterogeneous stem cell disease associated with high morbidity and mortality rates if it is not treated properly. Early diagnosis with personalized therapy and regular follow-up are the keys to a successful outcome. Cancer stem cells (CSCs) are the leading power behind tumor growth, with the ability of self-renewal, metastasis, and resistance to conventional chemotherapy. The fast-developing CSC field with robust genome-wide screening methods has found a platform for establishing more reliable therapies to target tumor-initiating cell populations. However, the high heterogeneity of the CSCs in BC disease remains a large issue. Therefore, in the present review, we discuss the various types of bladder CSC heterogeneity, important regulatory pathways, roles in tumor progression and tumorigenesis, and the experimental culture models. Finally, we describe the current stem cell-based therapies for BC disease.
Collapse
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Dakahliya, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan;
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| |
Collapse
|
14
|
Garg M, Maurya N. WNT/β-catenin signaling in urothelial carcinoma of bladder. World J Nephrol 2019; 8:83-94. [PMID: 31624709 PMCID: PMC6794554 DOI: 10.5527/wjn.v8.i5.83] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/14/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Urothelial carcinoma of bladder is the second most prevalent genitourinary disease. It is a highly heterogeneous disease as it represents a spectrum of neoplasms, including non-muscle invasive bladder cancer (NMIBC), muscle invasive bladder cancer (MIBC) and metastatic lesions. Genome-wide approaches and candidate gene analysis suggest that malignant transformation of the bladder is multifactorial and a multitude of genes are involved in the development of MIBC or NMIBC phenotypes. Wnt signaling is being examined to control and maintain balance between stemness and differentiation in adult stem cell niches. Owing to its participation in urothelial development and maintenance of adult urothelial tissue homeostasis, the components of Wnt signaling are reported as an important diagnostic and prognostic markers as well as novel therapeutic targets. Mutations/epigenetic alterations in the key molecules of Wnt/β-catenin canonical pathway have been linked with tumorigenesis, development of drug resistance and enhanced survival. Present review extends our understanding on the functions of key regulatory molecules of canonical Wnt/β-catenin pathway in urothelial tumorigenesis by inducing cancer stem cell phenotype (UCSCs). UCSCs may be responsible for tumor heterogeneity, high recurrence rates and complex biological behavior of bladder cancer. Therefore, understanding the role of UCSCs and the regulatory mechanisms that are responsible for high relapse rates and metastasis could help to develop pathway inhibitors and augment current therapies. Potential implications in the treatment of urothelial carcinoma of bladder by targeting this pathway primarily in UCSCs as well as in bulk tumor population that are responsible for high relapse rates and metastasis may facilitate potential therapeutic avenues and better prognosis.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Niharika Maurya
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
15
|
Abstract
Urothelial carcinoma is a tumor type featuring pronounced intertumoral heterogeneity and a high mutational and epigenetic load. The two major histopathological urothelial carcinoma types - the non-muscle-invasive and muscle-invasive urothelial carcinoma - markedly differ in terms of their respective typical mutational profiles and also by their probable cells of origin, that is, a urothelial basal cell for muscle-invasive carcinomas and a urothelial intermediate cell for at least a large part of non-muscle-invasive carcinomas. Both non-muscle-invasive and muscle-invasive urothelial carcinomas can be further classified into discrete intrinsic subtypes based on their typical transcriptomic profiles. Urothelial carcinogenesis shows a number of parallels to a urothelial regenerative response. Both of these processes seem to be dominated by specific stem cell populations. In the last years, the nature and location of urothelial stem cell(s) have been subject to many controversies, which now seem to be settled down, favoring the existence of a largely single urothelial stem cell type located among basal cells. Basal cell markers have also been amply used to identify urothelial carcinoma stem cells, especially in muscle-invasive disease, but they proved useful even in some non-muscle-invasive tumors. Analyses on molecular nature of urothelial carcinoma stem cells performed till now point to their great heterogeneity, both during the tumor development and upon intertumoral comparison, sexual dimorphism providing a special example of the latter. Moreover, urothelial cancer stem cells are endowed with intrinsic plasticity, whereby they can modulate their stemness in relation to other tumor-related traits, especially motility and invasiveness. Such transitional modulations suggest underlying epigenetic mechanisms and, even within this context, inter- and intratumoral heterogeneity becomes apparent. Multiple molecular aspects of urothelial cancer stem cell biology markedly influence therapeutic response, implying their knowledge as a prerequisite to improved therapies of this disease. At the same time, the notion of urothelial cancer stem cell heterogeneity implies that this therapeutic benefit would be most probably and most efficiently achieved within the context of individualized antitumor therapy.
Collapse
|
16
|
Bellmunt J. Stem-Like Signature Predicting Disease Progression in Early Stage Bladder Cancer. The Role of E2F3 and SOX4. Biomedicines 2018; 6:biomedicines6030085. [PMID: 30072631 PMCID: PMC6164884 DOI: 10.3390/biomedicines6030085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
The rapid development of the cancer stem cells (CSC) field, together with powerful genome-wide screening techniques, have provided the basis for the development of future alternative and reliable therapies aimed at targeting tumor-initiating cell populations. Urothelial bladder cancer stem cells (BCSCs) that were identified for the first time in 2009 are heterogenous and originate from multiple cell types; including urothelial stem cells and differentiated cell types—basal, intermediate stratum and umbrella cells Some studies hypothesize that BCSCs do not necessarily arise from normal stem cells but might derive from differentiated progenies following mutational insults and acquisition of tumorigenic properties. Conversely, there is data that normal bladder tissues can generate CSCs through mutations. Prognostic risk stratification by identification of predictive markers is of major importance in the management of urothelial cell carcinoma (UCC) patients. Several stem cell markers have been linked to recurrence or progression. The CD44v8-10 to standard CD44-ratio (total ratio of all CD44 alternative splicing isoforms) in urothelial cancer has been shown to be closely associated with tumor progression and aggressiveness. ALDH1, has also been reported to be associated with BCSCs and a worse prognosis in a large number of studies. UCC include low-grade and high-grade non-muscle invasive bladder cancer (NMIBC) and high-grade muscle invasive bladder cancer (MIBC). Important genetic defects characterize the distinct pathways in each one of the stages and probably grades. As an example, amplification of chromosome 6p22 is one of the most frequent changes seen in MIBC and might act as an early event in tumor progression. Interestingly, among NMIBC there is a much higher rate of amplification in high-grade NMIBC compared to low grade NMIBC. CDKAL1, E2F3 and SOX4 are highly expressed in patients with the chromosomal 6p22 amplification aside from other six well known genes (ID4, MBOAT1, LINC00340, PRL, and HDGFL1). Based on that, SOX4, E2F3 or 6q22.3 amplifications might represent potential targets in this tumor type. Focusing more in SOX4, it seems to exert its critical regulatory functions upstream of the Snail, Zeb, and Twist family of transcriptional inducers of EMT (epithelial–mesenchymal transition), but without directly affecting their expression as seen in several cell lines of the Cancer Cell Line Encyclopedia (CCLE) project. SOX4 gene expression correlates with advanced cancer stages and poor survival rate in bladder cancer, supporting a potential role as a regulator of the bladder CSC properties. SOX4 might serve as a biomarker of the aggressive phenotype, also underlying progression from NMIBC to MIBC. The amplicon in chromosome 6 contains SOX4 and E2F3 and is frequently found amplified in bladder cancer. These genes/amplicons might be a potential target for therapy. As an existing hypothesis is that chromatin deregulation through enhancers or super-enhancers might be the underlying mechanism responsible of this deregulation, a potential way to target these transcription factors could be through epigenetic modifiers.
Collapse
Affiliation(s)
- Joaquim Bellmunt
- Department of Medical Oncology, Hospital del Mar, IMIM (PSMAR-Hospital del Mar Research Institute), 08003 Barcelona, Spain.
- Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Zhu F, Qian W, Zhang H, Liang Y, Wu M, Zhang Y, Zhang X, Gao Q, Li Y. SOX2 Is a Marker for Stem-like Tumor Cells in Bladder Cancer. Stem Cell Reports 2018; 9:429-437. [PMID: 28793245 PMCID: PMC5550032 DOI: 10.1016/j.stemcr.2017.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
It has been reported that functionally distinct cancer stem cells (CSCs) exist in human bladder cancer (BCa). Here, we found that Sox2, a transcription factor that is well characterized as a marker for stem cells, is upregulated in both mouse and human BCa. Sox2 expression is absent in normal urothelial cells, but it begins to be expressed in pre-neoplastic bladder tumors and continues to be expressed in invasive mouse BCa. Using s as a reporter of Sox2 transcriptional expression, we demonstrated that Sox2-expressing cells mark a subpopulation of tumor cells that fuel the growth of established BCa. SOX2-positive cells also expressed other previously reported BCa CSC markers, including Keratin14 (KRT14) and CD44v6. Ablation of Sox2-expressing cells within primary invasive BCa led to enhanced tumor regression, supporting the essential role of SOX2-positive cells in regulating BCa maintenance and progression. Our data show that Sox2 is a marker of bladder CSCs and indicate it as a potential clinical target for BCa therapy.
Sox2 expression marks bladder cancer stem cells in vivo SOX2-positive cells are a subpopulation of KRT14-expressing cancer stem cells SOX2-positive cells are a subpopulation of CD44v6-expressing cancer stem cells Elimination of Sox2-expressing cells led to reduction of bladder cancer progression
Collapse
Affiliation(s)
- Fengyu Zhu
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui 230031, China
| | - Weiqing Qian
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Haojie Zhang
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Yu Liang
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui 230031, China
| | - Mingqing Wu
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui 230031, China
| | - Yingyin Zhang
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui 230031, China
| | - Xiuhong Zhang
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui 230031, China
| | - Qian Gao
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui 230031, China
| | - Yang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui 230031, China.
| |
Collapse
|
18
|
Li YP, Jia XP, Jiang YQ, Wang W, Wang YL, Wang XL, Guo YX. Differential expression of cytokeratin 14 and 18 in bladder cancer tumorigenesis. Exp Biol Med (Maywood) 2018; 243:344-349. [PMID: 29350066 DOI: 10.1177/1535370218754493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It has been previously suggested that cytokeratins (CKs) are important diagnostic and prognostic biomarkers for urothelial lesions. Hence it is imperative to understand the expression pattern of cytokeratins during formation of papillary bladder cancer, which was the objective of the current study. Expression pattern of CK14 and CK18 were examined using immunohistochemical staining in a mice model of papillary bladder cancer. Twenty female mice were divided into two groups-group 1 (NT) and group 2, which received N-butyl- N-(4-hydroxybutyl) nitrosamine (BBN) for 20 weeks plus one week without treatment. Following histological classification of bladder lesions, CK14 and CK18 immunostaining was assessed according to its distribution and intensity. In NT animals, both basal cells and umbrella cells showed sporadic positive staining for CK14 and CK18, respectively. In BBN group, hyperplastic lesions showed significantly more CK14 and significantly less CK18 staining ( P < 0.05 in each case). Invasive carcinomas showed increased CK14 immunostaining in all epithelial layers. Cumulatively, our data indicate that altered CK14 (high) and CK18 (low) expression is perhaps an early event in bladder cancer tumorigenesis in females at least and is characteristic of both urothelial superficial pre-neoplastic and neoplastic lesions. Impact statement Studies have shown that expression of cytokeratins (CKs) or their altered distribution affects the bladder cancer pathogenesis and disease outcome, while the underlying mechanisms are not clear. The present study aims to explore the expression pattern of CK14 and CK18 during formation of papillary bladder cancer. The results showed that hyperplastic lesions showed significantly more CK14 and significantly less CK18 staining and invasive carcinomas showed increased CK14 immunostaining in all epithelial layers in N-butyl- N-(4-hydroxybutyl)nitrosamine (BBN)-induced mouse model. The results indicate that altered CK14 (high) and CK18 (low) expression is perhaps an early event in bladder cancer tumorigenesis and is characteristic of both urothelial superficial pre-neoplastic and neoplastic lesions, which may provide the early diagnosis index.
Collapse
Affiliation(s)
- Yun-Peng Li
- 1 Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Xiao-Peng Jia
- 1 Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Yu-Qing Jiang
- 1 Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Wei Wang
- 1 Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Yun-Liang Wang
- 1 Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Xiu-Li Wang
- 2 Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Yue-Xian Guo
- 1 Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
19
|
Hatina J, Parmar HS, Kripnerova M, Hepburn A, Heer R. Urothelial Carcinoma Stem Cells: Current Concepts, Controversies, and Methods. Methods Mol Biol 2018; 1655:121-136. [PMID: 28889382 DOI: 10.1007/978-1-4939-7234-0_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer stem cells are defined as a self-renewing and self-protecting subpopulation of cancer cells able to differentiate into morphologically and functionally diverse cancer cells with a limited lifespan. To purify cancer stem cells, two basic approaches can be applied, the marker-based approach employing various more of less-specific cell surface marker molecules and a marker-free approach largely based on various self-protection mechanisms. Within the context of urothelial carcinoma, both methods could find use. The cell surface markers have been mainly derived from the urothelial basal cell, a probable cell of origin of muscle-invasive urothelial carcinoma, with CD14, CD44, CD90, and 67LR representing successful examples of this strategy. The marker-free approaches involve side population sorting, for which a detailed protocol is provided, as well as the Aldefluor assay, which rely on a specific overexpression of efflux pumps or the detoxification enzyme aldehyde dehydrogenase, respectively, in stem cells. These assays have been applied to both non-muscle-invasive and muscle-invasive bladder cancer samples and cell lines. Urothelial carcinoma stem cells feature a pronounced heterogeneity as to their molecular stemness mechanisms. Several aspects of urothelial cancer stem cell biology could enter translational development rather soon, e.g., a specific CD44+-derived gene expression signature able to identify non-muscle-invasive bladder cancer patients with a high risk of progression, or deciphering a mechanism responsible for repopulating activity of urothelial carcinoma stem cells within the context of therapeutic resistance.
Collapse
Affiliation(s)
- Jiri Hatina
- Faculty of Medicine in Pilsen, Institute of Biology, Charles University in Prague, Plzen, Czech Republic.
| | - Hamendra Singh Parmar
- Faculty of Medicine in Pilsen, Institute of Biology, Charles University in Prague, Plzen, Czech Republic
| | - Michaela Kripnerova
- Faculty of Medicine in Pilsen, Institute of Biology, Charles University in Prague, Plzen, Czech Republic
| | - Anastasia Hepburn
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Rakesh Heer
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
20
|
Drak Alsibai K, Meseure D. Tumor microenvironment and noncoding RNAs as co-drivers of epithelial-mesenchymal transition and cancer metastasis. Dev Dyn 2017; 247:405-431. [PMID: 28691356 DOI: 10.1002/dvdy.24548] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/31/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
Reciprocal interactions between cancer cells and tumor microenvironment (TME) are crucial events in tumor progression and metastasis. Pervasive stromal reprogramming of TME modifies numerous cellular functions, including extracellular matrix (ECM) stiffness, inflammation, and immunity. These environmental factors allow selection of more aggressive cells that develop adaptive strategies associating plasticity and epithelial-mesenchymal transition (EMT), stem-like phenotype, invasion, immunosuppression, and resistance to therapies. EMT is a morphomolecular process that endows epithelial tumor cells with mesenchymal properties, including reduced adhesion and increased motility. Numerous studies have demonstrated involvement of noncoding RNAs (ncRNAs), such as miRNAs and lncRNAs, in tumor initiation, progression, and metastasis. NcRNAs regulate every hallmark of cancer and have now emerged as new players in induction and regulation of EMT. The reciprocal regulatory interactions between ncRNAs, TME components, and cancer cells increase the complexity of gene expression and protein translation in cancer. Thus, deeper understanding of molecular mechanisms controlling EMT will not only shed light on metastatic processes of cancer cells, but enhance development of new therapies targeting metastasis. In this review, we will provide recent findings on the role of known ncRNAs relevant to EMT and cancer metastasis and discuss the role of the interaction between ncRNAs and TME as co-drivers of EMT. Developmental Dynamics 247:405-431, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Didier Meseure
- Platform of Investigative Pathology, Curie Institute, Paris, France.,Department of Pathology, Curie Institute, Paris, France
| |
Collapse
|
21
|
Huang CP, Chen CC, Shyr CR. The anti-tumor effect of intravesical administration of normal urothelial cells on bladder cancer. Cytotherapy 2017; 19:1233-1245. [PMID: 28818454 DOI: 10.1016/j.jcyt.2017.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/12/2017] [Accepted: 06/25/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Urothelial bladder cancer (UBC) is the second most common cancer of the genitourinary tract and for advanced forms of the disease it has a high mortality rate. There are no approved new molecularly targeted agents or chemotherapeutics for advanced UBC beyond cisplatin-based chemotherapy except the recently approved anti-programmed death ligand 1 (anti-PD-1/PD-L1) antibody. With complex genetic and epigenetic alterations in tumors, despite several druggable targets identified, to cure UBC is still a challenging unmet medical need. Like other cancers, UBC to the host body is considered as a wound, aging stem cell disease and immunosuppressive disorder. Therefore, we proposed a novel cellular approach to target the host body by intravesical instilling of normal urothelial cells that could repair the injury and reduce inflammation by activating body-reparative capacity and because non-self cells are transplanted, host body immune responses could be induced in the tumor microenvironment of UBC to restrain and even eliminate tumor cells. METHODS In this study, we isolated and expanded normal male murine urothelial cells and intravesically administered them into the bladders of female mice of two orthotopic bladder tumor models and one urothelial injury model. RESULTS We showed that the instillation of normal urothelial cells containing stem/progenitor cell population into bladders could have anti-tumor effect in orthotopic tumor models, possibly by activating immune responses and helping injured urothelium tissue recovery in a chemically induced urothelial injury model. CONCLUSIONS Our findings could lead to an innovative and revolutionary cell therapy modality with normal urothelial cells as an effective and safe therapeutic option for UBC.
Collapse
Affiliation(s)
- Chi-Ping Huang
- Sex Hormone Research Center, Departments of Urology/Surgery and Medical Laboratory Science & Biotechnology, Graduate Institute of Clinical Medical Science, China Medical University/Hospital, Taichung, Taiwan
| | - Chi-Cheng Chen
- Sex Hormone Research Center, Departments of Urology/Surgery and Medical Laboratory Science & Biotechnology, Graduate Institute of Clinical Medical Science, China Medical University/Hospital, Taichung, Taiwan; Department of Urology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Chih-Rong Shyr
- Sex Hormone Research Center, Departments of Urology/Surgery and Medical Laboratory Science & Biotechnology, Graduate Institute of Clinical Medical Science, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
22
|
Flat Intraurothelial Neoplasia Exhibiting Diffuse Immunoreactivity for CD44 and Cytokeratin 5 (Urothelial Stem Cell/Basal Cell Markers): A Variant of Intraurothelial Neoplasia Commonly Associated With Muscle-invasive Urothelial Carcinoma. Appl Immunohistochem Mol Morphol 2017; 25:505-512. [DOI: 10.1097/pai.0000000000000334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Wu CT, Lin WY, Chang YH, Chen WC, Chen MF. Impact of CD44 expression on radiation response for bladder cancer. J Cancer 2017; 8:1137-1144. [PMID: 28607587 PMCID: PMC5463427 DOI: 10.7150/jca.18297] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/24/2017] [Indexed: 12/13/2022] Open
Abstract
Background Identification of potential factors that can stratify tumors' response to specific therapies will aid in the selection of cancer therapy. Radioresistance is the major obstacles to positive outcomes in bladder cancer patients after definite chemotherapy. CD44, a cancer stem cell surface marker, is relevant in treatment resistance. In the present study, we examined the role of CD44 in bladder cancer. Methods We retrospectively analyzed the clinical outcomes of 85 bladder cancer patients treated with definite chemoradiotherapy, and correlated the expressions of CD44 with IL-6 and treatment response. Furthermore, the bladder cancer cell lines HT1197 and MB49 were selected for cellular and animal experiments to investigate the links between the CD44, IL-6 and radiation response. Results Analyzing the clinical specimen, the staining of CD44 was significantly linked with higher clinical stage, lower complete response rates, higher loco-regional failure rate and lower survival rate with intact bladder for patients treated with definite CCRT. In addition, the frequency of CD44 immunoreactivity was significantly higher in IL-6-positive bladder cancer specimens. By cellular experiments, the expression of CD44 was stimulated by IL-6 and linked with the cancer stem cell-like property. As demonstrated through in vitro and animal experiments using immunocompromised and immunocompetent hosts, CD44+ bladder cancer cells appeared more resistant to irradiation, associated with less RT-induced cell death. Conclusions Our findings suggested that CD44 is important in predicting the radiation response of bladder tumor cells. If overexpressed CD44 and/or IL-6 were noted in pre-surgical specimens, radical cystectomy is more likely to be preferred.
Collapse
Affiliation(s)
- Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital at Keelung, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Wei-Yu Lin
- Chang Gung University, College of Medicine, Taoyuan, Taiwan.,Department of Urology, Chang Gung Memorial Hospital at Chiayi, Taiwan
| | - Ying-Hsu Chang
- Department of Urology, Chang Gung Memorial Hospital at Linko, Taiwan
| | - Wen-Cheng Chen
- Chang Gung University, College of Medicine, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Taiwan
| | - Miao-Fen Chen
- Chang Gung University, College of Medicine, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Taiwan
| |
Collapse
|
24
|
Wang C, Ross WT, Mysorekar IU. Urothelial generation and regeneration in development, injury, and cancer. Dev Dyn 2017; 246:336-343. [PMID: 28109014 DOI: 10.1002/dvdy.24487] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
Homeostatic maintenance and repair of the urothelium upon injury are required for a functional bladder in both healthy and disease conditions. Understanding the cellular and molecular mechanisms underlying the urothelial regenerative response is key to designing strategies for tissue repair and ultimately treatments for urologic diseases including urinary tract infections, voiding dysfunction, painful bladder syndrome, and bladder cancer. In this article, we review studies on urothelial ontogeny during development and regeneration following various injury modalities. Signaling pathways involved in urothelial regeneration and in urothelial carcinogenesis are also discussed. Developmental Dynamics 246:336-343, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caihong Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Whitney Trotter Ross
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
25
|
Ferreira-Teixeira M, Parada B, Rodrigues-Santos P, Alves V, Ramalho JS, Caramelo F, Sousa V, Reis F, Gomes CM. Functional and molecular characterization of cancer stem-like cells in bladder cancer: a potential signature for muscle-invasive tumors. Oncotarget 2016; 6:36185-201. [PMID: 26452033 PMCID: PMC4742170 DOI: 10.18632/oncotarget.5517] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
Striking evidence associates cancer stem cells (CSCs) to the high recurrence rates and poor survival of patients with muscle-invasive bladder cancer (BC). However, the prognostic implication of those cells in risk stratification is not firmly established, mainly due to the functional and phenotypic heterogeneity of CSCs populations, as well as, to the conflicting data regarding their identification based on a single specific marker. This emphasizes the need to exploit putative CSC-related molecular markers with potential prognostic significance in BC patients. This study aimed to isolate and characterize bladder CSCs making use of different functional and molecular approaches. The data obtained provide strong evidence that muscle-invasive BC is enriched with a heterogeneous stem-like population characterized by enhanced chemoresistance and tumor initiating properties, able to recapitulate the heterogeneity of the original tumor. Additionally, a logistic regression analysis identified a 2-gene stem-like signature (SOX2 and ALDH2) that allows a 93% accurate discrimination between non-muscle-invasive and invasive tumors. Our findings suggest that a stemness-related gene signature, combined with a cluster of markers to more narrowly refine the CSC phenotype, could better identify BC patients that would benefit from a more aggressive therapeutic intervention targeting CSCs population.
Collapse
Affiliation(s)
- Margarida Ferreira-Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Belmiro Parada
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vera Alves
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - José S Ramalho
- CEDOC, Faculty of Medical Sciences, New University of Lisbon, Lisbon, Portugal
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vitor Sousa
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Service of Anatomical Pathology, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Célia M Gomes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Abstract
BACKGROUND The histopathological structure of malignant tumours involves two essential compartments - the tumour parenchyma with the actual transformed cells, and the supportive tumour stroma. The latter consists of specialized mesenchymal cells, such as fibroblasts, macrophages, lymphocytes and vascular cells, as well as of their secreted products, including components of the extracellular matrix, matrix modifying enzymes and numerous regulatory growth factors and cytokines. In consequence, the tumour stroma has the ability to influence virtually all aspects of tumour development and progression, including therapeutic response. AIM In this article we review the current knowledge of tumor stroma interactions in urothelial carcinoma and present various experimental systems that are currently in use to unravel the biological basis of these heterotypic cell interactions. RESULTS For urothelial carcinoma, an extensive tumour stroma is quite typical and markers of activated fibroblasts correlate significantly with clinical parameters of advanced disease. Another clinically important variable is provided by the stromal expression of syndecan-1. CONCLUSION Integration of markers of activated stroma into clinical risk evaluation could aid to better stratification of urothelial bladder carcinoma patients. Elucidation of biological mechanisms underlying tumour-stroma interactions could provide new therapeutical targets.
Collapse
|
27
|
Slusser-Nore A, Larson-Casey JL, Zhang R, Zhou XD, Somji S, Garrett SH, Sens DA, Dunlevy JR. SPARC Expression Is Selectively Suppressed in Tumor Initiating Urospheres Isolated from As+3- and Cd+2-Transformed Human Urothelial Cells (UROtsa) Stably Transfected with SPARC. PLoS One 2016; 11:e0147362. [PMID: 26783756 PMCID: PMC4718619 DOI: 10.1371/journal.pone.0147362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/04/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As(+3)) and cadmium (Cd(+2))-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd(+2)-and As(+3)-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. METHODS Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As(+3)-and Cd(+2)-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. RESULTS It was shown that the As(+3)-and Cd(+2)-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. CONCLUSIONS Tumor initiating cells isolated from SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.
Collapse
Affiliation(s)
- Andrea Slusser-Nore
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jennifer L. Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy and Critical Medicine, the University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ruowen Zhang
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Xu Dong Zhou
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jane R. Dunlevy
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
28
|
Garg M. Urothelial cancer stem cells and epithelial plasticity: current concepts and therapeutic implications in bladder cancer. Cancer Metastasis Rev 2015; 34:691-701. [PMID: 26328525 DOI: 10.1007/s10555-015-9589-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Urothelial carcinoma is a highly heterogeneous disease that develops along two distinct biological tracks as evident by candidate gene analysis and genome-wide screening and therefore, offers different challenges for clinical management. Tumors representing the truly distinct molecular entities express molecular markers characteristic of a developmental process and a major mechanism of cancer metastasis, known as epithelial-to-mesenchymal transition (EMT). Recently identified subset of cells known as urothelial cancer stem cells (UroCSCs) in urothelial cell carcinoma (UCC) have self-renewal properties, ability to generate cellular tumor heterogeneity via differentiation and are ultimately responsible for tumor growth and viability. In this review paper, PubMed and Google Scholar electronic databases were searched for original research papers and review articles to extract relevant information on the molecular mechanisms delineating the relationship between EMT and cancer stemness and their clinical implications for different subsets of urothelial cell carcinomas. Experimental and clinical studies over the past few years in bladder cancer cell lines and tumor tissues of different cancer subtypes provide evidences and new insights for mechanistic complexity for induction of EMT, tumorigenicity, and cancer stemness in malignant transformation of urothelial cell carcinomas. Differentiation and elimination therapies targeting EMT-cancer stemness pathway have been proposed as cynosure in the molecular biology of urothelial cell carcinomas and could prove to be clinically beneficial in an ability to reverse the EMT phenotype of tumor cells, suppress the properties of UroCSCs, inhibit bladder cancer progression and tumor relapse, and provide rationale in the treatment and clinical management of urothelial cancer.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
29
|
Gil da Costa RM, Oliveira PA, Vasconcelos-Nóbrega C, Arantes-Rodrigues R, Pinto-Leite R, Colaço AA, de la Cruz LF, Lopes C. Altered expression of CKs 14/20 is an early event in a rat model of multistep bladder carcinogenesis. Int J Exp Pathol 2015; 96:319-25. [PMID: 26515584 DOI: 10.1111/iep.12145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022] Open
Abstract
Cytokeratins (CKs) 14 and 20 are promising markers for diagnosing urothelial lesions and for studying their prognosis and histogenesis. This work aimed to study the immunohistochemical staining patterns of CK14/20 during multistep carcinogenesis leading to papillary bladder cancer in a rat model. Thirty female Fischer 344 rats were divided into three groups: group 1 (control); group 2, which received N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) for 20 weeks plus 1 week without treatment; and group 3, which received BBN for 20 weeks plus 8 weeks without treatment. Bladder lesions were classified histologically. CK14 and CK20 immunostaining was assessed according to its distribution and intensity. In control animals, 0-25% of basal cells and umbrella cells stained positive for CK14 and CK20 respectively. On groups 2 and 3, nodular hyperplastic lesions showed normal CK20 and moderately increased CK14 staining (26-50% of cells). Dysplasia, squamous metaplasia, papilloma, papillary tumours of low malignant potential and low- and high-grade papillary carcinomas showed increased CK14 and CK20 immunostaining in all epithelial layers. Altered CK14 and CK20 expression is an early event in urothelial carcinogenesis and is present in a wide spectrum of urothelial superficial neoplastic and preneoplastic lesions.
Collapse
Affiliation(s)
- Rui M Gil da Costa
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal.,Grupo de Patologia e Terapêutica Experimental, CI-IPOP, Instituto Português de Oncologia, Porto, Portugal
| | - Paula A Oliveira
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,CITAB, UTAD, Vila Real, Portugal
| | - Carmen Vasconcelos-Nóbrega
- Instituto Politécnico de Viseu, Escola Agrária de Viseu, Viseu, Portugal.,CECA, Universidade do Porto, Porto, Portugal
| | | | - Rosário Pinto-Leite
- Laboratorio de Citogenética, Departamento de Genética Humana, Centro Hospitalar de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Aura A Colaço
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,ECAV, UTAD, Vila Real, Portugal
| | - Luis F de la Cruz
- Departamento de Fisiologia, Faculdade de Veterinária, Universidade de Santiago de Compostela, Lugo, Spain
| | - Carlos Lopes
- Grupo de Patologia e Terapêutica Experimental, CI-IPOP, Instituto Português de Oncologia, Porto, Portugal
| |
Collapse
|
30
|
Orabi H, Rousseau A, Laterreur V, Bolduc S. Optimization of the current self-assembled urinary bladder model: Organ-specific stroma and smooth muscle inclusion. Can Urol Assoc J 2015; 9:E599-E607. [PMID: 26425221 PMCID: PMC4581925 DOI: 10.5489/cuaj.2953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Due to the complications associated with the use of non-native biomaterials and the lack of local tissues, bioengineered tissues are required for surgical reconstruction of complex urinary tract diseases, including those of the urinary bladder. The self-assembly method of matrix formation using autologous stromal cells obviates the need for exogenous biomaterials. We aimed at creating novel ex-vivo multilayer urinary tissue from a single bladder biopsy. METHODS After isolating urothelial, bladder stromal and smooth muscle cells from bladder biopsies, we produced 2 models of urinary equivalents: (1) the original one with dermal fibroblasts and (2) the new one with bladder stromal cells. Dermal fibroblasts and bladder stromal cells were stimulated to form an extracellular matrix, followed by sequential seeding of smooth muscle cells and urothelial cells. Stratification and cellular differentiation were assessed by histology, immunostaining and electron microscopy. Barrier function was checked with the permeability test. Biomechanical properties were assessed with uniaxinal tensile strength, elastic modulus, and failure strain. RESULTS Both urinary equivalents could be handled easily and did not contract. Stratified epithelium, intact basement membrane, fused matrix, and prominent muscle layer were detected in both urinary equivalents. Bladder stromal cell-based constructs had terminally differentiated urothelium and more elasticity than dermal fibroblasts-based equivalents. Permeation studies showed that both equivalents were comparable to native tissues. CONCLUSIONS Organ-specific stromal cells produced urinary tissues with more terminally differentiated urothelium and better biomechanical characteristics than non-specific stromal cells. Smooth muscle cells could be incorporated into the self-assembled tissues effectively. This multilayer tissue can be used as a urethral graft or as a bladder model for disease modelling and pharmacotherapeutic testing.
Collapse
Affiliation(s)
- Hazem Orabi
- Centre de recherche en organogénèse expérimentale de l’Université Laval/LOEX, Faculté de médecine, Université Laval, QC
- Surgery Department (Urology Service), Université Laval, QC
- Urology Department, Assiut University, Egypt
| | - Alexandre Rousseau
- Centre de recherche en organogénèse expérimentale de l’Université Laval/LOEX, Faculté de médecine, Université Laval, QC
| | - Veronique Laterreur
- Centre de recherche en organogénèse expérimentale de l’Université Laval/LOEX, Faculté de médecine, Université Laval, QC
| | - Stephane Bolduc
- Centre de recherche en organogénèse expérimentale de l’Université Laval/LOEX, Faculté de médecine, Université Laval, QC
- Surgery Department (Urology Service), Université Laval, QC
| |
Collapse
|
31
|
Jerman UD, Kreft ME, Veranič P. Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:521-30. [PMID: 26066408 DOI: 10.1089/ten.teb.2014.0678] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.
Collapse
Affiliation(s)
- Urška Dragin Jerman
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana , Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana , Ljubljana, Slovenia
| | - Peter Veranič
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
32
|
Mai KT, Truong LD, Ball CG, Williams P, Flood TA, Belanger EC. Invasive urothelial carcinoma exhibiting basal cell immunohistochemical markers: A variant of urothelial carcinoma associated with aggressive features. Pathol Res Pract 2015; 211:610-8. [PMID: 26100813 DOI: 10.1016/j.prp.2015.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 04/14/2015] [Accepted: 05/22/2015] [Indexed: 01/10/2023]
Abstract
We characterize invasive urothelial carcinoma (UC) exhibiting urothelial basal cell immunohistochemical markers. Consecutive invasive UCs were immunostained with CK20 and urothelial basal cell markers, cytokeratin 5 (CK5)/CD44. Immunostaining for CK5 and CD44 was scored as follows: positive for staining of more than 25% thickness of the epithelial nest or epithelium and low for lesser immunoreactivity. Invasive urothelial carcinoma (UC) exhibiting positive CK5/CD44 staining was designated as basal-like UC (BUC). In this study, of 251 invasive UC (pT1 in 57% and pT2-4 in 43%), BUC accounted for 40% of cases (accounting for most pT2-4 UC) and often presented as non-papillary UC without previous history of UC. In addition, BUC exhibited uniform nuclei with lesser degree of atypia than non BUC and decreased or negative cytokeratin 20 reactivity. Nested and microcystic variants of UC immunohistochemically stained as BUCs. Invasive non-BUCs were often papillary with marked cytologic atypia and pleomorphism, and accounted for most pT1 UC. The rates of perivesical invasion, lymph node and distant metastases were higher for BUC than non-BUC. All nine cases with absent/minimal residual in situ UC in 102 radical cystectomy specimens were from invasive non-BUC. BUC is distinguished from non-BUC due to this aggressive behavior, distinct immunohistochemical profile, and predominant non-papillary architecture. Our findings are consistent with recent studies identifying a subtype of muscle-invasive UC with molecular expression of basal cell and luminal cell molecular profiles. Our study further supports categorizing invasive UCs into these subtypes with different biological behaviors, possibly contributing to better therapeutic strategies.
Collapse
Affiliation(s)
- Kien T Mai
- The Ottawa Hospital, Ottawa, ON, Canada; University of Ottawa, Pathology and Laboratory Medicine, Ottawa, ON, Canada.
| | - Luan D Truong
- Department of Pathology and Genomic Medicine, The Methodist Hospital Physician Organization, Weill Cornell Medical College of Cornell University, United States
| | - Christopher G Ball
- The Ottawa Hospital, Ottawa, ON, Canada; University of Ottawa, Pathology and Laboratory Medicine, Ottawa, ON, Canada
| | - Phillip Williams
- The Ottawa Hospital, Ottawa, ON, Canada; University of Ottawa, Pathology and Laboratory Medicine, Ottawa, ON, Canada
| | - Trevor A Flood
- The Ottawa Hospital, Ottawa, ON, Canada; University of Ottawa, Pathology and Laboratory Medicine, Ottawa, ON, Canada
| | - Eric C Belanger
- The Ottawa Hospital, Ottawa, ON, Canada; University of Ottawa, Pathology and Laboratory Medicine, Ottawa, ON, Canada
| |
Collapse
|
33
|
Tissue engineering in urothelium regeneration. Adv Drug Deliv Rev 2015; 82-83:64-8. [PMID: 25477302 DOI: 10.1016/j.addr.2014.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/04/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
The development of therapeutic treatments to regenerate urothelium, manufacture tissue equivalents or neourethras for in-vivo application is a significant challenge in the field of tissue engineering. Many studies have focused on urethral defects that, in most cases, inadequately address current therapies. This article reviews the primary tissue engineering strategies aimed at the clinical requirements for urothelium regeneration while concentrating on promising investigations in the use of grafts, cellular preparations, as well as seeded or unseeded natural and synthetic materials. Despite significant progress being made in the development of scaffolds and matrices, buccal mucosa transplants have not been replaced. Recently, graft tissues appear to have an advantage over the use of matrices. These therapies depend on cell isolation and propagation in vitro that require, not only substantial laboratory resources, but also subsequent surgical implant procedures. The choice of the correct cell source is crucial when determining an in-vivo application because of the risks of tissue changes and abnormalities that may result in donor site morbidity. Addressing an appropriately-designed animal model and relevant regulatory issues is of fundamental importance for the principal investigators when a therapy using cellular components has been developed for clinical use.
Collapse
|
34
|
Stopiglia RM, Matheus WE, Garcia PV, Billis A, Castilho MA, de Jesus VHF, Ferreira U, Fávaro WJ. Molecular Assessment of Non-Muscle Invasive and Muscle Invasive Bladder Tumors: Mapping of Putative Urothelial Stem Cells and Toll-Like Receptors (TLR) Signaling. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jct.2015.62014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Keymoosi H, Gheytanchi E, Asgari M, Shariftabrizi A, Madjd Z. ALDH1 in combination with CD44 as putative cancer stem cell markers are correlated with poor prognosis in urothelial carcinoma of the urinary bladder. Asian Pac J Cancer Prev 2014; 15:2013-20. [PMID: 24716927 DOI: 10.7314/apjcp.2014.15.5.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aldehyde dehydrogenase 1 family member A1 (ALDH1A1) is one of the promising markers for identifying cancer stem cells in many cancer types, along with other markers including CD44. The aim of the present study was to evaluate the expression and clinical significance of putative cancer stem cell markers, CD44 and ALDH1A1, in a series of urothelial carcinomas of urinary bladder (UCUB) by tissue microarray (TMA). MATERIALS AND METHODS A total of 159 Urothelial Carcinomas (UC) including 96 (60%) low grade and 63 (40%) high grade carcinomas were immunohistochemically examined for the expression of CD44 and ALDH1A1. Correlations of the relative expression of these markers with clinicopathological parameters were also assessed. RESULTS High level expression of ALDH1A1 was found in 16% (25/159) of bladder UC which was significantly correlated with increased tumor size (p value=0.002), high grade (p value<0.001), pathologic stage (T1, p value=0.007 and T2, p value<0.001) and increased rate of recurrence (p value=0.013). A high level of CD44 expression was found in 43% (68/159) of cases, being positively correlated with histologic grade (p value=0.032) and recurrence (p value=0.039). CONCLUSIONS Taken together, our results showed that ALDH1 was concurrently expressed in a fraction of CD44+ tumors and its expression correlated with poor prognosis in UCs. ALDH1A1 could be an ideal marker for targeted therapy of UCs in combination with conventional therapies, particularly in patients with high grade carcinomas. These findings indicate that cells expressing ALDH1A1 along with CD44 can be a potential therapeutic target in bladder carcinomas.
Collapse
Affiliation(s)
- Hossein Keymoosi
- Department Pathology, Iran University of Medical Sciences, Tehran, Iran E-mail :
| | | | | | | | | |
Collapse
|
36
|
Anabolic androgens affect the competitive interactions in cell migration and adhesion between normal mouse urothelial cells and urothelial carcinoma cells. Biochem Biophys Res Commun 2014; 452:322-7. [PMID: 25159849 DOI: 10.1016/j.bbrc.2014.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/08/2014] [Indexed: 12/17/2022]
Abstract
The urothelium is constantly rebuilt by normal urothelial cells to regenerate damaged tissues caused by stimuli in urine. However, the urothelial carcinoma cells expand the territory by aberrant growth of tumor cells, which migrate and occupy the damaged tissues to spread outside and disrupt the normal cells and organized tissues and form a tumor. Therefore, the interaction between normal urothelial cells and urothelial carcinoma cells affect the initiation and progression of urothelial tumors if normal urothelial cells fail to migrate and adhere to the damages sites to regenerate the tissues. Here, comparing normal murine urothelial cells with murine urothelial carcinoma cells (MBT-2), we found that normal cells had less migration ability than carcinoma cells. And in our co-culture system we found that carcinoma cells had propensity migrating toward normal urothelial cells and carcinoma cells had more advantages to adhere than normal cells. To reverse this condition, we used anabolic androgen, dihyrotestosterone (DHT) to treat normal cells and found that DHT treatment increased the migration ability of normal urothelial cells toward carcinoma cells and the adhesion capacity in competition with carcinoma cells. This study provides the base of a novel therapeutic approach by using anabolic hormone-enforced normal urothelial cells to regenerate the damage urothelium and defend against the occupancy of carcinoma cells to thwart cancer development and recurrence.
Collapse
|
37
|
Zhu YT, Zhao Z, Fu XY, Luo Y, Lei CY, Chen W, Li F, Pang SY, Chen SS, Tan WL. The granulocyte macrophage–colony stimulating factor surface modified MB49 bladder cancer stem cells vaccine against metastatic bladder cancer. Stem Cell Res 2014; 13:111-22. [DOI: 10.1016/j.scr.2014.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/23/2014] [Accepted: 04/14/2014] [Indexed: 01/06/2023] Open
|
38
|
Abstract
PURPOSE OF REVIEW This review addresses significant changes in our understanding of urothelial development and regeneration. Understanding urothelial differentiation will be important in the push to find new methods of bladder reconstruction and augmentation, as well as identification of bladder cancer stem cells. RECENT FINDINGS This review will cover recent findings including the identification of novel progenitor cells in the embryo and adult urothelium, function of the urothelium, and regeneration of the urothelium. Using Cre-lox recombination with cell-type-specific Cre lines, lineage studies from our laboratory have revealed novel urothelial cell types and progenitors that are critical for formation and regeneration of the urothelium. Interestingly, our studies indicate that Keratin-5-expressing basal cells, which have previously been proposed to be urothelial stem cells, are a self-renewing unipotent population, whereas P-cells, a novel urothelial cell type, are progenitors in the embryo, and intermediate cells serve as a progenitor pool in the adult. SUMMARY These findings could have important implications for our understanding of cancer tumorigenesis and could move the fields of regeneration and reconstruction forward.
Collapse
|
39
|
Wu K, Ning Z, Zeng J, Fan J, Zhou J, Zhang T, Zhang L, Chen Y, Gao Y, Wang B, Guo P, Li L, Wang X, He D. Silibinin inhibits β-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial-mesenchymal transition and stemness. Cell Signal 2013; 25:2625-33. [PMID: 24012496 DOI: 10.1016/j.cellsig.2013.08.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/06/2023]
Abstract
Muscle-invasive bladder cancer is associated with a high frequency of metastasis, and fewer therapies substantially prolong survival. Silibinin, a nontoxic natural flavonoid, has been shown to exhibit pleiotropic anticancer effects in many cancer types, including bladder cancer. Our and other previous studies have demonstrated that silibinin induced apoptosis and inhibited proliferation of bladder cancer cells, whether silibinin could suppress bladder cancer metastasis has not been elucidated. In the present study, we utilized a novel highly metastatic T24-L cell model, and found that silibinin treatment not only resulted in the suppression of cell migration and invasion in vitro, but also decreased bladder cancer lung metastasis and prolonged animal survival in vivo. Mechanistically, silibinin could inhibit glycogen synthase kinase-3β (GSK3β) phosphorylation, β-catenin nuclear translocation and transactivation, and ZEB1 gene transcription that subsequently regulated the expression of cytokeratins, vimentin and matrix metalloproteinase-2 (MMP2) to reverse epithelial-mesenchymal transition (EMT). On the other hand, silibinin inhibited ZEB1 expression and then suppressed the properties of cancer stem cells (CSCs), which were evidenced as decreased spheroid colony formation, side population, and the expression of stem cell factor CD44. Overall, this study reveals a novel mechanism for silibinin targeting bladder cancer metastasis, in which inactivation of β-catenin/ZEB1 signaling by silibinin leads to dual-block of EMT and stemness.
Collapse
Affiliation(s)
- Kaijie Wu
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|