1
|
Sodhi K, Chanchalani G, Tyagi N. Current role of biomarkers in the initiation and weaning of kidney replacement therapy in acute kidney injury. World J Nephrol 2025; 14:99802. [DOI: 10.5527/wjn.v14.i1.99802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 01/20/2025] Open
Abstract
The occurrence of acute kidney injury (AKI) in critically ill patients is often associated with increased morbidity and mortality rates. Despite extensive research, a consensus is yet to be arrived, especially regarding the optimal timing and indications for initiation of kidney replacement therapy (KRT) for critically ill patients. There is no clear guidance available on the timing of weaning from KRT. More recently, various biomarkers have produced promising prognostic prediction in such patients, regarding the need for KRT and its termination. Most of these biomarkers are indicative of kidney damage and stress, rather than recovery. However, large-scale validation studies are required to guide the cutoff values of these biomarkers among different patient cohorts so as to identify the optimum timing for KRT. This article reviews the kidney biomarkers in detail and summarizes the individual roles of biomarkers in the decision-making process for initiation and termination of the KRT among critically ill AKI patients and the supportive literature.
Collapse
Affiliation(s)
- Kanwalpreet Sodhi
- Department of Critical Care, Deep Hospital, Ludhiana 141002, Punjab, India
| | - Gunjan Chanchalani
- Department of Critical Care Medicine, Karamshibhai Jethabhai Somaiya Hospital and Research Centre, Mumbai 400022, India
| | - Niraj Tyagi
- Department of Critical Care Medicine, Sir Ganga Ram Hospital, New Delhi 110060, Delhi, India
| |
Collapse
|
2
|
Sam G, Chen S, Rehm BHA. Functionalisation of polyhydroxybutyrate for diagnostic uses. N Biotechnol 2025; 85:9-15. [PMID: 39549939 DOI: 10.1016/j.nbt.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable and biocompatible biopolyester, naturally produced and self-assembled as spherical inclusions inside bacteria. These PHB particles contain a hydrophobic PHB core covalently coated with PHB synthase (PhaC), which serves as an anchoring linker for foreign proteins of interest. Protein engineering of PhaC enables the display of biologically active protein functions on the surface of PHB particles suitable for different applications. Many biomolecules, such as e.g. antigens, enzymes, fluorescent proteins were immobilized to PHB particles and exhibited superior functionalities when compared to their respective soluble counterparts. Recently, PHB particles have been successfully applied for various diagnostics applications. This mini review provides an overview of the unique design space of PHB particles towards the development of safe and cost-effective diagnostic tools, and highlights the important research progresses of manufacturing PHB particles-based diagnostics.
Collapse
Affiliation(s)
- Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia.
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia; Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), QLD 4215, Australia.
| |
Collapse
|
3
|
Smith GB, Jones MD, Akel MJ, Barrera L, Heffernan M, Seed P, Macy ML, Fisher SA, Mithal LB. Parental Perceptions of Early Childhood In-Home Research with Monitoring: A Qualitative Study. J Pediatr 2025; 278:114437. [PMID: 39675665 DOI: 10.1016/j.jpeds.2024.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To explore perceptions, concerns, and enthusiasm from a diverse group of parents regarding early childhood research that involves home monitoring technologies for collecting environmental exposure data. STUDY DESIGN A diverse group of new and expecting parents participated in semi-structured interviews. A single interviewer conducted all sessions and introduced a hypothetical longitudinal early childhood research study, which included the following novel home monitoring approaches: (1) wearable devices, (2) audio monitoring, and (3) environmental sampling. Interviews were audio-recorded, transcribed, and coded. Qualitative description guided the study, and a constant comparative approach was used to identify themes from transcripts. RESULTS Twenty-four interviews were completed. Emerging themes included the following: (1) Ready and Willing to Participate; (2) Helping Others, Helping Ourselves: Motivation for Participation; (3) Trust and Transparency: Understanding the "What?" and the "Why?;" (4) Data Privacy and Security: "What If It Gets into the Wrong Hands?;" and (5) It's a Lot to Juggle: Logistical Realities. Perceptions were similar across racial, ethnic, and socioeconomic groups. Perceptions were positive, and participants desired additional information about study feasibility and purpose. Many had concerns related to wearable device safety and data privacy; a trusting relationship with the research team was a priority. CONCLUSION Participants had positive sentiments regarding longitudinal observational studies involving pregnancy and infancy yet expressed concerns about safety, privacy, feasibility, and transparency. These findings can inform future early childhood research study design to ensure protocols are transparent, inclusive, and appealing to parents.
Collapse
Affiliation(s)
- Gabriella B Smith
- Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, IL
| | - Mickayla D Jones
- Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, IL
| | - Mary J Akel
- Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, IL
| | - Leonardo Barrera
- Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, IL
| | - Marie Heffernan
- Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, IL; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Patrick Seed
- Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, IL; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Michelle L Macy
- Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, IL; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Stephanie A Fisher
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Leena B Mithal
- Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Chicago, IL; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
4
|
Cecconi M, Hutanu AL, Beard J, Gonzalez-Pizarro P, Ostermann M, Batchelor A, Latour JM, Grensemann J, Mondino MG, Caballero J, Blobner M, Radtke FM. Unlocking opportunities to transform patient care: an expert insight on limitations and opportunities in patient monitoring. Intensive Care Med Exp 2025; 13:24. [PMID: 39984790 PMCID: PMC11845334 DOI: 10.1186/s40635-025-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Current patient monitoring technologies are crucial for delivering personalised and timely care and are critical in achieving the best health outcomes while maintaining high care standards. However, these technologies also present several challenges affecting patients and healthcare professionals. INFORMATION OVERLOAD Healthcare providers often deal with excess data, making it challenging to identify the most critical patient information quickly. This may lead to delays in necessary interventions and potentially poorer patient outcomes. ALARM FATIGUE Many patient monitoring systems trigger frequent false alarms. This high incidence can cause healthcare providers to become desensitised, potentially leading to slower response times or overlooked important alerts. INTEGRATION CHALLENGES Current systems often need more seamless integration with other healthcare technologies, making it difficult for healthcare providers to have a cohesive view of the patient's health. This lack of integration can impair care coordination and increase workloads. This paper presents the findings from a group of experts who described the state of the art of patient monitoring and discussed potential solutions and new pathways for developing these technologies.
Collapse
Affiliation(s)
- Maurizio Cecconi
- Humanitas University, Milan, Italy.
- IRCCS Humanitas Research Hospital, Milan, Italy.
| | | | | | - Patricio Gonzalez-Pizarro
- Department of Pediatric Anesthesia and Critical Care, La Paz University Hospital, Madrid, Spain
- IDIPaz Research Institute, Madrid, Spain
| | | | - Anna Batchelor
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Jos M Latour
- School of Nursing and Midwifery, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Jörn Grensemann
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jesus Caballero
- Intensive Care Medicine Department, Hospital Universitari Arnau de Vilanova Lleida, IRB Lleida, Spain
| | - Manfred Blobner
- School of Medicine and Health, Department of Anaesthesiology and Intensive Care Medicine, Technical University of Munich, Munich, Germany
- Faculty of Medicine, Department of Anaesthesiology and Intensive Care Medicine, Ulm University, Ulm, Germany
| | - Finn M Radtke
- Zealand University Hospital, Nykøbing F, Denmark
- University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Fekih-Zaghbib S, Dhaouadi S, Mejri H, Meftah M, Abderrazek H, Miled K, Benlasfar Z, Cherif N, Sadok S, Santulli A, Raouafi N, Bouhaouala-Zahar B. A label-free electrochemical biosensor for rapid quantification of antimicrobial peptides in teleost fish mucus. J Pharm Biomed Anal 2025; 258:116749. [PMID: 39985922 DOI: 10.1016/j.jpba.2025.116749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
We used a thiol-faradaic electrochemical differential pulse voltammetry and impedance spectroscopy on a gold-modified screen-printed carbon electrode to quantify Chrysophsins antimicrobial peptides in the fish mucus without prior extraction. We have developed a specific anti-Chrysophsins polyclonal antibody and used ferrocene as a transducing system. The platform has a sensitivity of 30.5 nA.mL.ng-1 (11.28 nA.nM-1) in a linear range of 0.1-1 µg.mL-1 and a limit of detection of 0.227 ng.mL-1 (84.15 pM). Selectivity, accuracy, repeatability and stability were validated to meet the guidelines of ligand binding assays. Mean Chrysophsins levels in mucus pools from healthy and thermally unstressed Argyrosomus regius, Dicentrarchus labrax and Sparus aurata fish were 8.763 µM (± 0.007), 7.296 µM (± 0.023) and 8.296 (± 0.044) respectively, within the range of mass spectrometry gill values and below the minimum inhibitory concentration (MIC) of Chrysophsins for fish pathogens. The multi-infected D. labrax pool shows a significant decrease in concentration compared to the healthy and thermally stressed pools (p < 0.0262) with 2.8 µM (± 0.024). The thermally stressed A. regius pool is not significantly different from the other pools with 8.763 µM (± 0.007). This electrochemical platform is a flexible tool for real-time targeting of peptide biomarkers in the real matrix and is suitable for mucosal fluids for early fish welfare monitoring.
Collapse
Affiliation(s)
- Sonia Fekih-Zaghbib
- NanoBioMedika Research Team, Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis-El Manar, Tunisia.
| | - Sayda Dhaouadi
- NanoBioMedika Research Team, Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis-El Manar, Tunisia
| | - Hiba Mejri
- NanoBioMedika Research Team, Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis-El Manar, Tunisia
| | - Marwa Meftah
- Sensors and Biosensors Group, ACE-Lab (LR99ES15), Faculty of Science, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| | - Houyem Abderrazek
- Laboratoire des Matériaux Utiles, National Institute of Research and Physicochemical Analysis, BiotechPole of Sidi Thabet, Tunisia
| | - Khaled Miled
- NanoBioMedika Research Team, Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis-El Manar, Tunisia
| | - Zakaria Benlasfar
- NanoBioMedika Research Team, Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis-El Manar, Tunisia
| | - Nadia Cherif
- Aquaculture Laboratory, National Institute of Marine Sciences and technologies, University of Tunis El Manar, Tunisia
| | - Saloua Sadok
- Blue Biotechnology and Aquatic Bioproducts Laboratory, National Institute of Marine Sciences and technologies, University of Tunis El Manar, Tunisia
| | - Andrea Santulli
- Dipartimento di Scienze della terra e del Mare DiSTeM, Laboratorio di Biochimica Marina ed Ecotossicologia, Università degli Studi di Palermo, Via G. Barlotta 4, Trapani 91100, Italy.
| | - Noureddine Raouafi
- Sensors and Biosensors Group, ACE-Lab (LR99ES15), Faculty of Science, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| | - Balkiss Bouhaouala-Zahar
- NanoBioMedika Research Team, Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis-El Manar, Tunisia; Faculté de Médecine de Tunis, Université Tunis el Manar, Tunis, Tunisia.
| |
Collapse
|
6
|
Almatroudi A. Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. BIOLOGY 2025; 14:165. [PMID: 40001933 PMCID: PMC11852148 DOI: 10.3390/biology14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Healthcare-associated infections pose a significant global health challenge, negatively impacting patient outcomes and burdening healthcare systems. A major contributing factor to healthcare-associated infections is the formation of biofilms, structured microbial communities encased in a self-produced extracellular polymeric substance matrix. Biofilms are critical in disease etiology and antibiotic resistance, complicating treatment and infection control efforts. Their inherent resistance mechanisms enable them to withstand antibiotic therapies, leading to recurrent infections and increased morbidity. This review explores the development of biofilms and their dual roles in health and disease. It highlights the structural and protective functions of the EPS matrix, which shields microbial populations from immune responses and antimicrobial agents. Key molecular mechanisms of biofilm resistance, including restricted antibiotic penetration, persister cell dormancy, and genetic adaptations, are identified as significant barriers to effective management. Biofilms are implicated in various clinical contexts, including chronic wounds, medical device-associated infections, oral health complications, and surgical site infections. Their prevalence in hospital environments exacerbates infection control challenges and underscores the urgent need for innovative preventive and therapeutic strategies. This review evaluates cutting-edge approaches such as DNase-mediated biofilm disruption, RNAIII-inhibiting peptides, DNABII proteins, bacteriophage therapies, antimicrobial peptides, nanoparticle-based solutions, antimicrobial coatings, and antimicrobial lock therapies. It also examines critical challenges associated with biofilm-related healthcare-associated infections, including diagnostic difficulties, disinfectant resistance, and economic implications. This review emphasizes the need for a multidisciplinary approach and underscores the importance of understanding biofilm dynamics, their role in disease pathogenesis, and the advancements in therapeutic strategies to combat biofilm-associated infections effectively in clinical settings. These insights aim to enhance treatment outcomes and reduce the burden of biofilm-related diseases.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
7
|
Jiang M, Fang H, Tian H. Latest advancements and trends in biomedical polymers for disease prevention, diagnosis, treatment, and clinical application. J Control Release 2025; 380:138-174. [PMID: 39880039 DOI: 10.1016/j.jconrel.2025.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Biomedical polymers are at the forefront of medical advancements, offering innovative solutions in disease prevention, diagnosis, treatment, and clinical use due to their exceptional physicochemical properties. This review delves into the characteristics, classification, and preparation methods of these polymers, highlighting their diverse applications in drug delivery, medical imaging, tissue engineering, and regenerative medicine. We present a thorough analysis of the recent advancements in biomedical polymer research and their clinical applications, acknowledging the challenges that remain, such as immune response management, controlled degradation rates, and mechanical property optimization. Addressing these issues, we explore future directions, including personalization and the integration of nanotechnology, which hold significant potential for further advancing the field. This comprehensive review aims to provide a deep understanding of biomedical polymers and serve as a valuable resource for the development of innovative polymer materials in both fundamental research and clinical practice.
Collapse
Affiliation(s)
- Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
8
|
Coskun A, Savas IN, Can O, Lippi G. From population-based to personalized laboratory medicine: continuous monitoring of individual laboratory data with wearable biosensors. Crit Rev Clin Lab Sci 2025:1-30. [PMID: 39893518 DOI: 10.1080/10408363.2025.2453152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/28/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Monitoring individuals' laboratory data is essential for assessing their health status, evaluating the effectiveness of treatments, predicting disease prognosis and detecting subclinical conditions. Currently, monitoring is performed intermittently, measuring serum, plasma, whole blood, urine and occasionally other body fluids at predefined time intervals. The ideal monitoring approach entails continuous measurement of concentration and activity of biomolecules in all body fluids, including solid tissues. This can be achieved through the use of biosensors strategically placed at various locations on the human body where measurements are required for monitoring. High-tech wearable biosensors provide an ideal, noninvasive, and esthetically pleasing solution for monitoring individuals' laboratory data. However, despite significant advances in wearable biosensor technology, the measurement capacities and the number of different analytes that are continuously monitored in patients are not yet at the desired level. In this review, we conducted a literature search and examined: (i) an overview of the background of monitoring for personalized laboratory medicine, (ii) the body fluids and analytes used for monitoring individuals, (iii) the different types of biosensors and methods used for measuring the concentration and activity of biomolecules, and (iv) the statistical algorithms used for personalized data analysis and interpretation in monitoring and evaluation.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Nur Savas
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Khatami SH, Khanifar H, Movahedpour A, Taheri-Anganeh M, Ehtiati S, Khanifar H, Asadi A. Electrochemical biosensors in early detection of Parkinson disease. Clin Chim Acta 2025; 565:120001. [PMID: 39424121 DOI: 10.1016/j.cca.2024.120001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting the motor system, with symptoms including tremors, rigidity, bradykinesia, and postural instability. Affecting over six million people globally, PD's pathophysiology is marked by the loss of dopaminergic neurons in the substantia nigra. Early diagnosis is crucial for effective management, yet current methods are limited by low sensitivity, high cost, and the need for advanced equipment. Electrochemical biosensors have emerged as promising tools for early PD diagnosis, converting biological reactions into measurable electrical signals for evaluating PD biomarkers. Advances in nanotechnology and material science have led to innovative sensing platforms with enhanced sensitivity and selectivity. Key biomarkers such as alpha-synuclein (α-syn), dopamine (DA), and microRNAs (miRNAs) have been targeted using these biosensors. For instance, gold nanoparticle-modified graphene immunosensors have shown ultra-sensitive detection of α-syn, while graphene-based biosensors have demonstrated high sensitivity for DA detection. Additionally, nanobiosensors for miR-195 and electrochemical aptasensors have shown potential for early PD diagnosis. The integration of nanomaterials like gold nanoparticles, quantum dots, and carbon nanotubes has further advanced the field, enhancing electrochemical activity and sensitivity. These developments offer a reliable, rapid, and cost-effective approach for early PD diagnosis, paving the way for better management and treatment. Continued research is essential for the commercialization and clinical integration of these biosensors, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Khanifar
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Khanifar
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Amir Asadi
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, and Department of Psychiatry, School of Medicine, Mazandaran University of Medical Sciences, Sari,Iran.
| |
Collapse
|
10
|
Nishimura A, Katayama R, Sakata T. Effects of Surface Oxygen Vacancies and Hydroxy Groups on Electrical Characteristics in Solution-Gated One-Piece Indium-Tin-Oxide-Based Field-Effect Transistors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:607-613. [PMID: 39725643 DOI: 10.1021/acs.langmuir.4c03860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A solution-gated indium-tin-oxide (ITO)-based field effect transistor (FET) without interfaces among the source, channel, and drain electrodes, which is called the one-piece ITO-FET, can be simply fabricated from a single sheet of ITO by etching the channel region. The direct contact of the ITO channel surface with a sample solution contributes to a steep subthreshold slope and a high on/off ratio. In this study, we have examined the effects of oxygen vacancies and hydroxy groups at the ITO channel surface on the electrical characteristics of the one-piece ITO-FET. In the transfer characteristics, the turn-on voltage gradually increased over the days of storage in deionized water and then recovered after the heat treatment at 200 °C in vacuum. This resulted from the finding that the densities of oxygen vacancies as a source of carriers and hydroxy groups as charged species at the ITO channel surface changed under each condition, which were analyzed by X-ray photoelectron spectroscopy. In particular, the pH responsivity of the one-piece ITO-FET was improved and maintained with increasing the density of hydroxy groups at the ITO channel surface. Therefore, the control of the densities of oxygen vacancies and hydroxy groups at the ITO channel contributes to the improvement of the detection stability of devices when targets are actually measured.
Collapse
Affiliation(s)
- Arisa Nishimura
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ritsu Katayama
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Weerarathna IN, Kumar P, Luharia A, Mishra G. Engineering with Biomedical Sciences Changing the Horizon of Healthcare-A Review. Bioengineered 2024; 15:2401269. [PMID: 39285709 PMCID: PMC11409512 DOI: 10.1080/21655979.2024.2401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 07/18/2024] [Indexed: 01/16/2025] Open
Abstract
In the dynamic realm of healthcare, the convergence of engineering and biomedical sciences has emerged as a pivotal frontier. In this review we go into specific areas of innovation, including medical imaging and diagnosis, developments in biomedical sensors, and drug delivery systems. Wearable biosensors, non-wearable biosensors, and biochips, which include gene chips, protein chips, and cell chips, are all included in the scope of the topic that pertains to biomedical sensors. Extensive research is conducted on drug delivery systems, spanning topics such as the integration of computer modeling, the optimization of drug formulations, and the design of delivery devices. Furthermore, the paper investigates intelligent drug delivery methods, which encompass stimuli-responsive systems such as temperature, redox, pH, light, enzyme, and magnetic responsive systems. In addition to that, the review goes into topics such as tissue engineering, regenerative medicine, biomedical robotics, automation, biomechanics, and the utilization of green biomaterials. The purpose of this analysis is to provide insights that will enhance continuing research and development efforts in engineering-driven biomedical breakthroughs, ultimately contributing to the improvement of healthcare. These insights will be provided by addressing difficulties and highlighting future prospects.
Collapse
Affiliation(s)
- Induni N. Weerarathna
- School of Allied Health Sciences, Department of Biomedical Sciences, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Anurag Luharia
- Department of Radio Physicist and Radio Safety, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Gaurav Mishra
- Department of Radio Diagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
12
|
Hossain NI, Noushin T, Tabassum S. StressFit: a hybrid wearable physicochemical sensor suite for simultaneously measuring electromyogram and sweat cortisol. Sci Rep 2024; 14:29667. [PMID: 39613840 DOI: 10.1038/s41598-024-81042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
This study introduces StressFit, a novel hybrid wearable sensor system designed to simultaneously monitor electromyogram (EMG) signals and sweat cortisol levels. Our approach involves the development of a noninvasive skin patch capable of monitoring skin temperature, sweat pH, cortisol levels, and corresponding EMG signals using a combination of physical and electrochemical sensors integrated with EMG electrodes. StressFit was optimized by enhancing sensor output and mechanical resilience for practical application on curved body surfaces, ensuring accurate acquisition of cortisol, pH, body temperature, and EMG data without sensor interference. In addition, we integrated an onboard data processing unit with Internet of Things (IoT) capabilities for real-time acquisition, processing, and wireless transmission of sensor measurements. Sweat cortisol and EMG signals were measured during cycling exercises to evaluate the sensor suite's performance. Our results demonstrate an increase in sweat cortisol levels and decrease in the EMG signal's power spectral density following exercise. These findings suggest that combining sweat cortisol levels with EMG signals in real-time could serve as valuable indicators for stress assessment and early detection of abnormal physiological changes.
Collapse
Affiliation(s)
- Nafize Ishtiaque Hossain
- Tufts University, Medford, MA, 02155, USA
- Electrical and Computer Engineering Department, The University of Texas at Tyler, Tyler, TX, 75799, USA
| | - Tanzila Noushin
- Baylor University, Waco, TX, 76706, USA
- Electrical and Computer Engineering Department, The University of Texas at Tyler, Tyler, TX, 75799, USA
| | | |
Collapse
|
13
|
Iino H, Kizaki H, Imai S, Hori S. Medication Management Initiatives Using Wearable Devices: Scoping Review. JMIR Hum Factors 2024; 11:e57652. [PMID: 39602520 PMCID: PMC11612519 DOI: 10.2196/57652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 11/29/2024] Open
Abstract
Background Wearable devices (WDs) have evolved beyond simple fitness trackers to sophisticated health monitors capable of measuring vital signs, such as heart rate and blood oxygen levels. Their application in health care, particularly medication management, is an emerging field poised to significantly enhance patient adherence to treatment regimens. Despite their widespread use and increasing incorporation into clinical trials, a comprehensive review of WDs in terms of medication adherence has not been conducted. Objective This study aimed to conduct a comprehensive scoping review to evaluate the impact of WDs on medication adherence across a variety of diseases, summarizing key research findings, outcomes, and challenges encountered. Methods Adhering to PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines, a structured search was conducted across MEDLINE, Web of Science, and Embase databases, covering the literature from January 1, 2010, to September 30, 2022. The search strategy was based on terms related to WDs and medication adherence, specifically focusing on empirical studies to ensure the inclusion of original research findings. Studies were selected based on their relevance to medication adherence, usage of WDs in detecting medication-taking actions, and their role in integrated medication management systems. Results We screened 657 articles and identified 18 articles. The identified studies demonstrated the diverse applications of WDs in enhancing medication adherence across diseases such as Parkinson disease, diabetes, and cardiovascular conditions. The geographical distribution and publication years of these studies indicate a growing interest in this research area. The studies were divided into three types: (1) studies reporting a correlation between data from WDs or their usage and medication adherence or drug usage as outcomes, (2) studies using WDs to detect the act of medication-taking itself, and (3) studies proposing an integrated medication management system that uses WDs in managing medication. Conclusions WDs are increasingly being recognized for their potential to enhance medication management and adherence. This review underscores the need for further empirical research to validate the effectiveness of WDs in real-life settings and explore their use in predicting adherence based on activity rhythms and activities. Despite technological advancements, challenges remain regarding the integration of WDs into routine clinical practice. Future research should focus on leveraging the comprehensive data provided by WDs to develop personalized medication management strategies that can improve patient outcomes.
Collapse
Affiliation(s)
- Haru Iino
- Division of Drug Informatics, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Hayato Kizaki
- Division of Drug Informatics, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Shungo Imai
- Division of Drug Informatics, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Satoko Hori
- Division of Drug Informatics, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| |
Collapse
|
14
|
Vo DK, Trinh KTL. Advances in Wearable Biosensors for Healthcare: Current Trends, Applications, and Future Perspectives. BIOSENSORS 2024; 14:560. [PMID: 39590019 PMCID: PMC11592256 DOI: 10.3390/bios14110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
Wearable biosensors are a fast-evolving topic at the intersection of healthcare, technology, and personalized medicine. These sensors, which are frequently integrated into clothes and accessories or directly applied to the skin, provide continuous, real-time monitoring of physiological and biochemical parameters such as heart rate, glucose levels, and hydration status. Recent breakthroughs in downsizing, materials science, and wireless communication have greatly improved the functionality, comfort, and accessibility of wearable biosensors. This review examines the present status of wearable biosensor technology, with an emphasis on advances in sensor design, fabrication techniques, and data analysis algorithms. We analyze diverse applications in clinical diagnostics, chronic illness management, and fitness tracking, emphasizing their capacity to transform health monitoring and facilitate early disease diagnosis. Additionally, this review seeks to shed light on the future of wearable biosensors in healthcare and wellness by summarizing existing trends and new advancements.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea;
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
15
|
Svigelj R, de Marco A. Biological and technical factors affecting the point-of-care diagnostics in not-oncological chronic diseases. Biosens Bioelectron 2024; 264:116669. [PMID: 39146770 DOI: 10.1016/j.bios.2024.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Inexpensive point-of-care (POC) analytical solutions have the potential to allow the implementation of large-scale screening campaigns aimed at identifying the initial stages of pathologies in the population, reducing morbidity, mortality and, indirectly, also the costs for the healthcare system. At global level, the most common preventive screening schemes address some cancer pathologies or are used to monitor the spread of some infective diseases. However, systematic testing might become decisive to improve the care response even in the case of chronic pathologies and, in this review, we analyzed the state-of-the-art of the POC diagnostics for Chronic Kidney Disease, Chronic Obstructive Pulmonary Disease and Multiple Sclerosis. The different technological options used to manufacture the biosensors and evaluate the produced data have been described and this information has been integrated with the present knowledge relatively to the biomarkers that have been proposed to monitor such diseases, namely their availability and reliability. Finally, the nature of the macromolecules used to capture the biomarkers has been discussed in relation to the biomarker nature.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, Via Cotonificio 108, 33100, Udine, Italy
| | - Ario de Marco
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000, Nova Gorica, Slovenia.
| |
Collapse
|
16
|
Misera J, Melchert J, Bork‐Hüffer T. Biosensing and Biosensors-Terminologies, Technologies, Theories and Ethics. GEOGRAPHY COMPASS 2024; 18:e70007. [PMID: 39600691 PMCID: PMC11587824 DOI: 10.1111/gec3.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/05/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024]
Abstract
Which biosensing technologies are geographers using in their research, and what exactly do they measure? What are the theoretical origins of geographic interests in biosensing? This article provides an overview of the variety of biosensors applied in biosensing research, tracks the theoretical debates and roots of geographic engagement with biosensing, and discusses the potentials, limitations and ethical implications of applying biosensors. We critically reflect on the varied terminologies that have been used to describe a rapidly evolving array of biosensing technologies and methodologies and suggest a common understanding for key terms such as "biosensing" (technologies or methodologies), "biosensors," "wearable biosensors" and "biosignals." We offer an overview of the broader theoretical debates that have inspired geographers turn to biosensing, including behavioral geography, more-than-representational theory, critical neurogeography, the mobilities and biosociality paradigms, and visual geographies. These have called for methodologies that can capture affects neglected in representational research, follow people, things and technologies as they are mobile in space and time, investigate the links between brain, cognition and biopolitics or attend to visualities in everyday life. Although geographers have so far engaged with a limited number of the ever-growing variety of available (bio-)sensors, the development and application of biosensing methodologies is vibrant, highly diverse and very promising for diverse geographical research questions and fields. Going forward, we particularly encourage experimentation with eye-trackers, which come closest to measuring instantaneous responses to environmental stimuli and offer interesting opportunities for the analysis of social and material environments through the visual data they create. Finally, we conclude with a call for a stronger emphasis on data ethics, procedural ethics and ethics of care in biosensing, which have so far received too little attention in these often interdisciplinary and complex biosensing research endeavors.
Collapse
Affiliation(s)
- Jan Misera
- Department of GeographyUniversity of InnsbruckInnsbruckAustria
| | | | | |
Collapse
|
17
|
Yammouri G, Ait Lahcen A. AI-Reinforced Wearable Sensors and Intelligent Point-of-Care Tests. J Pers Med 2024; 14:1088. [PMID: 39590580 PMCID: PMC11595538 DOI: 10.3390/jpm14111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Artificial intelligence (AI) techniques offer great potential to advance point-of-care testing (POCT) and wearable sensors for personalized medicine applications. This review explores the recent advances and the transformative potential of the use of AI in improving wearables and POCT. The integration of AI significantly contributes to empowering these tools and enables continuous monitoring, real-time analysis, and rapid diagnostics, thus enhancing patient outcomes and healthcare efficiency. Wearable sensors powered by AI models offer tremendous opportunities for precise and non-invasive tracking of physiological conditions that are essential for early disease detection and personalized treatments. AI-empowered POCT facilitates rapid, accurate diagnostics, making these medical testing kits accessible and available even in resource-limited settings. This review discusses the key advances in AI applications for data processing, sensor fusion, and multivariate analytics, highlighting case examples that exhibit their impact in different medical scenarios. In addition, the challenges associated with data privacy, regulatory approvals, and technology integrations into the existing healthcare system have been overviewed. The outlook emphasizes the urgent need for continued innovation in AI-driven health technologies to overcome these challenges and to fully achieve the potential of these techniques to revolutionize personalized medicine.
Collapse
Affiliation(s)
- Ghita Yammouri
- Chemical Analysis & Biosensors, Process Engineering and Environment Laboratory, Faculty of Science and Techniques, Hassan II University of Casablanca, Mohammedia 28806, Morocco;
| | | |
Collapse
|
18
|
Rajan A, Vishnu J, Shankar B. Tear-Based Ocular Wearable Biosensors for Human Health Monitoring. BIOSENSORS 2024; 14:483. [PMID: 39451696 PMCID: PMC11506517 DOI: 10.3390/bios14100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
| | - Jithin Vishnu
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
19
|
Choi H, Biswas S, Lang P, Bae JH, Kim H. A Current Development of Energy Harvesting Systems for Energy-Independent Bioimplantable Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403899. [PMID: 38984756 DOI: 10.1002/smll.202403899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/18/2024] [Indexed: 07/11/2024]
Abstract
Biosensors have emerged as vital tools for the detection and monitoring of essential biological information. However, their efficiency is often constrained by limitations in the power supply. To address this challenge, energy harvesting systems have gained prominence. These off-grid, independent systems harness energy from the surrounding environment, providing a sustainable solution for powering biosensors autonomously. This continuous power source overcomes critical constraints, ensuring uninterrupted operation and seamless data collection. In this article, a comprehensive review of recent literature on energy harvesting-based biosensors is presented. Various techniques and technologies are critically examined, including optical, mechanical, thermal, and wireless power transfer, focusing on their applications and optimization. Furthermore, the immense potential of these energy harvesting-driven biosensors is highlighted across diverse fields, such as medicine, environmental surveillance, and biosignal analysis. By exploring the integration of energy harvesting systems, this review underscores their pivotal role in advancing biosensor technology. These innovations promise improved efficiency, reduced environmental impact, and broader applicability, marking significant progress in the field of biosensors.
Collapse
Affiliation(s)
- Hyojeong Choi
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Swarup Biswas
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Philippe Lang
- ITODYS, University of Paris, CNRS UMR 7086, 15 rue Jean-Antoine de Baif, Paris CEDEX 13, 75205, France
| | - Jin-Hyuk Bae
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyeok Kim
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| |
Collapse
|
20
|
Juyal A, Bisht S, Singh MF. Smart solutions in hypertension diagnosis and management: a deep dive into artificial intelligence and modern wearables for blood pressure monitoring. Blood Press Monit 2024; 29:260-271. [PMID: 38958493 DOI: 10.1097/mbp.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Hypertension, a widespread cardiovascular issue, presents a major global health challenge. Traditional diagnosis and treatment methods involve periodic blood pressure monitoring and prescribing antihypertensive drugs. Smart technology integration in healthcare offers promising results in optimizing the diagnosis and treatment of various conditions. We investigate its role in improving hypertension diagnosis and treatment effectiveness using machine learning algorithms for early and accurate detection. Intelligent models trained on diverse datasets (encompassing physiological parameters, lifestyle factors, and genetic information) to detect subtle hypertension risk patterns. Adaptive algorithms analyze patient-specific data, optimizing treatment plans based on medication responses and lifestyle habits. This personalized approach ensures effective, minimally invasive interventions tailored to each patient. Wearables and smart sensors provide real-time health insights for proactive treatment adjustments and early complication detection.
Collapse
Affiliation(s)
- Anubhuti Juyal
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh
| | - Shradha Bisht
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh
| | - Mamta F Singh
- Department of Pharmacology, College of Pharmacy, COER University, Roorkee, Uttarakhand, India
| |
Collapse
|
21
|
Balkrishna A, Singh S, Mishra S, Rana M, Mishra RK, Rajput SK, Arya V. Impact of Biosensors and Biomarkers in Diabetes Care: A Review. BIOMEDICAL MATERIALS & DEVICES 2024. [DOI: 10.1007/s44174-024-00230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/27/2024] [Indexed: 01/04/2025]
|
22
|
Backiyalakshmi G, Snekhalatha U, Salvador AL. Recent advancements in non-invasive wearable electrochemical biosensors for biomarker analysis - A review. Anal Biochem 2024; 692:115578. [PMID: 38801938 DOI: 10.1016/j.ab.2024.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
A biomarker is a molecular indicator that can be used to identify the presence or severity of a disease. It may be produced due to biochemical or molecular changes in normal biological processes. In some cases, the presence of a biomarker itself is an indication of the disease, while in other cases, the elevated or depleted level of a particular protein or chemical substance aids in identifying a disease. Biomarkers indicate the progression of the disease in response to therapeutic interventions. Identifying these biomarkers can assist in diagnosing the disease early and providing proper therapeutic treatment. In recent years, wearable electrochemical (EC) biosensors have emerged as an important tool for early detection due to their excellent selectivity, low cost, ease of fabrication, and improved sensitivity. There are several challenges in developing a fully integrated wearable sensor, such as device miniaturization, high power consumption, incorporation of a power source, and maintaining the integrity and durability of the biomarker for long-term continuous monitoring. This review covers the recent advancements in the fabrication techniques involved in device development, the types of sensing platforms utilized, different materials used, challenges, and future developments in the field of wearable biosensors.
Collapse
Affiliation(s)
- G Backiyalakshmi
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - U Snekhalatha
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India; College of Engineering, Architecture and Fine Arts, Batangas State University, Batangas, Philippines.
| | - Anela L Salvador
- College of Engineering, Architecture and Fine Arts, Batangas State University, Batangas, Philippines
| |
Collapse
|
23
|
Kong F, Zou Y, Li Z, Deng Y. Advances in Portable and Wearable Acoustic Sensing Devices for Human Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:5354. [PMID: 39205054 PMCID: PMC11359461 DOI: 10.3390/s24165354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The practice of auscultation, interpreting body sounds to assess organ health, has greatly benefited from technological advancements in sensing and electronics. The advent of portable and wearable acoustic sensing devices marks a significant milestone in telemedicine, home health, and clinical diagnostics. This review summarises the contemporary advancements in acoustic sensing devices, categorized based on varied sensing principles, including capacitive, piezoelectric, and triboelectric mechanisms. Some representative acoustic sensing devices are introduced from the perspective of portability and wearability. Additionally, the characteristics of sound signals from different human organs and practical applications of acoustic sensing devices are exemplified. Challenges and prospective trends in portable and wearable acoustic sensors are also discussed, providing insights into future research directions.
Collapse
Affiliation(s)
- Fanhao Kong
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China;
| | - Yang Zou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China;
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China;
| |
Collapse
|
24
|
Balasamy S, Atchudan R, Arya S, Gunasekaran BM, Nesakumar N, Sundramoorthy AK. Cortisol: Biosensing and detection strategies. Clin Chim Acta 2024; 562:119888. [PMID: 39059481 DOI: 10.1016/j.cca.2024.119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Cortisol, a crucial steroid hormone synthesized by the adrenal glands, has diverse impacts on multiple physiological processes, such as metabolism, immune function, and stress management. Disruption in cortisol levels can result in conditions like Cushing's syndrome and Addison's disease. This review provides an in-depth exploration of cortisol, covering its structure, various forms in the body, detection methodologies, and emerging trends in cancer treatment and detection. Various techniques for cortisol detection, including electrochemical, chromatographic, and immunoassay methods were discussed and highlighted for their merits and applications. Electrochemical immunosensing emerges as a promising approach, which offered high sensitivity and low detection limits. Moreover, the review delves into the intricate relationship between cortisol and cancer, emphasizing cortisol's role in cancer progression and treatment outcomes. Lastly, the utilization of biomarkers, in-silico modeling, and machine learning for electrochemical cortisol detection were explored, which showcased innovative strategies for stress monitoring and healthcare advancement.
Collapse
Affiliation(s)
- Sesuraj Balasamy
- Centre for Nano-Biosensors, Department of Prosthodontics and Materials Science, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu and Kashmir 180006, India
| | - Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics and Materials Science, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
25
|
Dong T, Yu C, Mao Q, Han F, Yang Z, Yang Z, Pires N, Wei X, Jing W, Lin Q, Hu F, Hu X, Zhao L, Jiang Z. Advances in biosensors for major depressive disorder diagnostic biomarkers. Biosens Bioelectron 2024; 258:116291. [PMID: 38735080 DOI: 10.1016/j.bios.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Depression is one of the most common mental disorders and is mainly characterized by low mood or lack of interest and pleasure. It can be accompanied by varying degrees of cognitive and behavioral changes and may lead to suicide risk in severe cases. Due to the subjectivity of diagnostic methods and the complexity of patients' conditions, the diagnosis of major depressive disorder (MDD) has always been a difficult problem in psychiatry. With the discovery of more diagnostic biomarkers associated with MDD in recent years, especially emerging non-coding RNAs (ncRNAs), it is possible to quantify the condition of patients with mental illness based on biomarker levels. Point-of-care biosensors have emerged due to their advantages of convenient sampling, rapid detection, miniaturization, and portability. After summarizing the pathogenesis of MDD, representative biomarkers, including proteins, hormones, and RNAs, are discussed. Furthermore, we analyzed recent advances in biosensors for detecting various types of biomarkers of MDD, highlighting representative electrochemical sensors. Future trends in terms of new biomarkers, new sample processing methods, and new detection modalities are expected to provide a complete reference for psychiatrists and biomedical engineers.
Collapse
Affiliation(s)
- Tao Dong
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Qi Mao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Han
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenwei Yang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Pires
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Hu
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Hu
- Engineering Research Center of Ministry of Education for Smart Justice, School of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Libo Zhao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
26
|
Średnicka-Tober D, Góralska-Walczak R, Kopczyńska K, Kazimierczak R, Oczkowski M, Strassner C, Elsner F, Matthiessen LE, Bruun TSK, Philippi Rosane B, Zanasi C, Van Vliet M, Dragsted LO, Husain S, Damsgaard CT, Lairon D, Kesse-Guyot E, Baudry J, Leclercq C, Stefanovic L, Welch A, Bügel SG. Identifying Future Study Designs and Indicators for Somatic Health Associated with Diets of Cohorts Living in Eco-Regions: Findings from the INSUM Expert Workshop. Nutrients 2024; 16:2528. [PMID: 39125406 PMCID: PMC11314491 DOI: 10.3390/nu16152528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Diets, but also overall food environments, comprise a variety of significant factors with direct and indirect impacts on human health. Eco-Regions are geographical areas with a territorial approach to rural development, utilizing organic food and farming practices, and principles and promoting sustainable communities and food systems. However, so far, little attention has been given to quantifying aspects of the health of citizens living in these sustainable transition territories. The project "Indicators for Assessment of Health Effects of Consumption of Sustainable, Organic School Meals in Eco-Regions" (INSUM) aims to identify and discuss research approaches and indicators that could be applied to effectively measure the somatic, mental, and social health dimensions of citizens in Eco-Regions, linked to the intake of organic foods in their diets. In this paper, we focus on the somatic (physical) health dimension. A two-day workshop was held to discuss suitable methodology with an interdisciplinary, international group of experts. The results showed the limitations of commonly used tools for measuring dietary intake (e.g., relying on the memory of participants), and nutritional biomarkers (e.g., variations in correlations with specific intakes) for research understanding dietary intake and the health effects of diets. To investigate the complexity of this issue, the most suitable approach seems to be the combination of traditional markers of physical and mental health alongside emerging indicators such as the microbiome, nutrigenomics, metabolomics, or inflammatory biomarkers. Using new, digital, non-invasive, and wearable technologies to monitor indicators could complement future research. We conclude that future studies should adopt systemic, multidisciplinary approaches by combining not only indicators of somatic and mental health and social wellbeing (MHSW) but also considering the potential benefits of organic diets for health as well as aspects of sustainability connected to food environments.
Collapse
Affiliation(s)
- Dominika Średnicka-Tober
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (R.G.-W.); (K.K.); (R.K.)
| | - Rita Góralska-Walczak
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (R.G.-W.); (K.K.); (R.K.)
| | - Klaudia Kopczyńska
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (R.G.-W.); (K.K.); (R.K.)
| | - Renata Kazimierczak
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (R.G.-W.); (K.K.); (R.K.)
| | - Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Carola Strassner
- Department of Food—Nutrition—Facilities, FH Münster University of Applied Sciences, 48149 Münster, Germany; (C.S.); (F.E.); (S.H.)
| | - Friederike Elsner
- Department of Food—Nutrition—Facilities, FH Münster University of Applied Sciences, 48149 Münster, Germany; (C.S.); (F.E.); (S.H.)
| | - Lea Ellen Matthiessen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg, Denmark; (L.E.M.); (B.P.R.); (L.O.D.); (C.T.D.); (S.G.B.)
| | - Thea Steenbuch Krabbe Bruun
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg, Denmark; (L.E.M.); (B.P.R.); (L.O.D.); (C.T.D.); (S.G.B.)
| | - Beatriz Philippi Rosane
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg, Denmark; (L.E.M.); (B.P.R.); (L.O.D.); (C.T.D.); (S.G.B.)
| | - Cesare Zanasi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy;
| | - Marja Van Vliet
- Stichting Institute for Positive Health, 3521 AL Utrecht, The Netherlands;
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg, Denmark; (L.E.M.); (B.P.R.); (L.O.D.); (C.T.D.); (S.G.B.)
| | - Sarah Husain
- Department of Food—Nutrition—Facilities, FH Münster University of Applied Sciences, 48149 Münster, Germany; (C.S.); (F.E.); (S.H.)
| | - Camilla Trab Damsgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg, Denmark; (L.E.M.); (B.P.R.); (L.O.D.); (C.T.D.); (S.G.B.)
| | - Denis Lairon
- Inserm, INRAE, C2VN, Aix Marseille Université, 13331 Marseille, France;
| | - Emmanuelle Kesse-Guyot
- Inserm, INRAE, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center—Paris Cité University (CRESS), Sorbonne Paris Nord University, 93000 Bobigny, France; (E.K.-G.); (J.B.)
| | - Julia Baudry
- Inserm, INRAE, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center—Paris Cité University (CRESS), Sorbonne Paris Nord University, 93000 Bobigny, France; (E.K.-G.); (J.B.)
| | - Catherine Leclercq
- Food and Nutrition Center, Council for Research in Agriculture and the Analysis of the Agriculture Economy (CREA), 00178 Rome, Italy
| | - Lilliana Stefanovic
- Section of Organic Food Quality, Faculty of Organic Agriculture Sciences, University of Kassel, 37213 Witzenhausen, Germany;
| | - Ailsa Welch
- Norwich Medical School, Centre for Population Health Research, Faculty of Health, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK;
| | - Susanne Gjedsted Bügel
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg, Denmark; (L.E.M.); (B.P.R.); (L.O.D.); (C.T.D.); (S.G.B.)
| |
Collapse
|
27
|
Miyakoshi T, Ito YM. Assessing the current utilization status of wearable devices in clinical research. Clin Trials 2024; 21:470-482. [PMID: 38486348 DOI: 10.1177/17407745241230287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
BACKGROUND/AIMS Information regarding the use of wearable devices in clinical research, including disease areas, intervention techniques, trends in device types, and sample size targets, remains elusive. Therefore, we conducted a comprehensive review of clinical research trends related to wristband wearable devices in research planning and examined their applications in clinical investigations. METHODS As this study identified trends in the adoption of wearable devices during the planning phase of clinical research, including specific disease areas and targeted number of intervention cases, we searched ClinicalTrials.gov-a prominent platform for registering and disseminating clinical research. Since wrist-worn devices represent a large share of the market, we focused on wrist-worn devices and selected the most representative models among them. The main analysis focused on major wearable devices to facilitate data analysis and interpretation, but other wearables were also surveyed for reference. We searched ClinicalTrials.gov with the keywords "ActiGraph,""Apple Watch,""Empatica,""Fitbit,""Garmin," and "wearable devices" to obtain studies published up to 21 August 2022. This initial search yielded 3214 studies. After excluding duplicate National Clinical Trial studies (the overlap was permissible among different device types except for wearable devices), our analysis focused on 2930 studies, including simple, time-series, and type-specific assessments of various variables. RESULTS Overall, an increasing number of clinical studies have incorporated wearable devices since 2012. While ActiGraph and Fitbit initially dominated this landscape, the use of other devices has steadily increased, constituting approximately 10% of the total after 2015. Observational studies outnumbered intervention studies, with behavioral and device-based interventions being particularly prevalent. Regarding disease types, cancer and cardiovascular diseases accounted for approximately 20% of the total. Notably, 114 studies adopted multiple devices simultaneously within the context of their clinical investigations. CONCLUSIONS Our findings revealed that the utilization of wearable devices for data collection and behavioral interventions in various disease areas has been increasing over time since 2012. The increase in the number of studies over the past 3 years has been particularly significant, suggesting that this trend will continue to accelerate in the future. Devices and their evaluation methods that have undergone thorough validation, confirmed their accuracy, and adhered to established legal regulations will likely assume a pivotal role in evaluations, allowing for remote clinical trials. Moreover, behavioral intervention therapy utilizing apps is becoming more extensive, and we expect to see more examples that will lead to their approval as programmed medical devices in the future.
Collapse
Affiliation(s)
- Takashi Miyakoshi
- Department of Health Data Science, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoichi M Ito
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
28
|
Zhou L, Liu X, Zhong W, Pan Q, Sun C, Gu Z, Fang J, Li C, Wang J, Dong X, Shao J. Wearable Smart Silicone Belt for Human Motion Monitoring and Power Generation. Polymers (Basel) 2024; 16:2146. [PMID: 39125171 PMCID: PMC11313891 DOI: 10.3390/polym16152146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Human physical activity monitoring plays a crucial role in promoting personalized health management. In this work, inspired by an ancient Chinese belt, a belt-type wearable sensor (BWS) based on a triboelectric nanogenerator (TENG) is presented to monitor daily movements and collect the body motion mechanical energy. The developed BWS consists of a soft silicone sheet and systematically connected sensing units made from triboelectric polymer materials including polytetrafluoroethylene (PTFE) and polyamide (PA). A parameter study of the sensing units is firstly conducted to optimize the structure of BWS. The experimental studies indicate that the parameter-optimized BWS unit achieves a maximum output voltage of 47 V and a maximum current of 0.17 μA. A BWS with five sensing units is manufactured to record body movements, and it is able to distinguish different physical activities including stillness, walking, running, jumping, normal breathing, cessation of breathing, and deep breathing. In addition, the developed BWS successfully powers electronic devices including a smartphone, digital watch, and LED lights. We hope this work provides a new strategy for the development of wearable self-powered intelligent devices.
Collapse
Affiliation(s)
- Lijun Zhou
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; (L.Z.); (W.Z.); (C.S.); (J.W.); (X.D.)
| | - Xue Liu
- The College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475001, China;
| | - Wei Zhong
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; (L.Z.); (W.Z.); (C.S.); (J.W.); (X.D.)
| | - Qinying Pan
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark;
| | - Chao Sun
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; (L.Z.); (W.Z.); (C.S.); (J.W.); (X.D.)
| | - Zhanyong Gu
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China;
| | - Jiwen Fang
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; (L.Z.); (W.Z.); (C.S.); (J.W.); (X.D.)
| | - Chong Li
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; (L.Z.); (W.Z.); (C.S.); (J.W.); (X.D.)
| | - Jia Wang
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; (L.Z.); (W.Z.); (C.S.); (J.W.); (X.D.)
| | - Xiaohong Dong
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; (L.Z.); (W.Z.); (C.S.); (J.W.); (X.D.)
| | - Jiang Shao
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; (L.Z.); (W.Z.); (C.S.); (J.W.); (X.D.)
| |
Collapse
|
29
|
Anbuselvam B, Gunasekaran BM, Srinivasan S, Ezhilan M, Rajagopal V, Nesakumar N. Wearable biosensors in cardiovascular disease. Clin Chim Acta 2024; 561:119766. [PMID: 38857672 DOI: 10.1016/j.cca.2024.119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
This review provides a comprehensive overview of the latest advancements in wearable biosensors, emphasizing their applications in cardiovascular disease monitoring. Initially, the key sensing signals and biomarkers crucial for cardiovascular health, such as electrocardiogram, phonocardiography, pulse wave velocity, blood pressure, and specific biomarkers, are highlighted. Following this, advanced sensing techniques for cardiovascular disease monitoring are examined, including wearable electrophysiology devices, optical fibers, electrochemical sensors, and implantable cardiac devices. The review also delves into hydrogel-based wearable electrochemical biosensors, which detect biomarkers in sweat, interstitial fluids, saliva, and tears. Further attention is given to flexible electronics-based biosensors, including resistive, capacitive, and piezoelectric force sensors, as well as resistive and pyroelectric temperature sensors, flexible biochemical sensors, and sensor arrays. Moreover, the discussion extends to polymer-based wearable sensors, focusing on innovations in contact lens, textile-type, patch-type, and tattoo-type sensors. Finally, the review addresses the challenges associated with recent wearable biosensing technologies and explores future perspectives, highlighting potential groundbreaking avenues for transforming wearable sensing devices into advanced diagnostic tools with multifunctional capabilities for cardiovascular disease monitoring and other healthcare applications.
Collapse
Affiliation(s)
- Bhavadharani Anbuselvam
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Soorya Srinivasan
- Department of Mechanical Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Madeshwari Ezhilan
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Vel Nagar, Avadi, Chennai 600062, Tamil Nadu, India.
| | - Venkatachalam Rajagopal
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
30
|
M VR, GNK G, D R, T VP, Rao GN. Neuro Receptor Signal Detecting and Monitoring Smart Devices for Biological Changes in Cognitive Health Conditions. Ann Neurosci 2024; 31:225-233. [PMID: 39156625 PMCID: PMC11325689 DOI: 10.1177/09727531231206888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/19/2023] [Indexed: 08/20/2024] Open
Abstract
Background Currently, wearable sensors significantly impact health care through continuous monitoring and event prediction. The types and clinical applications of wearable technology for the prevention of mental illnesses, as well as associated health authority rules, are covered in the current review. Summary The technologies behind wearable ECG monitors, biosensors, electronic skin patches, neural interfaces, retinal prosthesis, and smart contact lenses were discussed. We described how sensors will examine neuronal impulses using verified machine-learning algorithms running in real-time. These sensors will closely monitor body signals and demonstrate continuous sensing with wireless functionality. The wearable applications in the following medical fields were covered in our review: sleep, neurology, mental health, anxiety, depression, Parkinson's disease, epilepsy, seizures, and schizophrenia. These mental health conditions can cause serious issues, even death. Inflammation brought on by mental health problems can worsen hypothalamic-pituitary-adrenal axis dysfunction and interfere with certain neuroregulatory systems such as the neural peptide Y, serotonergic, and cholinergic systems. Severe depressive disorder symptoms are correlated with elevated Interleukin (IL-6) levels. On the basis of previous and present data collected utilizing a variety of sensory modalities, researchers are currently investigating ways to identify or detect the current mental state. Key message This review explores the potential of various mental health monitoring technologies. The types and clinical uses of wearable technology, such as ECG monitors, biosensors, electronic skin patches, brain interfaces, retinal prostheses, and smart contact lenses, were covered in the current review will be beneficial for patients with mental health problems like Alzheimer, epilepsy, dementia. The sensors will closely monitor bodily signals with wireless functionality while using machine learning algorithms to analyse neural impulses in real time.
Collapse
Affiliation(s)
- Vivek Reddy M
- Department of Regulatory Affairs, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ganesh GNK
- Department of Regulatory Affairs, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Rudhresh D
- Department of Regulatory Affairs, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Vaishnavi Parimala T
- Department of Regulatory Affairs, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Gaddam Narasimha Rao
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
31
|
Aleo G, Pagnucci N, Walsh N, Watson R, Lang D, Kearns T, White M, Fitzgerald C. The effectiveness of continuing professional development for the residential long-term care workforce: A systematic review. NURSE EDUCATION TODAY 2024; 137:106161. [PMID: 38493589 DOI: 10.1016/j.nedt.2024.106161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES To investigate the effectiveness of continuing professional development in residential long-term care. DESIGN Systematic review. DATA SOURCES PubMed, Cumulative Index to Nursing & Allied Health (CINAHL), and Web of Science. REVIEW METHODS Empirical studies published between 2003 and 2023 describing the effectiveness of continuing professional development in long-term care were selected according to PRISMA guidelines. The type, topic, and effectiveness of continuing professional development activities in long-term care were analysed, in addition to facilitators and barriers. The protocol of this review is registered in PROSPERO. RESULTS A total of 155 studies were selected, including over 17,000 participants the majority of whom were nurses. The most common topics were 'dementia care' (n = 22; 14.2 %), and restraint use (n = 14; 9 %). The impact of continuing professional development was mainly evaluated in terms of 'participant satisfaction with continuing professional development' (n = 5; 3 %), 'staff knowledge' (n = 57; 37 %), 'staff competencies and skills' (n = 35; 23 %), 'resident outcomes' (n = 45; 29 %), and 'staff wellbeing' (n = 12; 8 %). A total of 64 (41 %) studies evaluated if impact of continuing professional development was sustained over time. 'Good organisation', 'a supportive learning environment', 'expressing personal preferences', and 'management support' were described as facilitators of continuing professional development. CONCLUSIONS Increasing numbers of long-term care residents with complex health conditions require nurses with advanced skills, such as dementia care. To improve the effectiveness of continuing professional development, support from managers, who adopt relational leadership styles, is instrumental to integrate new knowledge and skills into practice. This needs to be linked to career progression, and consequently increase the attractiveness of working in the long-term care sector. This could meet the dual goal of improving outcomes for residents and nurses' job satisfaction.
Collapse
Affiliation(s)
- Giuseppe Aleo
- European Centre of Excellence for Research in Continuing Professional Development, Faculty of Nursing and Midwifery, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, Ireland.
| | - Nicola Pagnucci
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Via Savi 67, 56100 Pisa, Italy; European Centre of Excellence for Research in Continuing Professional Development, Faculty of Nursing and Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Niamh Walsh
- European Centre of Excellence for Research in Continuing Professional Development, Faculty of Nursing and Midwifery, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, Ireland.
| | | | - Deirdre Lang
- Office of the Nursing & Midwifery Service Director (ONMSD), Clinical Programme Implementation & Professional Development, Room 250, Dr Steeven's Hospital, Dublin 8, Ireland.
| | - Thomas Kearns
- European Centre of Excellence for Research in Continuing Professional Development, Faculty of Nursing and Midwifery, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, Ireland.
| | - Mark White
- European Centre of Excellence for Research in Continuing Professional Development, Faculty of Nursing and Midwifery, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, Ireland.
| | - Catherine Fitzgerald
- European Centre of Excellence for Research in Continuing Professional Development, Faculty of Nursing and Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
32
|
Ananthakrishnan AN, Gerasimidis K, Ho SM, Mayer E, Pollock J, Soni S, Wu GD, Benyacoub J, Ali B, Favreau A, Smith DE, Oh JE, Heller C, Hurtado-Lorenzo A, Moss A, Croitoru K. Challenges in IBD Research 2024: Environmental Triggers. Inflamm Bowel Dis 2024; 30:S19-S29. [PMID: 38778624 DOI: 10.1093/ibd/izae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Environmental factors play an important role in inflammatory bowel diseases (IBD; Crohn's disease, [CD], ulcerative colitis [UC]). As part of the Crohn's & Colitis Challenges 2024 agenda, the Environmental Triggers workgroup summarized the progress made in the field of environmental impact on IBD since the last Challenges cycle in this document. The workgroup identified 4 unmet gaps in this content area pertaining to 4 broad categories: (1) Epidemiology; (2) Exposomics and environmental measurement; (3) Biologic mechanisms; and (4) Interventions and Implementation. Within epidemiology, the biggest unmet gaps were in the study of environmental factors in understudied populations including racial and ethnic minority groups and in populations witnessing rapid rise in disease incidence globally. The workgroup also identified a lack of robust knowledge of how environmental factors may impact difference stages of the disease and for different disease-related end points. Leveraging existing cohorts and targeted new prospective studies were felt to be an important need for the field. The workgroup identified the limitations of traditional questionnaire-based assessment of environmental exposure and placed high priority on the identification of measurable biomarkers that can quantify cross-sectional and longitudinal environmental exposure. This would, in turn, allow for identifying the biologic mechanisms of influence of environmental factors on IBD and understand the heterogeneity in effect of such influences. Finally, the working group emphasized the importance of generating high-quality data on effective environmental modification on an individual and societal level, and the importance of scalable and sustainable methods to deliver such changes.
Collapse
Affiliation(s)
- Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kostantinos Gerasimidis
- Human Nutrition, School of Medicine, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK
| | - Shuk-Mei Ho
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Emeran Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience; Goodman-Luskin Microbiome Center; The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jennifer Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shefali Soni
- Crohn's Disease Program, The Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | - Gary D Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Basmah Ali
- Crohn's & Colitis Foundation, IBD Patient Representative, USA
| | - Alex Favreau
- Crohn's & Colitis Foundation, IBD Patient Representative, USA
| | | | - Ji-Eun Oh
- Research Department, Crohn's & Colitis Foundation, New York, NY, USA
| | - Caren Heller
- Research Department, Crohn's & Colitis Foundation, New York, NY, USA
| | | | - Alan Moss
- Research Department, Crohn's & Colitis Foundation, New York, NY, USA
| | - Ken Croitoru
- Division of Gastroenterology, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
33
|
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal Chem 2024; 96:8160-8183. [PMID: 38377558 DOI: 10.1021/acs.analchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO Box 45195-1159, Zanjan 45137-66731, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
34
|
Kulkarni MB, Rajagopal S, Prieto-Simón B, Pogue BW. Recent advances in smart wearable sensors for continuous human health monitoring. Talanta 2024; 272:125817. [PMID: 38402739 DOI: 10.1016/j.talanta.2024.125817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
In recent years, the biochemical and biological research areas have shown great interest in a smart wearable sensor because of its increasing prevalence and high potential to monitor human health in a non-invasive manner by continuous screening of biomarkers dispersed throughout the biological analytes, as well as real-time diagnostic tools and time-sensitive information compared to conventional hospital-centered system. These smart wearable sensors offer an innovative option for evaluating and investigating human health by incorporating a portion of recent advances in technology and engineering that can enhance real-time point-of-care-testing capabilities. Smart wearable sensors have emerged progressively with a mixture of multiplexed biosensing, microfluidic sampling, and data acquisition systems incorporated with flexible substrate and bodily attachments for enhanced wearability, portability, and reliability. There is a good chance that smart wearable sensors will be relevant to the early detection and diagnosis of disease management and control. Therefore, pioneering smart wearable sensors into reality seems extremely promising despite possible challenges in this cutting-edge technology for a better future in the healthcare domain. This review presents critical viewpoints on recent developments in wearable sensors in the upcoming smart digital health monitoring in real-time scenarios. In addition, there have been proactive discussions in recent years on materials selection, design optimization, efficient fabrication tools, and data processing units, as well as their continuous monitoring and tracking strategy with system-level integration such as internet-of-things, cyber-physical systems, and machine learning algorithms.
Collapse
Affiliation(s)
- Madhusudan B Kulkarni
- Department of Medical Physics, University of Wisconsin-Madison, Madison, 53705, WI, United States.
| | - Sivakumar Rajagopal
- School of Electronics Engineering, Vellore Institute of Technology, Vellore Campus, 632014, TN, India
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Brian W Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison, 53705, WI, United States
| |
Collapse
|
35
|
Mota FAR, Passos MLC, Santos JLM, Saraiva MLMFS. Comparative analysis of electrochemical and optical sensors for detection of chronic wounds biomarkers: A review. Biosens Bioelectron 2024; 251:116095. [PMID: 38382268 DOI: 10.1016/j.bios.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Chronic wounds (CW) present a significant healthcare challenge due to their prolonged healing time and associated complications. To effectively treat these wounds and prevent further deterioration, monitoring their healing progress is crucial. Traditional wound assessment methods relying on visual inspection and subjective evaluation are prone to inter-observer variability. Biomarkers play a critical role in objectively evaluating wound status and predicting healing outcomes, providing quantitative measures of wound healing progress, inflammation, infection, and tissue regeneration. Recent attention has been devoted to identifying and validating CW biomarkers. Various studies have investigated potential biomarkers, including growth factors, cytokines, proteases, and extracellular matrix components, shedding light on the complex molecular and cellular processes within CW. This knowledge enables a more targeted and personalized approach to wound management. Accurate and sensitive techniques are necessary for detecting CW biomarkers. Thus, this review compares and discusses the use of electrochemical and optical sensors for biomarker determination. The advantages and disadvantages of these sensors are highlighted. Differences in detection capabilities and characteristics such as non-invasiveness, portability, high sensitivity, specificity, simplicity, cost-effectiveness, compatibility with point-of-care applications, and real-time monitoring of wound biomarkers will be pointed out and compared. In summary, this work provides an overview of CW, explores the emerging field of CW biomarkers, and discusses methods for detecting these biomarkers, with a specific focus on optical and electrochemical sensors. The potential of further research and development in this field for advancing wound care and improving patient outcomes will also be noted.
Collapse
Affiliation(s)
- Fátima A R Mota
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - Marieta L C Passos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| |
Collapse
|
36
|
Hwang J, Jo KS, Kim MS, Choi S, Lee J, Kim A, Yoo YJ. Internet of Things-Enabled Patch With Built-in Microsensors and Wireless Chip: Real-Time Remote Monitoring of Patch Treatment. Transl Vis Sci Technol 2024; 13:18. [PMID: 38776108 PMCID: PMC11127496 DOI: 10.1167/tvst.13.5.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/03/2024] [Indexed: 05/27/2024] Open
Abstract
Purpose We aimed to design, develop, and evaluate an internet of things-enabled patch (IoT patch) for real-time remote monitoring of adherence (or patch wear time) during patch treatment in child participants in clinical trials. This study provides healthcare providers with a tool for objective, real-time, and remote assessment of adherence and for making required adjustments to treatment plans. Methods The IoT patch had two temperature microsensors and a wireless chip. One sensor was placed closer to the skin than the other, resulting in a temperature difference depending on whether the patch was worn. When the patch was worn, it measured temperatures every 30 seconds and transmitted temperature data to a cloud server via a mobile application every 15 seconds. The patch was evaluated via 2 experiments with 30 healthy adults and 40 children with amblyopia. Results Excellent monitoring accuracy was observed in both adults (mean delay of recorded time data, 0.4 minutes) and children (mean, 0.5 minutes). The difference between manually recorded and objectively recorded patch wear times showed good agreement in both groups. Experiment 1 showed accurate monitoring over a wide range of temperatures (from 0 to 30°C). Experiment 2 showed no significant differences in wearability (ease-of-use and comfort scores) between the IoT and conventional patches. Conclusions The IoT patch offers an accurate, real-time, and remote system to monitor adherence to patch treatment. The patch is comfortable and easy to use. The utilization of an IoT patch may increase adherence to patch treatment based on accurate monitoring. Translational Relevance Results show that the IoT patch can enable real-time adherence monitoring in clinical trials, improving treatment precision, and patient compliance to enhance outcomes.
Collapse
Affiliation(s)
- Jiwoo Hwang
- Department of Computer Science and Engineering, Kangwon National University, Chuncheon, South Korea
| | - Kyu-Seong Jo
- Department of Ophthalmology, Kangwon National University Hospital, Chuncheon, South Korea
| | - Min-Seo Kim
- Department of Computer Science and Engineering, Kangwon National University, Chuncheon, South Korea
| | | | - Jungmin Lee
- Department of Computer Science and Engineering, Kangwon National University, Chuncheon, South Korea
| | - Auk Kim
- Department of Computer Science and Engineering, Kangwon National University, Chuncheon, South Korea
| | - Yung-Ju Yoo
- Department of Ophthalmology, Kangwon National University Hospital, Chuncheon, South Korea
| |
Collapse
|
37
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
38
|
Kumari M, Gupta V, Kumar N, Arun RK. Microfluidics-Based Nanobiosensors for Healthcare Monitoring. Mol Biotechnol 2024; 66:378-401. [PMID: 37166577 PMCID: PMC10173227 DOI: 10.1007/s12033-023-00760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
Efficient healthcare management demands prompt decision-making based on fast diagnostics tools, astute data analysis, and informatics analysis. The rapid detection of analytes at the point of care is ensured using microfluidics in synergy with nanotechnology and biotechnology. The nanobiosensors use nanotechnology for testing, rapid disease diagnosis, monitoring, and management. In essence, nanobiosensors detect biomolecules through bioreceptors by modulating the physicochemical signals generating an optical and electrical signal as an outcome of the binding of a biomolecule with the help of a transducer. The nanobiosensors are sensitive and selective and play a significant role in the early identification of diseases. This article reviews the detection method used with the microfluidics platform for nanobiosensors and illustrates the benefits of combining microfluidics and nanobiosensing techniques by various examples. The fundamental aspects, and their application are discussed to illustrate the advancement in the development of microfluidics-based nanobiosensors and the current trends of these nano-sized sensors for point-of-care diagnosis of various diseases and their function in healthcare monitoring.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India
| | - Verruchi Gupta
- School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu & Kashmir, 182320, India
| | - Natish Kumar
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India
| | - Ravi Kumar Arun
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India.
| |
Collapse
|
39
|
Wu X, Freeman S, Miyagi M, Park U, Nomura K, Ebihara S. Comprehensive Geriatric Assessment in the era of telemedicine. Geriatr Gerontol Int 2024; 24 Suppl 1:67-73. [PMID: 37846612 DOI: 10.1111/ggi.14705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
The aging global population poses significant medical and social challenges, necessitating efforts to promote healthy aging. Comprehensive Geriatric Assessment (CGA) is a multidimensional diagnostic approach for older adults that aims to improve overall health. Remote CGA, facilitated by technological advancements, offers convenience and other potential advantages. It enables early disease detection, monitors chronic disease progression, delivers personalized care, and optimizes healthcare resources for better health outcomes in older individuals. However, remote CGA also has limitations, including technological requirements, data security, and the need for comprehensive evaluation and simplicity. Collaborative efforts are essential to developing a digital home-based CGA platform that addresses accessibility issues and tailors the assessment process to meet the needs of older adults. Continuous optimization of remote CGA can become a pivotal tool for advancing geriatric care and ensuring the well-being of the aging population. Geriatr Gerontol Int 2024; 24: 67-73.
Collapse
Affiliation(s)
- Xinze Wu
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shannon Freeman
- School of Nursing, University of North British Columbia, Prince George, Canada
- Center for Technology Adoption for Aging in the North, Prince George, Canada
| | - Midori Miyagi
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Uijin Park
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Satoru Ebihara
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
40
|
Şen M, Oğuz M, Avcı İ. Non-toxic flexible screen-printed MWCNT-based electrodes for non-invasive biomedical applications. Talanta 2024; 268:125341. [PMID: 37931570 DOI: 10.1016/j.talanta.2023.125341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Here, a non-toxic, flexible, low-cost, and disposable multiwalled carbon nanotube (MWCNT)-based screen-printed electrode (SPE) was developed for non-invasive health monitoring applications. A novel MWCNT-based conductive paste formulation was prepared and optimized for printing SPEs using a computer numerical control (CNC)-made stencil. The electrodes were electrochemically characterized and subjected to physical stress to investigate their mechanical durability in extreme situations such as heavy exercise. The reproducibility of the fabrication approach and the stability of the electrodes were also demonstrated. The electrochemical performance of the electrodes was tested with first dopamine (DA) and then glucose. The SPE displayed a linear response in the DA concentration range of 5-500 μM with a limit-of-detection (LOD) of 0.87 μM. Detection of glucose was carried out based on electrochemical-enzymatic redox cycling in artificial sweat; wherein the flexible SPE-based biosensor exhibited a linear response, particularly up to 1 mM with an LOD of 31.7 μM. It is likely that the high sensitivity was achieved due to the large surface-to-volume ratio of MWCNTs and micro/nanoporous network morphology of the electrode surface which was observed in scanning electron microscopy (SEM). Cytotoxicity tests confirmed that the flexible MWCNT-SPEs are non-toxic and therefore safe for non-invasive health monitoring. As a result, the electrodes displayed excellent electrochemical behavior and are expected to contribute to wearable sensor technology due to features such as high stability, sensitivity, flexibility, and non-toxicity.
Collapse
Affiliation(s)
- Mustafa Şen
- Department of Biomedical Engineering, Izmir Katip Celebi University, Izmir, Turkey.
| | - Merve Oğuz
- Department of Biomedical Engineering Graduate Program, Izmir Katip Celebi University, Izmir, Turkey
| | - İpek Avcı
- Department of Biomedical Engineering Graduate Program, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
41
|
Tsai CT, Rajput G, Gao A, Wu Y, Wu DTY. Improving the design of patient-generated health data visualizations: design considerations from a Fitbit sleep study. J Am Med Inform Assoc 2024; 31:465-471. [PMID: 37475179 PMCID: PMC10797273 DOI: 10.1093/jamia/ocad117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
Interactive data visualization can be a viable way to discover patterns in patient-generated health data and enable health behavior changes. However, very few studies have investigated the design and usability of such data visualization. The present study aimed to (1) explore user experiences with sleep data visualizations in the Fitbit app, and (2) focus on end users' perspectives to identify areas of improvement and potential solutions. The study recruited eighteen pre-medicine college students, who wore Fitbit watches for a two-week sleep data collection period and participated in an exit semi-structured interview to share their experience. A focus group was conducted subsequently to ideate potential solutions. The qualitative analysis identified six pain points (PPs) from the interview data using affinity mapping. Four design solutions were proposed by the focus group to address these PPs and illustrated by a set of mock-ups. The study findings informed four design considerations: (1) usability, (2) transparency and explainability, (3) understandability and actionability, and (4) individualized benchmarking. Further research is needed to examine the design guidelines and best practices of sleep data visualization, to create well-designed visualizations for the general population that enables health behavior changes.
Collapse
Affiliation(s)
- Ching-Tzu Tsai
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- School of Design, College of Design, Architecture, Art, and Planning, University of Cincinnati, Cincinnati, Ohio, USA
| | - Gargi Rajput
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Medical Science Baccalaureate Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andy Gao
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Medical Science Baccalaureate Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yue Wu
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- School of Design, College of Design, Architecture, Art, and Planning, University of Cincinnati, Cincinnati, Ohio, USA
| | - Danny T Y Wu
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- School of Design, College of Design, Architecture, Art, and Planning, University of Cincinnati, Cincinnati, Ohio, USA
- Medical Science Baccalaureate Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
42
|
Muñoz-Urtubia N, Vega-Muñoz A, Estrada-Muñoz C, Salazar-Sepúlveda G, Contreras-Barraza N, Salinas-Martínez N, Méndez-Celis P, Carmelo-Adsuar J. Wearable biosensors for human health: A bibliometric analysis from 2007 to 2022. Digit Health 2024; 10:20552076241256876. [PMID: 38882252 PMCID: PMC11179482 DOI: 10.1177/20552076241256876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Objective This study aimed to determine the status of scientific production on biosensor usage for human health monitoring. Methods We used bibliometrics based on the data and metadata retrieved from the Web of Science between 2007 and 2022. Articles unrelated to health and medicine were excluded. The databases were processed using the VOSviewer software and auxiliary spreadsheets. Data extraction yielded 275 articles published in 161 journals, mainly concentrated on 13 journals and 881 keywords plus. Results The keywords plus of high occurrences were estimated at 27, with seven to 30 occurrences. From the 1595 identified authors, 125 were consistently connected in the coauthorship network in the total set and were grouped into nine clusters. Using Lotka's law, we identified 24 prolific authors, and Hirsch index analysis revealed that 45 articles were cited more than 45 times. Crosses were identified between 17 articles in the Hirsch index and 17 prolific authors, highlighting the presence of a large set of prolific authors from various interconnected clusters, a triad, and a solitary prolific author. Conclusion An exponential trend was observed in biosensor research for health monitoring, identifying areas of innovation, collaboration, and technological challenges that can guide future research on this topic.
Collapse
Affiliation(s)
- Nicolás Muñoz-Urtubia
- International Graduate School, University of Extremadura, Caceres, Spain
- Instituto de Ciencias de la Educación, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Vega-Muñoz
- Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- Facultad de Ciencias Empresariales, Universidad Arturo Prat, Iquique, Chile
| | - Carla Estrada-Muñoz
- Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Guido Salazar-Sepúlveda
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Facultad de Ingeniería y Negocios, Universidad de Las Américas, Concepción, Chile
| | | | - Nicolás Salinas-Martínez
- Facultad de Ciencias Económicas, Administrativas y Contables, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | | | | |
Collapse
|
43
|
Tiryaki E, Zorlu T. Recent Advances in Metallic Nanostructures-assisted Biosensors for Medical Diagnosis and Therapy. Curr Top Med Chem 2024; 24:930-951. [PMID: 38243934 DOI: 10.2174/0115680266282489240109050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The field of nanotechnology has witnessed remarkable progress in recent years, particularly in its application to medical diagnosis and therapy. Metallic nanostructures-assisted biosensors have emerged as a powerful and versatile platform, offering unprecedented opportunities for sensitive, specific, and minimally invasive diagnostic techniques, as well as innovative therapeutic interventions. These biosensors exploit the molecular interactions occurring between biomolecules, such as antibodies, enzymes, aptamers, or nucleic acids, and metallic surfaces to induce observable alterations in multiple physical attributes, encompassing electrical, optical, colorimetric, and electrochemical signals. These interactions yield measurable data concerning the existence and concentration of particular biomolecules. The inherent characteristics of metal nanostructures, such as conductivity, plasmon resonance, and catalytic activity, serve to amplify both sensitivity and specificity in these biosensors. This review provides an in-depth exploration of the latest advancements in metallic nanostructures-assisted biosensors, highlighting their transformative impact on medical science and envisioning their potential in shaping the future of personalized healthcare.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials for Biomedical Applications, Italian Institute of Technology, 16163, Genova, Italy
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey
| | - Tolga Zorlu
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
44
|
Sayyad PW, Park SJ, Ha TJ. Bioinspired nanoplatforms for human-machine interfaces: Recent progress in materials and device applications. Biotechnol Adv 2024; 70:108297. [PMID: 38061687 DOI: 10.1016/j.biotechadv.2023.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The panoramic characteristics of human-machine interfaces (HMIs) have prompted the needs to update the biotechnology community with the recent trends, developments, and future research direction toward next-generation bioelectronics. Bioinspired materials are promising for integrating various bioelectronic devices to realize HMIs. With the advancement of scientific biotechnology, state-of-the-art bioelectronic applications have been extensively investigated to improve the quality of life by developing and integrating bioinspired nanoplatforms in HMIs. This review highlights recent trends and developments in the field of biotechnology based on bioinspired nanoplatforms by demonstrating recently explored materials and cutting-edge device applications. Section 1 introduces the recent trends and developments of bioinspired nanomaterials for HMIs. Section 2 reviews various flexible, wearable, biocompatible, and biodegradable nanoplatforms for bioinspired applications. Section 3 furnishes recently explored substrates as carriers for advanced nanomaterials in developing HMIs. Section 4 addresses recently invented biomimetic neuroelectronic, nanointerfaces, biointerfaces, and nano/microfluidic wearable bioelectronic devices for various HMI applications, such as healthcare, biopotential monitoring, and body fluid monitoring. Section 5 outlines designing and engineering of bioinspired sensors for HMIs. Finally, the challenges and opportunities for next-generation bioinspired nanoplatforms in extending the potential on HMIs are discussed for a near-future scenario. We believe this review can stimulate the integration of bioinspired nanoplatforms into the HMIs in addition to wearable electronic skin and health-monitoring devices while addressing prevailing and future healthcare and material-related problems in biotechnologies.
Collapse
Affiliation(s)
- Pasha W Sayyad
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Sang-Joon Park
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Tae-Jun Ha
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
45
|
Mohammadinejad A, Aleyaghoob G, Nooranian S, Dima L, Moga MA, Badea M. Development of biosensors for detection of fibrinogen: a review. Anal Bioanal Chem 2024; 416:21-36. [PMID: 37837539 DOI: 10.1007/s00216-023-04976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Abstract
Fibrinogen as a major inflammation marker and blood coagulation factor has a direct impact on the health of humanity. The variations in fibrinogen content lead to risky conditions such as bleeding and cardiovascular diseases. So, accurate methods for monitoring of this glycoprotein are of high importance. The conventional methods, such as the Clauss method, are time consuming and require highly specialized expert analysts. The development of fast, simple, easy to use, and inexpensive methods is highly desired. In this way, biosensors have gained outstanding attention since they offer means for performing analyses at the points-of-care using self-testing devices, which can be applied outside of clinical laboratories or hospital. This review indicates that different electrochemical and optical sensors have been successfully implemented for the detection of fibrinogen under normal levels of fibrinogen in plasma. The biosensors for the detection of fibrinogen have been designed based on the quartz crystal microbalance, field-effect transistor, electrochemical impedance spectroscopy, amperometry, surface plasmon resonance, localized surface plasmon resonance, and colorimetric techniques. Also, this review demonstrates the utility of the application of nanoparticles in different detection techniques.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brașov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, Brașov, Romania
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry, Payame Noor University, Tehran, 19395-4697, Iran
| | - Samin Nooranian
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brașov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brașov, Romania
- Centre for Applied Medicine and Intervention Strategies in Medical Practice, Research and Development Institute of Transilvania University of Brasov, Brașov, Romania
| | - Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brașov, Romania.
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, Brașov, Romania.
| |
Collapse
|
46
|
Parupelli SK, Desai S. The 3D Printing of Nanocomposites for Wearable Biosensors: Recent Advances, Challenges, and Prospects. Bioengineering (Basel) 2023; 11:32. [PMID: 38247910 PMCID: PMC10813523 DOI: 10.3390/bioengineering11010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Notably, 3D-printed flexible and wearable biosensors have immense potential to interact with the human body noninvasively for the real-time and continuous health monitoring of physiological parameters. This paper comprehensively reviews the progress in 3D-printed wearable biosensors. The review also explores the incorporation of nanocomposites in 3D printing for biosensors. A detailed analysis of various 3D printing processes for fabricating wearable biosensors is reported. Besides this, recent advances in various 3D-printed wearable biosensors platforms such as sweat sensors, glucose sensors, electrocardiography sensors, electroencephalography sensors, tactile sensors, wearable oximeters, tattoo sensors, and respiratory sensors are discussed. Furthermore, the challenges and prospects associated with 3D-printed wearable biosensors are presented. This review is an invaluable resource for engineers, researchers, and healthcare clinicians, providing insights into the advancements and capabilities of 3D printing in the wearable biosensor domain.
Collapse
Affiliation(s)
- Santosh Kumar Parupelli
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
47
|
Taylor N, Carroll A, Gifford RM. Five-day evaluation of the acceptability and comfort of wearable technology at four anatomical locations during military training. BMJ Mil Health 2023:e002524. [PMID: 38053268 DOI: 10.1136/military-2023-002524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Wearable sensor technologies enable Defence to optimise human performance, remotely identify physiological abnormalities and enhance medical support. Maximising the acceptability of devices will ensure they are worn alongside other equipment. This study assessed the acceptability and comfort of four devices at different anatomical locations during military training. METHOD A cross-sectional pilot study during a live firing infantry exercise or adventurous training assessed four anatomical locations concurrently over 5 days: finger, wrist, upper arm and chest. Participants rated comfort, acceptability and preference using a standardised questionnaire after 12 hours and 5 days of wear. RESULTS Twenty-one regular British Army personnel soldiers participated, aged 24.4 (4.3) years. The upper arm location received the highest rating by participants for comfort, followed in order by wrist, finger and chest (p=0.002, Χ2=40.0). The finger was most commonly identified as uncomfortable during specific activities (76%), followed by chest (48%), wrist (23%) and upper arm devices (14%). There was no significant difference in participant confidence in the devices to collect data or allow movement, but there was a trend towards greater confidence in upper arm and wrist locations to stay in position than the others (p=0.059, Χ2=28.0). After 5 days of wear, 43% of participants said they preferred the upper arm for comfort, followed by wrist (36%), finger (24%) and chest (10%). 73% and 71% would wear the wrist and upper arm devices on deployed operations, compared with 29% and 24% for chest and finger devices, respectively. CONCLUSION The upper arm location offered greater acceptability and comfort than finger, wrist or chest locations. It is essential to consider such findings from occupationally relevant settings when selecting wearable technology. A larger service evaluation in diverse settings is recommended to guide the choice of the most acceptable wearable devices across different equipment, roles and environments.
Collapse
Affiliation(s)
- Natalie Taylor
- Academic Department of Military General Practice, Royal Centre for Defence Medicine, Birmingham, UK
| | - A Carroll
- Royal Centre for Defence Medicine, Birmingham, UK
| | - R M Gifford
- Academic Department Military Medicine, Royal Centre for Defence Medicine, Birmingham, UK
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
48
|
Xian X. Frontiers of Wearable Biosensors for Human Health Monitoring. BIOSENSORS 2023; 13:964. [PMID: 37998139 PMCID: PMC10669529 DOI: 10.3390/bios13110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Wearable biosensors offer noninvasive, real-time, and continuous monitoring of diverse human health data, making them invaluable for remote patient tracking, early diagnosis, and personalized medicine [...].
Collapse
Affiliation(s)
- Xiaojun Xian
- The Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
49
|
Qureshi FM, Golan R, Ghomeshi A, Ramasamy R. An Update on the Use of Wearable Devices in Men's Health. World J Mens Health 2023; 41:785-795. [PMID: 36792091 PMCID: PMC10523121 DOI: 10.5534/wjmh.220205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023] Open
Abstract
Men's health represents an often-overlooked aspect of public health. Men have higher mortality rates worldwide and are more negatively affected by chronic conditions such as obesity and heart disease, as well as addiction to alcohol and tobacco. Men also have health issues such as prostate cancer and male sexual dysfunction which only affect them. Because of the skewed burden of morbidity and mortality on men, it is imperative from a public health perspective to make a concerted effort to specifically improve men's health. The use of wearable devices in medical practice presents a novel avenue to invest in men's health in a safe, easily scalable, and economic fashion. Wearable devices are now ubiquitous in society, and their use in the healthcare setting is only increasing with time. There are commercially available devices such as smart watches which are available to lay people and healthcare professionals alike to improve overall health and wellness, and there are also purpose-built wearable devices which are used to track or treat a specific disease. In our review of the literature, we found that while research in the field of wearable devices is still in its early stages, there is ample evidence that wearable devices can greatly improve men's health in the long-term.
Collapse
Affiliation(s)
- Farhan M Qureshi
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roei Golan
- Department of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Armin Ghomeshi
- Department of Urology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ranjith Ramasamy
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
50
|
Hurvitz N, Ilan Y. The Constrained-Disorder Principle Assists in Overcoming Significant Challenges in Digital Health: Moving from "Nice to Have" to Mandatory Systems. Clin Pract 2023; 13:994-1014. [PMID: 37623270 PMCID: PMC10453547 DOI: 10.3390/clinpract13040089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
The success of artificial intelligence depends on whether it can penetrate the boundaries of evidence-based medicine, the lack of policies, and the resistance of medical professionals to its use. The failure of digital health to meet expectations requires rethinking some of the challenges faced. We discuss some of the most significant challenges faced by patients, physicians, payers, pharmaceutical companies, and health systems in the digital world. The goal of healthcare systems is to improve outcomes. Assisting in diagnosing, collecting data, and simplifying processes is a "nice to have" tool, but it is not essential. Many of these systems have yet to be shown to improve outcomes. Current outcome-based expectations and economic constraints make "nice to have," "assists," and "ease processes" insufficient. Complex biological systems are defined by their inherent disorder, bounded by dynamic boundaries, as described by the constrained disorder principle (CDP). It provides a platform for correcting systems' malfunctions by regulating their degree of variability. A CDP-based second-generation artificial intelligence system provides solutions to some challenges digital health faces. Therapeutic interventions are held to improve outcomes with these systems. In addition to improving clinically meaningful endpoints, CDP-based second-generation algorithms ensure patient and physician engagement and reduce the health system's costs.
Collapse
Affiliation(s)
| | - Yaron Ilan
- Hadassah Medical Center, Department of Medicine, Faculty of Medicine, Hebrew University, POB 1200, Jerusalem IL91120, Israel;
| |
Collapse
|