1
|
De Mul A, Schleef M, Filler G, McIntyre C, Lemoine S. In vivo assessment of pediatric kidney function using multi-parametric and multi-nuclear functional magnetic resonance imaging: challenges, perspectives, and clinical applications. Pediatr Nephrol 2025; 40:1539-1548. [PMID: 39556211 PMCID: PMC11946951 DOI: 10.1007/s00467-024-06560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024]
Abstract
The conventional methods for assessing kidney function, such as glomerular filtration rate and microalbuminuria, provide only partial insight into kidney function. Multi-parametric and multi-nuclear functional resonance magnetic imaging (MRI) techniques are innovative approaches to unraveling kidney physiology. Multi-parametric MRI includes various sequences to evaluate kidney perfusion, tissue oxygenation, and microstructure characterization, including fibrosis-a key pathological event in acute and chronic kidney disease and in transplant patients-without the need for invasive kidney biopsy. Multi-nuclear MRI detects nuclei other than protons. 23Na MRI enables visualization of the corticomedullary gradient and assessment of tissue sodium storage, which can be particularly relevant for personalized medicine in salt-wasting tubular disorders. Meanwhile, 31P-MRS measures intracellular phosphate and ATP variations, providing insights into oxidative metabolism in the muscle during exercise and recovery. This technique can be useful for detecting subclinical ischemia in chronic kidney disease and in tubulopathies with kidney phosphate wasting. These techniques are non-invasive and do not involve radiation exposure, making them especially suitable for longitudinal and serial assessments. They enable in vivo evaluation of kidney function on a whole-organ basis within a short acquisition time and with the ability to distinguish between medullary and cortical compartments. Therefore, they offer considerable potential for pediatric patients. In this review, we provide a brief overview of the main imaging techniques, summarize available literature data on both adult and pediatric populations, and examine the perspectives and challenges associated with multi-parametric and multi-nuclear MRI.
Collapse
Affiliation(s)
- Aurélie De Mul
- Service de Néphrologie Et d'exploration Fonctionnelle Rénale, Hôpital Édouard-Herriot, Hospices Civils de Lyon, Lyon, France.
- Université, Lyon 1, Lyon, France.
- Centre de Référence Des Maladies Rares du Calcium Et du Phosphore, Centre de Référence Des Maladies Rénales Rares, Filières de Santé Maladies Rares OSCAR, ORKID Et ERKNet, Lyon, France.
| | - Maxime Schleef
- Service de Néphrologie Et d'exploration Fonctionnelle Rénale, Hôpital Édouard-Herriot, Hospices Civils de Lyon, Lyon, France
- Université, Lyon 1, Lyon, France
- Centre de Référence Des Maladies Rares du Calcium Et du Phosphore, Centre de Référence Des Maladies Rénales Rares, Filières de Santé Maladies Rares OSCAR, ORKID Et ERKNet, Lyon, France
| | - Guido Filler
- Department of Paediatrics (Division of Nephrology) and Medicine (Division of Nephrology), Western University, and London Health Sciences Centre, London, ON, Canada
- The Lilibeth Caberto Kidney Clinical Research Unit, London Health Sciences Centre, London, ON, Canada
| | - Christopher McIntyre
- Department of Paediatrics (Division of Nephrology) and Medicine (Division of Nephrology), Western University, and London Health Sciences Centre, London, ON, Canada
- The Lilibeth Caberto Kidney Clinical Research Unit, London Health Sciences Centre, London, ON, Canada
- Department of Biophysics, Western University, and London Health Sciences Centre, London, ON, Canada
| | - Sandrine Lemoine
- Service de Néphrologie Et d'exploration Fonctionnelle Rénale, Hôpital Édouard-Herriot, Hospices Civils de Lyon, Lyon, France
- Université, Lyon 1, Lyon, France
- Centre de Référence Des Maladies Rares du Calcium Et du Phosphore, Centre de Référence Des Maladies Rénales Rares, Filières de Santé Maladies Rares OSCAR, ORKID Et ERKNet, Lyon, France
| |
Collapse
|
2
|
Trask-Marino AL, Marino B, Lancefield TF, See EJ, May CN, Booth LC, Raman J, Lankadeva YR. Renal macro- and microcirculatory perturbations in acute kidney injury and chronic kidney disease associated with heart failure and cardiac surgery. Am J Physiol Renal Physiol 2025; 328:F452-F469. [PMID: 39918776 DOI: 10.1152/ajprenal.00266.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/02/2024] [Accepted: 01/28/2025] [Indexed: 03/15/2025] Open
Abstract
Chronic kidney disease (CKD) affects 50% of patients with heart failure. The pathophysiology of CKD in heart failure is proposed to be driven by macrocirculatory hemodynamic changes, including reduced cardiac output and elevated central venous pressure. However, our understanding of renal microcirculation in heart failure and CKD remains limited. This is largely due to the lack of noninvasive techniques to assess renal microcirculation in patients. Moreover, there is a lack of clinically relevant animal models of heart failure and CKD to advance our understanding of the timing and magnitude of renal microcirculatory dysfunction. Patients with heart failure and CKD commonly require cardiac surgery with cardiopulmonary bypass (CPB) to improve their prognosis. However, acute kidney injury (AKI) is a frequent unresolved clinical complication in these patients. There is emerging evidence that renal microcirculatory dysfunction, characterized by renal medullary hypoperfusion and hypoxia, plays a critical role in the pathogenesis of cardiac surgery-associated AKI. In this review, we consolidate the preclinical and clinical evidence of renal macro- and microcirculatory perturbations in heart failure and cardiac surgery requiring CPB. We also examine emerging biomarkers and therapies that may improve health outcomes for this vulnerable patient population by targeting the renal microcirculation.
Collapse
Affiliation(s)
| | - Bruno Marino
- Cellsaving and Perfusion Resources, Melbourne, Victoria, Australia
| | | | - Emily J See
- Department of Critical Care, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Clive N May
- Preclinical Critical Care Unit, The Florey, Melbourne, Victoria, Australia
- Department of Critical Care, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lindsea C Booth
- Preclinical Critical Care Unit, The Florey, Melbourne, Victoria, Australia
| | - Jai Raman
- Department of Cardiothoracic Surgery, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
- Townsville University Hospital, Townsville, Queensland, Australia
| | - Yugeesh R Lankadeva
- Preclinical Critical Care Unit, The Florey, Melbourne, Victoria, Australia
- Department of Critical Care, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Anaesthesia, Austin Hospital, Heidelberg, Victoria, Australia
| |
Collapse
|
3
|
Wan J, Jin M, Li J, Ma J, Que C, Jiang B, Tian Y, Hu L, Yu Y, Hu C, Wang J, Zhu M. Magnetic resonance diffusion tensor imaging is superior to arterial spin labeling in detecting renal allograft fibrosis. Quant Imaging Med Surg 2025; 15:3211-3221. [PMID: 40235790 PMCID: PMC11994526 DOI: 10.21037/qims-24-1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/14/2025] [Indexed: 04/17/2025]
Abstract
Background Although both magnetic resonance (MR) diffusion tensor imaging (DTI) and arterial spin labeling (ASL) have been demonstrated to be useful for the assessment of renal allograft fibrosis, their diagnostic value for renal allograft fibrosis is rarely compared. In this study, we collected a relatively large sample size to compare the value of DTI and ASL in the assessment of renal transplantation (RT) fibrosis. Methods This study included 141 kidney transplant recipients who underwent DTI, ASL, and biopsy. The renal allograft fibrosis was divided into ci0, ci1, ci2, and ci3 fibrosis groups according to the biopsy results. The apparent diffusion coefficient (ADC), fractional anisotropy (FA), and renal blood flow (RBF) were calculated. One-way analysis of variance (ANOVA) was used to compare the differences of functional magnetic resonance imaging (MRI) parameters between different fibrosis subgroups. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate diagnostic performance. Results The medullary FA values in ci2 (0.27±0.04, P<0.001) and ci3 (0.21±0.03, P<0.001) groups were significantly lower than those in ci0 group (0.31±0.05). The medullary FA value in ci3 group (0.21±0.03) was significantly lower than that in ci1 group (0.30±0.07, P<0.001) and ci2 group (0.27±0.04, P<0.01). The AUC of DTI was found to be higher than that of ASL in accurately identifying renal allograft fibrosis, and the result was statistically significant in differentiating ci0-2 group and ci3 group (ci0 vs. ci1-3, 0.725 vs. 0.712, P>0.05; ci0-1 vs. ci2-3, 0.787 vs. 0.735, P>0.05; ci0-2 vs. ci3, 0.945 vs. 0.802, P<0.05). Conclusions DTI has a higher diagnostic value than ASL in noninvasive identification of the degree of renal allograft fibrosis.
Collapse
Affiliation(s)
- Jiayi Wan
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minmin Jin
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Li
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiali Ma
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Bin Jiang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yangyang Tian
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linkun Hu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yixing Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mo Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Marrapu S, Kumar R. Transition from acute kidney injury to chronic kidney disease in liver cirrhosis patients: Current perspective. World J Nephrol 2025; 14:102381. [PMID: 40134649 PMCID: PMC11755238 DOI: 10.5527/wjn.v14.i1.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/22/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025] Open
Abstract
In liver cirrhosis patients, acute kidney injury (AKI) is a common and severe complication associated with significant morbidity and mortality, often leading to chronic kidney disease (CKD). This progression reflects a complex interplay of renal and hepatic pathophysiology, with AKI acting as an initiator through maladaptive repair mechanisms. These mechanisms-such as tubular cell cycle arrest, inflammatory cascades, and fibrotic processes-are exacerbated by the hemodynamic and neurohormonal disturbances characteristic of cirrhosis. Following AKI episodes, persistent kidney dysfunction or acute kidney disease (AKD) often serves as a bridge to CKD. AKD represents a critical phase in renal deterioration, characterized by prolonged kidney injury that does not fully meet CKD criteria but exceeds the temporal scope of AKI. The progression from AKD to CKD is further influenced by recurrent AKI episodes, impaired renal autoregulation, and systemic comorbidities such as diabetes and metabolic dysfunction-associated steatotic liver disease, which compound kidney damage. The clinical management of AKI and CKD in cirrhotic patients requires a multidimensional approach that includes early identification of kidney injury, the application of novel biomarkers, and precision interventions. Recent evidence underscores the inadequacy of traditional biomarkers in predicting the AKI-to-CKD progression, necessitating novel biomarkers for early detection and intervention.
Collapse
Affiliation(s)
- Sudheer Marrapu
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, India
| | - Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, India
| |
Collapse
|
5
|
Huber A, Aslam I, Crowe L, Pruijm M, de Perrot T, de Seigneux S, Vallée JP, Berchtold L. T1 mapping magnetic resonance imaging predicts decline of kidney function. Clin Kidney J 2025; 18:sfaf032. [PMID: 40123968 PMCID: PMC11926595 DOI: 10.1093/ckj/sfaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 03/25/2025] Open
Abstract
Background Renal cortical interstitial fibrosis, typically assessed by biopsy, is crucial for kidney function prognosis. Magnetic resonance imaging (MRI) is a promising method to assess fibrosis non-invasively. Diffusion-weighted (DW) MRI correlates with renal fibrosis and predicts kidney function decline in chronic kidney disease (CKD) and kidney allograft patients. This study evaluates whether T1 and T2 mapping predict kidney function decline and if their simultaneous use enhances the predictive power of a DW-MRI-based model. Methods We prospectively included 197 patients (42 CKD, 155 allograft kidneys). Each underwent a biopsy followed by multiparametric MRI without contrast within 1 week. Over a median follow-up of 2.2 years, laboratory parameters were recorded. The primary endpoint was a rapid decline in kidney function [glomerular filtration rate (GFR) reduction >30%] or replacement therapy initiation. The ability of T1 and T2 mapping sequences to predict poor renal outcome was examined using multivariable Cox regression models, incorporating MRI-derived parameters, estimated GFR (eGFR) and proteinuria. Results Renal outcome occurred in 54 patients after a median of 1.1 years (interquartile range 0.9-2.1). Univariable survival analysis showed cortical T1 was associated with poor renal outcome {hazard ratio [HR] 3.02 [95% confidence interval (CI) 1.44-6.33]}, while T2 sequences had no significant predictive value. Adding cortical T1 to the established model (ΔADC, eGFR, proteinuria) did not improve the HR [from 4.62 (95% CI 1.56-13.67) to 4.36 (95% CI 1.46-13.02)] and marginally increased Harrell's C-index (0.77 to 0.79). Adjusting the regression model for ΔT2 yielded no enhancement in predictive power. Conclusions Cortical T1 is strongly associated with poor renal outcome but did not enhance prognostic power of the DW-MRI-based model.
Collapse
Affiliation(s)
- Aurélie Huber
- Department of Medicine, Division of Nephrology and Hypertension, University Hospitals of Geneva, Geneva, Switzerland
| | - Ibtisam Aslam
- Department of Diagnostics, Division of Radiology, University Hospitals of Geneva and Faculty of Medicine of the Geneva University, Geneva, Switzerland
| | - Lindsey Crowe
- Department of Diagnostics, Division of Radiology, University Hospitals of Geneva and Faculty of Medicine of the Geneva University, Geneva, Switzerland
| | - Menno Pruijm
- Department of Medicine, Division of Nephrology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thomas de Perrot
- Department of Diagnostics, Division of Radiology, University Hospitals of Geneva and Faculty of Medicine of the Geneva University, Geneva, Switzerland
| | - Sophie de Seigneux
- Department of Medicine, Division of Nephrology and Hypertension, University Hospitals of Geneva, Geneva, Switzerland
| | - Jean-Paul Vallée
- Department of Diagnostics, Division of Radiology, University Hospitals of Geneva and Faculty of Medicine of the Geneva University, Geneva, Switzerland
| | - Lena Berchtold
- Department of Medicine, Division of Nephrology and Hypertension, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Ito T, Kumagai H, Kanai T, Aoyagi J, Ono Y, Miura K, Kobayashi K, Tajima T, Osaka H. Evaluation of renal fibrosis using scanning acoustic microscopy. Clin Exp Nephrol 2025:10.1007/s10157-024-02621-4. [PMID: 39821568 DOI: 10.1007/s10157-024-02621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Renal fibrosis is strongly correlated with renal functional outcomes. Therefore, this is a significant finding in determining renal prognosis. There are various reports on the imaging evaluation of renal fibrosis, but these are not well established. Scanning acoustic microscopy (SAM) uses ultra-high-frequency ultrasound to visualize tissues in just over a minute. SAM can simultaneously measure acoustic data such as speed of sound (SOS). SOS indicates the elasticity (stiffness) of a material. In this study, we aimed to compare and evaluate SAM acoustic intensity images and SOS data with light microscopy images of renal lesions, especially renal fibrosis. METHODS Renal specimens containing fibrosis were selected. The acoustic intensity images were compared to PAS-stained images. SOS data of the tubulointerstitium were compared with Masson's trichrome (MT)-stained images. The blue intensity of MT staining, which indicates fibrosis, was numerically valued using image-processing software. Furthermore, the correlations between it and the SOS values were evaluated. RESULTS The acoustic intensity images suggested tubular atrophy and interstitial expansion in the same areas as in the PAS staining. SOS values of interstitial expansion with fibrosis were higher than normal area, interstitial expansion without fibrosis. A weak positive correlation was observed between the SOS values and the blue intensity of MT staining. CONCLUSIONS SOS data can be used to evaluate renal fibrosis. The combination of SOS data and MT-stained images enables a more detailed evaluation of renal fibrosis. This study can contribute to the evaluation of renal fibrosis and has potential clinical applications in the future.
Collapse
Affiliation(s)
- Takane Ito
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Hideki Kumagai
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan.
| | - Takahiro Kanai
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Jun Aoyagi
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Yuko Ono
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama, Japan
| | - Katsutoshi Miura
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Toshihiro Tajima
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
7
|
Kleibert M, Tkacz K, Winiarska K, Małyszko J, Cudnoch-Jędrzejewska A. The role of hypoxia-inducible factors 1 and 2 in the pathogenesis of diabetic kidney disease. J Nephrol 2025; 38:37-47. [PMID: 39648258 PMCID: PMC11903585 DOI: 10.1007/s40620-024-02152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024]
Abstract
According to the 10th edition of the IDF Diabetes Atlas, 537 million people suffered from diabetes in 2021, and this number will increase by 47% by 2045. It is estimated that even 30-40% of these individuals may develop diabetic kidney disease (DKD) in the course of diabetes. DKD is one of the most important complications of diabetes, both in terms of impact and magnitude. It leads to high morbidity and mortality, which subsequently impacts on quality of life, and it carries a high financial burden. Diabetic kidney disease is considered a complex and heterogeneous entity involving disturbances in vascular, glomerular, podocyte, and tubular function. It would appear that hypoxia-inducible factors (HIF)-1 and HIF-2 may be important players in the pathogenesis of this disease. However, their exact role is still not fully investigated. In this article, we summarize the current knowledge about HIF signaling and its role in DKD. In addition, we focus on the possible effects of nephroprotective drugs on HIF expression and activity in various tissues.
Collapse
Affiliation(s)
- Marcin Kleibert
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Kamil Tkacz
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland
| |
Collapse
|
8
|
Selby NM, Francis ST. Assessment of Acute Kidney Injury using MRI. J Magn Reson Imaging 2025; 61:25-41. [PMID: 38334370 PMCID: PMC11645494 DOI: 10.1002/jmri.29281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
There has been growing interest in using quantitative magnetic resonance imaging (MRI) to describe and understand the pathophysiology of acute kidney injury (AKI). The ability to assess kidney blood flow, perfusion, oxygenation, and changes in tissue microstructure at repeated timepoints is hugely appealing, as this offers new possibilities to describe nature and severity of AKI, track the time-course to recovery or progression to chronic kidney disease (CKD), and may ultimately provide a method to noninvasively assess response to new therapies. This could have significant clinical implications considering that AKI is common (affecting more than 13 million people globally every year), harmful (associated with short and long-term morbidity and mortality), and currently lacks specific treatments. However, this is also a challenging area to study. After the kidney has been affected by an initial insult that leads to AKI, complex coexisting processes ensue, which may recover or can progress to CKD. There are various preclinical models of AKI (from which most of our current understanding derives), and these differ from each other but more importantly from clinical AKI. These aspects are fundamental to interpreting the results of the different AKI studies in which renal MRI has been used, which encompass different settings of AKI and a variety of MRI measures acquired at different timepoints. This review aims to provide a comprehensive description and interpretation of current studies (both preclinical and clinical) in which MRI has been used to assess AKI, and discuss future directions in the field. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nicholas M Selby
- Centre for Kidney Research and Innovation, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Renal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
Tournebize C, Schleef M, De Mul A, Pacaud S, Derain-Dubourg L, Juillard L, Rouvière O, Lemoine S. Multiparametric MRI: can we assess renal function differently? Clin Kidney J 2025; 18:sfae365. [PMID: 40008350 PMCID: PMC11852294 DOI: 10.1093/ckj/sfae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Indexed: 02/27/2025] Open
Abstract
We are lacking tools to evaluate renal performance. In this review, we presented the current knowledge and potential future applications in nephrology of new magnetic resonance imaging (MRI) techniques, focusing on diffusion-weighted (DWI) MRI, blood oxygen level-dependent (BOLD) MRI, and magnetic resonance relaxometry (T1 and T2 mapping). These sequences are sensitive to early changes in biological processes such as perfusion, oxygenation, edema, or fibrosis without requiring contrast medium injection and avoids irradiation and nephrotoxicity. Combining these different sequences into the so-called "multiparametric MRI" enables noninvasive, repeated exploration of renal performance on each kidney separately. DWI MRI, which evaluates the movement of water molecules, is a promising tool for noninvasive assessment of interstitial fibrosis and the cortical restricted diffusion has a prognostic value for the deterioration of renal function in diabetic nephropathy. BOLD MRI is sensitive to changes in renal tissue oxygenation based on the paramagnetic properties of deoxyhemoglobin and is of particular interest in the setting of renal artery stenosis to assess tissue oxygenation in the post-stenotic kidney. This sequence can be used for predicting degradation of renal function in chronic kidney diseases (CKD) and might be useful in preclinical studies to assess nephroprotective and nephrotoxic effects of drugs in development. T1 and T2 relaxation times change with tissue water content and might help assessing renal fibrosis. A corticomedullary dedifferentiation in T1 has been observed in CKD and negatively correlates with glomerular filtration rate. Data on the significance of T2 values in renal imaging is more limited. Multiparametric MRI has the potential to provide a better understanding of renal physiology and pathophysiology, a better characterization of renal lesions, an earlier and more sensitive detection of renal disease, and an aid to personalized patient-centered therapeutic decision-making. Further data and clinical trials are needed to allow its routine application in clinical practice.
Collapse
Affiliation(s)
- Corentin Tournebize
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon-1, Bron, France
| | - Maxime Schleef
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon-1, Bron, France
| | - Aurélie De Mul
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
| | - Sophie Pacaud
- Service d'Imagerie Urinaire et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Laurence Derain-Dubourg
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
| | - Laurent Juillard
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon-1, Bron, France
| | - Olivier Rouvière
- Service d'Imagerie Urinaire et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- LabTau, INSERM U1052, Université de Lyon, Lyon, France
| | - Sandrine Lemoine
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon-1, Bron, France
| |
Collapse
|
10
|
Bøgh N, Bertelsen LB, Rasmussen CW, Bech SK, Keller AK, Madsen MG, Harving F, Thorsen TH, Mieritz IK, Hansen ES, Wanders A, Laustsen C. Metabolic MRI With Hyperpolarized 13 C-Pyruvate for Early Detection of Fibrogenic Kidney Metabolism. Invest Radiol 2024; 59:813-822. [PMID: 38913443 DOI: 10.1097/rli.0000000000001094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
OBJECTIVES Fibrosis is the final common pathway for chronic kidney disease and the best predictor for disease progression. Besides invasive biopsies, biomarkers for its detection are lacking. To address this, we used hyperpolarized 13 C-pyruvate MRI to detect the metabolic changes associated with fibrogenic activity of myofibroblasts. MATERIALS AND METHODS Hyperpolarized 13 C-pyruvate MRI was performed in 2 pig models of kidney fibrosis (unilateral ureteral obstruction and ischemia-reperfusion injury). The imaging data were correlated with histology, biochemical, and genetic measures of metabolism and fibrosis. The porcine experiments were supplemented with cell-line experiments to inform the origins of metabolic changes in fibrogenesis. Lastly, healthy and fibrotic human kidneys were analyzed for the metabolic alterations accessible with hyperpolarized 13 C-pyruvate MRI. RESULTS In the 2 large animal models of kidney fibrosis, metabolic imaging revealed alterations in amino acid metabolism and glycolysis. Conversion from hyperpolarized 13 C-pyruvate to 13 C-alanine decreased, whereas conversion to 13 C-lactate increased. These changes were shown to reflect profibrotic activity in cultured epithelial cells, macrophages, and fibroblasts, which are important precursors of myofibroblasts. Importantly, metabolic MRI using hyperpolarized 13 C-pyruvate was able to detect these changes earlier than fibrosis-sensitive structural imaging. Lastly, we found that the same metabolic profile is present in fibrotic tissue from human kidneys. This affirms the translational potential of metabolic MRI as an early indicator of fibrogenesis associated metabolism. CONCLUSIONS Our findings demonstrate the promise of hyperpolarized 13 C-pyruvate MRI for noninvasive detection of fibrosis development, which could enable earlier diagnosis and intervention for patients at risk of kidney fibrosis.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- From the MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (N.B., L.B.B., C.W.R., S.K.B., T.H.T., I.K.M., E.S.S.H., C.L.); Department of Urology, Aarhus University Hospital, Aarhus, Denmark (A.K.K., M.G.M.); and Department of Pathology, Aalborg University Hospital, Aalborg, Denmark (F.H., A.W.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee J, Liu JJ, Liu S, Liu A, Zheng H, Chan C, Shao YM, Gurung RL, Ang K, Lim SC. Acute kidney injury predicts the risk of adverse cardio renal events and all cause death in southeast Asian people with type 2 diabetes. Sci Rep 2024; 14:27027. [PMID: 39505973 PMCID: PMC11541721 DOI: 10.1038/s41598-024-77981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Patients with diabetes are susceptible to acute kidney injury (AKI) as compared to counterparts without diabetes. However, data on the long-term clinical outcome of AKI specifically in people with diabetes are still scarce. We sought to study risk factors for and adverse cardio-renal outcomes of AKI in multi-ethnic Southeast Asian people with type 2 diabetes. 1684 participants with type 2 diabetes from a regional hospital were followed an average of 4.2 (SD 2.0) years. Risks for end stage kidney disease (ESKD), major adverse cardiovascular events (MACE) and all-cause death after AKI were assessed by survival analyses. 219 participants experienced at least one AKI episode. Age, cardiovascular disease history, minor ethnicity, diuretics usage, HbA1c, baseline eGFR and albuminuria independently predicted risk for AKI with good discrimination. Compared to those without AKI, participants with any AKI episode had a significantly high risk for ESKD, MACE and all-cause death after adjustment for multiple risk factors including baseline eGFR and albuminuria. Even AKI defined by a mild serum creatinine elevation (0.3 mg/dL) was independently associated with a significantly high risk for premature death. Therefore, individuals with diabetes and any episode of AKI deserve intensive surveillance for cardio-renal dysfunction.
Collapse
Affiliation(s)
- Janus Lee
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Allen Liu
- Department of Medicine, Khoo Teck Puat hospital, Singapore, 768828, Singapore
| | - Huili Zheng
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Clara Chan
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Yi Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Resham L Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Su Chi Lim
- Department of Medicine, Khoo Teck Puat hospital, Singapore, 768828, Singapore.
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
12
|
Vernstrøm L, Gullaksen S, Sørensen SS, Ringgaard S, Laustsen C, Birn H, Funck KL, Laugesen E, Poulsen PL. Effects of semaglutide, empagliflozin and their combination on renal diffusion-weighted MRI and total kidney volume in patients with type 2 diabetes: a post hoc analysis from a 32 week randomised trial. Diabetologia 2024; 67:2175-2187. [PMID: 39078489 PMCID: PMC11447057 DOI: 10.1007/s00125-024-06228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/07/2024] [Indexed: 07/31/2024]
Abstract
AIMS/HYPOTHESIS The apparent diffusion coefficient (ADC) derived from diffusion-weighted MRI (DWI-MRI) has been proposed as a measure of changes in kidney microstructure, including kidney fibrosis. In advanced kidney disease, the kidneys often become atrophic; however, in the initial phase of type 2 diabetes, there is an increase in renal size. Glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors both provide protection against progression of kidney disease in diabetes. However, the mechanisms are incompletely understood. To explore this, we examined the effects of semaglutide, empagliflozin and their combination on renal ADC and total kidney volume (TKV). METHODS This was a substudy of a randomised clinical trial on the effects of semaglutide and empagliflozin alone or in combination. Eighty patients with type 2 diabetes and high risk of CVD were randomised into four groups (n=20 in each) receiving either tablet placebo, empagliflozin, a combination of semaglutide and tablet placebo (herein referred to as the 'semaglutide' group), or the combination of semaglutide and empagliflozin (referred to as the 'combination-therapy' group). The semaglutide and the combination-therapy group had semaglutide treatment for 16 weeks and then had either tablet placebo or empagliflozin added to the treatment, respectively, for a further 16 weeks; the placebo and empagliflozin groups were treated with the respective monotherapy for 32 weeks. We analysed the effects of treatment on changes in ADC (cortical, medullary and the cortico-medullary difference [ΔADC; medullary ADC subtracted from cortical ADC]), as well as TKV measured by MRI. RESULTS Both semaglutide and empagliflozin decreased cortical ADC significantly compared with placebo (semaglutide: -0.20×10-3 mm2/s [95% CI -0.30, -0.10], p<0.001; empagliflozin: -0.15×10-3 mm2/s [95% CI -0.26, -0.04], p=0.01). No significant change was observed in the combination-therapy group (-0.05×10-3 mm2/s [95%CI -0.15, 0.05]; p=0.29 vs placebo). The changes in cortical ADC were not associated with changes in GFR, albuminuria, TKV or markers of inflammation. Further, there were no changes in medullary ADC in any of the groups compared with placebo. Only treatment with semaglutide changed ΔADC significantly from placebo, showing a decrease of -0.13×10-3 mm2/s (95% CI -0.22, -0.04; p=0.01). Compared with placebo, TKV decreased by -3% (95% CI -5%, -0.3%; p=0.04), -3% (95% CI -5%, -0.4%; p=0.02) and -5% (95% CI -8%, -2%; p<0.001) in the semaglutide, empagliflozin and combination-therapy group, respectively. The changes in TKV were associated with changes in GFR, albuminuria and HbA1c. CONCLUSIONS/INTERPRETATION In a population with type 2 diabetes and high risk of CVD, semaglutide and empagliflozin significantly reduced cortical ADC compared with placebo, indicating microstructural changes in the kidneys. These changes were not associated with changes in GFR, albuminuria or inflammation. Further, we found a decrease in TKV in all active treatment groups, which was possibly mediated by a reduction in hyperfiltration. Our findings suggest that DWI-MRI may serve as a promising tool for investigating the underlying mechanisms of medical interventions in individuals with type 2 diabetes but may reflect effects not related to fibrosis. TRIAL REGISTRATION European Union Drug Regulating Authorities Clinical Trials Database (EudraCT) 2019-000781-38.
Collapse
Affiliation(s)
- Liv Vernstrøm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Steno Diabetes Center, Aarhus University Hospital, Aarhus, Denmark.
| | - Søren Gullaksen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Regional Hospital Horsens, Horsens, Denmark
| | - Steffen S Sørensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Henrik Birn
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kristian L Funck
- Steno Diabetes Center, Aarhus University Hospital, Aarhus, Denmark
| | - Esben Laugesen
- Steno Diabetes Center, Aarhus University Hospital, Aarhus, Denmark
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Per L Poulsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Stabinska J, Wittsack HJ, Lerman LO, Ljimani A, Sigmund EE. Probing Renal Microstructure and Function with Advanced Diffusion MRI: Concepts, Applications, Challenges, and Future Directions. J Magn Reson Imaging 2024; 60:1259-1277. [PMID: 37991093 PMCID: PMC11117411 DOI: 10.1002/jmri.29127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
Diffusion measurements in the kidney are affected not only by renal microstructure but also by physiological processes (i.e., glomerular filtration, water reabsorption, and urine formation). Because of the superposition of passive tissue diffusion, blood perfusion, and tubular pre-urine flow, the limitations of the monoexponential apparent diffusion coefficient (ADC) model in assessing pathophysiological changes in renal tissue are becoming apparent and motivate the development of more advanced diffusion-weighted imaging (DWI) variants. These approaches take advantage of the fact that the length scale probed in DWI measurements can be adjusted by experimental parameters, including diffusion-weighting, diffusion gradient directions and diffusion time. This forms the basis by which advanced DWI models can be used to capture not only passive diffusion effects, but also microcirculation, compartmentalization, tissue anisotropy. In this review, we provide a comprehensive overview of the recent advancements in the field of renal DWI. Following a short introduction on renal structure and physiology, we present the key methodological approaches for the acquisition and analysis of renal DWI data, including intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), non-Gaussian diffusion, and hybrid IVIM-DTI. We then briefly summarize the applications of these methods in chronic kidney disease and renal allograft dysfunction. Finally, we discuss the challenges and potential avenues for further development of renal DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension and Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Eric E. Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| |
Collapse
|
14
|
Di W, Li Y, Zhang L, Zhou Q, Fu Z, Xi S. The hippo-YAP1/HIF-1α pathway mediates arsenic-induced renal fibrosis. ENVIRONMENTAL RESEARCH 2024; 257:119325. [PMID: 38844032 DOI: 10.1016/j.envres.2024.119325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Epidemiological evidence reveals that arsenic increases the risk of chronic kidney disease (CKD) in humans, but its mechanism of action has so far been unclear. Fibrosis is the manifestation of end-stage renal disease. Hypoxia is recognized as a vital event accompanying the progression of renal fibrosis. KM mice were exposed to 0, 20, 40, and 80 mg/L NaAsO2 for 12 weeks. HK-2 cells were treated with 1 μM NaAsO2 for 4 weeks. The results showed that arsenic increased the expression of hypoxia-inducible factor 1α (HIF-1α) (P < 0.05), which is involved in inorganic arsenic-induced renal fibrosis. The Hippo signaling pathway is the upstream signal of HIF-1α and the kinase cascade of Large tumor suppressor kinase 1 (LATS1) and Yes-associated protein 1 (YAP1) is the heart of the Hippo pathway. Our results showed that protein expressions of LATS1 and phosphorylated YAP1 were decreased, and dephosphorylated YAP1 expression increased in arsenic-treated mouse kidneys and human HK-2 cells (P < 0.05). Our research manifested that arsenic treatment suppressed the Hippo signaling and induced high expression of YAP1 into the nucleus. We also found that YAP1 was involved in arsenic-induced renal fibrosis by forming a complex with HIF-1α and maintaining HIF-1α stability. Our findings indicate that YAP1 is a potential target for molecular-based therapy for arsenic-mediated renal fibrosis.
Collapse
Affiliation(s)
- Wei Di
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning, 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yan Li
- Institute of Foreign Languages, China Medical University, Shenyang, Liaoning, 110122, China
| | - Lei Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning, 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Qing Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning, 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Zhushan Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning, 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Shuhua Xi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning, 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
15
|
Mori K, Inoue T, Machiba Y, Uedono H, Nakatani S, Ishikawa M, Taniuchi S, Katayama Y, Yamamoto A, Kobayashi N, Kozawa E, Shimono T, Miki Y, Okada H, Emoto M. Effects of canagliflozin on kidney oxygenation evaluated using blood oxygenation level-dependent MRI in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1451671. [PMID: 39280006 PMCID: PMC11393780 DOI: 10.3389/fendo.2024.1451671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024] Open
Abstract
Background Recent clinical studies suggest protective effects of SGLT2 inhibitors on kidney disease outcome. Chronic hypoxia has a critical role in kidney disease development, thus we speculated that canagliflozin, an SGLT2 inhibitor, can improve kidney oxygenation. Methods A single-arm study was conducted to investigate the effects of canagliflozin on T2* value, which reflects oxygenation level, in patients with type 2 diabetes (T2D) using repeated blood oxygenation level-dependent MRI (BOLD MRI) examinations. Changes in cortical T2* from before (Day 0) to after single-dose treatment (Day 1) and after five consecutive treatments (Day 5) were evaluated using 12-layer concentric objects (TLCO) and region of interest (ROI) methods. Results In the full analysis set (n=14 patients), the TLCO method showed no change of T2* with canagliflozin treatment, whereas the ROI method found that cortical T2* was significantly increased on Day 1 but not on Day 5. Sensitivity analysis using TLCO in 13 well-measured patients showed that canagliflozin significantly increased T2* on Day 1 with no change on Day 5, whereas a significant improvement in cortical T2* following canagliflozin treatment was found on both Day 1 and 5 using ROI. Conclusions Short-term canagliflozin treatment may improve cortical oxygenation and lead to better kidney outcomes in patients with T2D.
Collapse
Affiliation(s)
- Katsuhito Mori
- Department of Nephrology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yuri Machiba
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hideki Uedono
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masahiro Ishikawa
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- School of Clinical Engineering, Faculty of Health and Medical Care, Saitama Medical University, Saitama, Japan
| | - Satsuki Taniuchi
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yutaka Katayama
- Department of Radiology, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Akira Yamamoto
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Naoki Kobayashi
- School of Clinical Engineering, Faculty of Health and Medical Care, Saitama Medical University, Saitama, Japan
| | - Eito Kozawa
- Department of Radiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Taro Shimono
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yukio Miki
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hirokazu Okada
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Masanori Emoto
- Department of Nephrology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
16
|
Virgincar RS, Wong AK, Barck KH, Webster JD, Hung J, Caplazi P, Choy MK, Forrest WF, Bell LC, de Crespigny AJ, Dunlap D, Jones C, Kim DE, Weimer RM, Shaw AS, Brightbill HD, Xie L. Diffusion tensor MRI is sensitive to fibrotic injury in a mouse model of oxalate-induced chronic kidney disease. Am J Physiol Renal Physiol 2024; 327:F235-F244. [PMID: 38867676 DOI: 10.1152/ajprenal.00099.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by inflammation and fibrosis in the kidney. Renal biopsies and estimated glomerular filtration rate (eGFR) remain the standard of care, but these endpoints have limitations in detecting the stage, progression, and spatial distribution of fibrotic pathology in the kidney. MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo both in clinical and preclinical studies. However, these imaging studies have not systematically identified fibrosis particularly deeper in the kidney where biopsy sampling is limited, or completed an extensive analysis of whole organ histology, blood biomarkers, and gene expression to evaluate the relative strengths and weaknesses of MRI for evaluating renal fibrosis. In this study, we performed DTI in the sodium oxalate mouse model of CKD. The DTI parameters fractional anisotropy, apparent diffusion coefficient, and axial diffusivity were compared between the control and oxalate groups with region of interest (ROI) analysis to determine changes in the cortex and medulla. In addition, voxel-based analysis (VBA) was implemented to systematically identify local regions of injury over the whole kidney. DTI parameters were found to be significantly different in the medulla by both ROI analysis and VBA, which also spatially matched with collagen III immunohistochemistry (IHC). The DTI parameters in this medullary region exhibited moderate to strong correlations with histology, blood biomarkers, hydroxyproline, and gene expression. Our results thus highlight the sensitivity of DTI to the heterogeneity of renal fibrosis and importance of whole kidney noninvasive imaging.NEW & NOTEWORTHY Chronic kidney disease (CKD) can be characterized by inflammation and fibrosis of the kidney. Although standard of care methods have been limited in scope, safety, and spatial distribution, MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo. In this study, we performed DTI in an oxalate mouse model of CKD to systematically identify local kidney injury. DTI parameters strongly correlated with histology, blood biomarkers, hydroxyproline, and gene expression.
Collapse
Affiliation(s)
- Rohan S Virgincar
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - Aaron K Wong
- Translational Immunology, Genentech, South San Francisco, California, United States
| | - Kai H Barck
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - Joshua D Webster
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Jeffrey Hung
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Patrick Caplazi
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Man Kin Choy
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - William F Forrest
- Bioinformatics, Genentech, South San Francisco, California, United States
| | - Laura C Bell
- Clinical Imaging Group, Genentech, South San Francisco, California, United States
| | - Alex J de Crespigny
- Clinical Imaging Group, Genentech, South San Francisco, California, United States
| | - Debra Dunlap
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Charles Jones
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Dong Eun Kim
- Translational Immunology, Genentech, South San Francisco, California, United States
| | - Robby M Weimer
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - Andrey S Shaw
- Research Biology, Genentech, South San Francisco, California, United States
| | - Hans D Brightbill
- Translational Immunology, Genentech, South San Francisco, California, United States
| | - Luke Xie
- Translational Imaging, Genentech, South San Francisco, California, United States
| |
Collapse
|
17
|
Tarchi SM, Salvatore M, Lichtenstein P, Sekar T, Capaccione K, Luk L, Shaish H, Makkar J, Desperito E, Leb J, Navot B, Goldstein J, Laifer S, Beylergil V, Ma H, Jambawalikar S, Aberle D, D'Souza B, Bentley-Hibbert S, Marin MP. Radiology of fibrosis part III: genitourinary system. J Transl Med 2024; 22:616. [PMID: 38961396 PMCID: PMC11223291 DOI: 10.1186/s12967-024-05333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Fibrosis is a pathological process involving the abnormal deposition of connective tissue, resulting from improper tissue repair in response to sustained injury caused by hypoxia, infection, or physical damage. It can impact any organ, leading to their dysfunction and eventual failure. Additionally, tissue fibrosis plays an important role in carcinogenesis and the progression of cancer.Early and accurate diagnosis of organ fibrosis, coupled with regular surveillance, is essential for timely disease-modifying interventions, ultimately reducing mortality and enhancing quality of life. While extensive research has already been carried out on the topics of aberrant wound healing and fibrogenesis, we lack a thorough understanding of how their relationship reveals itself through modern imaging techniques.This paper focuses on fibrosis of the genito-urinary system, detailing relevant imaging technologies used for its detection and exploring future directions.
Collapse
Affiliation(s)
- Sofia Maria Tarchi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA.
| | - Mary Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Philip Lichtenstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Thillai Sekar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Kathleen Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hiram Shaish
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jasnit Makkar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Elise Desperito
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Benjamin Navot
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jonathan Goldstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sherelle Laifer
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Volkan Beylergil
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Dwight Aberle
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Belinda D'Souza
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Stuart Bentley-Hibbert
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Monica Pernia Marin
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| |
Collapse
|
18
|
Faivre A, de Seigneux S. The role of hypoxia in chronic kidney disease: a nuanced perspective. Curr Opin Nephrol Hypertens 2024; 33:414-419. [PMID: 38597413 PMCID: PMC11139247 DOI: 10.1097/mnh.0000000000000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE OF REVIEW This review critically examines the role of hypoxia in chronic kidney disease (CKD). While traditionally viewed as detrimental, recent insights suggest a more nuanced understanding of hypoxia's role during renal disease. RECENT FINDINGS Emerging evidence challenges the traditional view that hypoxia is universally harmful in CKD context. We review here the recent evidence about hypoxia and HIF activation in CKD. We also discuss the effect of hypoxia on the renal tissue, and the relative inhibition of different HIF isoforms. Recent advancements in therapies, such as HIF prolyl hydroxylase inhibitors (HIF-PHIs) and sodium-glucose cotransporter 2 (SGLT2) inhibitors seem to target the HIF pathway. These drugs impact anemia associated with CKDbut also renoprotection, hinting at a more complex interplay between hypoxia, HIF activation, and renal health. SUMMARY A certain level of hypoxia and specific HIF pathway activation, especially HIF-α, can be beneficial in CKD progression. Therapeutic strategies targeting HIF stabilization, such as with HIF-PHIs and SGLT2 inhibitors, offer promising avenues for enhancing renal protection. Future investigations should aim at better understanding the precise effects on HIF pathway and optimize their clinical application to improve outcomes for CKD patients.
Collapse
Affiliation(s)
- Anna Faivre
- Service de néphrologie, Département des Spécialités de Médecine Interne, Hôpitaux Universitaires de Genève
- Département de Physiologie Cellulaire et Métabolisme, Université de Genève, Genève, Suisse
| | - Sophie de Seigneux
- Service de néphrologie, Département des Spécialités de Médecine Interne, Hôpitaux Universitaires de Genève
- Département de Physiologie Cellulaire et Métabolisme, Université de Genève, Genève, Suisse
| |
Collapse
|
19
|
Hassan AF, Gharib AF, Hagag HM, Ismail KA, Omran OM, Elamin EM, Atteia HH. Restoration of renal hemodynamics and functions by Nigella sativa administration in dinitrophenol-induced hypoxia in rat's animal model. Int J Health Sci (Qassim) 2024; 18:22-31. [PMID: 38974646 PMCID: PMC11226942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objective Hypoxia is one of the principal causes of renal diseases. This study aimed to evaluate the effects of Nigella sativa on dinitrophenol (DNP)-induced hypoxia renal damage in rats. Methods Forty adult male rats were incorporated in this study. The rats were divided into four groups: control group, N. sativa group, DNP hypoxic group, and DNP + N. sativa group receiving N. sativa (400 mg/kg body weight). Serum and renal tissue erythropoietin (EPO) hormone and hypoxia-inducible factor-2α (HIF-2α) levels were measured. Renal oxidative stress biomarkers, inflammatory biomarkers, renal hemodynamics, and histopathological examination were evaluated. Results Administration of N. sativa highly significantly normalized serum EPO level, HIF-2α (P < 0.001 for each) in DNP + N. sativa treated rats as compared to DNP hypoxic rats. Furthermore, it highly significantly improved renal oxidative stress evident by decreased renal tissues malondialdehyde and increased superoxide dismutase, total thiol, and catalase activity (P < 0.001 for each). Furthermore, a highly significant decline of renal intercellular adhesion molecule-1, myeloperoxidase, and interleukin-6 was observed in DNP + N. sativa rats (P < 0.001 for each). Improvements in renal hemodynamics and kidney functions were also found after N. sativa administration (with P < 0.001 for all parameters). In addition, N. sativa treatment reduced renal histopathological changes of the DNP + N. sativa group. Our results were statistically analyzed using the Prism software package (GraphPad version 8.0). Conclusion N. sativa has an alleviating effect on DNP-induced hypoxia renal damage and can restore kidney functions in rats' animal models. These effects were through antioxidant, anti-inflammatory, and hemodynamic mechanisms.
Collapse
Affiliation(s)
- Asmaa F. Hassan
- Department of Physiology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Howaida M. Hagag
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Al-Azer University, Naser City, Cario, Egypt
| | - Khadiga A. Ismail
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ola M. Omran
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Qassim Region, Saudi Arabia
- Department of Pathology, Faculty of Medicine Assiut University, Assiut, Egypt
| | - Enshrah Modathir Elamin
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Qassim Region, Saudi Arabia
| | | |
Collapse
|
20
|
Hu W, Dai Y, Liu F, Yang T, Wang Y, Shen Y, Zhou W, Wu D, Gu L, Zhang M, Zhou Y. Assessing renal interstitial fibrosis using compartmental, non-compartmental, and model-free diffusion MRI approaches. Insights Imaging 2024; 15:156. [PMID: 38900336 PMCID: PMC11189852 DOI: 10.1186/s13244-024-01736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE To assess renal interstitial fibrosis (IF) using diffusion MRI approaches, and explore whether corticomedullary difference (CMD) of diffusion parameters, combination among MRI parameters, or combination with estimated glomerular filtration rate (eGFR) benefit IF evaluation. METHODS Forty-two patients with chronic kidney disease were included, undergoing MRI examinations. MRI parameters from apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), and diffusion-relaxation correlated spectrum imaging (DR-CSI) were obtained both for renal cortex and medulla. CMD of these parameters was calculated. Pathological IF scores (1-3) were obtained by biopsy. Patients were divided into mild (IF = 1, n = 23) and moderate-severe fibrosis (IF = 2-3, n = 19) groups. Group comparisons for MRI parameters were performed. Diagnostic performances were assessed by the receiver operator's curve analysis for discriminating mild from moderate-severe IF patients. RESULTS Significant inter-group differences existed for cortical ADC, IVIM-D, IVIM-f, DKI-MD, DR-CSI VB, and DR-CSI VC. Significant inter-group differences existed in ΔADC, ΔMD, ΔVB, ΔVC, ΔQB, and ΔQC. Among the cortical MRI parameters, VB displayed the highest AUC = 0.849, while ADC, f, and MD also showed AUC > 0.8. After combining cortical value and CMD, the diagnostic performances of the MRI parameters were slightly improved except for IVIM-D. Combining VB with f brings the best performance (AUC = 0.903) among MRI bi-variant models. A combination of cortical VB, ΔADC, and eGFR brought obvious improvement in diagnostic performance (AUC 0.963 vs 0.879, specificity 0.826 vs 0.896, and sensitivity 1.000 vs 0.842) than eGFR alone. CONCLUSION Our study shows promising results for the assessment of renal IF using diffusion MRI approaches. CRITICAL RELEVANCE STATEMENT Our study explores the non-invasive assessment of renal IF, an independent and effective predictor of renal outcomes, by comparing and combining diffusion MRI approaches including compartmental, non-compartmental, and model-free approaches. KEY POINTS Significant difference exists for diffusion parameters between mild and moderate-severe IF. Generally, cortical parameters show better performance than corresponding CMD. Bi-variant model lifts the diagnostic performance for assessing IF.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongming Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Fang Liu
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianshu Yang
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Wang
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Shen
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyan Zhou
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronics Science, East China Normal University, Shanghai, China
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minfang Zhang
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Zhou
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Zhao K, Seeliger E, Niendorf T, Liu Z. Noninvasive Assessment of Diabetic Kidney Disease With MRI: Hype or Hope? J Magn Reson Imaging 2024; 59:1494-1513. [PMID: 37675919 DOI: 10.1002/jmri.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Owing to the increasing prevalence of diabetic mellitus, diabetic kidney disease (DKD) is presently the leading cause of chronic kidney disease and end-stage renal disease worldwide. Early identification and disease interception is of paramount clinical importance for DKD management. However, current diagnostic, disease monitoring and prognostic tools are not satisfactory, due to their low sensitivity, low specificity, or invasiveness. Magnetic resonance imaging (MRI) is noninvasive and offers a host of contrast mechanisms that are sensitive to pathophysiological changes and risk factors associated with DKD. MRI tissue characterization involves structural and functional information including renal morphology (kidney volume (TKV) and parenchyma thickness using T1- or T2-weighted MRI), renal microstructure (diffusion weighted imaging, DWI), renal tissue oxygenation (blood oxygenation level dependent MRI, BOLD), renal hemodynamics (arterial spin labeling and phase contrast MRI), fibrosis (DWI) and abdominal or perirenal fat fraction (Dixon MRI). Recent (pre)clinical studies demonstrated the feasibility and potential value of DKD evaluation with MRI. Recognizing this opportunity, this review outlines key concepts and current trends in renal MRI technology for furthering our understanding of the mechanisms underlying DKD and for supplementing clinical decision-making in DKD. Progress in preclinical MRI of DKD is surveyed, and challenges for clinical translation of renal MRI are discussed. Future directions of DKD assessment and renal tissue characterization with (multi)parametric MRI are explored. Opportunities for discovery and clinical break-through are discussed including biological validation of the MRI findings, large-scale population studies, standardization of DKD protocols, the synergistic connection with data science to advance comprehensive texture analysis, and the development of smart and automatic data analysis and data visualization tools to further the concepts of virtual biopsy and personalized DKD precision medicine. We hope that this review will convey this vision and inspire the reader to become pioneers in noninvasive assessment and management of DKD with MRI. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
22
|
Trujillo J, Alotaibi M, Seif N, Cai X, Larive B, Gassman J, Raphael KL, Cheung AK, Raj DS, Fried LF, Sprague SM, Block G, Chonchol M, Middleton JP, Wolf M, Ix JH, Prasad P, Isakova T, Srivastava A. Associations of Kidney Functional Magnetic Resonance Imaging Biomarkers with Markers of Inflammation in Individuals with CKD. KIDNEY360 2024; 5:681-689. [PMID: 38570905 PMCID: PMC11146641 DOI: 10.34067/kid.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Key Points Lower baseline apparent diffusion coefficient, indicative of greater cortical fibrosis, correlated with higher baseline concentrations of serum markers of inflammation. No association between baseline cortical R2* and baseline serum markers of inflammation were found. Baseline kidney functional magnetic resonance imaging biomarkers of fibrosis and oxygenation were not associated with changes in inflammatory markers over time, which may be due to small changes in kidney function in the study. Background Greater fibrosis and decreased oxygenation may amplify systemic inflammation, but data on the associations of kidney functional magnetic resonance imaging (fMRI) measurements of fibrosis (apparent diffusion coefficient [ADC]) and oxygenation (relaxation rate [R2*]) with systemic markers of inflammation are limited. Methods We evaluated associations of baseline kidney fMRI-derived ADC and R2* with baseline and follow-up serum IL-6 and C-reactive protein (CRP) in 127 participants from the CKD Optimal Management with Binders and NicotinamidE trial, a randomized, 12-month trial of nicotinamide and lanthanum carbonate versus placebo in individuals with CKD stages 3–4. Cross-sectional analyses of baseline kidney fMRI biomarkers and markers of inflammation used multivariable linear regression. Longitudinal analyses of baseline kidney fMRI biomarkers and change in markers of inflammation over time used linear mixed-effects models. Results Mean±SD eGFR, ADC, and R2* were 32.2±8.7 ml/min per 1.73 m2, 1.46±0.17×10−3 mm2/s, and 20.3±3.1 s−1, respectively. Median (interquartile range) IL-6 and CRP were 3.7 (2.4–4.9) pg/ml and 2.8 (1.2–6.3) mg/L, respectively. After multivariable adjustment, IL-6 and CRP were 13.1% and 27.3% higher per 1 SD decrease in baseline cortical ADC, respectively. Baseline cortical R2* did not have a significant association with IL-6 or CRP. Mean annual IL-6 and CRP slopes were 0.98 pg/ml per year and 0.91 mg/L per year, respectively. Baseline cortical ADC and R2* did not have significant associations with change in IL-6 or CRP over time. Conclusions Lower cortical ADC, suggestive of greater fibrosis, was associated with higher systemic inflammation. Baseline kidney fMRI biomarkers did not associate with changes in systemic markers of inflammation over time.
Collapse
Affiliation(s)
- Jacquelyn Trujillo
- The Graduate School, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Manal Alotaibi
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Medicine, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nay Seif
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xuan Cai
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Brett Larive
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Jennifer Gassman
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Kalani L. Raphael
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, Utah
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, Utah
| | - Dominic S. Raj
- Division of Renal Diseases and Hypertension, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Linda F. Fried
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stuart M. Sprague
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois
| | | | - Michel Chonchol
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - John Paul Middleton
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Joachim H. Ix
- Renal Section, Department of Medicine, University of California San Diego School of Medicine, San Diego, California
| | - Pottumarthi Prasad
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| |
Collapse
|
23
|
Koh ES, Chung S. Recent Update on Acute Kidney Injury-to-Chronic Kidney Disease Transition. Yonsei Med J 2024; 65:247-256. [PMID: 38653563 PMCID: PMC11045347 DOI: 10.3349/ymj.2023.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/27/2023] [Accepted: 01/23/2024] [Indexed: 04/25/2024] Open
Abstract
Acute kidney injury (AKI) is characterized by an abrupt decline of excretory kidney function. The incidence of AKI has increased in the past decades. Patients diagnosed with AKI often undergo diverse clinical trajectories, such as early or late recovery, relapses, and even a potential transition from AKI to chronic kidney disease (CKD). Although recent clinical studies have demonstrated a strong association between AKI and progression of CKD, our understanding of the complex relationship between AKI and CKD is still evolving. No cohort study has succeeded in painting a comprehensive picture of these multi-faceted pathways. To address this lack of understanding, the idea of acute kidney disease (AKD) has recently been proposed. This presents a new perspective to pinpoint a period of heightened vulnerability following AKI, during which a patient could witness a substantial decline in glomerular filtration rate, ultimately leading to CKD transition. Although AKI is included in a range of kidney conditions collectively known as AKD, spanning from mild and self-limiting to severe and persistent, AKD can also occur without a rapid onset usually seen in AKI, such as when kidney dysfunction slowly evolves. In the present review, we summarize the most recent findings about AKD, explore the current state of biomarker discovery related to AKD, discuss the latest insights into pathophysiological underpinnings of AKI to CKD transition, and reflect on therapeutic challenges and opportunities that lie ahead.
Collapse
Affiliation(s)
- Eun Sil Koh
- Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
24
|
Nishino T, Takahashi K, Ono S, Mimaki M. Pathological Factors Affecting the R2* Values of the Kidney in Blood Oxygenation Level-dependent MR Imaging: A Retrospective Study. Magn Reson Med Sci 2024; 23:153-160. [PMID: 36754388 PMCID: PMC11024711 DOI: 10.2463/mrms.mp.2022-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/07/2023] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Despite the usefulness of blood oxygenation level-dependent (BOLD) MRI in assessing glomerulonephritis activity, its relationship with histological findings remains unclear. Because glomerulonephritis presents multiple complex injury patterns, analysis of each pattern is essential. We aimed to elucidate the relationship between the histological findings of the kidney and BOLD MRI findings in mesangial proliferative glomerulonephritis. METHODS Children under 16 years of age diagnosed with mesangial proliferative glomerulonephritis by kidney biopsy at our university hospital between January 2013 and September 2022 were included in this study. Cortical and medullary spin relaxation rate (R2*) values were measured using BOLD MRI at 3T within two weeks before and after the kidney biopsy. The R2* values, including the fluctuations with low-dose oxygen administration, were retrospectively examined in relation to the cortical (mesangial proliferation, endothelial cell proliferation, crescent, sclerosis, and fibrosis) and medullary findings (fibrosis). RESULTS Sixteen times kidney biopsies were performed for glomerulonephritis during the study period, and one patient was excluded because of comorbidities; the remaining 14 patients included six boys with a mean age of 11.9 ± 3.5 years at the BOLD examination. None of the patients had medullary fibrosis. Among the kidney tissue parameters, only sclerosis showed a significant correlation with R2* values: medulla with R2* values under atmospheric pressure (r = 0.53, P < 0.05) and cortex with the rate of change in R2* values with low-dose oxygen administration (r = -0.57, P < 0.03). In the multiple regression analysis, only sclerosis was an independent contributor to the change in R2* values with oxygen administration in the cortex (regression coefficient -0.109, P < 0.05). CONCLUSION Since the R2* values reflect histological changes in the kidney, BOLD MRI may facilitate the evaluation of mesangial proliferative glomerulonephritis, potentially reducing the patient burden.
Collapse
Affiliation(s)
- Tomohiko Nishino
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazuhiro Takahashi
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Sayaka Ono
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Chen X, Guo Q, Chen X, Zheng W, Kang Y, Cao D. Clinical and multiparametric MRI features for differentiating uterine carcinosarcoma from endometrioid adenocarcinoma. BMC Med Imaging 2024; 24:48. [PMID: 38373912 PMCID: PMC10877902 DOI: 10.1186/s12880-024-01225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION The purpose of our study was to differentiate uterine carcinosarcoma (UCS) from endometrioid adenocarcinoma (EAC) by the multiparametric magnetic resonance imaging (MRI) features. METHODS We retrospectively evaluated clinical and MRI findings in 17 patients with UCS and 34 patients with EAC proven by histologically. The following clinical and pathological features were evaluated: post- or pre-menopausal, clinical presentation, invasion depth, FIGO stage, lymphaticmetastasis. The following MRI features were evaluated: tumor dimension, cystic degeneration or necrosis, hemorrhage, signal intensity (SI) on T2-weighted images (T2WI), relative SI of lesion to myometrium on T2WI, T1WI, DWI, ADCmax, ADCmin, ADCmean (RSI-T2, RSI-T1, RSI-DWI, RSI-ADCmax, RSI-ADCmin, RSI-ADCmean), ADCmax, ADCmin, ADCmean, the maximum, minimum and mean relative enhancement (RE) of lesion to myometrium on the arterial and venous phases (REAmax, REAmin, REAmean, REVmax, REVmin, REVmean). Receiver operating characteristic (ROC) analysis and the area under the curve (AUC) were used to evaluate prediction ability. RESULTS The mean age of UCS was higher than EAC. UCS occurred more often in the postmenopausal patients. UCS and EAC did not significantly differ in depth of myometrial invasion, FIGO stage and lymphatic metastasis. The anterior-posterior and transverse dimensions were significantly larger in UCS than EAC. Cystic degeneration or necrosis and hemorrhage were more likely occurred in UCS. The SI of tumor on T2WI was more heterogeneous in UCS. The RSI-T2, ADCmax, ADCmean, RSI-ADCmax and RSI-ADCmean of UCS were significantly higher than EAC. The REAmax, REAmin, REAmean, REVmax, REVmin and REVmean of UCS were all higher than EAC. The AUCs were 0.72, 0.71, 0.86, 0.96, 0.89, 0.84, 0.73, 0.97, 0.88, 0.94, 0.91, 0.69 and 0.80 for the anterior-posterior dimension, transverse dimension, RSI-T2, ADCmax, ADCmean, RSI-ADCmax, RSI-ADCmean, REAmax, REAmin, REAmean, REVmax, REVmin and REVmean, respectively. The AUC was 0.997 of the combined of ADCmax, REAmax and REVmax. Our study showed that ADCmax threshold value of 789.05 (10-3mm2/s) can differentiate UCS from EAC with 100% sensitivity, 76.5% specificity, and 0.76 AUC, REAmax threshold value of 0.45 can differentiate UCS from EAC with 88.2% sensitivity, 100% specificity, and 0.88 AUC. CONCLUSION Multiparametric MRI features may be utilized as a biomarker to distinguish UCS from EAC.
Collapse
Affiliation(s)
- Xiaodan Chen
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
| | - Qingyong Guo
- Department of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xiaorong Chen
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
| | - Wanjing Zheng
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
| | - Yaqing Kang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, P.R. China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, P.R. China.
| |
Collapse
|
26
|
Zhou L, Yang Z, Guo L, Zou Q, Zhang H, Sun SK, Ye Z, Zhang C. Noninvasive Assessment of Kidney Injury by Combining Structure and Function Using Artificial Intelligence-Based Manganese-Enhanced Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5474-5485. [PMID: 38271189 DOI: 10.1021/acsami.3c14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Contrast-enhanced magnetic resonance imaging (MRI) is seriously limited in kidney injury detection due to the nephrotoxicity of clinically used gadolinium-based contrast agents. Herein, we propose a noninvasive method for the assessment of kidney injury by combining structure and function information based on manganese (Mn)-enhanced MRI for the first time. As a proof of concept, the Mn-melanin nanoprobe with good biocompatibility and excellent T1 relaxivity is applied in MRI of a unilateral ureteral obstruction mice model. The abundant renal structure and function information is obtained through qualitative and quantitative analysis of MR images, and a brand new comprehensive assessment framework is proposed to precisely identify the degree of kidney injury successfully. Our study demonstrates that Mn-enhanced MRI is a promising approach for the highly sensitive and biosafe assessment of kidney injury in vivo.
Collapse
Affiliation(s)
- Li Zhou
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300052, China
| | - Zizhen Yang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo 315012, China
| | - Li Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hong Zhang
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Zhaoxiang Ye
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Cai Zhang
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
27
|
Duan S, Geng L, Lu F, Chen C, Jiang L, Chen S, Zhang C, Huang Z, Zeng M, Sun B, Zhang B, Mao H, Xing C, Zhang Y, Yuan Y. Utilization of the corticomedullary difference in magnetic resonance imaging-derived apparent diffusion coefficient for noninvasive assessment of chronic kidney disease in type 2 diabetes. Diabetes Metab Syndr 2024; 18:102963. [PMID: 38373384 DOI: 10.1016/j.dsx.2024.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUNDS Accumulating data demonstrated that the cortico-medullary difference in apparent diffusion coefficient (ΔADC) of diffusion-weighted magnetic resonance imaging (DWI) was a better correlation with kidney fibrosis, tubular atrophy progression, and a predictor of kidney function evolution in chronic kidney disease (CKD). OBJECTIVES We aimed to assess the value of ΔADC in evaluating disease severity, differential diagnosis, and the prognostic risk stratification for patients with type 2 diabetes (T2D) and CKD. METHODS Total 119 patients with T2D and CKD who underwent renal MRI were prospectively enrolled. Of them, 89 patients had performed kidney biopsy for pathological examination, including 38 patients with biopsy-proven diabetic kidney disease (DKD) and 51 patients with biopsy-proven non-diabetic kidney disease (NDKD) and Mix (DKD + NDKD). Clinicopathological characteristics were compared according to different ΔADC levels. Moreover, univariate and multivariate-linear regression analyses were performed to explore whether ΔADC was independently associated with estimated glomerular filtration rate (eGFR) and urinary albumin creatinine ratio (UACR). The diagnostic performance of ΔADC for discriminating DKD from NDKD + Mix was evaluated by receiver operating characteristic (ROC) analysis. In addition, an individual's 2- or 5-year risk probability of progressing to end-stage kidney disease (ESKD) was calculated by the kidney failure risk equation (KFRE). The effect of ΔADC on prognostic risk stratification was assessed. Additionally, net reclassification improvement (NRI) was used to evaluate the model performance. RESULTS All enrolled patients had a median ΔADC level of 86 (IQR 28, 155) × 10-6 mm2/s. ΔADC significantly decreased across the increasing staging of CKD (P < 0.001). Moreover, those with pathological-confirmed DKD has a significantly lower level of ΔADC than those with NDKD and Mix (P < 0.001). It showed that ΔADC was independently associated with eGFR (β = 1.058, 95% CI = [1.002,1.118], P = 0.042) and UACR (β = -3.862, 95% CI = [-7.360, -0.365], P = 0.031) at multivariate linear regression analyses. Besides, ΔADC achieved an AUC of 0.707 (71% sensitivity and 75% specificity) and AUC of 0.823 (94% sensitivity and 67% specificity) for discriminating DKD from NDKD + Mix and higher ESKD risk categories (≥50% at 5 years; ≥10% at 2 years) from lower risk categories (<50% at 5 years; <10% at 2 years). Accordingly, the optimal cutoff value of ΔADC for higher ESKD risk categories was 66 × 10-6 mm2/s, and the group with the low-cutoff level of ΔADC group was associated with 1.232 -fold (95% CI 1.086, 1.398) likelihood of higher ESKD risk categories as compared to the high-cutoff level of ΔADC group in the fully-adjusted model. Reclassification analyses confirmed that the final adjusted model improved NRI. CONCLUSIONS ΔADC was strongly associated with eGFR and UACR in patients with T2D and CKD. More importantly, baseline ΔADC was predictive of higher ESKD risk, independently of significant clinical confounding. Specifically, ΔADC <78 × 10-6 mm2/s and <66 × 10-6 mm2/s would help to identify T2D patients with the diagnosis of DKD and higher ESKD risk categories, respectively.
Collapse
Affiliation(s)
- Suyan Duan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Luhan Geng
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Fang Lu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chen Chen
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ling Jiang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Si Chen
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chengning Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhimin Huang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ming Zeng
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bin Sun
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bo Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Huijuan Mao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Yudong Zhang
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Sivertsson E, Balboa A, Schiffer TA, Hansell P, Friederich-Persson M, Persson P, Palm F. Dose-dependent regulation of kidney mitochondrial function by angiotensin II. Ups J Med Sci 2023; 128:10312. [PMID: 38188249 PMCID: PMC10770640 DOI: 10.48101/ujms.v128.10312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background Intrarenal hypoxia has been suggested a unifying pathway to chronic kidney disease (CKD) and increased mitochondria leak respiration, which increases mitochondrial oxygen usage and is one important mechanism contributing to the development of the hypoxia. Previous studies indicate that angiotensin II (Ang II) effects on mitochondria function could be dose dependent. We investigated how moderate and high levels of Ang II affect kidney mitochondria function and pathways of leak respiration. Methods C57 black 6 mice were treated with either vehicle or Ang II in low dose (400 ng/kg/min) or high dose (1,000 ng/kg/min) for 4 weeks. The function of kidney cortex mitochondria was measured by high-resolution respirometry. Ang II effects on gene expression in kidney tissue were measured by quantitative real-time PCR. Thiobarbituric acids reactive substances were determined as a marker of oxidative stress, and urinary protein excretion was measured as a maker of kidney injury. Results Low-dose Ang II induced overall mitochondria respiration, without compromising capacity of ATP production. Mitochondrial leak respiration was increased, and levels of oxidative stress were unchanged. However, high-dose Ang II decreased overall mitochondria respiration and reduced mitochondrial capacity for ATP production. Mitochondrial leak respiration was decreased, and oxidative stress increased in kidney tissue. Furthermore, gene expression of mediators that stimulate vasoconstriction and ROS production was increased, while components of counteracting pathways were decreased. Conclusions In conclusion, Ang II dose-dependently affects mitochondrial function and leak respiration. Thus, Ang II has the potential to directly affect cellular metabolism during conditions of altered Ang II signaling.
Collapse
Affiliation(s)
- Ebba Sivertsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Amanda Balboa
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Peter Hansell
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Patrik Persson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Zhang Q, Tao Q, Xie Y, Chen Z, Seeliger E, Niendorf T, Chen W, Feng Y. Assessment of rhabdomyolysis-induced acute kidney injury with chemical exchange saturation transfer magnetic resonance imaging. Quant Imaging Med Surg 2023; 13:8336-8349. [PMID: 38106319 PMCID: PMC10722020 DOI: 10.21037/qims-23-699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2023]
Abstract
Background Rhabdomyolysis (RM)-induced acute kidney injury (AKI) is a common renal disease with low survival rate and inadequate prognosis. In this study, we investigate the feasibility of chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) for assessing the progression of RM-induced AKI in a mouse model. Methods AKI was induced in C57BL/6J mice via intramuscular injection of 7.5 mL/kg glycerol (n=30). Subsequently, serum creatinine (SCr), blood urea nitrogen (BUN), and hematoxylin-eosin (HE) and Masson staining, were performed. Longitudinal CEST-MRI was conducted on days 1, 3, 7, 15, and 30 after AKI induction using a 7.0-T MRI system. CEST-MRI quantification parameters including magnetization transfer ratio (MTR), MTR asymmetric analysis (MTRasym), apparent amide proton transfer (APT*), and apparent relayed nuclear Overhauser effect (rNOE*) were used to investigate the feasibility of detecting RM-induced renal damage. Results Significant increases of SCr and BUN demonstrated established AKI. The HE staining revealed various degrees of tubular damage, and Masson staining indicted an increase in the degree of fibrosis in the injured kidneys. Among CEST parameters, the cortical MTR presented a significant difference, and it also showed the best diagnostic performance for AKI [area under the receiver operating characteristic curve (AUC) =0.915] and moderate negative correlations with SCr and BUN. On the first day of renal damage, MTR was significantly reduced in cortex (22.7%±0.04%, P=0.013), outer stripe of outer medulla (24.7%±1.6%, P<0.001), and inner stripe of outer medulla (27.0%±1.5%, P<0.001) compared to the control group. Longitudinally, MTR increased steadily with AKI progression. Conclusions The MTR obtained from CEST-MRI is sensitive to the pathological changes in RM-induced AKI, indicating its potential clinical utility for the assessment of kidney diseases.
Collapse
Affiliation(s)
- Qianqian Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Quan Tao
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanyao Xie
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Zelong Chen
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charite-Universitatsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan, China
- Key Laboratory of Mental Health of the Ministry of Education & Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Bane O, Seeliger E, Cox E, Stabinska J, Bechler E, Lewis S, Hickson LJ, Francis S, Sigmund E, Niendorf T. Renal MRI: From Nephron to NMR Signal. J Magn Reson Imaging 2023; 58:1660-1679. [PMID: 37243378 PMCID: PMC11025392 DOI: 10.1002/jmri.28828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Renal diseases pose a significant socio-economic burden on healthcare systems. The development of better diagnostics and prognostics is well-recognized as a key strategy to resolve these challenges. Central to these developments are MRI biomarkers, due to their potential for monitoring of early pathophysiological changes, renal disease progression or treatment effects. The surge in renal MRI involves major cross-domain initiatives, large clinical studies, and educational programs. In parallel with these translational efforts, the need for greater (patho)physiological specificity remains, to enable engagement with clinical nephrologists and increase the associated health impact. The ISMRM 2022 Member Initiated Symposium (MIS) on renal MRI spotlighted this issue with the goal of inspiring more solutions from the ISMRM community. This work is a summary of the MIS presentations devoted to: 1) educating imaging scientists and clinicians on renal (patho)physiology and demands from clinical nephrologists, 2) elucidating the connection of MRI parameters with renal physiology, 3) presenting the current state of leading MR surrogates in assessing renal structure and functions as well as their next generation of innovation, and 4) describing the potential of these imaging markers for providing clinically meaningful renal characterization to guide or supplement clinical decision making. We hope to continue momentum of recent years and introduce new entrants to the development process, connecting (patho)physiology with (bio)physics, and conceiving new clinical applications. We envision this process to benefit from cross-disciplinary collaboration and analogous efforts in other body organs, but also to maximally leverage the unique opportunities of renal physiology. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute, New York City, New York, USA
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Eleanor Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Bechler
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sara Lewis
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Sue Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Eric Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
31
|
Abstract
As a sign of chronic kidney disease (CKD) progression, renal fibrosis is an irreversible and alarming pathological change. The accurate diagnosis of renal fibrosis depends on the widely used renal biopsy, but this diagnostic modality is invasive and can easily lead to sampling error. With the development of imaging techniques, an increasing number of noninvasive imaging techniques, such as multipara meter magnetic resonance imaging (MRI) and ultrasound elastography, have gained attention in assessing kidney fibrosis. Depending on their ability to detect changes in tissue stiffness and diffusion of water molecules, ultrasound elastography and some MRI techniques can indirectly assess the degree of fibrosis. The worsening of renal tissue oxygenation and perfusion measured by blood oxygenation level-dependent MRI and arterial spin labeling MRI separately is also an indirect reflection of renal fibrosis. Objective and quantitative indices of fibrosis may be available in the future by using novel techniques, such as photoacoustic imaging and fluorescence microscopy. However, these imaging techniques are susceptible to interference or may not be convenient. Due to the lack of sufficient specificity and sensitivity, these imaging techniques are neither widely accepted nor proposed by clinicians. These obstructions must be overcome by conducting technology research and more prospective studies. In this review, we emphasize the recent advancement of these noninvasive imaging techniques and provide clinicians a continuously updated perspective on the assessment of kidney fibrosis.
Collapse
Affiliation(s)
- Buchun Jiang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China,CONTACT Haidong Fu
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China,Jianhua Mao The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, 3333 Bingsheng Rd, Hangzhou, Zhejiang310052, China
| |
Collapse
|
32
|
Francis ST, Selby NM, Taal MW. Magnetic Resonance Imaging to Evaluate Kidney Structure, Function, and Pathology: Moving Toward Clinical Application. Am J Kidney Dis 2023; 82:491-504. [PMID: 37187282 DOI: 10.1053/j.ajkd.2023.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/20/2023] [Indexed: 05/17/2023]
Abstract
Recent advances in multiparametric magnetic resonance imaging (MRI) allow multiple quantitative measures to assess kidney morphology, tissue microstructure, oxygenation, kidney blood flow, and perfusion to be collected in a single scan session. Animal and clinical studies have investigated the relationship between the different MRI measures and biological processes, although their interpretation can be complex due to variations in study design and generally small participant numbers. However, emerging themes include the apparent diffusion coefficient derived from diffusion-weighted imaging, T1 and T2 mapping parameters, and cortical perfusion being consistently associated with kidney damage and predicting kidney function decline. Blood oxygen level-dependent (BOLD) MRI has shown inconsistent associations with kidney damage markers but has been predictive of kidney function decline in several studies. Therefore, multiparametric MRI of the kidneys has the potential to address the limitations of existing diagnostic methods to provide a noninvasive, noncontrast, and radiation-free method to assess whole kidney structure and function. Barriers to be overcome to facilitate widespread clinical application include improved understanding of biological factors that impact MRI measures, development of a larger evidence base for clinical utility, standardization of MRI protocols, automation of data analysis, determining optimal combination of MRI measures, and health economic evaluation.
Collapse
Affiliation(s)
- Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics & Astronomy, University of Nottingham, Nottingham; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham
| | - Nicholas M Selby
- Centre for Kidney Research and Innovation, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham; Department of Renal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, United Kingdom
| | - Maarten W Taal
- Centre for Kidney Research and Innovation, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham; Department of Renal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, United Kingdom.
| |
Collapse
|
33
|
Fan G, Jiang C, Huang Z, Tian M, Pan H, Cao Y, Lei T, Luo Q, Yuan J. 3D autofluorescence imaging of hydronephrosis and renal anatomical structure using cryo-micro-optical sectioning tomography. Theranostics 2023; 13:4885-4904. [PMID: 37771780 PMCID: PMC10526660 DOI: 10.7150/thno.86695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/26/2023] [Indexed: 09/30/2023] Open
Abstract
Rationale: Mesoscopic visualization of the main anatomical structures of the whole kidney in vivo plays an important role in the pathological diagnosis and exploration of the etiology of hydronephrosis. However, traditional imaging methods cannot achieve whole-kidney imaging with micron resolution under conditions representing in vivo perfusion. Methods: We used in vivo cryofixation (IVCF) to fix acute obstructive hydronephrosis (unilateral ureteral obstruction, UUO), chronic spontaneous hydronephrosis (db/db mice), and their control mouse kidneys for cryo-micro-optical sectioning tomography (cryo-MOST) autofluorescence imaging. We quantitatively assessed the kidney-wide pathological changes in the main anatomical structures, including hydronephrosis, renal subregions, arteries, veins, glomeruli, renal tubules, and peritubular functional capillaries. Results: By comparison with microcomputed tomography imaging, we confirmed that IVCF can maintain the status of the kidney in vivo. Cryo-MOST autofluorescence imaging can display the main renal anatomical structures with a cellular resolution without contrast agents. The hydronephrosis volume reached 26.11 ± 6.00 mm3 and 13.01 ± 3.74 mm3 in 3 days after UUO and in 15-week-old db/db mouse kidneys, respectively. The volume of the cortex and inner stripe of the outer medulla (ISOM) increased while that of the inner medulla (IM) decreased in UUO mouse kidneys. Db/db mice also showed an increase in the volume of the cortex and ISOM volume but no atrophy in the IM. The diameter of the proximal convoluted tubule and proximal straight tubule increased in both UUO and db/db mouse kidneys, indicating that proximal tubules were damaged. However, some renal tubules showed abnormal central bulge highlighting in the UUO mice, but the morphology of renal tubules was normal in the db/db mice, suggesting differences in the pathology and severity of hydronephrosis between the two models. UUO mouse kidneys also showed vascular damage, including segmental artery and vein atrophy and arcuate vein dilation, and the density of peritubular functional capillaries in the cortex and IM was reduced by 37.2% and 49.5%, respectively, suggesting renal hypoxia. In contrast, db/db mouse kidneys showed a normal vascular morphology and peritubular functional capillary density. Finally, we found that the db/db mice displayed vesicoureteral reflux and bladder overactivity, which may be the cause of hydronephrosis formation. Conclusions: We observed and compared main renal structural changes in hydronephrosis under conditions representing in vivo perfusion in UUO, db/db, and control mice through cryo-MOST autofluorescence imaging. The results indicate that cryo-MOST with IVCF can serve as a simple and powerful tool to quantitatively evaluate the in vivo pathological changes in three dimensions, especially the distribution of body fluids in the whole kidney. This method is potentially applicable to the three-dimensional visualization of other tissues, organs, and even the whole body, which may provide new insights into pathological changes in diseases.
Collapse
Affiliation(s)
- Guoqing Fan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenyu Jiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuoyao Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingyu Tian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huijuan Pan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaru Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tian Lei
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainmatics, JITRI, Suzhou 215123, China
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainmatics, JITRI, Suzhou 215123, China
| |
Collapse
|
34
|
Liang P, Yuan G, Li S, Peng Y, Xu C, Benkert T, Hu D, Han M, Li Z. Noninvasive Assessment of the Renal Function, Oxford Classification and Prognostic Risk Stratification of IgAN by Using Intravoxel Incoherent Motion Diffusion-Weighted Imaging and Blood Oxygenation Level-Dependent MRI. J Magn Reson Imaging 2023; 58:879-891. [PMID: 36527202 DOI: 10.1002/jmri.28565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Oxford classification including mesangial hypercellularity (M), endothelial hypercellularity (E), segmental sclerosis (S), interstitial fibrosis/tubular atrophy (T), and crescent (C) were recommended to predict the prognosis of IgAN. PURPOSE To explore whether multiparametric magnetic resonance imaging (MRI) can be applied to assess the renal function, Oxford classification, and risk of progression to end-stage kidney disease within 5 years of IgAN. STUDY TYPE Prospective. POPULATION A total of 46 patients with pathologically confirmed IgAN and 20 healthy volunteers. FIELD STRENGTH/SEQUENCE A 3-T, blood oxygenation level-dependent (BOLD)-MRI, intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI). ASSESSMENT Two radiologists measured the cortex and medulla T2*, apparent diffusion coefficient (ADC), true diffusion (Dt), pseudo-diffusion (Dp), perfusion fraction (fp). All participants were divided into three groups: group 1, healthy volunteers; group 2, patients with estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2 ; group 3, patients with eGFR <60 mL/min/1.73 m2 . Or two groups: group A, 5-year risk scores ≤10% and group B, 5-year risk scores >10%. STATISTICAL TESTS Intraclass correlation coefficient, one-way analysis of variance, least-significant difference, Student's t-test, Pearson product-moment correlation, Spearman's rank correlation, and receiver operating characteristics (ROC) with the area under the curve (AUC). A P value <0.05 was considered statistically significant. RESULTS Except for cortical Dp, all other MRI parameters showed significant differences between group 1 and group 2. None of the MRI parameters showed a significant correlation with M, E, or C scores. Cortical T2*, Dt, fp, and medullary Dt and fp showed low-to-moderate significant correlations with S scores. Except for cortical and medullary Dp, all other MRI parameters were significantly correlated with T scores. Cortical Dt showed the largest AUC for differentiating group A from group B (AUC = 0.927) and T0 from T1/T2 (AUC = 0.963). DATA CONCLUSION Imaging by IVIM-DWI and BOLD-MRI could facilitate noninvasive assessment of the renal function, Oxford classification, and prognostic risk of IgAN patients. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 3.
Collapse
Affiliation(s)
- Ping Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guanjie Yuan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shichao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Peng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuou Xu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare Gmbh, Erlangen, Germany
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Han
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
35
|
Xu X, Chen M, Zhang J, Jiang Y, Chao H, Zha J. Can the apparent transverse relaxation rate (R2 *) evaluate the efficacy of concurrent chemoradiotherapy in locally advanced nasopharyngeal carcinoma? a preliminary experience. BMC Med Imaging 2023; 23:69. [PMID: 37264331 DOI: 10.1186/s12880-023-01029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND The use of the apparent transverse relaxation rate (R2*) in nasopharyngeal carcinoma (NPC) has not been previously reported in the literature. The aim of this study was to investigate the role of the R2* value in evaluating response to concurrent chemoradiotherapy (CCRT) in patients with NPC. METHODS Forty-one patients with locoregionally advanced NPC confirmed by pathology were examined by blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) before and after CCRT, and conventional MRI was performed 3 months after the completion of CCRT. All patients were divided into a responding group (RG) and a nonresponding group (NRG), according to MRI findings 3 months after the end of treatment. The R2* values before (R2*preT) and after (R2*postT) CCRT and the ΔR2* (ΔR2*=R2*postT - R2*preT) were calculated in the tumor. RESULTS Among the 41 patients, 26 were in the RG and 15 were in the NRG. There was no statistical difference in the R2*preT between RG and NRG (P = 0.307); however, there were significant differences in R2*postT and ΔR2* (P < 0.001). The area under the curve of R2*postT and ΔR2* for predicting the therapeutic response of NPC was 0.897 and 0.954, respectively, with cutoff values of 40.95 and 5.50 Hz, respectively. CONCLUSION The R2* value can be used as a potential imaging indicator to evaluate the therapeutic response of locoregionally advanced NPC.
Collapse
Affiliation(s)
- Xinhua Xu
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| | - Ming Chen
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China.
| | - Jin Zhang
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| | - Yunzhu Jiang
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| | - Hua Chao
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| | - Jianfeng Zha
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| |
Collapse
|
36
|
Valencia-Morales ND, Rodríguez-Cubillo B, Loayza-López RK, Moreno de la Higuera MÁ, Sánchez-Fructuoso AI. Novel Drugs for the Management of Diabetes Kidney Transplant Patients: A Literature Review. Life (Basel) 2023; 13:1265. [PMID: 37374048 DOI: 10.3390/life13061265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The management of diabetes and renal failure is changing thanks to the appearance of new drugs such as glucagon-like peptide 1 receptor agonists (GLP1-RA) and sodium-glucose cotransporter type 2 inhibitors (SGLT2i) that have benefits in terms of survival and cardiorenal protection. Based on the potential mechanisms of GLP1-RA, kidney transplant recipients (KTRs) could benefit from their effects. However, high-quality studies are needed to demonstrate these benefits, in the transplant population, especially those related to cardiovascular benefits and renal protection. Studies with SGLT2i performed in KTRs are much less potent than in the general population and therefore no benefits in terms of patient or graft survival have been clearly demonstrated in this population to date. Additionally, the most frequently observed side effects could be potentially harmful to this population profile, including severe or recurrent urinary tract infections and impaired kidney function. However, benefits demonstrated in KTRs are in line with a known potential effects in cardiovascular and renal protection, which may be essential for the outcome of transplant recipients. Better studies are still needed to confirm the benefits of these new oral antidiabetics in the renal transplant population. Understanding the characteristics of these drugs may be critical for KTRs to be able to benefit from their effects without being damaged. This review discusses the results of the most important published studies on KTRs with GLP1-RA and SGLT2i as well as the potential beneficial effects of these drugs. Based on these results, approximate suggestions for the management of diabetes in KTRs were developed.
Collapse
|
37
|
Lin Y, Chen J, Huang Y, Lin Y, Su Z. A methodological study of 2D shear wave elastography for noninvasive quantitative assessment of renal fibrosis in patients with chronic kidney disease. Abdom Radiol (NY) 2023; 48:987-998. [PMID: 36565332 DOI: 10.1007/s00261-022-03753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To determine the optimal measurement method of 2D shear wave elastography (2D-SWE) for noninvasive quantitative assessment of renal fibrosis in chronic kidney disease (CKD) patients. METHODS A total of 190 CKD patients were enrolled for 2D-SWE of right kidney. The success rates, coefficients of variation (CV), and pathological correlation of different measurement sites, body positions, and depths were compared. RESULTS (1) Measurement sites: Success rate in the middle part (100%) was higher than that in the lower pole (97.3%, P > 0.05). CV in the middle part (10.2%) was lower than that in the lower pole (16.4%, P < 0.05). Pathological correlation of the middle part (r = - 0.452, P < 0.05) was higher than that of the lower pole (r = 0.097, P > 0.05). (2) Body positions: Success rate in left lateral decubitus position (100%) was higher than that in supine (99.4%, P > 0.05) and prone position (99.4%, P > 0.05). CV was lowest (11.9%) and pathological correlation was highest (r = -0.256, P < 0.05) in prone position. (3) Measurement depths: Success rate at depth < 4 cm (100%) was higher than that at depth ≥ 4 cm (98.8%, P > 0.05). CV at depth < 4 cm (11.1%) was lower than that at depth ≥ 4 cm (14.4%, P < 0.05). Pathological correlation at depth < 4 cm (r = - 0.303, P < 0.05) was higher than that at depth ≥ 4 cm (r = - 0.156, P > 0.05). CONCLUSION The optimal measurement method of 2D-SWE for renal fibrosis assessment was prone position, renal middle part, and measurement depth < 4 cm.
Collapse
Affiliation(s)
- Yanjun Lin
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Jiaxin Chen
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yongquan Huang
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yuhong Lin
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China.
| | - Zhongzhen Su
- Department of Ultrasound, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China.
| |
Collapse
|
38
|
Stabinska J, Zöllner HJ, Thiel TA, Wittsack HJ, Ljimani A. Image downsampling expedited adaptive least-squares (IDEAL) fitting improves intravoxel incoherent motion (IVIM) analysis in the human kidney. Magn Reson Med 2023; 89:1055-1067. [PMID: 36416075 DOI: 10.1002/mrm.29517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To improve the reliability of intravoxel incoherent motion (IVIM) model parameter estimation for the DWI in the kidney using a novel image downsampling expedited adaptive least-squares (IDEAL) approach. METHODS The robustness of IDEAL was investigated using simulated DW-MRI data corrupted with different levels of Rician noise. Subsequently, the performance of the proposed method was tested by fitting bi- and triexponential IVIM model to in vivo renal DWI data acquired on a clinical 3 Tesla MRI scanner and compared to conventional approaches (fixed D* and segmented fitting). RESULTS The numerical simulations demonstrated that the IDEAL algorithm provides robust estimates of the IVIM parameters in the presence of noise (SNR of 20) as indicated by relatively low absolute percentage bias (maximal sMdPB <20%) and normalized RMSE (maximal RMSE <28%). The analysis of the in vivo data showed that the IDEAL-based IVIM parameter maps were less noisy and more visually appealing than those obtained using the fixed D* and segmented methods. Further, coefficients of variation for nearly all IVIM parameters were significantly reduced in cortex and medulla for IDEAL-based biexponential (coefficients of variation: 4%-50%) and triexponential (coefficients of variation: 7.5%-75%) IVIM modelling compared to the segmented (coefficients of variation: 4%-120%) and fixed D* (coefficients of variation: 17%-174%) methods, reflecting greater accuracy of this method. CONCLUSION The proposed fitting algorithm yields more robust IVIM parameter estimates and is less susceptible to poor SNR than the conventional fitting approaches. Thus, the IDEAL approach has the potential to improve the reliability of renal DW-MRI analysis for clinical applications.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Helge J Zöllner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Thomas A Thiel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| |
Collapse
|
39
|
Xu Y, Yang J, Lu F, Ye C, Wang C. Correlation of Renal Oxygenation with Renal Function in Chronic Kidney Disease: A Preliminary Prospective Study. Kidney Blood Press Res 2023; 48:175-185. [PMID: 36791684 DOI: 10.1159/000529165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
INTRODUCTION Chronic hypoxia is prevalent in chronic kidney disease (CKD), and blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) provides noninvasive evaluation of renal oxygenation. This study aimed to explore the correlation of renal oxygenation evaluated by BOLD-MRI with renal function. METHODS 97 non-dialysis patients with CKD stages 1-5 and healthy volunteers (HVs) were recruited in the study, all participants without diabetes. Based on their estimated glomerular filtration rate (eGFR), the patients were divided into two groups: CKD stages 1-3 (CKD 1-3) and CKD stages 4-5 (CKD 4-5). We measured cortical and medullary T2* (COT2* and MET2*) values in all participants by BOLD-MRI. Physiological indices were also recorded and compared among three groups. Correlation of T2* values with clinical characteristics was determined. RESULTS The COT2* values were significantly higher than MET2* values in all participants. The COT2* and MET2* values of three groups were ranked as HV > CKD 1-3> CKD 4-5 (p < 0.0001). There were positive correlations between the COT2* values, MET2* values and eGFR, hemoglobin (r > 0.4, p < 0.01). The 24-h urinary protein (24-h Upr) showed weak correlation with the COT2* value (rs = -0.2301, p = 0.0265) and no correlation with the MET2* value (p > 0.05). Urinary microprotein, including urinary alpha1-microglobulin, urinary beta2-microglobulin (β2-MG), and urinary retinol-binding protein (RBP), showed strong correlation with COT2* and MET2* values. According to the analysis of receiver operating characteristic curve, the optimal cut-points between HV and CKD 1-3 were "<61.17 ms" (sensitivity: 91.23%, specificity: 100%) for COT2* values and "<35.00 ms" (sensitivity: 77.19%, specificity: 100%) for MET2* values, whereas COT2* values ("<47.34 ms"; sensitivity: 90.00%, specificity: 92.98%) and MET2* values ("<25.09 ms"; sensitivity: 97.50%, specificity: 80.70%) between CKD 1-3 and CKD 4-5. CONCLUSION The decline of renal oxygenation reflected on T2* values, especially in cortex, may be an effective diagnostic marker for early detection of CKD.
Collapse
Affiliation(s)
- Yizeng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
| | - Jing Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
40
|
Mo X, Chen W, Chen S, Chen Z, Guo Y, Chen Y, Wu X, Zhang L, Chen Q, Jin Z, Li M, Chen L, You J, Xiong Z, Zhang B, Zhang S. MRI texture-based machine learning models for the evaluation of renal function on different segmentations: a proof-of-concept study. Insights Imaging 2023; 14:28. [PMID: 36746892 PMCID: PMC9902579 DOI: 10.1186/s13244-023-01370-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/03/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND To develop and validate an MRI texture-based machine learning model for the noninvasive assessment of renal function. METHODS A retrospective study of 174 diabetic patients (training cohort, n = 123; validation cohort, n = 51) who underwent renal MRI scans was included. They were assigned to normal function (n = 71), mild or moderate impairment (n = 69), and severe impairment groups (n = 34) according to renal function. Four methods of kidney segmentation on T2-weighted images (T2WI) were compared, including regions of interest covering all coronal slices (All-K), the largest coronal slices (LC-K), and subregions of the largest coronal slices (TLCO-K and PIZZA-K). The speeded-up robust features (SURF) and support vector machine (SVM) algorithms were used for texture feature extraction and model construction, respectively. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of models. RESULTS The models based on LC-K and All-K achieved the nonsignificantly highest accuracy in the classification of renal function (all p values > 0.05). The optimal model yielded high performance in classifying the normal function, mild or moderate impairment, and severe impairment, with an area under the curve of 0.938 (95% confidence interval [CI] 0.935-0.940), 0.919 (95%CI 0.916-0.922), and 0.959 (95%CI 0.956-0.962) in the training cohorts, respectively, as well as 0.802 (95%CI 0.800-0.807), 0.852 (95%CI 0.846-0.857), and 0.863 (95%CI 0.857-0.887) in the validation cohorts, respectively. CONCLUSION We developed and internally validated an MRI-based machine-learning model that can accurately evaluate renal function. Once externally validated, this model has the potential to facilitate the monitoring of patients with impaired renal function.
Collapse
Affiliation(s)
- Xiaokai Mo
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Wenbo Chen
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China ,grid.470066.3Department of Radiology, Huizhou Municipal Central Hospital, No. 41 Eling Bei Road, Huizhou, 516001 Guangdong People’s Republic of China
| | - Simin Chen
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Zhuozhi Chen
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Yuanshu Guo
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Yulian Chen
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Xuewei Wu
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Lu Zhang
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Qiuying Chen
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Zhe Jin
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Minmin Li
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Luyan Chen
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Jingjing You
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Zhiyuan Xiong
- grid.412601.00000 0004 1760 3828Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627 Guangdong People’s Republic of China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China.
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China.
| |
Collapse
|
41
|
Andersen UB. There is more to the kidneys than meets the eye. Acta Physiol (Oxf) 2023; 237:e13904. [PMID: 36495051 DOI: 10.1111/apha.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Ulrik B Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
42
|
Rasmussen CW, Bøgh N, Bech SK, Thorsen TH, Hansen ESS, Bertelsen LB, Laustsen C. Fibrosis imaging with multiparametric proton and sodium MRI in pig injury models. NMR IN BIOMEDICINE 2023; 36:e4838. [PMID: 36151711 PMCID: PMC10078455 DOI: 10.1002/nbm.4838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 05/10/2023]
Abstract
Chronic kidney disease (CKD) is common and has huge implications for health and mortality. It is aggravated by intrarenal fibrosis, but the assessment of fibrosis is limited to kidney biopsies, which carry a risk of complications and sampling errors. This calls for a noninvasive modality for diagnosing and staging intrarenal fibrosis. The current, exploratory study evaluates a multiparametric MRI protocol including sodium imaging (23 Na-MRI) to determine the opportunities within this modality to assess kidney injury as a surrogate endpoint of fibrosis. The study includes 43 pigs exposed to ischemia-reperfusion injury (IRI) or unilateral ureteral obstruction (UUO), or serving as healthy controls. Fibrosis was determined using gene expression analysis of collagen. The medulla/cortex ratio of 23 Na-MRI decreased in the injured kidney in the IRI pigs, but not in the UUO pigs (p = 0.0180, p = 0.0754). To assess the combination of MRI parameters in estimating fibrosis, we created a linear regression model consisting of the cortical apparent diffusion coefficient, ΔR2*, ΔT1, the 23 Na medulla/cortex ratio, and plasma creatinine (R2 = 0.8009, p = 0.0117). The 23 Na medulla/cortex ratio only slightly improved the fibrosis prediction model, leaving 23 Na-MRI in an ambiguous place for evaluation of intrarenal fibrosis. Use of multiparametric MRI in combination with plasma creatinine shows potential for the estimation of fibrosis in human kidney disease, but more translational and clinical work is warranted before MRI can contribute to earlier diagnosis and evaluation of treatment for acute kidney injury and CKD.
Collapse
Affiliation(s)
- Camilla W. Rasmussen
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Nikolaj Bøgh
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Sabrina K. Bech
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Thomas H. Thorsen
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Esben S. S. Hansen
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Lotte B. Bertelsen
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
43
|
Imai K, Ishimoto T, Doke T, Tsuboi T, Watanabe Y, Katsushima K, Suzuki M, Oishi H, Furuhashi K, Ito Y, Kondo Y, Maruyama S. Long non-coding RNA lnc-CHAF1B-3 promotes renal interstitial fibrosis by regulating EMT-related genes in renal proximal tubular cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:139-150. [PMID: 36700051 PMCID: PMC9841231 DOI: 10.1016/j.omtn.2022.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Renal interstitial fibrosis (RIF) is a common pathological manifestation of chronic kidney diseases. Epithelial-mesenchymal transition (EMT) of tubular epithelial cells is considered a major cause of RIF. Although long non-coding RNAs (lncRNAs) are reportedly involved in various pathophysiological processes, the roles and underlying molecular mechanisms of lncRNAs in the progression of RIF are poorly understood. In this study, we investigated the function of lncRNAs in RIF. Microarray assays showed that expression of the lncRNA lnc-CHAF1B-3 (also called claudin 14 antisense RNA 1) was significantly upregulated in human renal proximal tubular cells by both transforming growth factor-β1 (TGF-β1) and hypoxic stimulation, accompanied with increased expression of EMT-related genes. Knockdown of lnc-CHAF1B-3 significantly suppressed TGF-β1-induced upregulated expression of collagen type I alpha 1, cadherin-2, plasminogen activator inhibitor-1, snail family transcriptional repressor I (SNAI1) and SNAI2. Quantitative reverse transcriptase PCR analyses of paraffin-embedded kidney biopsy samples from IgA nephropathy patients revealed lnc-CHAF1B-3 expression was correlated positively with urinary protein levels and correlated negatively with estimated glomerular filtration rate. In situ hybridization demonstrated that lnc-CHAF1B-3 is expressed only in proximal tubules. These findings suggest lnc-CHAF1B-3 affects the progression of RIF by regulating EMT-related signaling. Thus, lnc-CHAF1B-3 is a potential target in the treatment of RIF.
Collapse
Affiliation(s)
- Kentaro Imai
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan,Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan,Corresponding author: Takuji Ishimoto, Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan.
| | - Tomohito Doke
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toshiki Tsuboi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yu Watanabe
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Keisuke Katsushima
- Department of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Miho Suzuki
- Department of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hideto Oishi
- Department of Nephrology, Komaki City Hospital, Komaki, Aichi, 485-8520, Japan
| | - Kazuhiro Furuhashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Yutaka Kondo
- Department of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
44
|
Mei Y, Yang G, Guo Y, Zhao K, Wu S, Xu Z, Zhou S, Yan C, Seeliger E, Niendorf T, Xu Y, Feng Y. Parametric MRI Detects Aristolochic Acid Induced Acute Kidney Injury. Tomography 2022; 8:2902-2914. [PMID: 36548535 PMCID: PMC9786286 DOI: 10.3390/tomography8060243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Exposure to aristolochic acid (AA) is of increased concern due to carcinogenic and nephrotoxic effects, and incidence of aristolochic acid nephropathy (AAN) is increasing. This study characterizes renal alterations during the acute phase of AAN using parametric magnetic resonance imaging (MRI). An AAN and a control group of male Wistar rats received administration of aristolochic acid I (AAI) and polyethylene glycol (PEG), respectively, for six days. Both groups underwent MRI before and 2, 4 and 6 days after AAI or PEG administration. T2 relaxation times and apparent diffusion coefficients (ADCs) were determined for four renal layers. Serum creatinine levels (sCr) and blood urea nitrogen (BUN) were measured. Tubular injury scores (TIS) were evaluated based on histologic findings. Increased T2 values were detected since day 2 in the AAN group, but decreased ADCs and increased sCr levels and BUN were not detected until day 4. Significant linear correlations were observed between T2 of the cortex and the outer stripe of outer medulla and TIS. Our results demonstrate that parametric MRI facilitates early detection of renal injury induced by AAI in a rat model. T2 mapping may be a valuable tool for assessing kidney injury during the acute phase of AAN.
Collapse
Affiliation(s)
- Yingjie Mei
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Guixiang Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Kaixuan Zhao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Shuyu Wu
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Zhongbiao Xu
- Radiotherapy Center, Guangdong General Hospital, Guangzhou 510080, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan 528399, China
- Correspondence:
| |
Collapse
|
45
|
Yan D, Li T, Yang Y, Niu N, Wang D, Ge J, Wang L, Zhang R, Wang D, Tang BZ. A Water-Soluble AIEgen for Noninvasive Diagnosis of Kidney Fibrosis via SWIR Fluorescence and Photoacoustic Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206643. [PMID: 36222386 DOI: 10.1002/adma.202206643] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Early diagnosis of renal fibrosis is crucially significant on account of its worldwide prevalent tendency. Optical imaging in the near-infrared window has been recognized as an appealing technique for the timely detection of renal dysfunction. However, formulating a contrast agent that allows early monitoring of renal fibrosis and concurrently renally clearable in a normal group is still challenging. Herein, a nanosized fluorophore with aggregation-induced emission (AIE) features, namely AIE-4PEG550 NPs, is well-tailored and amenable to longitudinal visualization of the fibrosis progression specifically in the early-stage via short-wave infrared (SWIR, 900-1700 nm) fluorescence and photoacoustic bimodal imaging. The small size (≈26 nm), renally filtrable molecular weight (3.3 kDa), high renal clearance efficiency (93.1 ± 1.7% excretion through the kidneys within 24 h), outstanding imaging performance, and good biocompatibility, together make AIE-4PEG550 NPs remarkably impressive and far superior to clinical diagnostic assays. The finding in this study would provide a blueprint for the next generation of diagnostic agents for the extent of renal fibrosis.
Collapse
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingting Li
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, P. R. China
- The Radiology Department of Third Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030000, P. R. China
| | - Yilin Yang
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, P. R. China
- The Radiology Department of Third Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030000, P. R. China
| | - Niu Niu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Deliang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jinyin Ge
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ruiping Zhang
- The Radiology Department of Third Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030000, P. R. China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
46
|
Geng W, Pan L, Shen L, Sha Y, Sun J, Yu S, Qiu J, Xing W. Evaluating renal iron overload in diabetes mellitus by blood oxygen level-dependent magnetic resonance imaging: a longitudinal experimental study. BMC Med Imaging 2022; 22:200. [PMID: 36401188 PMCID: PMC9675154 DOI: 10.1186/s12880-022-00939-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Iron overload plays a critical role in the pathogenesis of diabetic nephropathy. Non-invasive evaluation of renal iron overload in diabetes in the management and intervention of diabetic nephropathy is of great significance. This study aimed to explore the feasibility of blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) in evaluating renal iron overload in diabetes using a rabbit model. METHODS The rabbits were randomly divided into control, iron-overload (I), diabetes (D), and diabetes with iron-overload (DI) groups (each n = 19). The diabetes models were generated by injecting intravenous alloxan solution, and the iron-overload models were generated by injecting intramuscular iron-dextran. BOLD MRI was performed immediately (week 0) and at week 4, 8, and 12 following modeling. The differences in renal cortex (CR2*) and outer medulla R2* (MR2*) and the ratio of MR2*-CR2* (MCR) across the different time points were compared. RESULTS Iron was first deposited in glomeruli in the I group and in proximal tubular cells in renal cortex in the D group. In the DI group, there was iron deposition in both glomeruli and proximal tubular cells at week 4, and the accumulation increased subsequently. The degree of kidney injury and iron overload was more severe in the DI group than those in the I and D groups at week 12. At week 8 and 12, the CR2* and MR2* in the DI group were higher than those in the I and D groups (all P < 0.05). The MCR in the I, D, and DI groups decreased from week 0 to 4 (all P < 0.001), and that in the I group increased from week 8 to 12 (P = 0.034). CR2* and MR2* values displayed different trends from week 0-12. Dynamic MCR curves in the D and DI groups were different from that in the I group. CONCLUSION It presents interactions between diabetes and iron overload in kidney injury, and BOLD MRI can be used to evaluate renal iron overload in diabetes.
Collapse
Affiliation(s)
- Weiwei Geng
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Liang Pan
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Liwen Shen
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yuanyuan Sha
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Jun Sun
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Shengnan Yu
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Jianguo Qiu
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
47
|
Hara Y, Nagawa K, Yamamoto Y, Inoue K, Funakoshi K, Inoue T, Okada H, Ishikawa M, Kobayashi N, Kozawa E. The utility of texture analysis of kidney MRI for evaluating renal dysfunction with multiclass classification model. Sci Rep 2022; 12:14776. [PMID: 36042326 PMCID: PMC9427930 DOI: 10.1038/s41598-022-19009-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
We evaluated a multiclass classification model to predict estimated glomerular filtration rate (eGFR) groups in chronic kidney disease (CKD) patients using magnetic resonance imaging (MRI) texture analysis (TA). We identified 166 CKD patients who underwent MRI comprising Dixon-based T1-weighted in-phase (IP)/opposed-phase (OP)/water-only (WO) images, apparent diffusion coefficient (ADC) maps, and T2* maps. The patients were divided into severe, moderate, and control groups based on eGFR borderlines of 30 and 60 mL/min/1.73 m2. After extracting 93 texture features (TFs), dimension reduction was performed using inter-observer reproducibility analysis and sequential feature selection (SFS) algorithm. Models were created using linear discriminant analysis (LDA); support vector machine (SVM) with linear, rbf, and sigmoid kernels; decision tree (DT); and random forest (RF) classifiers, with synthetic minority oversampling technique (SMOTE). Models underwent 100-time repeat nested cross-validation. Overall performances of our classification models were modest, and TA based on T1-weighted IP/OP/WO images provided better performance than those based on ADC and T2* maps. The most favorable result was observed in the T1-weighted WO image using RF classifier and the combination model was derived from all T1-weighted images using SVM classifier with rbf kernel. Among the selected TFs, total energy and energy had weak correlations with eGFR.
Collapse
Affiliation(s)
- Yuki Hara
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Keita Nagawa
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan.
- Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, Japan.
| | - Yuya Yamamoto
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Kaiji Inoue
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Kazuto Funakoshi
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Hirokazu Okada
- Department of Nephrology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Masahiro Ishikawa
- School of Biomedical Engineering, Faculty of Health and Medical Care, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Naoki Kobayashi
- School of Biomedical Engineering, Faculty of Health and Medical Care, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Eito Kozawa
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| |
Collapse
|
48
|
Correlation between Blood Oxygen Level-Dependent Magnetic Resonance Imaging Images and Prognosis of Patients with Multicenter Diabetic Nephropathy on account of Artificial Intelligence Segmentation Algorithm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5700249. [PMID: 35860185 PMCID: PMC9293502 DOI: 10.1155/2022/5700249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
This study was aimed to analyze the correlation between blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) images and prognosis of patients with diabetic nephropathy (DN) based on artificial intelligence (AI) segmentation algorithm, so as to provide references for diagnosis and treatment as well as prognosis analysis of patients DN. In this study, a kernel function-based fuzzy C-means algorithm (KFCM) model was proposed, and the FCM algorithm based on neighborhood pixel information (BCFCM) and the FCM algorithm based on efficiency improvement (EnFCM) were introduced for comparison to analyze the image segmentation effects of three algorithms. The results showed that the partition coefficient (Vpc) and partition entropy (Vpe) of the KFCM algorithm were 0.801 and 0.602, respectively, which were better than those of the traditional FCM, BCFCM, and EnFCM algorithm. At the same time, the effects of correlation between renal cortex R2∗ (RC-R2∗), renal medulla R2∗ (RM-R2∗), renal cortex D (RC-D), renal medulla D (RM-D) and renal function on the prognosis were compared. The results showed that the correlation coefficients between RC-R2∗, RM-R2∗, RC-D, RM-D and renal function were 0.57, 0.62, 0.49, and 0.38, respectively; among them, RC-R2∗ and RM-R2∗ were negatively correlated to the estimated glomerular filtration rate (eGFR), and the difference between the groups was statistically significant (P <0.05). Among the factors affecting the prognosis of DN patients, the GFR, hemoglobin (Hb), RC-R2∗, RM-R2∗, and RC-D were all related to the prognosis of DN, and the difference between groups was statistically obvious (P <0.05). It suggested that the KFCM algorithm proposed in this study showed the relatively best segmentation effect on BOLD-MRI images for DN patients; an increase in R2∗ indicated a poor prognosis, and an increase in the RC-D value indicated a better prognosis.
Collapse
|
49
|
Inoue T, Kozawa E, Ishikawa M, Kobayashi N, Okada H. The relationship between imaging features of diffusion-weighted imaging and prognosis of chronic kidney disease. Kidney Int 2022; 101:1083. [DOI: 10.1016/j.kint.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/30/2022]
|
50
|
Sivertsson E, Friederich-Persson M, Persson P, Nangaku M, Hansell P, Palm F. Thyroid hormone increases oxygen metabolism causing intrarenal tissue hypoxia; a pathway to kidney disease. PLoS One 2022; 17:e0264524. [PMID: 35239685 PMCID: PMC8893624 DOI: 10.1371/journal.pone.0264524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/11/2022] [Indexed: 01/10/2023] Open
Abstract
The proposed mechanisms for the development of nephropathy are many, complex and often overlapping. Although recent literature strongly supports a role of kidney hypoxia as an independent pathway to nephropathy, the evidence remains inconclusive since the role of hypoxia is difficult to differentiate from confounding factors such as hyperglycemia, hypertension and oxidative stress. By increasing kidney oxygen consumption using triiodothyronine (T3) and, thus, avoiding these confounding factors, the aim of the present study was to investigate renal hypoxia per se as a causal pathway for the development of nephropathy. Healthy Sprague-Dawley rats were treated with T3 (10 μg/kg/day) and the angiotensin II AT1-receptor antagonist candesartan (1 mg/kg in drinking water) to eliminate effects of T3-induced renin release; and compared to a candesartan treated control group. After 7 weeks of treatment in vivo kidney function, oxygen metabolism and mitochondrial function were evaluated. T3 did not affect glomerular filtration rate or renal blood flow, but increased total kidney oxygen consumption resulting in cortical hypoxia. Nephropathy, demonstrated as albuminuria and tubulointerstitial fibrosis, developed in T3-treated animals. Mitochondria uncoupling mediated by uncoupling protein 2 and the adenosine nucleotide transporter was demonstrated as a mechanism causing the increased kidney oxygen consumption. Importantly, blood glucose levels, mean arterial blood pressure and oxidative stress levels were not affected by T3. In conclusion, the present study provides further evidence for increased kidney oxygen consumption causing intrarenal tissue hypoxia, as a causal pathway for development of nephropathy.
Collapse
Affiliation(s)
- Ebba Sivertsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Patrik Persson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Peter Hansell
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|