1
|
Lehmann PV, Karulin AY, Becza N, Yao L, Liu Z, Chepke J, Maul-Pavicic A, Wolf C, Köppert S, Valente AV, Gorbachev AV, Tary-Lehmann M, Kirchenbaum GA. Theoretical and practical considerations for validating antigen-specific B cell ImmunoSpot assays. J Immunol Methods 2025; 537:113817. [PMID: 39864733 DOI: 10.1016/j.jim.2025.113817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/17/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Owing to their ability to reliably detect even very rare antigen-specific B cells in cellular isolates such as peripheral blood mononuclear cells (PBMC), and doing so robustly in a high throughput-compatible manner, B cell ELISPOT/FluoroSpot (collectively "B cell ImmunoSpot") tests have become increasingly attractive for immune monitoring in regulated settings. Presently, there are no guidelines for the qualification and validation of B cell ImmunoSpot assay results. Here, we propose such guidelines, building on the experience acquired from T cell ImmunoSpot testing in an environment adhering to the requirements of regulatory bodies yet taking the unique features of B cell assays into account. A streamlined protocol is proposed that permits the performance of all tests needed for the formal validation of an antigen-specific B cell ImmunoSpot assay in only three experiments, utilizing 2.2 × 107 PBMC per donor. Subsequently, utilizing only 1-2 × 106 PBMC per sample (obtainable from 1 to 2 mL of blood), a validated multiplexed assay enables accurate quantification of the frequency of antigen-specific memory B cell-derived blasts secreting IgM, IgG, IgA or IgE antibodies. Collectively, such multiplexed B cell ImmunoSpot assays offer immense value for B cell immune monitoring programs due to their ease of implementation, scalability, applicability to essentially any antigenic system, economy of PBMC utilization, and last but not least, the high content information gained.
Collapse
Affiliation(s)
- Paul V Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Alexey Y Karulin
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Noémi Becza
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Lingling Yao
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Zhigang Liu
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Jack Chepke
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Andrea Maul-Pavicic
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Carla Wolf
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Sebastian Köppert
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Alexis V Valente
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Anton V Gorbachev
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Magdalena Tary-Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Greg A Kirchenbaum
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| |
Collapse
|
2
|
Carreto-Binaghi LE, Nieto-Ponce M, Palencia-Reyes A, Chávez-Domínguez RL, Blancas-Zaragoza J, Franco-Mendoza P, García-Ramos MA, Hernández-Lázaro CI, Torres M, Carranza C. Validation of the Enzyme-Linked ImmunoSpot Analytic Method for the Detection of Human IFN-γ from Peripheral Blood Mononuclear Cells in Response to the SARS-CoV-2 Spike Protein. Biomolecules 2024; 14:1286. [PMID: 39456219 PMCID: PMC11506497 DOI: 10.3390/biom14101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
COVID-19 vaccine evaluations are mainly focused on antibody analyses, but there is growing interest in measuring the cellular immune responses from the researchers evaluating these vaccines. The cellular responses to several COVID-19 vaccines have been studied using the enzyme-linked immunospot (ELISPOT) assay for IFN-γ. However, the ELISPOT assay is no longer used only for research purpose and so the performance of this assay must be validated. Since the bioanalytical validation of ELISPOT-IFN-γ is essential for evaluating the method's effectiveness and establishing confidence in a vaccine's immunogenicity, the present work validates the ELISPOT-IFN-γ assay's performance in determining the frequency of IFN-γ-producing cells after stimulation with the SARS-CoV-2 spike protein. The validation was performed in peripheral blood mononuclear cells from volunteers immunized with anti-COVID-19 vaccines. According to the findings, the LOD was 17 SFU and the LLOQ was 22 SFU, which makes the method highly sensitive and suitable for evaluating low levels of cellular responses. The procedure's accuracy is confirmed by the correlation coefficients for the spike protein and anti-CD3+, being 0.98 and 0.95, respectively. The repeatability and intermediate precision tests were confirmed to be reliable by obtaining a coefficient of variation of ≤25%. The results obtained in this validation enable the assay to be employed for studying antigen-specific cells and evaluating cellular responses to vaccines.
Collapse
Affiliation(s)
- Laura E. Carreto-Binaghi
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Milton Nieto-Ponce
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Andrea Palencia-Reyes
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Rodolfo L. Chávez-Domínguez
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Jessica Blancas-Zaragoza
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Pablo Franco-Mendoza
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Montserrat A. García-Ramos
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Claudia I. Hernández-Lázaro
- Laboratorio Clinico, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Martha Torres
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Claudia Carranza
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| |
Collapse
|
3
|
Krivoshik SR, Dzielak L, Masters AR, Hall J, Johnson AJ. Development of an Enzyme-Linked Immunosorbent Spot Assay for the Assessment of Adeno-Associated Virus Peptides to Examine Immune Safety. Hum Gene Ther 2024; 35:506-516. [PMID: 38264994 DOI: 10.1089/hum.2023.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapies have shown promise as novel treatments for rare genetic disorders such as hemophilia A and spinal muscular atrophy. However, cellular immune responses mediated by cytotoxic (CD8+) and helper (CD4+) T cells may target vector-transduced cells as well as healthy immune cells, impacting safety and efficacy. In this study, we describe the optimization and reproducibility of interferon-γ (IFNγ)-based and interleukin-2 (IL-2)-based enzyme-linked immunosorbent spot (ELISpot) assays for measuring T cell responses against AAV peptide antigens. For method optimization, peripheral blood mononuclear cells (PBMCs) were isolated from healthy human donors and stimulated with commercially available major histocompatibility complex (MHC) class I or II-specific peptides as positive controls. Peptide pools were designed from published AAV8 and AAV9 capsid protein sequences and then used to assess the presence of AAV-specific T cell responses. Our results demonstrate a measurable increase in IFNγ and IL-2-producing cells after AAV peptide presentation. Furthermore, there was an observed difference in the magnitude and specificity of response to peptide pools based on AAV serotype and donor. Finally, using individual peptides, we identified a region of the AAV9 capsid protein that can elicit an immunogenic response. This work shows the applicability of ELISpot in assessing anti-AAV immune responses and provides insight into how novel recombinant AAV vectors could be designed to reduce immunogenic potential.
Collapse
Affiliation(s)
- Sara Rose Krivoshik
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Lindsey Dzielak
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - April R Masters
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Jennifer Hall
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Alison J Johnson
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| |
Collapse
|
4
|
Traska AK, Nowacki TM, Vollenberg R, Rennebaum F, Meier JA, Schomacher T, Reinartz Groba SN, Fischer J, Trebicka J, Tepasse PR. Immunomonitoring via ELISPOT Assay Reveals Attenuated T-Cell Immunity to CMV in Immunocompromised Liver-Transplant Patients. Cells 2024; 13:741. [PMID: 38727277 PMCID: PMC11083338 DOI: 10.3390/cells13090741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Assessing immune responses to cytomegalovirus (CMV) after liver transplant in patients on immunosuppressive therapy remains challenging. In this study, employing ELISPOT assays, 52 liver-transplant recipients were evaluated for antiviral T-cell activity in peripheral blood mononuclear cells (PBMCs), measuring interferon-γ (IFN-γ) secretion upon stimulation with CMV-specific peptides (CMV peptide pool, CMV IE-1, and pp65 antigens). Parameters such as stimulation index, mean spot size, and mean spot count were measured. The study found that heightened immunosuppression, especially with prednisolone in triple therapy, significantly dampened CMV-specific immune responses. This was demonstrated by decreased IFN-γ production by CMV-specific T-cells (CMV peptide pool: p = 0.036; OR = 0.065 [95% CI: 0.005-0.840], pp65 antigen: p = 0.026; OR = 0.048 [95% CI: 0.003-0.699]). Increased immunosuppression correlated with reduced IFN-γ secretion per cell, reflected in smaller mean spot sizes for the CMV peptide pool (p = 0.019). Notably, shorter post-transplant intervals correlated with diminished antiviral T-cell IFN-γ release at two years (CMV peptide pool: p = 0.019; IE antigen: p = 0.010) and five years (CMV peptide pool: p = 0.0001; IE antigen: p = 0.002; pp65 antigen: p = 0.047), as did advancing age (pp65 antigen: p = 0.016, OR = 0.932, 95% CI: 0.881-0.987). Patients with undetectable CMV antigens had a notably higher risk of CMV reactivation within six months from blood collection, closely linked with triple immunosuppression and prednisolone use. These findings highlight the intricate interplay between immunosuppression, immune response dynamics, and CMV reactivation risk, emphasizing the necessity for tailored immunosuppressive strategies to mitigate CMV reactivation in liver-transplant recipients. It can be concluded that, particularly in the early months post-transplantation, the use of prednisolone as a third immunosuppressant should be critically reconsidered. Additionally, the use of prophylactic antiviral therapy effective against CMV in this context holds significant importance.
Collapse
Affiliation(s)
- Ann-Kristin Traska
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Münster, 48149 Münster, Germany; (A.-K.T.); (R.V.); (F.R.); (J.A.M.); (T.S.); (S.N.R.G.); (J.F.); (J.T.)
| | - Tobias Max Nowacki
- Department of Internal Medicine and Gastroenterology, Marienhospital Steinfurt, 48565 Steinfurt, Germany;
| | - Richard Vollenberg
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Münster, 48149 Münster, Germany; (A.-K.T.); (R.V.); (F.R.); (J.A.M.); (T.S.); (S.N.R.G.); (J.F.); (J.T.)
| | - Florian Rennebaum
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Münster, 48149 Münster, Germany; (A.-K.T.); (R.V.); (F.R.); (J.A.M.); (T.S.); (S.N.R.G.); (J.F.); (J.T.)
| | - Jörn Arne Meier
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Münster, 48149 Münster, Germany; (A.-K.T.); (R.V.); (F.R.); (J.A.M.); (T.S.); (S.N.R.G.); (J.F.); (J.T.)
| | - Tina Schomacher
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Münster, 48149 Münster, Germany; (A.-K.T.); (R.V.); (F.R.); (J.A.M.); (T.S.); (S.N.R.G.); (J.F.); (J.T.)
| | - Sara Noemi Reinartz Groba
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Münster, 48149 Münster, Germany; (A.-K.T.); (R.V.); (F.R.); (J.A.M.); (T.S.); (S.N.R.G.); (J.F.); (J.T.)
| | - Julia Fischer
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Münster, 48149 Münster, Germany; (A.-K.T.); (R.V.); (F.R.); (J.A.M.); (T.S.); (S.N.R.G.); (J.F.); (J.T.)
| | - Jonel Trebicka
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Münster, 48149 Münster, Germany; (A.-K.T.); (R.V.); (F.R.); (J.A.M.); (T.S.); (S.N.R.G.); (J.F.); (J.T.)
| | - Phil-Robin Tepasse
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Münster, 48149 Münster, Germany; (A.-K.T.); (R.V.); (F.R.); (J.A.M.); (T.S.); (S.N.R.G.); (J.F.); (J.T.)
| |
Collapse
|
5
|
Lehmann AA, Roen DR, Megyesi Z, Lehmann PV. Reagent Tracker ™ Platform Verifies and Provides Audit Trails for the Error-Free Implementation of T-Cell ImmunoSpot ® Assays. Methods Mol Biol 2024; 2768:105-115. [PMID: 38502390 DOI: 10.1007/978-1-0716-3690-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
ELISPOT and FluoroSpot assays, collectively called ImmunoSpot assays, permit to reliable detection of rare antigen-specific T cells in freshly isolated cell material, such as peripheral blood mononuclear cells (PBMC). Establishing their frequency within all PBMC permits to assess the magnitude of antigen-specific T-cell immunity; the simultaneous measurement of their cytokine signatures reveals these T-cells' lineage and effector functions, that is, the quality of T-cell-mediated immunity. Because of their unparalleled sensitivity, ease of implementation, robustness, and frugality in PBMC utilization, T-cell ImmunoSpot assays are increasingly becoming part of the standard immune monitoring repertoire. For regulated workflows, stringent audit trails of the data generated are a requirement. While this has been fully accomplished for the analysis of T-cell ImmunoSpot assay results, such are missing for the wet laboratory implementation of the actual test performed. Here we introduce a solution for enhancing and verifying the error-free implementation of T-cell ImmunoSpot assays.
Collapse
Affiliation(s)
- Alexander A Lehmann
- Department of Research & Development, Cellular Technology Limited, Shaker Heights, OH, USA.
| | - Diana R Roen
- Department of Research & Development, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Zoltán Megyesi
- Department of Research & Development, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Paul V Lehmann
- Department of Research & Development, Cellular Technology Limited, Shaker Heights, OH, USA
| |
Collapse
|
6
|
Waerlop G, Leroux-Roels G, Pagnon A, Begue S, Salaun B, Janssens M, Medaglini D, Pettini E, Montomoli E, Gianchecchi E, Lambe T, Godfrey L, Bull M, Bellamy D, Amdam H, Bredholt G, Cox RJ, Clement F. Proficiency tests to evaluate the impact on assay outcomes of harmonized influenza-specific Intracellular Cytokine Staining (ICS) and IFN-ɣ Enzyme-Linked ImmunoSpot (ELISpot) protocols. J Immunol Methods 2023; 523:113584. [PMID: 37918618 DOI: 10.1016/j.jim.2023.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/30/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
The magnitude and quality of cell-mediated immune responses elicited by natural infection or vaccination are commonly measured by Interferon-ɣ (IFN-ɣ) Enzyme-Linked ImmunoSpot (ELISpot) and Intracellular Cytokine Staining (ICS). To date, laboratories apply a variety of in-house procedures which leads to diverging results, complicates interlaboratory comparisons and hampers vaccine evaluations. During the FLUCOP project, efforts have been made to develop harmonized Standard Operating Procedures (SOPs) for influenza-specific IFN-ɣ ELISpot and ICS assays. Exploratory pilot studies provided information about the interlaboratory variation before harmonization efforts were initiated. Here we report the results of two proficiency tests organized to evaluate the impact of the harmonization effort on assay results and the performance of participating FLUCOP partners. The introduction of the IFN-ɣ ELISpot SOP reduced variation of both background and stimulated responses. Post-harmonization background responses were all lower than an arbitrary threshold of 50 SFU/million cells. When stimulated with A/California and B/Phuket, a statistically significant reduction in variation (p < 0.0001) was observed and CV values were strongly reduced, from 148% to 77% for A/California and from 126% to 73% for B/Phuket. The harmonizing effect of applying an ICS SOP was also confirmed by an increased homogeneity of data obtained by the individual labs. The application of acceptance criteria on cell viability and background responses further enhanced the data homogeneity. Finally, as the same set of samples was analyzed by both the IFN-ɣ ELISpot and the ICS assays, a method comparison was performed. A clear correlation between the two methods was observed, but they cannot be considered interchangeable. In conclusion, proficiency tests show that a limited harmonization effort consisting of the introduction of SOPs and the use of the same in vitro stimulating antigens leads to a reduction of the interlaboratory variation of IFN-ɣ ELISpot data and demonstrate that substantial improvements for the ICS assay are achieved as comparable laboratory datasets could be generated. Additional steps to further reduce the interlaboratory variation of ICS data can consist of standardized gating templates and detailed data reporting instructions as well as further efforts to harmonize reagent and instrument use.
Collapse
Affiliation(s)
- Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium.
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Anke Pagnon
- Sanofi, Research Global Immunology, Marcy l'Etoile, France
| | - Sarah Begue
- Sanofi, Research Global Immunology, Marcy l'Etoile, France
| | | | | | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; VisMederi srl, 53100 Siena, Italy
| | | | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| | - Leila Godfrey
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, UK
| | - Maireid Bull
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| | - Duncan Bellamy
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Håkon Amdam
- Influenza Centre, Department of Clinical Science, University of Bergen, N5021 Bergen, Norway
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, N5021 Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, N5021 Bergen, Norway
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| |
Collapse
|
7
|
Law JC, Watts TH. Considerations for Choosing T Cell Assays during a Pandemic. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:169-174. [PMID: 37399079 DOI: 10.4049/jimmunol.2300129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 07/05/2023]
Abstract
The appropriate immunosurveillance tools are foundational for the creation of therapeutics, vaccines, and containment strategies when faced with outbreaks of novel pathogens. During the COVID-19 pandemic, there was an urgent need to rapidly assess immune memory following infection or vaccination. Although there have been attempts to standardize cellular assays more broadly, methods for measuring cell-mediated immunity remain variable across studies. Commonly used methods include ELISPOT, intracellular cytokine staining, activation-induced markers, cytokine secretion assays, and peptide-MHC tetramer staining. Although each assay offers unique and complementary information on the T cell response, there are challenges associated with standardizing these assays. The choice of assay can be driven by sample size, the need for high throughput, and the information sought. A combination of approaches may be optimal. This review describes the benefits and limitations of commonly used methods for assessing T cell immunity across SARS-CoV-2 studies.
Collapse
Affiliation(s)
- Jaclyn C Law
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Sereda AD, Kazakova AS, Namsrayn SG, Vlasov ME, Sindryakova IP, Kolbasov DV. Subsequent Immunization of Pigs with African Swine Fever Virus (ASFV) Seroimmunotype IV Vaccine Strain FK-32/135 and by Recombinant Plasmid DNA Containing the CD2v Derived from MK-200 ASFV Seroimmunotype III Strain Does Not Protect from Challenge with ASFV Seroimmunotype III. Vaccines (Basel) 2023; 11:vaccines11051007. [PMID: 37243111 DOI: 10.3390/vaccines11051007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Understanding the immunological mechanisms of protection and the viral proteins involved in the induction of a protective immune response to the African swine fever virus (ASFV) is still limited. In the last years, the CD2v protein (gp110-140) of the ASFV has been proven to be a serotype-specific protein. Current work is devoted to the investigation of the possibility of creating protection against virulent ASFV strain Mozambique-78 (seroimmunotype III) in pigs previously vaccinated with vaccine strain FK-32/135 (seroimmunotype IV) and then immunized with the pUBB76A_CD2v plasmid, containing a chimeric nucleotide sequence from the CD2v protein gene (EP402R, nucleotides from 49 to 651) from the MK-200 strain (seroimmunotype III). Vaccination with the ASFV vaccine strain FK-32/135 protects pigs from the disease caused by the strain with homologous seroimmunotype-France-32 (seroimmunotype IV). Our attempt to create balanced protection against virulent strain Mozambique-78 (seroimmunotype III) by induction of both humoral factors of immunity (by vaccination with strain FK-32/135 of seroimmunotype IV) and serotype-specific cellular immunity (by immunization with the plasmid pUBB76A_CD2v of seroimmunotype III) was unsuccessful.
Collapse
Affiliation(s)
- Alexey D Sereda
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Anna S Kazakova
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Sanzhi G Namsrayn
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Mikhail E Vlasov
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Irina P Sindryakova
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| | - Denis V Kolbasov
- Federal Research Center for Virology and Microbiology (FRCVM), 601125 Volginsky, Petushki Area, Vladimir Region, Russia
| |
Collapse
|
9
|
Lehmann PV, Roen DR, Lehmann AA. Unbiased, High-Throughput Identification of T Cell Epitopes by ELISPOT. Methods Mol Biol 2023; 2673:69-88. [PMID: 37258907 DOI: 10.1007/978-1-0716-3239-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recent systematic immune monitoring efforts suggest that, in humans, epitope recognition by T cells is far more complex than has been assumed based on minimalistic murine models. The increased complexity is due to the higher number of HLA loci in humans, the typical heterozygosity for these loci in the outbred population, and the high number of peptides that each HLA restriction element can bind with an affinity that suffices for antigen presentation. The sizable array of potential epitopes on any given antigen is due to each individual's unique HLA allele makeup. Of this individualized potential epitope space, chance events occurring in the course of the T cell response determine which epitopes induce dominant T cell expansions. Establishing the actually-engaged T cell repertoire in each human subject, including the individualized peptides targeted, therefore requires the systematic testing of all peptides that constitute the potential epitope space in that person. The goal of comprehensive, high-throughput epitope mapping can be readily established by the methods described in this chapter.
Collapse
Affiliation(s)
- Paul V Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA.
| | - Diana R Roen
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Alexander A Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| |
Collapse
|
10
|
Yang TY, Braun M, Lembke W, McBlane F, Kamerud J, DeWall S, Tarcsa E, Fang X, Hofer L, Kavita U, Upreti VV, Gupta S, Loo L, Johnson AJ, Chandode RK, Stubenrauch KG, Vinzing M, Xia CQ, Jawa V. Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. Mol Ther Methods Clin Dev 2022; 26:471-494. [PMID: 36092368 PMCID: PMC9418752 DOI: 10.1016/j.omtm.2022.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunogenicity has imposed a challenge to efficacy and safety evaluation of adeno-associated virus (AAV) vector-based gene therapies. Mild to severe adverse events observed in clinical development have been implicated with host immune responses against AAV gene therapies, resulting in comprehensive evaluation of immunogenicity during nonclinical and clinical studies mandated by health authorities. Immunogenicity of AAV gene therapies is complex due to the number of risk factors associated with product components and pre-existing immunity in human subjects. Different clinical mitigation strategies have been employed to alleviate treatment-induced or -boosted immunogenicity in order to achieve desired efficacy, reduce toxicity, or treat more patients who are seropositive to AAV vectors. In this review, the immunogenicity risk assessment, manifestation of immunogenicity and its impact in nonclinical and clinical studies, and various clinical mitigation strategies are summarized. Last, we present bioanalytical strategies, methodologies, and assay validation applied to appropriately monitor immunogenicity in AAV gene therapy-treated subjects.
Collapse
|
11
|
Janssens Y, Joye J, Waerlop G, Clement F, Leroux-Roels G, Leroux-Roels I. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 2022; 13:959379. [PMID: 36052083 PMCID: PMC9424642 DOI: 10.3389/fimmu.2022.959379] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Influenza vaccines remain the most effective tools to prevent flu and its complications. Trivalent or quadrivalent inactivated influenza vaccines primarily elicit antibodies towards haemagglutinin and neuraminidase. These vaccines fail to induce high protective efficacy, in particular in older adults and immunocompromised individuals and require annual updates to keep up with evolving influenza strains (antigenic drift). Vaccine efficacy declines when there is a mismatch between its content and circulating strains. Current correlates of protection are merely based on serological parameters determined by haemagglutination inhibition or single radial haemolysis assays. However, there is ample evidence showing that these serological correlates of protection can both over- or underestimate the protective efficacy of influenza vaccines. Next-generation universal influenza vaccines that induce cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell responses) against conserved epitopes may overcome some of the shortcomings of the current inactivated vaccines by eliciting broader protection that lasts for several influenza seasons and potentially enhances pandemic preparedness. Assessment of cellular immune responses in clinical trials that evaluate the immunogenicity of these new generation vaccines is thus of utmost importance. Moreover, studies are needed to examine whether these cross-reactive cellular immune responses can be considered as new or complementary correlates of protection in the evaluation of traditional and next-generation influenza vaccines. An overview of the assays that can be applied to measure cell-mediated immune responses to influenza with their strengths and weaknesses is provided here.
Collapse
Affiliation(s)
- Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
- *Correspondence: Isabel Leroux-Roels,
| |
Collapse
|
12
|
Immunological Assessment of Lung Responses to Inhalational Lipoprotein Vaccines Against Bacterial Pathogens. Methods Mol Biol 2021. [PMID: 34784043 DOI: 10.1007/978-1-0716-1900-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Lipopeptides or lipoproteins show potential as safe and effective subunit vaccines for protection against bacterial pathogens. Provided suitable adjuvants are selected, such as the TLR2-stimulating molecules Pam2Cys and Pam3Cys, these may be formulated as inhalational vaccines to optimize localized pulmonary immune responses. Here, we present methods to assess antigen-specific memory lymphocyte responses to novel vaccines, with a focus on immune responses in the lung tissue and bronchoalveolar space. We describe detection of T-cell responses via leukocyte restimulation, followed by intracellular cytokine staining and flow cytometry, enzyme-linked immunosorbent spot assay (ELISpot), and sustained leukocyte restimulation for detection of antigen-specific memory responses. We also detail assessment of antibody responses to vaccine antigens, via enzyme-linked immunosorbent assay (ELISA)-based detection. These methods are suitable for testing a wide range of pulmonary vaccines.
Collapse
|
13
|
Abstract
Enzyme-linked immune absorbent spot (Elispot) is a quantitative method for measuring relevant parameters of T-cell activation. The sensitivity of Elispot allows the detection of low-frequency antigen-specific T-cells that secrete cytokines and effector molecules, such as granzyme B and perforin. Cytotoxic T-cell (CTL) studies have taken advantage with this high-throughput technology by providing insights of quantity and immune kinetics. Accuracy, sensitivity, reproducibility, and robustness of Elispot resulted in a wide range of applications in research as well as in diagnostic field. Actually, CTL monitoring by Elispot is a gold standard for the evaluation of antigen-specific T-cell immunity in clinical trials and vaccine candidates where the ability to detect rare antigen-specific T-cells is of relevance for immune diagnostic. The most utilized Elispot assay is the Interferon-gamma (IFN-γ) test, a marker for CD8+ CTL activation, but Elispot can be also used to distinguish different subsets of activated T-cells by using other cytokines such as T-helper (Th) 1 type cells (characterized by the production of IFN-γ, IL-2, IL-6, IL-12, IL-21 and TNF-α), Th2 (producing cytokines like IL-4, IL-5, IL-10 and IL-13), and Th17 (IL-17) cells.The reliability of Elispot generated data, by the evaluation of T-cell frequency recognizing individual antigen/peptide, is the core of this method currently applied widely to investigate specific immune responses in cancer, infections, allergies, and autoimmune diseases. The Elispot Assay is competing with other methods measuring single-cell cytokine production, e.g., intracellular cytokine by FACS or Milteny cytokine secretion assay. Other types of lymphocyte frequency and function assays include limiting dilution assay (LDA), cytotoxic T-cell assay (CTL), and tetramer staining. Compared with respect to sensitivity the Elispot Assay is outranking other methods to define frequency of antigen-specific lymphocytes. The method described herein would like to offer helpful and clear protocols for researchers that apply Elispot. IFN-γ and Perforin Elispot assays will be described.
Collapse
Affiliation(s)
- Elena Ranieri
- Center of Molecular Medicine, Clinical Pathology, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy.
| | - Giuseppe Stefano Netti
- Center of Molecular Medicine, Clinical Pathology, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy
| | - Margherita Gigante
- Center of Molecular Medicine, Clinical Pathology, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
14
|
Wang C, Wang Z, Rosner GL, Huh WK, Roden RBS, Bae S. A batch-effect adjusted Simon's two-stage design for cancer vaccine clinical studies. Biometrics 2020; 77:1075-1088. [PMID: 32822525 DOI: 10.1111/biom.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 11/29/2022]
Abstract
In the development of cancer treatment vaccines, phase II clinical studies are conducted to examine the efficacy of a vaccine in order to screen out vaccines with minimal activity. Immune responses are commonly used as the primary endpoint for assessing vaccine efficacy. With respect to study design, Simon's two-stage design is a popular format for phase II cancer clinical studies because of its simplicity and ethical considerations. Nonetheless, it is not straightforward to apply Simon's two-stage design to cancer vaccine studies when performing immune assays in batches, as outcomes from multiple patients may be correlated with each other in the presence of batch effects. This violates the independence assumption of Simon's two-stage design. In this paper, we numerically explore the impact of batch effects on Simon's two-stage design, propose a batch-effect adjusted Simon's two-stage design, demonstrate the proposed design by both a simulation study and a therapeutic human papillomavirus vaccine trial, and briefly introduce a software that implements the proposed design.
Collapse
Affiliation(s)
- Chenguang Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Zhixin Wang
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gary L Rosner
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Warner K Huh
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard B S Roden
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Sejong Bae
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
15
|
Immunization of Pigs with Recombinant Plasmids Containing Genes of Ubiquitinated p30, p54 and CD2v Proteins of African Swine Fever Virus. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Three recombinant plasmid constructs, expressing chimeric proteins containing human ubiquitin fused to an ectodomain of one of the potentially protective proteins (p30, p54 and CD2v) of the attenuated MK-200 strain of African swine fever virus (ASFV), were created as potential inductors of specific antiviral cellular immunity. Three-time immunization of pigs with the mixture of these plasmids led to the formation of virus-specific cytotoxic T-lymphocytes (CTL), but did not induce production of virus-specific antibodies. After challenge with the homologous parental virulent ASFV strain M-78 at a dose of 103 HAD50, all five animals (four immunized pigs and one naïve) fell between the 4th and 7th days post infection. The obtained results demonstrated that induction of CTL did not protect pigs against challenge with the virulent ASFV. Balanced activation of CTL and antibody-mediated cellular mechanisms should be investigated.
Collapse
|
16
|
Wilcox CR, Jones CE. Beyond Passive Immunity: Is There Priming of the Fetal Immune System Following Vaccination in Pregnancy and What Are the Potential Clinical Implications? Front Immunol 2018; 9:1548. [PMID: 30061881 PMCID: PMC6054988 DOI: 10.3389/fimmu.2018.01548] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Infection is responsible for over half a million neonatal deaths worldwide every year, and vaccination in pregnancy is becoming increasingly recognized as an important strategy for the protection of young infants. Increasing evidence suggests that exposure to maternal infection in utero may "prime" the developing immune system, even in the absence of infant infection. It is also possible that in utero priming may occur following maternal vaccination, with antigen-specific cellular immune responses detectable in utero and at birth. However, this remains a topic of some controversy. This review focuses on the evidence for in utero priming and the clinical implications for vaccination in pregnancy, considering whether in utero priming following vaccination could provide protection independent of antibody-mediated passive immunity, the possible effects of vaccination on subsequent infant vaccinations, their potential "non-specific" effects, and how the design and timing of vaccination might affect prenatal priming. Looking forward, we describe other possible options for quantifying antigen-specific cellular responses, including MHC tetramers, novel proliferation and cytokine-based assays, and animal models. Together, these may help us address future research questions and establish more robust evidence of fetal immune system priming.
Collapse
Affiliation(s)
- Christopher R. Wilcox
- NIHR Clinical Research Facility, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Christine E. Jones
- Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
17
|
Karulin AY, Megyesi Z, Caspell R, Hanson J, Lehmann PV. Multiplexing T- and B-Cell FLUOROSPOT Assays: Experimental Validation of the Multi-Color ImmunoSpot ® Software Based on Center of Mass Distance Algorithm. Methods Mol Biol 2018; 1808:95-113. [PMID: 29956177 DOI: 10.1007/978-1-4939-8567-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Over the past decade, ELISPOT has become a highly implemented mainstream assay in immunological research, immune monitoring, and vaccine development. Unique single cell resolution along with high throughput potential sets ELISPOT apart from flow cytometry, ELISA, microarray- and bead-based multiplex assays. The necessity to unambiguously identify individual T and B cells that do, or do not co-express certain analytes, including polyfunctional cytokine producing T cells has stimulated the development of multi-color ELISPOT assays. The success of these assays has also been driven by limited sample/cell availability and resource constraints with reagents and labor. There are few commercially available test kits and instruments available at present for multi-color FLUOROSPOT. Beyond commercial descriptions of competing systems, little is known about their accuracy in experimental settings detecting individual cells that secrete multiple analytes vs. random overlays of spots. Here, we present a theoretical and experimental validation study for three and four color T- and B-cell FLUOROSPOT data analysis. The ImmunoSpot® Fluoro-X™ analysis system we used includes an automatic image acquisition unit that generates individual color images free of spectral overlaps and multi-color spot counting software based on the maximal allowed distance between centers of spots of different colors or Center of Mass Distance (COMD). Using four color B-cell FLUOROSPOT for IgM, IgA, IgG1, IgG3; and three/four color T-cell FLUOROSPOT for IL-2, IFN-γ, TNF-α, and GzB, in serial dilution experiments, we demonstrate the validity and accuracy of Fluoro-X™ multi-color spot counting algorithms. Statistical predictions based on the Poisson spatial distribution, coupled with scrambled image counting, permit objective correction of true multi-color spot counts to exclude randomly overlaid spots.
Collapse
Affiliation(s)
| | | | | | - Jodi Hanson
- Cellular Technology Ltd., Shaker Heights, OH, USA
| | | |
Collapse
|
18
|
Abstract
Multi-color FLUOROSPOT assays for simultaneous detection of several T-cell cytokines and/or classes/sub-classes of immunoglobulins secreted by B cells have recently become a major new avenue of development of ELISPOT technology. Advances in assay techniques and the availability of commercial test kits stimulated development of multi-color FLUOROSPOT data analysis platforms. The ImmunoSpot® Fluoro-X™ Software Suite was developed by CTL as an integrated data acquisition, analysis, and management solution for automated high-throughput processing of multi-color T- and B-cell FLUOROSPOT assay plates. The Fluoro-X™ software counting module is based on SmartSpot™/AutoGate™ technologies and utilizes CTL's Center of Mass Distance algorithm for the detection of multi-color spots. The Fluoro-X™ software provides an objective, user error-free means for analyzing multi-color FLUOROSPOT data. An integrated quality control module, with optional GLP and CFR Part 11 compliant package and role-based security, enables data validation, review, and approval with complete audit trails. The extensive multi-format data output and presentation capabilities of the Fluoro-X™ software allow further analysis of FLUOROSPOT data using any commercial flow cytometry software and facilitate the generation of professional reports and presentation. In this article, we present a detailed step-by-step workflow for the analysis of a human four-color IFN-γ, IL-2, TNF-α, and GzB antigen-specific T-cell assay using the Fluoro-X Software Suite.
Collapse
|
19
|
A Positive Control for Detection of Functional CD4 T Cells in PBMC: The CPI Pool. Cells 2017; 6:cells6040047. [PMID: 29215584 PMCID: PMC5753071 DOI: 10.3390/cells6040047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/29/2022] Open
Abstract
Testing of peripheral blood mononuclear cells (PBMC) for immune monitoring purposes requires verification of their functionality. This is of particular concern when the PBMC have been shipped or stored for prolonged periods of time. While the CEF (Cytomegalo-, Epstein-Barr and Flu-virus) peptide pool has become the gold standard for testing CD8 cell functionality, a positive control for CD4 cells is so far lacking. The latter ideally consists of proteins so as to control for the functionality of the antigen processing and presentation compartments, as well. Aiming to generate a positive control for CD4 cells, we first selected 12 protein antigens from infectious/environmental organisms that are ubiquitous: Varicella, Influenza, Parainfluenza, Mumps, Cytomegalovirus, Streptococcus, Mycoplasma, Lactobacillus, Neisseria, Candida, Rubella, and Measles. Of these antigens, three were found to elicited interferon (IFN)-γ-producing CD4 cells in the majority of human test subjects: inactivated cytomegalo-, parainfluenza-, and influenza virions (CPI). While individually none of these three antigens triggered a recall response in all donors, the pool of the three (the ‘CPI pool’), did. One hundred percent of 245 human donors tested were found to be CPI positive, including Caucasians, Asians, and African-Americans. Therefore, the CPI pool appears to be suitable to serve as universal positive control for verifying the functionality of CD4 and of antigen presenting cells.
Collapse
|
20
|
Rojas JM, Avia M, Pascual E, Sevilla N, Martín V. Vaccination with recombinant adenovirus expressing peste des petits ruminants virus-F or -H proteins elicits T cell responses to epitopes that arises during PPRV infection. Vet Res 2017; 48:79. [PMID: 29157291 PMCID: PMC5697415 DOI: 10.1186/s13567-017-0482-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) causes an economically important disease that limits productivity in small domestic ruminants and often affects the livestock of the poorest populations in developing countries. Animals that survive PPRV develop strong cellular and humoral responses, which are probably necessary for protection. Vaccination should thus aim at mimicking these natural responses. Immunization strategies against this morbillivirus using recombinant adenoviruses expressing PPRV-F or -H proteins can protect PPRV-challenged animals and permit differentiation of infected from vaccinated animals. Little is known of the T cell repertoire these recombinant vaccines induce. In the present work, we identified several CD4+ and CD8+ T cell epitopes in sheep infected with PPRV. We also show that recombinant adenovirus vaccination induced T cell responses to the same epitopes, and led to memory T cell differentiation. T cells primed by these recombinant adenovirus vaccines expanded after PPRV challenge and probably contributed to protection. These data validate the use of recombinant adenovirus expressing PPRV genes as DIVA strategies to control this highly contagious disease.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Elena Pascual
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain.
| |
Collapse
|
21
|
Characterization of the HCMV-Specific CD4 T Cell Responses that Are Associated with Protective Immunity. Viruses 2015; 7:4414-37. [PMID: 26258786 PMCID: PMC4576189 DOI: 10.3390/v7082828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/15/2015] [Accepted: 07/27/2015] [Indexed: 11/23/2022] Open
Abstract
Most humans become infected with human cytomegalovirus (HCMV). Typically, the immune system controls the infection, but the virus persists and can reactivate in states of immunodeficiency. While substantial information is available on the contribution of CD8 T cells and antibodies to anti-HCMV immunity, studies of the TH1, TH2, and TH17 subsets have been limited by the low frequency of HCMV-specific CD4 T cells in peripheral blood mononuclear cell (PBMC). Using the enzyme-linked Immunospot® assay (ELISPOT) that excels in low frequency measurements, we have established these in a sizable cohort of healthy HCMV controllers. Cytokine recall responses were seen in all seropositive donors. Specifically, interferon (IFN)-γ and/or interleukin (IL)-17 were seen in isolation or with IL-4 in all test subjects. IL-4 recall did not occur in isolation. While the ratios of TH1, TH2, and TH17 cells exhibited substantial variations between different individuals these ratios and the frequencies were relatively stable when tested in samples drawn up to five years apart. IFN-γ and IL-2 co-expressing polyfunctional cells were seen in most subjects. Around half of the HCMV-specific CD4 cells were in a reversible state of exhaustion. The data provided here established the TH1, TH2, and TH17 characteristic of the CD4 cells that convey immune protection for successful immune surveillance against which reactivity can be compared when the immune surveillance of HCMV fails.
Collapse
|
22
|
Trück J, Mitchell R, Thompson AJ, Morales-Aza B, Clutterbuck EA, Kelly DF, Finn A, Pollard AJ. Effect of cryopreservation of peripheral blood mononuclear cells (PBMCs) on the variability of an antigen-specific memory B cell ELISpot. Hum Vaccin Immunother 2015; 10:2490-6. [PMID: 25424961 DOI: 10.4161/hv.29318] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ELISpot assay is used in vaccine studies for the quantification of antigen-specific memory B cells (B(MEM)), and can be performed using cryopreserved samples. The effects of cryopreservation on B(MEM) detection and the consistency of cultured ELISpot assays when performed by different operators or laboratories are unknown. In this study, blood was taken from healthy volunteers, and a cultured ELISpot assay was used to count B(MEM) specific for 2 routine vaccine antigens (diphtheria and tetanus toxoid). Results were assessed for intra- and inter-operator variation, and the effects of cryopreservation. Cryopreserved samples were shipped to a second laboratory in order to assess inter-laboratory variation. B(MEM) frequencies were very strongly correlated when comparing fresh and frozen samples processed by the same operator, and were also very strongly correlated when comparing 2 operators in the same laboratory. Results were slightly less consistent when samples were processed in different laboratories but correlation between the 2 measurements was still very strong. Although cell viability was reduced in some cryopreserved samples due to higher temperatures during transportation, B(MEM) could still be quantified. These results demonstrate the reproducibility of the ELISpot assay across operators and laboratories, and support the use of cryopreserved samples in future B(MEM) studies.
Collapse
Affiliation(s)
- Johannes Trück
- a Oxford Vaccine Group; Department of Paediatrics; University of Oxford and the NIHR Oxford Biomedical Research Centre; Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rekers NV, von Herrath MG, Wesley JD. Immunotherapies and immune biomarkers in Type 1 diabetes: A partnership for success. Clin Immunol 2015; 161:37-43. [PMID: 26122172 DOI: 10.1016/j.clim.2015.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/16/2022]
Abstract
The standard of care (SoC) for Type 1 diabetes (T1D) today is much the same as it was in the early 1920s, simply with more insulin options-fast-acting, slow-acting, injectable, and inhalable insulins. However, these well-tolerated treatments only manage the symptoms and complications, but do nothing to halt the underlying immune response. There is an unmet need for better treatment options for T1D that address all aspects of the disease. For decades, we have successfully treated T1D in preclinical animal models with immune-modifying therapies that have not demonstrated comparable efficacy in humans. The path to bringing such options to the clinic will depend on the implementation and standard inclusion of biomarkers of immune and therapeutic efficacy in T1D clinical trials, and dictate if we can create a new SoC that treats the underlying autoimmunity as well as the symptoms it causes.
Collapse
Affiliation(s)
- Niels V Rekers
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA; Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | | | - Johnna D Wesley
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA.
| |
Collapse
|
24
|
Measuring Cellular Immunity to Influenza: Methods of Detection, Applications and Challenges. Vaccines (Basel) 2015; 3:293-319. [PMID: 26343189 PMCID: PMC4494351 DOI: 10.3390/vaccines3020293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus is a respiratory pathogen which causes both seasonal epidemics and occasional pandemics; infection continues to be a significant cause of mortality worldwide. Current influenza vaccines principally stimulate humoral immune responses that are largely directed towards the variant surface antigens of influenza. Vaccination can result in an effective, albeit strain-specific antibody response and there is a need for vaccines that can provide superior, long-lasting immunity to influenza. Vaccination approaches targeting conserved viral antigens have the potential to provide broadly cross-reactive, heterosubtypic immunity to diverse influenza viruses. However, the field lacks consensus on the correlates of protection for cellular immunity in reducing severe influenza infection, transmission or disease outcome. Furthermore, unlike serological methods such as the standardized haemagglutination inhibition assay, there remains a large degree of variation in both the types of assays and method of reporting cellular outputs. T-cell directed immunity has long been known to play a role in ameliorating the severity and/or duration of influenza infection, but the precise phenotype, magnitude and longevity of the requisite protective response is unclear. In order to progress the development of universal influenza vaccines, it is critical to standardize assays across sites to facilitate direct comparisons between clinical trials.
Collapse
|
25
|
Hope CM, Coates PTH, Carroll RP. Immune profiling and cancer post transplantation. World J Nephrol 2015; 4:41-56. [PMID: 25664246 PMCID: PMC4317627 DOI: 10.5527/wjn.v4.i1.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Half of all long-term (> 10 year) australian kidney transplant recipients (KTR) will develop squamous cell carcinoma (SCC) or solid organ cancer (SOC), making cancer the leading cause of death with a functioning graft. At least 30% of KTR with a history of SCC or SOC will develop a subsequent SCC or SOC lesion. Pharmacological immunosuppression is a major contributor of the increased risk of cancer for KTR, with the cancer lesions themselves further adding to systemic immunosuppression and could explain, in part, these phenomena. Immune profiling includes; measuring immunosuppressive drug levels and pharmacokinetics, enumerating leucocytes and leucocyte subsets as well as testing leucocyte function in either an antigen specific or non-specific manner. Outputs can vary from assay to assay according to methods used. In this review we define the rationale behind post-transplant immune monitoring assays and focus on assays that associate and/or have the ability to predict cancer and rejection in the KTR. We find that immune monitoring can identify those KTR of developing multiple SCC lesions and provide evidence they may benefit from pharmacological immunosuppressive drug dose reductions. In these KTR risk of rejection needs to be assessed to determine if reduction of immunosuppression will not harm the graft.
Collapse
|
26
|
ELISPOT Assays in 384-Well Format: Up to 30 Data Points with One Million Cells. Cells 2015; 4:71-83. [PMID: 25643292 PMCID: PMC4381210 DOI: 10.3390/cells4010071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 12/03/2022] Open
Abstract
Comprehensive immune monitoring requires that frequencies of T cells, producing different cytokines, are measured to establish the magnitude of Th1, Th2, and Th17 components of cell-mediated immunity. Antigen titration provides additional information about the affinity of T cell response. In tumor immunity, it is also advisable to account for determinant spreading by testing multiple epitopes. Efforts for comprehensive immune monitoring would require substantial numbers of PBMC to run the above tests systematically, which in most test cases is limiting. Immune monitoring with ELISPOT assays have been performed, thus far, in a 96-well format. In this study we show that one can increase cell utilization by performing the assay in 384-well plates whose membrane surface area is one third that of 96-well plates. Systematic testing of PBMC for antigen-specific T cell response in the two formats demonstrated that the 384-well assay corresponds to a one-in-three miniaturization of the 96-well assay. The lowest number of cells that can be used in the 384-well format, while allowing for sufficient contact with APC, is 33,000 PBMC/well. Therefore, with one million PBMC typically obtained from 1 mL of blood, a 30 well T cell ELISPOT assay can be performed in a 384-well format.
Collapse
|
27
|
ELISPOTs Produced by CD8 and CD4 Cells Follow Log Normal Size Distribution Permitting Objective Counting. Cells 2015; 4:56-70. [PMID: 25612115 PMCID: PMC4381209 DOI: 10.3390/cells4010056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/14/2015] [Indexed: 11/24/2022] Open
Abstract
Each positive well in ELISPOT assays contains spots of variable sizes that can range from tens of micrometers up to a millimeter in diameter. Therefore, when it comes to counting these spots the decision on setting the lower and the upper spot size thresholds to discriminate between non-specific background noise, spots produced by individual T cells, and spots formed by T cell clusters is critical. If the spot sizes follow a known statistical distribution, precise predictions on minimal and maximal spot sizes, belonging to a given T cell population, can be made. We studied the size distributional properties of IFN-γ, IL-2, IL-4, IL-5 and IL-17 spots elicited in ELISPOT assays with PBMC from 172 healthy donors, upon stimulation with 32 individual viral peptides representing defined HLA Class I-restricted epitopes for CD8 cells, and with protein antigens of CMV and EBV activating CD4 cells. A total of 334 CD8 and 80 CD4 positive T cell responses were analyzed. In 99.7% of the test cases, spot size distributions followed Log Normal function. These data formally demonstrate that it is possible to establish objective, statistically validated parameters for counting T cell ELISPOTs.
Collapse
|
28
|
High Reproducibility of ELISPOT Counts from Nine Different Laboratories. Cells 2015; 4:21-39. [PMID: 25585297 PMCID: PMC4381207 DOI: 10.3390/cells4010021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/26/2014] [Indexed: 11/17/2022] Open
Abstract
The primary goal of immune monitoring with ELISPOT is to measure the number of T cells, specific for any antigen, accurately and reproducibly between different laboratories. In ELISPOT assays, antigen-specific T cells secrete cytokines, forming spots of different sizes on a membrane with variable background intensities. Due to the subjective nature of judging maximal and minimal spot sizes, different investigators come up with different numbers. This study aims to determine whether statistics-based, automated size-gating can harmonize the number of spot counts calculated between different laboratories. We plated PBMC at four different concentrations, 24 replicates each, in an IFN-γ ELISPOT assay with HCMV pp65 antigen. The ELISPOT plate, and an image file of the plate was counted in nine different laboratories using ImmunoSpot® Analyzers by (A) Basic Count™ relying on subjective counting parameters set by the respective investigators and (B) SmartCount™, an automated counting protocol by the ImmunoSpot® Software that uses statistics-based spot size auto-gating with spot intensity auto-thresholding. The average coefficient of variation (CV) for the mean values between independent laboratories was 26.7% when counting with Basic Count™, and 6.7% when counting with SmartCount™. Our data indicates that SmartCount™ allows harmonization of counting ELISPOT results between different laboratories and investigators.
Collapse
|
29
|
Serial Measurements of Apoptotic Cell Numbers Provide Better Acceptance Criterion for PBMC Quality than a Single Measurement Prior to the T Cell Assay. Cells 2015; 4:40-55. [PMID: 25585298 PMCID: PMC4381208 DOI: 10.3390/cells4010040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/05/2014] [Indexed: 11/17/2022] Open
Abstract
As soon as Peripheral Blood Mononuclear Cells (PBMC) are isolated from whole blood, some cells begin dying. The rate of apoptotic cell death is increased when PBMC are shipped, cryopreserved, or stored under suboptimal conditions. Apoptotic cells secrete cytokines that suppress inflammation while promoting phagocytosis. Increased numbers of apoptotic cells in PBMC may modulate T cell functions in antigen-triggered T cell assays. We assessed the effect of apoptotic bystander cells on a T cell ELISPOT assay by selectively inducing B cell apoptosis using α-CD20 mAbs. The presence of large numbers of apoptotic B cells did not affect T cell functionality. In contrast, when PBMC were stored under unfavorable conditions, leading to damage and apoptosis in the T cells as well as bystander cells, T cell functionality was greatly impaired. We observed that measuring the number of apoptotic cells before plating the PBMC into an ELISPOT assay did not reflect the extent of PBMC injury, but measuring apoptotic cell frequencies at the end of the assay did. Our data suggest that measuring the numbers of apoptotic cells prior to and post T cell assays may provide more stringent PBMC quality acceptance criteria than measurements done only prior to the start of the assay.
Collapse
|
30
|
Bacchetta R, Lucarelli B, Sartirana C, Gregori S, Lupo Stanghellini MT, Miqueu P, Tomiuk S, Hernandez-Fuentes M, Gianolini ME, Greco R, Bernardi M, Zappone E, Rossini S, Janssen U, Ambrosi A, Salomoni M, Peccatori J, Ciceri F, Roncarolo MG. Immunological Outcome in Haploidentical-HSC Transplanted Patients Treated with IL-10-Anergized Donor T Cells. Front Immunol 2014; 5:16. [PMID: 24550909 PMCID: PMC3907718 DOI: 10.3389/fimmu.2014.00016] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/09/2014] [Indexed: 11/21/2022] Open
Abstract
T-cell therapy after hematopoietic stem cell transplantation (HSCT) has been used alone or in combination with immunosuppression to cure hematologic malignancies and to prevent disease recurrence. Here, we describe the outcome of patients with high-risk/advanced stage hematologic malignancies, who received T-cell depleted (TCD) haploidentical-HSCT (haplo-HSCT) combined with donor T lymphocytes pretreated with IL-10 (ALT-TEN trial). IL-10-anergized donor T cells (IL-10-DLI) contained T regulatory type 1 (Tr1) cells specific for the host alloantigens, limiting donor-vs.-host-reactivity, and memory T cells able to respond to pathogens. IL-10-DLI were infused in 12 patients with the goal of improving immune reconstitution after haplo-HSCT without increasing the risk of graft-versus-host-disease (GvHD). IL-10-DLI led to fast immune reconstitution in five patients. In four out of the five patients, total T-cell counts, TCR-Vβ repertoire and T-cell functions progressively normalized after IL-10-DLI. These four patients are alive, in complete disease remission and immunosuppression-free at 7.2 years (median follow-up) after haplo-HSCT. Transient GvHD was observed in the immune reconstituted (IR) patients, despite persistent host-specific hypo-responsiveness of donor T cells in vitro and enrichment of cells with Tr1-specific biomarkers in vivo. Gene-expression profiles of IR patients showed a common signature of tolerance. This study provides the first indication of the feasibility of Tr1 cell-based therapy and paves way for the use of these Tr1 cells as adjuvant treatment for malignancies and immune-mediated disorders.
Collapse
Affiliation(s)
- Rosa Bacchetta
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy , Milan , Italy
| | - Barbarella Lucarelli
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy , Milan , Italy
| | - Claudia Sartirana
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy , Milan , Italy
| | - Silvia Gregori
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy , Milan , Italy
| | | | | | | | | | - Monica E Gianolini
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy , Milan , Italy
| | - Raffaella Greco
- Hematology and BMT Unit, San Raffaele Hospital , Milan , Italy
| | | | | | - Silvano Rossini
- Unit of Immunohaematology and Transfusion Medicine Service, San Raffaele Hospital , Milan , Italy
| | - Uwe Janssen
- Miltenyi Biotec GmbH , Bergisch-Gladbach , Germany
| | - Alessandro Ambrosi
- Center for Statistics in Biomedical Sciences, San Raffaele Scientific Institute , Milan , Italy
| | | | | | - Fabio Ciceri
- Hematology and BMT Unit, San Raffaele Hospital , Milan , Italy
| | - Maria-Grazia Roncarolo
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy , Milan , Italy ; Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
31
|
Abstract
Enzyme-linked immune absorbent spot (Elispot) is a quantitative method for measuring relevant parameters of T cell activation. The sensitivity of Elispot allows the detection of low-frequency antigen-specific T cells that secrete cytokines and effector molecules, such as granzyme B and perforin. Cytotoxic T cell (CTL) studies have taken advantage with this high-throughput technology by providing insights into quantity and immune kinetics. Accuracy, sensitivity, reproducibility, and robustness of Elispot resulted in a wide range of applications in research as well as in diagnostic field. Actually, CTL monitoring by Elispot is a gold standard for the evaluation of antigen-specific T cell immunity in clinical trials and vaccine candidates where the ability to detect rare antigen-specific T cells is of relevance for immune diagnostic. The most utilized Elispot assay is the interferon-gamma (IFN-γ) test, a marker for CD8(+) CTL activation, but Elispot can also be used to distinguish different subsets of activated T cells by using other cytokines such as T-helper (Th) 1-type cells (characterized by the production of IFN-γ, IL-2, IL-6, IL-12, IL-21, and TNF-α), Th2 (producing cytokines like IL-4, IL-5, IL-10, and IL-13), and Th17 (IL-17) cells. The reliability of Elispot-generated data, by the evaluation of T cell frequency recognizing individual antigen/peptide, is the core of this method currently applied widely to investigate specific immune responses in cancer, infections, allergies, and autoimmune diseases. The Elispot assay is competing with other methods measuring single-cell cytokine production, e.g., intracellular cytokine by FACS or Miltenyi cytokine secretion assay. Other types of lymphocyte frequency and function assays include limiting dilution assay (LDA), cytotoxic T cell assay (CTL), and tetramer staining. Compared with respect to sensitivity the Elispot assay is outranking other methods to define frequency of antigen-specific lymphocytes. The method described herein would like to offer helpful and clear protocols for researchers that apply Elispot. IFN-γ and perforin Elispot assays are described.
Collapse
Affiliation(s)
- Elena Ranieri
- Department of Surgical and Medical Sciences, School of Medicine, University of Foggia, Ospedali Riuniti, Viale Luigi Pinto, 1, Foggia, 71122, Italy,
| | | | | |
Collapse
|
32
|
Butterfield LH, Buffo MJ. Immunologic monitoring of cancer vaccine trials using the ELISPOT assay. Methods Mol Biol 2014; 1102:71-82. [PMID: 24258974 DOI: 10.1007/978-1-62703-727-3_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer vaccines are designed to activate an immune response to tumor-specific or tumor-associated antigens expressed by the tumor. Cancer vaccines take many forms, including synthetic peptides, tumor cells and lysates, cell lines, and autologous antigen presenting cells like dendritic cells. The target antigens may be known, or "defined" in the vaccine, or unknown. In melanoma, more so than in other cancers, a large number of immunogenic "shared" antigens (tumor-specific or tumor-associated) have been identified. This allows for vaccination of groups of patients with the same vaccine, and also allows for testing for melanoma tumor immunity even when the vaccine does not include defined antigens. For the cancer vaccine field, the goal of a prognostic or predictive biomarker has yet to be achieved. However, the primary immunologic goal of any cancer vaccine is the induction (or amplification) of an immune response against the tumor, therefore the primary goal of immunologic monitoring in this setting, is testing for that response. In this chapter, we present standardized methodology from a central immunologic monitoring laboratory for melanoma cancer vaccine immune response assessment by the Enzyme-Linked Immunosorbant Spot (ELISPOT) assay. This assay allows for enumeration of antigen-specific cells in a plate format. We present the Interferon (IFN)-γ-producing lymphocyte assay, but the platform is easily adjusted to several cell types and several secreted molecules.
Collapse
Affiliation(s)
- Lisa H Butterfield
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
33
|
Enumeration and characterization of human memory T cells by enzyme-linked immunospot assays. Clin Dev Immunol 2013; 2013:637649. [PMID: 24319467 PMCID: PMC3844203 DOI: 10.1155/2013/637649] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/07/2013] [Indexed: 11/27/2022]
Abstract
The enzyme-linked immunospot (ELISPOT) assay has advanced into a useful and widely applicable tool for the evaluation of T-cell responses in both humans and animal models of diseases and/or vaccine candidates. Using synthetic peptides (either individually or as overlapping peptide mixtures) or whole antigens, total lymphocyte or isolated T-cell subset responses can be assessed either after short-term stimulation (standard ELISPOT) or after their expansion during a 10-day culture (cultured ELISPOT). Both assays detect different antigen-specific immune responses allowing the analysis of effector memory T cells and central memory T cells. This paper describes the principle of ELISPOT assays and discusses their application in the evaluation of immune correlates of clinical interest with a focus on the vaccine field.
Collapse
|
34
|
Jin C, Roen DR, Lehmann PV, Kellermann GH. An Enhanced ELISPOT Assay for Sensitive Detection of Antigen-Specific T Cell Responses to Borrelia burgdorferi. Cells 2013; 2:607-20. [PMID: 24709800 PMCID: PMC3972671 DOI: 10.3390/cells2030607] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/30/2013] [Accepted: 09/04/2013] [Indexed: 11/17/2022] Open
Abstract
Lyme Borreliosis is an infectious disease caused by the spirochete Borrelia burgdorferi that is transmitted through the bite of infected ticks. Both B cell-mediated humoral immunity and T cell immunity develop during natural Borrelia infection. However, compared with humoral immunity, the T cell response to Borrelia infection has not been well elucidated. In this study, a novel T cell-based assay was developed and validated for the sensitive detection of antigen-specific T cell response to B. burgdorferi. Using interferon-γ as a biomarker, we developed a new enzyme-linked immunospot method (iSpot LymeTM) to detect Borrelia antigen-specific effector/memory T cells that were activated in vivo by exposing them to recombinant Borrelia antigens ex vivo. To test this new method as a potential laboratory diagnostic tool, we performed a clinical study with a cohort of Borrelia positive patients and healthy controls. We demonstrated that the iSpot Lyme assay has a significantly higher specificity and sensitivity compared with the Western Blot assay that is currently used as a diagnostic measure. A comprehensive evaluation of the T cell response to Borrelia infection should, therefore, provide new insights into the pathogenesis, diagnosis, treatment and monitoring of Lyme disease.
Collapse
Affiliation(s)
- Chenggang Jin
- Department of Immunology, Pharmasan Labs, Inc., Osceola, WI 54020, USA.
| | - Diana R Roen
- Department of Immunology, Pharmasan Labs, Inc., Osceola, WI 54020, USA.
| | - Paul V Lehmann
- Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| | | |
Collapse
|
35
|
Bestard O, Lucia M, Crespo E, Van Liempt B, Palacio D, Melilli E, Torras J, Llaudó I, Cerezo G, Taco O, Gil-Vernet S, Grinyó JM, Cruzado JM. Pretransplant immediately early-1-specific T cell responses provide protection for CMV infection after kidney transplantation. Am J Transplant 2013; 13:1793-805. [PMID: 23711167 DOI: 10.1111/ajt.12256] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/25/2023]
Abstract
Cytomegalovirus (CMV) infection is still a major complication after kidney transplantation. Although cytotoxic CMV-specific T cells play a crucial role controlling CMV survival and replication, current pretransplant risk assessment for CMV infection is only based on donor/recipient (IgG)-serostatus. Here, we evaluated the usefulness of monitoring pre- and 6-month CMV-specific T cell responses against two dominant CMV antigens (IE-1 and pp65) and a CMV lysate, using an IFN-γ Elispot, for predicting the advent of CMV infection in two cohorts of 137 kidney transplant recipients either receiving routine prophylaxis (n = 39) or preemptive treatment (n = 98). Incidence of CMV antigenemia/disease within the prophylaxis and preemptive group was 28%/20% and 22%/12%, respectively. Patients developing CMV infection showed significantly lower anti-IE-1-specific T cell responses than those that did not in both groups (p < 0.05). In a ROC curve analysis, low pretransplant anti-IE-1-specific T cell responses predicted the risk of both primary and late-onset CMV infection with high sensitivity and specificity (AUC > 0.70). Furthermore, when using most sensitive and specific Elispot cut-off values, a higher than 80% and 90% sensitivity and negative predictive value was obtained, respectively. Monitoring IE-1-specific T cell responses before transplantation may be useful for predicting posttransplant risk of CMV infection, thus potentially guiding decision-making regarding CMV preventive treatment.
Collapse
Affiliation(s)
- O Bestard
- Department of Nephrology, Renal Transplant Unit, Bellvitge University Hospital, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bestard O, Crespo E, Stein M, Lúcia M, Roelen DL, de Vaal YJ, Hernandez-Fuentes MP, Chatenoud L, Wood KJ, Claas FH, Cruzado JM, Grinyó JM, Volk HD, Reinke P. Cross-validation of IFN-γ Elispot assay for measuring alloreactive memory/effector T cell responses in renal transplant recipients. Am J Transplant 2013; 13:1880-90. [PMID: 23763435 DOI: 10.1111/ajt.12285] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/12/2013] [Accepted: 03/25/2013] [Indexed: 01/25/2023]
Abstract
Assessment of donor-specific alloreactive memory/effector T cell responses using an IFN-γ Elispot assay has been suggested to be a novel immune-monitoring tool for evaluating the cellular immune risk in renal transplantation. Here, we report the cross-validation data of the IFN-γ Elispot assay performed within different European laboratories taking part of the EU RISET consortium. For this purpose, development of a standard operating procedure (SOP), comparisons of lectures of IFN-γ plates assessing intra- and interlaboratory assay variability of allogeneic or peptide stimuli in both healthy and kidney transplant individuals have been the main objectives. We show that the use of a same SOP and count-settings of the Elispot bioreader allow low coefficient variation between laboratories. Frozen and shipped samples display slightly lower detectable IFN-γ frequencies than fresh samples. Importantly, a close correlation between different laboratories is obtained when measuring high frequencies of antigen-specific primed/memory T cell alloresponses. Interestingly, significant high donor-specific alloreactive T cell responses can be similarly detected among different laboratories in kidney transplant patients displaying histological patterns of acute T cell mediated rejection. In conclusion, assessment of circulating alloreactive memory/effector T cells using an INF-γ Elispot assay can be accurately achieved using the same SOP, Elispot bioreader and experienced technicians in kidney transplantation.
Collapse
Affiliation(s)
- O Bestard
- Nephrology Department, Renal Transplant Unit, Bellvitge University Hospital, Barcelona University, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Saade F, Gorski SA, Petrovsky N. Pushing the frontiers of T-cell vaccines: accurate measurement of human T-cell responses. Expert Rev Vaccines 2013; 11:1459-70. [PMID: 23252389 DOI: 10.1586/erv.12.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is a need for novel approaches to tackle major vaccine challenges such as malaria, tuberculosis and HIV, among others. Success will require vaccines able to induce a cytotoxic T-cell response--a deficiency of most current vaccine approaches. The successful development of T-cell vaccines faces many hurdles, not least being the lack of consensus on a standardized T-cell assay format able to be used as a correlate of vaccine efficacy. Hence, there remains a need for reproducible measures of T-cell immunity proven in human clinical trials to correlate with vaccine protection. The T-cell equivalent of a neutralizing antibody assay would greatly accelerate the development and commercialization of T-cell vaccines. Recent advances have seen a plethora of new T-cell assays become available, including some like cytometry by time-of-flight with extreme multiparameter T-cell phenotyping capability. However, whether it is historic thymidine-based proliferation assays or sophisticated new cytometry assays, each assay has its relative advantages and disadvantages, and relatively few of these assays have yet to be validated in large-scale human vaccine trials. This review examines the current range of T-cell assays and assesses their suitability for use in human vaccine trials. Should one or more of these assays be accepted as an agreed surrogate of T-cell protection by a regulatory agency, this would significantly accelerate the development of T-cell vaccines.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | | | | |
Collapse
|
38
|
Costa C, Saldan A, Sinesi F, Sidoti F, Balloco C, Simeone S, Piceghello A, Mantovani S, Di Nauta A, Solidoro P, Cavallo R. The Lack and Cytomegalovirus-Specific Cellular Immune Response May Contribute to the Onset of Organ Infection and Disease in Lung Transplant Recipients. Int J Immunopathol Pharmacol 2012; 25:1003-1009. [DOI: 10.1177/039463201202500417] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Cellular immune response has been demonstrated to play a role in the control of human cytomegalovirus (HCMV) replication in organ transplant recipients. Herein, HCMV-specific T-cell response and association to the onset of organ infection/disease were prospectively evaluated by EliSPOT assay in a population of 46 lung transplant (LT) recipients at 1, 3, 6, 9 and 12 months post-transplantation. According to our centre's practice, a combined prolonged antiviral prophylaxis (HCMV-IG for 12 months and ganciclovir or valganciclovir for 3 weeks from postoperative day 21) was given to all LT recipients. HCMV-DNA was concomitantly detected on bronchoalveolar lavage (BAL) and whole blood by real-time PCR. Approximately one third of patients resulted HCMV persistently non-responder; the rate of HCMV infection, as evaluated by HCMV-DNA positivity, tended to be higher in non-responders. Mean viral load on BAL was significantly higher in non-responders vs other patients (p <0.001). Temporal profile of infections appeared related to the HCMV responder status with a shorter time to onset of infection post-transplantation and a longer duration in non-responders. The occurrence of organ disease (i.e. pneumonia) tended to be higher in non-responders, with poor prognosis, as death occurred in one of three non-responder patients that developed HCMV pneumonia. The lack of HCMV-specific cellular response can contribute to the onset of organ infection and disease also in patients in which antiviral prophylaxis was adopted; this could be due to the potential occurrence of incomplete control of replication in lungs or a delayed priming of T-cell reconstitution.
Collapse
Affiliation(s)
- C. Costa
- Virology Unit, Hospital Città della Salute e delle Scienza di Torino, San Giovanni Battista Hospital, Turin, Italy
| | - A. Saldan
- Department of Histology, Microbiology and Medical Biotechnology, Padua General Hospital, Padua School of Medicine, Padua, Italy
| | - F. Sinesi
- Virology Unit, Hospital Città della Salute e delle Scienza di Torino, San Giovanni Battista Hospital, Turin, Italy
| | - F. Sidoti
- Virology Unit, Hospital Città della Salute e delle Scienza di Torino, San Giovanni Battista Hospital, Turin, Italy
| | - C. Balloco
- Virology Unit, Hospital Città della Salute e delle Scienza di Torino, San Giovanni Battista Hospital, Turin, Italy
| | - S. Simeone
- Virology Unit, Hospital Città della Salute e delle Scienza di Torino, San Giovanni Battista Hospital, Turin, Italy
| | - A. Piceghello
- Virology Unit, Hospital Città della Salute e delle Scienza di Torino, San Giovanni Battista Hospital, Turin, Italy
| | - S. Mantovani
- Virology Unit, Hospital Città della Salute e delle Scienza di Torino, San Giovanni Battista Hospital, Turin, Italy
| | - A. Di Nauta
- Virology Unit, Hospital Città della Salute e delle Scienza di Torino, San Giovanni Battista Hospital, Turin, Italy
| | - P. Solidoro
- Division of Pneumology, Hospital Città della Salute e delle Scienza di Torino, San Giovanni Battista Hospital, Turin, Italy
| | - R. Cavallo
- Virology Unit, Hospital Città della Salute e delle Scienza di Torino, San Giovanni Battista Hospital, Turin, Italy
| |
Collapse
|
39
|
Ramachandran H, Laux J, Moldovan I, Caspell R, Lehmann PV, Subbramanian RA. Optimal thawing of cryopreserved peripheral blood mononuclear cells for use in high-throughput human immune monitoring studies. Cells 2012; 1:313-24. [PMID: 24710478 PMCID: PMC3901099 DOI: 10.3390/cells1030313] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 11/20/2022] Open
Abstract
Cryopreserved peripheral blood mononuclear cells (PBMC) constitute an important component of immune monitoring studies as they allow for efficient batch- testing of samples as well as for the validation and extension of original studies in the future. In this study, we systematically test the permutations of PBMC thawing practices commonly employed in the field and identify conditions that are high and low risk for the viability of PBMC and their functionality in downstream ELISPOT assays. The study identifies the addition of ice-chilled washing media to thawed cells at the same temperature as being a high risk practice, as it yields significantly lower viability and functionality of recovered PBMC when compared to warming the cryovials to 37 °C and adding a warm washing medium. We found thawed PBMC in cryovials could be kept up to 30 minutes at 37 °C in the presence of DMSO before commencement of washing, which surprisingly identifies exposure to DMSO as a low risk step during the thawing process. This latter finding is of considerable practical relevance since it permits batch-thawing of PBMC in high-throughput immune monitoring environments.
Collapse
Affiliation(s)
| | - Jessica Laux
- Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| | - Ioana Moldovan
- Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| | | | - Paul V Lehmann
- Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| | | |
Collapse
|
40
|
Distinguishing Latent from Active Mycobacterium tuberculosis Infection Using Elispot Assays: Looking Beyond Interferon-gamma. Cells 2012; 1:89-99. [PMID: 24710416 PMCID: PMC3901089 DOI: 10.3390/cells1020089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/11/2012] [Accepted: 04/17/2012] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) is a global heath epidemic, its threat amplified by HIV infection and the emergence of multidrug-resistant tuberculosis (MDR-TB). Interferon (IFN)-gamma release assays (IGRAs) have improved the accuracy of detection of MTB exposure in some subject groups as compared to the Tuberculin Skin Test (TST). However, as IFN-gamma is produced by both fully rested and more recently activated populations of memory T cells, it is not surprising that the measurement of this cytokine alone cannot accurately distinguish Latent TB Infected (LTBI) subjects from those with active (infectious) disease. Accurate and rapid diagnosis of infectious individuals would allow medication to be properly allocated and other actions taken to more effectively curtail MTB spread. Analysis of multi-cytokine profiles ex vivo after stimulation of PBMCs from LTBI and active MTB subjects indicate the real possibility of successfully discerning these two disease states within 24 hours of a subject’s blood draw. Due to the unparalleled sensitivity, low cost, and ease of use of Elispot assays, we propose that via a multiplex Elispot platform the accurate distinction of LTBI from active MTB-infected individuals is within reach.
Collapse
|
41
|
Moralès O, Richard A, Martin N, Mrizak D, Sénéchal M, Miroux C, Pancré V, Rommelaere J, Caillet-Fauquet P, de Launoit Y, Delhem N. Activation of a helper and not regulatory human CD4+ T cell response by oncolytic H-1 parvovirus. PLoS One 2012; 7:e32197. [PMID: 22359669 PMCID: PMC3281136 DOI: 10.1371/journal.pone.0032197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/24/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND H-1 parvovirus (H-1 PV), a rodent autonomous oncolytic parvovirus, has emerged as a novel class of promising anticancer agents, because of its ability to selectively find and destroy malignant cells. However, to probe H-1 PV multimodal antitumor potential one of the major prerequisites is to decipher H-1 PV direct interplay with human immune system, and so prevent any risk of impairment. METHODOLOGY/PRINCIPAL FINDINGS Non activated peripheral blood mononuclear cells (PBMCs) are not sensitive to H-1 PV cytotoxic effect. However, the virus impairs both activated PBMC proliferation ability and viability. This effect is related to H-1 PV infection as evidenced by Western blotting detection of H-1 PV main protein NS1. However, TCID50 experiments did not allow newly generated virions to be detected. Moreover, flow cytometry has shown that H-1 PV preferentially targets B lymphocytes. Despite seeming harmful at first sight, H-1 PV seems to affect very few NK cells and CD8+ T lymphocytes and, above all, clearly does not affect human neutrophils and one of the major CD4+ T lymphocyte subpopulation. Very interestingly, flow cytometry analysis and ELISA assays proved that it even activates human CD4+ T cells by increasing activation marker expression (CD69 and CD30) and both effective Th1 and Th2 cytokine secretion (IL-2, IFN-γ and IL-4). In addition, H-1 PV action does not come with any sign of immunosuppressive side effect. Finally, we have shown the efficiency of H-1 PV on xenotransplanted human nasopharyngeal carcinoma, in a SCID mouse model reconstituted with human PBMC. CONCLUSIONS/SIGNIFICANCE Our results show for the first time that a wild-type oncolytic virus impairs some immune cell subpopulations while directly activating a Helper CD4+ T cell response. Thus, our data open numerous gripping perspectives of investigation and strongly argue for the use of H-1 PV as an anticancer treatment.
Collapse
Affiliation(s)
- Olivier Moralès
- Institut de Biologie de Lille, UMR 8161, CNRS, Institut Pasteur de Lille, Université Lille-Nord de France, Lille, France
| | - Audrey Richard
- Institut de Biologie de Lille, UMR 8161, CNRS, Institut Pasteur de Lille, Université Lille-Nord de France, Lille, France
| | - Nathalie Martin
- Institut de Biologie de Lille, UMR 8161, CNRS, Institut Pasteur de Lille, Université Lille-Nord de France, Lille, France
| | - Dhafer Mrizak
- Institut de Biologie de Lille, UMR 8161, CNRS, Institut Pasteur de Lille, Université Lille-Nord de France, Lille, France
| | - Magalie Sénéchal
- Institut de Biologie de Lille, UMR 8161, CNRS, Institut Pasteur de Lille, Université Lille-Nord de France, Lille, France
| | - Céline Miroux
- Institut de Biologie de Lille, UMR 8161, CNRS, Institut Pasteur de Lille, Université Lille-Nord de France, Lille, France
| | - Véronique Pancré
- Institut de Biologie de Lille, UMR 8161, CNRS, Institut Pasteur de Lille, Université Lille-Nord de France, Lille, France
| | - Jean Rommelaere
- Tumor Virology, Research Program Infection and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Perrine Caillet-Fauquet
- Institut de Biologie de Lille, UMR 8161, CNRS, Institut Pasteur de Lille, Université Lille-Nord de France, Lille, France
| | - Yvan de Launoit
- Institut de Biologie de Lille, UMR 8161, CNRS, Institut Pasteur de Lille, Université Lille-Nord de France, Lille, France
| | - Nadira Delhem
- Institut de Biologie de Lille, UMR 8161, CNRS, Institut Pasteur de Lille, Université Lille-Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
42
|
Abstract
The T cell system plays an essential role in infections, allergic reactions, tumor and transplant rejection, as well as autoimmune diseases. It does so by the selective engagement of different antigen-specific effector cell lineages that differentially secrete cytokines and other effector molecules. These T cell subsets may or may not have cytolytic activity, can preferentially migrate to different tissues, and display variable capabilities to expand clonally. The quest of T cell immune diagnostics is to understand which specific effector function and T cell lineage is associated with a given clinical outcome, be it positive or adverse. No single assay can measure all of the relevant parameters. In this chapter, we review the unique contributions that ELISPOT assays can make toward understanding T cell-mediated immunity. ELISPOT assays have an unsurpassed sensitivity in detecting low frequency antigen-specific T cells that secrete effector molecules, including granzyme and perforin. They provide robust, highly reproducible data - even by first time users. Because ELISPOT assays require roughly tenfold less cell material than flow cytometry, ELISPOT is ideally suited for all measurements requiring parallel testing under multiple conditions. These include defining (a) T cell reactivity to individual peptides of extensive libraries, thereby establishing the fine-specificity of the response, and determinant mapping; (b) reactivity to different concentrations of the antigen in serial dilutions to measure the avidity of the T cell response; or (c) different secretory products released by T cells which define their respective effector lineage/functions. Further, because T cells survive ELISPOT assays unaffected, they can be retested for the acquisition of additional information in follow-up assays. These strengths of ELISPOT assays the weaknesses of flow cytometry-based measurements. Thus, the two assays systems compliment each other in the quest to understand T cell-mediated immunity in vivo.
Collapse
|
43
|
Zhang W, Lehmann PV. Objective, user-independent ELISPOT data analysis based on scientifically validated principles. Methods Mol Biol 2012; 792:155-71. [PMID: 21956509 DOI: 10.1007/978-1-61779-325-7_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ELISPOT results used to be evaluated visually which, however, is inevitably subjective, inaccurate, and cumbersome. Even when applying automated image analysis to this end, the results are highly variable if the counting parameters are set subjectively. Since objective, accurate, and reproducible measurements are fundamental to science, major efforts have been undertaken over the last decade at CTL to understand the scientific principles behind ELISPOT data and to develop "intelligent" image analysis algorithms based on these principles. Thus, a spot recognition and gating algorithm was developed to automatically recognize the signatures of defined cell populations, such as T cells, discerning them from irrelevant cell types and noise. In this way, the science of ELISPOT data analysis has been introduced, permitting exact frequency measurement against background. As ELISPOT assays become a gold standard for monitoring antigen-specific T-cell immunity in clinical trials, the need has surfaced to make ELISPOT data transparent, reproducible, and tamper-proof, complying with Good Laboratory Practice (GLP) and Code for Federal Regulations (CFR) Part 11 guidelines. Flow cytometry-based and other immune monitoring assay platforms face the same challenge. In this chapter, we provide an overview of how CTL's ImmunoSpot(®) platform for ELISPOT data analysis, management, and documentation meets these challenges.
Collapse
Affiliation(s)
- Wenji Zhang
- Cellular Technology Limited, Shaker Heights, OH, USA
| | | |
Collapse
|
44
|
Biomarkers. Ther Drug Monit 2012. [DOI: 10.1016/b978-0-12-385467-4.00016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Abstract
Cytokine ELISPOT assays have emerged as a powerful tool for the detection of rare antigen-specific T cells in freshly isolated cell material, such as blood. While ELISPOT assays allow one to directly visualize and count extremely low frequencies of cytokine-secreting T cells among millions of nonsecreting bystander cells, the interpretation of ELISPOT data can become ambiguous when (a) spot numbers in antigen-containing wells are low, (b) spot counts in negative control wells are elevated, and particularly (c) when both of the above occur simultaneously. Thus, the primary task, even before statistics are employed, must be the optimization of the basic assay parameters and reagents such that the assay yields low background signal in the negative-control wells and the maximal number of antigen-induced spots in test wells, i.e., the signal-to-noise ratio is maximized. Furthermore, the use of proper spot-size gating parameters for data analysis is indispensable for screening out irrelevant background spots, and thus increasing the signal-to-noise ratio. The goal of most ELISPOT experiments is to identify positive T-cell responses as defined by a significantly elevated spot count in antigen-stimulated wells over the nonstimulated medium-control or negative-control antigen. In this chapter, we conclude that - with some limitations - the T-Test and related statistical methods which rely on the assumption of normal distribution are suitable for identifying positive ELISPOT results.
Collapse
Affiliation(s)
- Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Würzburg, Germany
| | | |
Collapse
|
46
|
Slota M, Lim JB, Dang Y, Disis ML. ELISpot for measuring human immune responses to vaccines. Expert Rev Vaccines 2011; 10:299-306. [PMID: 21434798 DOI: 10.1586/erv.10.169] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The enzyme-linked immunosorbent spot (ELISpot) assay is one of the most commonly used methods to measure antigen-specific T cells in both mice and humans. Some of the primary reasons for the popularity of the method are that ELISpot is highly quantitative, can measure a broad range of magnitudes of response and is capable of assessing critical cellular immune-related activities such as IFN-γ secretion and granzyme B release. Furthermore, ELISpot is adaptable not only to the evaluation of a variety of T-cell functions, but also to B cells and innate immune cells. It is no wonder that ELISpot has evolved from a research tool to a clinical assay. Recent Phase I and II studies of cancer vaccines, tested in a variety of malignancies, have suggested that ELISpot may be a useful biomarker assay to predict clinical benefit after therapeutic immune modulation. This article will discuss the most common applications of ELISpot, overview the efforts that have been undertaken to standardize the assay and apply the method in the analysis of human clinical trials, and describe some important steps in the process of developing a clinical-grade ELISpot.
Collapse
Affiliation(s)
- Meredith Slota
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, 815 Mercer Street, University of Washington, Seattle, WA 98058, USA
| | | | | | | |
Collapse
|
47
|
Butterfield LH, Palucka AK, Britten CM, Dhodapkar MV, Håkansson L, Janetzki S, Kawakami Y, Kleen TO, Lee PP, Maccalli C, Maecker HT, Maino VC, Maio M, Malyguine A, Masucci G, Pawelec G, Potter DM, Rivoltini L, Salazar LG, Schendel DJ, Slingluff CL, Song W, Stroncek DF, Tahara H, Thurin M, Trinchieri G, van Der Burg SH, Whiteside TL, Wigginton JM, Marincola F, Khleif S, Fox BA, Disis ML. Recommendations from the iSBTc-SITC/FDA/NCI Workshop on Immunotherapy Biomarkers. Clin Cancer Res 2011; 17:3064-76. [PMID: 21558394 DOI: 10.1158/1078-0432.ccr-10-2234] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To facilitate development of innovative immunotherapy approaches, especially for treatment concepts exploiting the potential benefits of personalized therapy, there is a need to develop and validate tools to identify patients who can benefit from immunotherapy. Despite substantial effort, we do not yet know which parameters of antitumor immunity to measure and which assays are optimal for those measurements. EXPERIMENTAL DESIGN The iSBTc-SITC (International Society for Biological Therapy of Cancer-Society for Immunotherapy of Cancer), FDA (Food and Drug Administration), and NCI (National Cancer Institute) partnered to address these issues for immunotherapy of cancer. Here, we review the major challenges, give examples of approaches and solutions, and present our recommendations. RESULTS AND CONCLUSIONS Although specific immune parameters and assays are not yet validated, we recommend following standardized (accurate, precise, and reproducible) protocols and use of functional assays for the primary immunologic readouts of a trial; consideration of central laboratories for immune monitoring of large, multi-institutional trials; and standardized testing of several phenotypic and functional potential potency assays specific to any cellular product. When reporting results, the full QA (quality assessment)/QC (quality control) should be conducted and selected examples of truly representative raw data and assay performance characteristics should be included. Finally, to promote broader analysis of multiple aspects of immunity, and gather data on variability, we recommend that in addition to cells and serum, RNA and DNA samples be banked (under standardized conditions) for later testing. We also recommend that sufficient blood be drawn to allow for planned testing of the primary hypothesis being addressed in the trial, and that additional baseline and posttreatment blood is banked for testing novel hypotheses (or generating new hypotheses) that arise in the field.
Collapse
Affiliation(s)
- Lisa H Butterfield
- Department of Medicine, University of Pittsburgh, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Costa C, Astegiano S, Terlizzi M, Sidoti F, Curtoni A, Solidoro P, Baldi S, Bergallo M, Cavallo R. Evaluation and Significance of Cytomegalovirus-Specific Cellular Immune Response in Lung Transplant Recipients. Transplant Proc 2011; 43:1159-61. [DOI: 10.1016/j.transproceed.2011.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Auletta JJ, Zale EA, Welter JF, Solchaga LA. Fibroblast Growth Factor-2 Enhances Expansion of Human Bone Marrow-Derived Mesenchymal Stromal Cells without Diminishing Their Immunosuppressive Potential. Stem Cells Int 2011; 2011:235176. [PMID: 21437189 PMCID: PMC3062108 DOI: 10.4061/2011/235176] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 01/13/2011] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is the main curative therapy for many hematologic malignancies. Its potential relies on graft-versus-tumor effects which associate with graft-versus-host disease. Mesenchymal stromal cells (MSCs) possess immunomodulatory properties that make them attractive therapeutic alternatives. We evaluated the in vitro immunosuppressive activity of medium conditioned by human MSCs from 5 donors expanded 13 passages with or without FGF-2. FGF-2 supplementation increased expansion 3,500- and 240,000-fold by passages 7 and 13, respectively. There were no differences in immunosuppressive activity between media conditioned by passage-matched cells expanded under different conditions, but media conditioned by FGF-treated MSCs were superior to population doubling-matched controls. The immunosuppressive activity was maintained in three of the preparations but decreased with expansion in two. The proliferation induced by FGF-2 did not result in loss of immunosuppressive activity. However, because the immunosuppressive activity was not consistently preserved, caution must be exercised to ensure that the activity of the cells is sufficient after extensive expansion.
Collapse
Affiliation(s)
- Jeffery J Auletta
- Divisions of Pediatric Hematology/Oncology and Pediatric Infectious Diseases, Department of Pediatrics, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
50
|
Mander A, Gouttefangeas C, Ottensmeier C, Welters MJP, Low L, van der Burg SH, Britten CM. Serum is not required for ex vivo IFN-gamma ELISPOT: a collaborative study of different protocols from the European CIMT Immunoguiding Program. Cancer Immunol Immunother 2010; 59:619-27. [PMID: 20052465 PMCID: PMC2813523 DOI: 10.1007/s00262-009-0814-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 12/21/2009] [Indexed: 02/04/2023]
Abstract
The Cancer Immunotherapy Immunoguiding Program has conducted an IFN-γ ELISPOT proficiency panel to examine the influence of serum supplementation of test media on assay performance. Sixteen European laboratories analyzed the same PBMC samples using different locally established protocols. Participants generated two simultaneous data sets—one using medium supplemented with serum and one without serum. Performances of the two test conditions were compared by quantifying: (1) the number of viable cells, (2) background spot formation induced in the medium only control and (3) the ability to detect antigen-specific T cell responses. The study demonstrated that the number of viable cells recovered and the overall background spot production were not significantly different between the two conditions. Furthermore, overall laboratory performance was equivalent for the two test conditions; 11 out of 16 laboratories reported equal or greater detection rates using serum-free medium, while 5 laboratories reported decreased detections rates under serum-free conditions. These results show that good performance of the IFN-γ ELISPOT assay can be achieved under serum-free conditions. Optimization of the protocol for serum-free conditions should result in excellent detection rates and eliminate the requirement of serum batch and stability testing, allowing further harmonization of the assay.
Collapse
Affiliation(s)
- A. Mander
- Cancer Sciences Division, Southampton University Hospitals, Southampton, UK
| | - C. Gouttefangeas
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | - C. Ottensmeier
- Cancer Sciences Division, Southampton University Hospitals, Southampton, UK
| | - M. J. P. Welters
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - L. Low
- Cancer Sciences Division, Southampton University Hospitals, Southampton, UK
| | - S. H. van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - C. M. Britten
- Division of Experimental and Translational Oncology, Department of Internal Medicine III, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|