1
|
Tang K, Ye T, He Y, Ba X, Xia D, Peng E, Chen Z, Ye Z, Yang X. Ferroptosis, necroptosis, and pyroptosis in calcium oxalate crystal-induced kidney injury. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167791. [PMID: 40086520 DOI: 10.1016/j.bbadis.2025.167791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Kidney stones represent a highly prevalent urological disorder worldwide, with high incidence and recurrence rates. Calcium oxalate (CaOx) crystal-induced kidney injury serves as the foundational mechanism for the formation and progression of CaOx stones. Regulated cell death (RCD) such as ferroptosis, necroptosis, and pyroptosis are essential in the pathophysiological process of kidney injury. Ferroptosis, a newly discovered RCD, is characterized by its reliance on iron-mediated lipid peroxidation. Necroptosis, a widely studied programmed necrosis, initiates with a necrotic phenotype that resembles apoptosis in appearance. Pyroptosis, a type of RCD that involves the gasdermin protein, is accompanied by inflammation and immune response. In recent years, increasing amounts of evidence has demonstrated that ferroptosis, necroptosis, and pyroptosis are significant pathophysiological processes involved in CaOx crystal-induced kidney injury. Herein, we summed up the roles of ferroptosis, necroptosis, and pyroptosis in CaOx crystal-induced kidney injury. Furthermore, we delved into the curative potential of ferroptosis, necroptosis, and pyroptosis in CaOx crystal-induced kidney injury.
Collapse
Affiliation(s)
- Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Mukherjee SD, Suryavanshi M, Knight J, Lange D, Miller AW. Metagenomic and phylogenetic analyses reveal gene-level selection constrained by bacterial phylogeny, surrounding oxalate metabolism in the gut microbiota. mSphere 2025:e0091324. [PMID: 40358144 DOI: 10.1128/msphere.00913-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/09/2025] [Indexed: 05/15/2025] Open
Abstract
The gut microbiota is critical for neutralizing dietary toxins. Oxalate is a toxin commonly produced by plants to deter herbivory and is widely consumed in the human diet. Excess levels of systemic or urinary oxalate increase risk of multiple urologic and cardiometabolic diseases. The current study employed multiple amplicon-based and shotgun metagenomic methodologies, alongside comparative phylogenetic analyses, to interrogate evolutionary radiation surrounding microbial oxalate degradation within the human gut microbiome. In conservative genome-based estimates, over 30% of gut microbial species harbored at least one oxalate-handling gene, with the specific pathways used dependent on bacterial phylum. Co-occurrence analyses revealed interactions between specialist genes that can metabolize oxalate or its by-products, but not multi-functional genes that can act in more than one oxalate-related pathway. Specialization was rare at the genome level. Amplicon-based metagenomic sequencing of the oxalate-degrading gene, formyl-CoA transferase (frc), coupled with molecular clock phylogenetic analyses are indicative of rapid evolutionary divergence, constrained by phylum. This was corroborated by paired analyses of non-synonymous to synonymous substitutions (dN/dS ratios), which pointed toward neutral to positive selection. Sequence similarity network analyses of frc sequences suggest extensive horizontal gene transferring has occurred with the frc gene, which may have facilitated rapid divergence. The frc gene was primarily allocated to the Pseudomonodota phylum, particularly the Bradyrhizobium genus, which is a species capable of utilizing oxalate as a sole carbon and energy source. Collectively evidence provides strong support that, for oxalate metabolism, evolutionary selection occurs at the gene level, through horizontal gene transfer, rather than at the species level.IMPORTANCEA critical function of the gut microbiota is to neutralize dietary toxins, such as oxalate, which is highly prevalent in plant-based foods and is not degraded by host enzymes. However, little is known about the co-evolutionary patterns of plant toxins and the mammalian gut microbiota, which are expected to exhibit features of an evolutionary arms race. In the current work, we present molecular evidence that microbial genes for oxalate degradation are highly prevalent in humans, potentially driven by extensive horizontal gene transfer events. Phylogenetic analyses reveal that oxalate-degrading genes are under a positive selection pressure and have historically undergone rapid diversification events, which has led to diverse ecological strategies for handling oxalate by gut bacteria. Collectively, data shed light on potential evolutionary relationships between the diet and the gut microbiota that occur relatively independently of the mammalian host.
Collapse
Affiliation(s)
- Sromona D Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dirk Lange
- The Stone Centre at VGH, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron W Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Liu J, Lei Y. The Relationship Between Magnesium Depletion Score and Kidney Stone Risk in Gout Patients: a Mediation Analysis. Biol Trace Elem Res 2025:10.1007/s12011-025-04638-6. [PMID: 40266452 DOI: 10.1007/s12011-025-04638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/20/2025] [Indexed: 04/24/2025]
Abstract
This study investigated the association and mediating mechanisms between magnesium depletion score (MDS) and kidney stones (KDS) in gout patients through a cross-sectional analysis. Logistic regression analysis of 502 gout patients revealed a significant positive association between MDS grade and KDS (OR = 2.14, 95% CI: 1.78-2.58), with the risk remaining elevated in the MDS4 group after adjusting for confounders (OR = 6.25, 95% CI: 2.38-16.44).Causal mediation analysis indicated that MDS fully explained the effect of serum uric acid (SUA) on KDS, suggesting that disrupted magnesium metabolism plays a key role in gout-related kidney injury. Subgroup analysis revealed an increased risk of KDS in obese, hypertensive, and diabetic patients with MDS. MDS should be incorporated into clinical risk assessments for gout, and magnesium supplementation or combined uric acid-lowering therapy should be recommended for high-risk groups to prevent KDS.
Collapse
Affiliation(s)
- Jing Liu
- Department of Laboratory Services, Chengdu Tongshentang Hospital of Integrative Medicine, Chengdu, 610045, China
| | - Yu Lei
- Department of Research, Chengdu Rheumatism Hospital, China Medical University, Chengdu, 610072, China.
| |
Collapse
|
4
|
Ba X, Ye T, He Y, Tong Y, Shang H, Wu J, Deng W, Zhong Z, Yang X, Wang K, Xie Y, Jiang K, Guo X, Tang K. Engineered macrophage membrane-coated nanoparticles attenuate calcium oxalate nephrocalcinosis-induced kidney injury by reducing oxidative stress and pyroptosis. Acta Biomater 2025; 195:479-495. [PMID: 39947306 DOI: 10.1016/j.actbio.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 03/17/2025]
Abstract
Kidney stones are characterized by a high incidence and recurrence rate, leading to kidney injury, which in turn accelerates stone formation and deposition. Increasing evidence have demonstrated that oxidative stress and cell pyroptosis play important role in the calcium oxalate (CaOx) stones induced kidney injury. Currently, treatments related to oxidative stress and inflammation associated with kidney stones are still relatively limited. Here, we designed engineered macrophage cell membrane-coated hollow mesoporous manganese dioxide nanoparticles loaded with NLRP3 inhibitors Mcc950 (KM@M@M). KM@M@M NPs were modified with Kim-1 targeting peptides on M2-polarized macrophage membranes to achieve better targeted delivery to injured kidney tubules. Compared with traditional drugs, KM@M@M NPs reduce systemic toxicity through targeted drug delivery to the kidneys. In vivo and in vitro results demonstrate that KM@M@M NPs reduces the activation of the NLRP3 inflammasome in renal tubular epithelial cells by scavenging ROS, thereby downregulating gasdermin D cleavage and the production of inflammatory cytokines, ultimately inhibiting cell pyroptosis. In addition, bioinformatic analysis revealed that KM@M@M NPs protect against CaOx induced kidney injury via suppressing the NLRP3/GSDMD pathway. This article extending the application of engineered cell membrane-based biomimetic nanotechnology, and providing a promising strategy for dual protection in CaOx stones induced kidney injury. STATEMENT OF SIGNIFICANCE: Currently, apart from invasive surgery, there are few pharmacological therapies for CaOx-induced renal injury. This study presents a new strategy using engineered macrophage cell membrane-coated hollow mesoporous manganese dioxide nanoparticles (KM@M@M) to target and treat calcium oxalate (CaOx)-induced kidney injury. The nanoparticles effectively scavenge reactive oxygen species (ROS) and inhibit NLRP3 inflammasome activation, preventing pyroptosis and kidney damage. By delivering NLRP3 inhibitors directly to injured renal tubules, KM@M@M NPs reduce inflammation and stone deposition. This work demonstrates the potential of biomimetic nanotechnology for targeted treatment, offering a promising approach to prevent CaOx-induced renal injury and enhance therapeutic outcomes in kidney stone disease.
Collapse
Affiliation(s)
- Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangyang Wang
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, China
| | - Yabin Xie
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China.
| |
Collapse
|
5
|
Guo L, Lan Q, Zhou M, Liu F. From gut to kidney: microbiota modulates stone risk through inflammation-a mediated Mendelian randomization study. Mamm Genome 2025; 36:250-261. [PMID: 39718578 DOI: 10.1007/s00335-024-10094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
The gut microbiota (GM) can affect the immune system, which can lead to a variety of diseases, as confirmed by many studies. However, the exact mechanism by which GM affects kidney stone incidence through the immune system remains unclear. This study used a two-step, two-sample Mendelian randomization (MR) analysis by inverse variance weighting (IVW) method as well as Bayesian weighting (BWMR) to find out how the gut microbiota and inflammatory cytokines contribute to kidney stones, followed by a mediated MR analysis to exploreHow inflammatory cytokines are involved in the connection with the gut microbiota and kidney stones. MR analysis revealed that seven intestinal flora were protective against kidney stones, including family. Actinomycetaceae, family.Clostridiaceae1, genus.Clostridiumsensustricto1, genus. Hungatella, genus.LachnospiraceaeUCG001, genus.LachnospiraceaeUCG008 and order. Actinomycetales, while four intestinal flora, including genus. Haemophilus, genus. RuminococcaceaeUCG010, order.Rhodospirillales and phylum.Actinobacteria may increase the risk of kidney stones. In addition, it was confirmed that seven Inflammatory cytokines DNER, IL-18, IL-1α, SLAMF1, STAMPB, CST5 and FGF-5 in association with kidney stones. Notably, the mediating MR indicated the causal effect of phylum. Actinobacteria and order. Rhodospirillales gut group on kidney stones was mainly modulated by IL-18 levels, with mediating effects accounting for 15.8% and 12.8% of the total effect, respectively. The present study demonstrates this phylum. Actinobacteria and order. Rhodospirillales flora have an important role in reducing the risk of kidney stones and act mainly by modulating IL-18 levels.
Collapse
Affiliation(s)
- Long Guo
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qing Lan
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Min Zhou
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fei Liu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
6
|
Sun Y, Li B, Song B, Xia Y, Ye Z, Lin F, Zhou X, Li W, Rao T, Cheng F. UHRF1 promotes calcium oxalate-induced renal fibrosis by renal lipid deposition via bridging AMPK dephosphorylation. Cell Biol Toxicol 2025; 41:39. [PMID: 39899077 PMCID: PMC11790803 DOI: 10.1007/s10565-025-09991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Nephrolithiasis, a common urinary system disorder, exhibits high morbidity and recurrence rates, correlating with renal dysfunction and the increased risk of chronic kidney disease. Nonetheless, the precise role of disrupted cellular metabolism in renal injury induced by calcium oxalate (CaOx) crystal deposition is unclear. The purpose of this study is to investigate the involvement of the ubiquitin-like protein containing PHD and RING finger structural domain 1 (UHRF1) in CaOx-induced renal fibrosis and its impacts on cellular lipid metabolism. METHODS Various approaches, including snRNA-seq, transcriptome RNA-seq, immunohistochemistry, and western blot analyses, were employed to assess UHRF1 expression in kidneys of nephrolithiasis patients, hyperoxaluric mice, and CaOx-induced renal tubular epithelial cells. Subsequently, knockdown of UHRF1 in mice and cells corroborated its effect of UHRF1 on fibrosis, ectopic lipid deposition (ELD) and fatty acid oxidation (FAO). Rescue experiments using AICAR, ND-630 and Compound-C were performed in UHRF1-knockdown cells to explore the involvement of the AMPK pathway. Then we confirmed the bridging molecule and its regulatory pathway in vitro. Experimental results were finally confirmed using AICAR and chemically modified si-UHRF1 in vivo of hyperoxaluria mice model. RESULTS Mechanistically, UHRF1 was found to hinder the activation of the AMPK/ACC1 pathway during CaOx-induced renal fibrosis, which was mitigated by employing AICAR, an AMPK agonist. As a nuclear protein, UHRF1 facilitates nuclear translocation of AMPK and act as a molecular link targeting the protein phosphatase PP2A to dephosphorylate AMPK and inhibit its activity. CONCLUSION This study revealed that UHRF1 promotes CaOx -induced renal fibrosis by enhancing lipid accumulation and suppressing FAO via inhibiting the AMPK pathway. These findings underscore the feasible therapeutic implications of targeting UHRF1 to prevent renal fibrosis due to stones.
Collapse
Affiliation(s)
- Yushi Sun
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Baofeng Song
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
7
|
Du YZ, Yang JQ, Yao JM, Zhang CT, Liu YF. Association between the neutrophil-to-high-density lipoprotein cholesterol ratio with kidney stone risk: a cross-sectional study. Front Endocrinol (Lausanne) 2025; 16:1523890. [PMID: 39963279 PMCID: PMC11830614 DOI: 10.3389/fendo.2025.1523890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Objective Kidney stones are a major issue for public health worldwide. Discovering potential clues in identifying at-risk individuals is essential for early detection and timely treatment. This study explores the relationship of the neutrophil-to-high-density lipoprotein cholesterol ratio (NHR) with the risk of kidney stones in U.S. adults. Methods The analysis involved 24,532 participants with available NHR and kidney stone data from the 2007-2018 NHANES period. Multivariable logistic regression models were used to quantify the relationship between NHR and kidney stone occurrence. Subgroup analyses were conducted to explore variations in effect. Results A total of 2,351 participants (9.93%) were diagnosed with kidney stones, and their mean age was 47.20 ± 0.26 years. After full adjustment in the multivariable regression model, higher NHR levels were linked to a greater risk of kidney stones (OR = 1.05, 95% CI: 1.02-1.08, P = 0.002). Participants in the highest tertile of NHR had a 34% increased chance of kidney stone development compared to those in the lowest tertile. A nonlinear connection between NHR and kidney stone risk was identified using restricted cubic spline (RCS) regression models. The relationship between NHR and kidney stone prevalence showed no significant variation across most subgroups (P for interaction > 0.05). Conclusion The results indicate that increased NHR is linked to a higher risk of kidney stones, with this relationship remaining consistent across various populations. NHR could be a useful biomarker for kidney stone risk, with key implications for early detection and individualized treatment.
Collapse
Affiliation(s)
- Yuan-Zhuo Du
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jia-Qing Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ji-Ming Yao
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chi-Teng Zhang
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yi-Fu Liu
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Zheng S, Hua T, Yin G, Zhang W, Wang X, Qi L, Jing X, Fan Q, Yu X, Li Y. Metabolic dysfunction-associated fatty liver disease and risk of nephrolithiasis: a sizeable cross-sectional study. Front Endocrinol (Lausanne) 2025; 15:1406065. [PMID: 39906038 PMCID: PMC11790460 DOI: 10.3389/fendo.2024.1406065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025] Open
Abstract
Objective Metabolic dysfunction-associated fatty liver disease (MAFLD) and nephrolithiasis are two common metabolic diseases, but their relationship has not yet been thoroughly studied. Therefore, this study aimed to explore the association between MAFLD and nephrolithiasis and to assess the effect of MAFLD on the risk of nephrolithiasis. Materials and methods This cross-sectional study included 96,767 adults from China. All participants underwent medical examinations, including physical examinations, medical history tests, and laboratory tests. Based on ultrasound examination, participants were divided into MAFLD and non-MAFLD groups, and the severity of liver steatosis was determined based on ultrasound images. The relationship between MAFLD and nephrolithiasis was analyzed using a multivariate logistic regression model and subgroup analysis was performed. Results The proportion of participants with MAFLD was significantly higher in the nephrolithiasis group compared to the non-nephrolithiasis group (47.70% vs. 30.45%, P < 0.001). Multivariate logistic regression analysis showed a significant positive association between MAFLD and nephrolithiasis (adjusted OR=1.38, 95% CI: 1.29 to 1.47). Subgroup analyses indicated that, even after accounting for various factors such as age, diabetes, hypertension, obesity, lipid profiles, and renal function, the positive association between MAFLD and an increased risk of nephrolithiasis remained consistent. Further subgroup analysis revealed that in male patients with MAFLD, the risk of nephrolithiasis increased progressively with increasing severity of liver steatosis. The adjusted multivariable odds ratios were 1.43 (95% CI: 1.33 to 1.53) for mild, 1.48 (95% CI: 1.32 to 1.67) for moderate, and 1.94 (95% CI: 1.47 to 2.58) for severe hepatic steatosis. Conclusions This study found a significant positive association between MAFLD and nephrolithiasis. The risk of nephrolithiasis in males with MAFLD increased substantially with increasing severity of liver steatosis. Therefore, it is essential to strengthen prevention and screening for nephrolithiasis in individuals with MAFLD. More research is needed to elucidate the physiological and pathological mechanisms between MAFLD and nephrolithiasis.
Collapse
Affiliation(s)
- Shengqi Zheng
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tianchi Hua
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guicao Yin
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Zhang
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoxiang Wang
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lezhong Qi
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiayong Jing
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qibing Fan
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoping Yu
- Department of Health Promotion Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yifan Li
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Raj C. T D, Palaninathan V, Kandaswamy S, Kumar V, James RA. Therapeutic potential of seaweeds and their biofabricated nanoparticles in treating urolithiasis: A review. Heliyon 2025; 11:e41132. [PMID: 39802010 PMCID: PMC11720914 DOI: 10.1016/j.heliyon.2024.e41132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Urolithiasis affects a significant portion of the global population, causing discomfort and pain. Unfortunately, effective drugs to treat this disorder are currently unavailable due to multiple mechanisms and an incomplete understanding of its causes. Consequently, drugs with multiple targets could be a safer and more effective remedy for treating urolithiasis. Moreover, the current treatment options are expensive and come with a risk of complications and stone recurrence. Therefore, an alternative treatment that can prevent stone recurrence and reduce associated symptoms is necessary. Seaweeds are a rich source of beneficial metabolites, like antioxidants, anti-inflammatory, analgesic, and enzyme-inhibitory properties. Advances in nanotechnology hold great promise for improving the therapeutic potential of these metabolites. However, the use of nanoparticles for treating urolithiasis has yet to be explored well, and only a few reports exist on the use of terrestrial plant-based nanoparticles. This review examines the therapeutic properties of seaweed bioactive compounds and their possible applications in treating urolithiasis. We propose that seaweeds could be an excellent source of essential dietary minerals and other bioactive compounds with multiple targets to treat renal calculus naturally. Additionally, the review highlights the potential of nanomedicine in treating urolithiasis, proposing seaweed-based nanoparticles as a promising treatment option.
Collapse
Affiliation(s)
- Dhanya Raj C. T
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | | | - Surabhi Kandaswamy
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Vimal Kumar
- Bio-nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama, Japan
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| |
Collapse
|
10
|
Beattie KA, Verma M, Brennan RJ, Clausznitzer D, Damian V, Leishman D, Spilker ME, Boras B, Li Z, Oziolor E, Rieger TR, Sher A. Quantitative systems toxicology modeling in pharmaceutical research and development: An industry-wide survey and selected case study examples. CPT Pharmacometrics Syst Pharmacol 2024; 13:2036-2051. [PMID: 39412216 PMCID: PMC11646944 DOI: 10.1002/psp4.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 12/17/2024] Open
Abstract
Quantitative systems toxicology (QST) models are increasingly being applied for predicting and understanding toxicity liabilities in pharmaceutical research and development. A European Federation of Pharmaceutical Industries and Associations (EFPIA)-wide survey was completed by 15 companies. The results provide insights into the current use of QST models across the industry. 73% of responding companies with more than 10,000 employees utilize QST models. The most applied QST models are for liver, cardiac electrophysiology, and bone marrow/hematology. Responders indicated particular interest in QST models for the central nervous system (CNS), kidney, lung, and skin. QST models are used to support decisions in both preclinical and clinical stages of pharmaceutical development. The survey suggests high demand for QST models and resource limitations were indicated as a common obstacle to broader use and impact. Increased investment in QST resources and training may accelerate application and impact. Case studies of QST model use in decision-making within EFPIA companies are also discussed. This article aims to (i) share industry experience and learnings from applying QST models to inform decision-making in drug discovery and development programs, and (ii) share approaches taken during QST model development and validation and compare these with recommendations for modeling best practices and frameworks proposed in the literature. Discussion of QST-specific applications in relation to these modeling frameworks is relevant in the context of the recently proposed International Council for Harmonization (ICH) M15 guideline on general principles for Model-Informed Drug Development (MIDD).
Collapse
Affiliation(s)
| | - Meghna Verma
- Systems Medicine, Clinical Pharmacology and Quantitative PharmacologyR&D BioPharmaceuticals, AstraZenecaGaithersburgMarylandUSA
| | | | - Diana Clausznitzer
- Quantitative, Translational and ADME SciencesAbbVie DeutschlandLudwigshafenGermany
| | - Valeriu Damian
- Computational SciencesGSKUpper ProvidencePennsylvaniaUSA
| | - Derek Leishman
- Translational and Quantitative ToxicologyEli Lilly and CompanyIndianapolisIndianaUSA
| | - Mary E. Spilker
- Pharmacokinetics, Dynamics and MetabolismPfizer Research and Development, Pfizer Inc.La JollaCaliforniaUSA
| | - Britton Boras
- Pharmacokinetics, Dynamics and MetabolismPfizer Research and Development, Pfizer Inc.La JollaCaliforniaUSA
| | - Zhenhong Li
- Translational Modeling and SimulationPfizer Research and Development, Pfizer Inc.CambridgeMassachusettsUSA
| | - Elias Oziolor
- Drug Safety Research and DevelopmentPfizer Research and Development, Pfizer Inc.GrotonConnecticutUSA
| | - Theodore R. Rieger
- Pharmacometrics and Systems PharmacologyPfizer Research and Development, Pfizer Inc.CambridgeMassachusettsUSA
| | - Anna Sher
- Clinical Pharmacology Modeling and SimulationGSKWalthamMassachusettsUSA
| |
Collapse
|
11
|
Yang W, Zhao T, Chen X, Wang S, Wang Y, Su T. Determinants and impact of calcium oxalate crystal deposition on renal outcomes in acute kidney injury patients. Ren Fail 2024; 46:2334396. [PMID: 38570195 PMCID: PMC10993744 DOI: 10.1080/0886022x.2024.2334396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
OBJECTIVES Calcium oxalate (CaOx) crystal deposition in acute kidney injury (AKI) patients is under recognized but impacts renal outcomes. This study investigates its determinants and effects. METHODS We studied 814 AKI patients with native kidney biopsies from 2011 to 2020, identifying CaOx crystal deposition severity (mild: <5, moderate: 5-10, severe: >10 crystals per section). We assessed factors like urinary oxalate, citrate, urate, electrolytes, pH, tubular calcification index, and SLC26A6 expression, comparing them with creatinine-matched AKI controls without oxalosis. We analyzed how these factors relate to CaOx severity and their impact on renal recovery (eGFR < 15 mL/min/1.73 m2 at 3-month follow-up). RESULTS CaOx crystal deposition was found in 3.9% of the AKI cohort (32 cases), with 72% due to nephrotoxic medication-induced tubulointerstitial nephritis. Diuretic use, higher urinary oxalate-to-citrate ratio induced by hypocitraturia, and tubular calcification index were significant contributors to moderate and/or severe CaOx deposition. Poor baseline renal function, low urinary chloride, high uric acid and urea nitrogen, tubular SLC26A6 overexpression, and glomerular sclerosis were also associated with moderate-to-severe CaOx deposition. Kidney recovery was delayed, with 43.8%, 31.2%, and 18.8% of patients having eGFR < 15 mL/min/1.73 m2 at 4, 12, and 24-week post-injury. Poor outcomes were linked to high urinary α1-microglobulin-to-creatinine (α1-MG/C) ratios and active tubular injury scores. Univariate analysis showed a strong link between this ratio and poor renal outcomes, independent of oxalosis severity. CONCLUSIONS In AKI, CaOx deposition is common despite declining GFR. Factors worsening tubular injury, not just oxalate-to-citrate ratios, are key to understanding impaired renal recovery.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of medicine, Renal Division, Peking University First Hospital, Peking University, Institute of Nephrology, Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, PR China
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, PR China
| | - Tao Zhao
- Department of medicine, Renal Division, Peking University First Hospital, Peking University, Institute of Nephrology, Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, PR China
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, PR China
| | - Xuejing Chen
- Department of medicine, Renal Division, Peking University First Hospital, Peking University, Institute of Nephrology, Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, PR China
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, PR China
| | - Suxia Wang
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, PR China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Yu Wang
- Department of medicine, Renal Division, Peking University First Hospital, Peking University, Institute of Nephrology, Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, PR China
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, PR China
| | - Tao Su
- Department of medicine, Renal Division, Peking University First Hospital, Peking University, Institute of Nephrology, Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, PR China
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
12
|
Zhang Z, Wang G, Dai X, Li W. Association between the systemic inflammation response index and kidney stones in US adults: a cross-sectional study based on NHANES 2007-2018. Urolithiasis 2024; 52:165. [PMID: 39570426 DOI: 10.1007/s00240-024-01668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
This study examined the relationship between the systemic inflammation response index (SIRI) and kidney stone occurrence in adults in the United States. It also evaluated its potential as a predictor of kidney stones. A total of 24,833 adult participants were included in the study using cross-sectional data from the 2007-2018 National Health and Nutrition Examination Survey (NHANES) database. A history of kidney stones was ascertained through the administration of a questionnaire, and SIRI values (calculated based on neutrophil, monocyte, and lymphocyte counts) were determined for each participant. Logistic regression models were employed to examine the relationship between SIRI and kidney stones while accounting for potential confounding variables such as gender, age, race, lifestyle, and history of chronic disease. Subgroup analyses were also conducted. A significant positive correlation was observed between SIRI and kidney stones. In the unadjusted model, elevated SIRI was significantly and positively associated with an increased risk of kidney stones (OR = 1.17). Analysis of SIRI quartiles demonstrated a gradual increase in the risk ratio of kidney stones with increasing SIRI levels, indicating a clear dose-response relationship. In particular, in the model adjusted for multiple confounding variables, the risk of developing kidney stones in the highest SIRI quartile was increased by 20% compared to the lowest SIRI quartile (OR = 1.20, P = 0.007). There is a significant positive correlation between SIRI and kidney stones. SIRI may predict kidney stone risk and highlight the systemic inflammatory state's substantial contribution to kidney stones' pathogenesis.
Collapse
Affiliation(s)
- Zhenglin Zhang
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China
- Department of Urology, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Ganlin Wang
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China
- Department of Urology, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Xiaonong Dai
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China
- Department of Urology, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Wenjian Li
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China.
- Department of Urology, Changzhou Third People's Hospital, Changzhou, 213001, China.
| |
Collapse
|
13
|
Pacchiarini MC, Di Mario F, Greco P, Fiaccadori E, Rossi GM. The Controversial Role of Glucocorticoids in Atheroembolic Renal Disease: A Narrative Review. J Clin Med 2024; 13:6441. [PMID: 39518580 PMCID: PMC11546646 DOI: 10.3390/jcm13216441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cholesterol crystal embolism (CCE) is an underrecognized multisystemic disease caused by the displacement of cholesterol crystals from atheromatous aortic plaques to distal vascular beds, leading to ischemic injury of target organs, particularly the kidneys, i.e., atheroembolic renal disease (ARD). According to recent research, cellular necrosis, induced by crystal-induced cytotoxicity, enhances the autoinflammatory cascade of the NLPR3 inflammasome, leading in turn to the so-called "necroinflammation". The purported involvement of the latter in CCE offers a rationale for the therapeutic approach with anti-inflammatory drugs such as glucocorticoids, the use of which has long been a matter of debate in CCE. Diagnostic delay and no consistent evidence regarding efficacious treatment, leading to inconsistency in clinical practice, may worsen the already poor prognosis of ARD. The possible role of glucocorticoids in the treatment of ARD is thereby herein explored in a narrative fashion, analyzing the limited data from case reports and clinical trials.
Collapse
Affiliation(s)
- Maria Chiara Pacchiarini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Nephrology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Francesca Di Mario
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Nephrology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Paolo Greco
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Nephrology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Enrico Fiaccadori
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Nephrology Unit, University Hospital of Parma, 43126 Parma, Italy
- Laboratorio di Immunopatologia Renale “Luigi Migone”, University of Parma, 43126 Parma, Italy
| | - Giovanni Maria Rossi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Nephrology Unit, University Hospital of Parma, 43126 Parma, Italy
- Laboratorio di Immunopatologia Renale “Luigi Migone”, University of Parma, 43126 Parma, Italy
| |
Collapse
|
14
|
Xu M, Qin Y, Xia Y, Wang G, Xiong Z, Song X, Ai L. Screening of oxalate-degrading probiotics and preventive effect of Lactiplantibacillus plantarum AR1089 on kidney stones. Food Funct 2024; 15:10163-10178. [PMID: 39300803 DOI: 10.1039/d4fo03133d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Calcium oxalate stone is the main type of kidney stone, so far there is no specific drug treatment. Here, we screened for oxalate-degrading probiotics and evaluated the potential preventive effect of lactic acid bacteria in rats with hyperoxaluria-induced kidney stones. The oxalate degradation efficiencies of the probiotics were determined to be 5-20% by in vitro experiments, of which the degradation efficiencies of Lactiplantibacillus plantarum AR342 and L. plantarum AR1089 were 17.32% and 14.15%, respectively. Through animal experiments, we found that L. plantarum AR1089 significantly attenuated kidney injury, as demonstrated by improving renal dysfunction and renal fibrosis, lowering creatinine and urea nitrogen levels. L. plantarum AR1089 was also effective in decreasing the number of calcium oxalate crystals in the urine and kidneys as well as ameliorating oxidative stress as evidenced by lowering the level of MDA and decreasing the level of SOD and CAT. Moreover, supplementation of L. plantarum AR1089 inhibited renal crystalline deposition by down-regulating the expression of KIM-1, OPN and MCP-1, and prevented hyperoxaluria-induced kidney stones by regulating the gut microbiota. Taken together, the present study shows that oral administration of L. plantarum AR1089, by attenuating kidney injury and regulating gut microbiota, is a potential therapy to reduce calcium oxalate crystals and prevent the progression of kidney stones.
Collapse
Affiliation(s)
- Mingyue Xu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yugang Qin
- Aerospace Center Hospital, Beijing 100049, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
15
|
Frasconi TM, Kurts C, Dhana E, Kaiser R, Reichelt M, Lukacs-Kornek V, Boor P, Hauser AE, Pascual-Reguant A, Bedoui S, Turner JE, Becker-Gotot J, Ludwig-Portugall I. Renal IL-23-Dependent Type 3 Innate Lymphoid Cells Link Crystal-induced Intrarenal Inflammasome Activation with Kidney Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:865-875. [PMID: 39072698 PMCID: PMC11372247 DOI: 10.4049/jimmunol.2400041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Chronic inflammasome activation in mononuclear phagocytes (MNPs) promotes fibrosis in various tissues, including the kidney. The cellular and molecular links between the inflammasome and fibrosis are unclear. To address this question, we fed mice lacking various immunological mediators an adenine-enriched diet, which causes crystal precipitation in renal tubules, crystal-induced inflammasome activation, and renal fibrosis. We found that kidney fibrosis depended on an intrarenal inflammasome-dependent type 3 immune response driven by its signature transcription factor Rorc (retinoic acid receptor-related orphan receptor C gene), which was partially carried out by type 3 innate lymphoid cells (ILC3s). The role of ILCs in the kidney is less well known than in other organs, especially that of ILC3. In this article, we describe that depletion of ILCs or genetic deficiency for Rorc attenuated kidney inflammation and fibrosis. Among the inflammasome-derived cytokines, only IL-1β expanded ILC3 and promoted fibrosis, whereas IL-18 caused differentiation of NKp46+ ILC3. Deficiency of the type 3 maintenance cytokine, IL-23, was more protective than IL-1β inhibition, which may be explained by the downregulation of the IL-1R, but not of the IL-23R, by ILC3 early in the disease, allowing persistent sensing of IL-23. Mechanistically, ILC3s colocalized with renal MNPs in vivo as shown by multiepitope-ligand cartography. Cell culture experiments indicated that renal ILC3s caused renal MNPs to increase TGF-β production that stimulated fibroblasts to produce collagen. We conclude that ILC3s link inflammasome activation with kidney inflammation and fibrosis and are regulated by IL-1β and IL-23.
Collapse
Affiliation(s)
- Teresa M Frasconi
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Ermanila Dhana
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Romina Kaiser
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Miriam Reichelt
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Peter Boor
- Institute of Pathology, Department of Nephrology, RWTH University, Aachen, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum, Leibniz Institute, Berlin, Germany
| | - Anna Pascual-Reguant
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum, Leibniz Institute, Berlin, Germany
| | - Sammy Bedoui
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jan-Eric Turner
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janine Becker-Gotot
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Isis Ludwig-Portugall
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
16
|
Jansson KP, Kuluva J, Zhang S, Swanson T, Zhang Y, Zimmerman KA, Fields TA, Wallace DP, Rowe PS, Stubbs JR. Osteopontin deletion attenuates cyst growth but exacerbates fibrosis in mice with cystic kidney disease. Physiol Rep 2024; 12:e70038. [PMID: 39238069 PMCID: PMC11377176 DOI: 10.14814/phy2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Osteopontin (OPN) is a multi-functional glycoprotein that coordinates the innate immune response, prevents nanocrystal formation in renal tubule fluid, and is a biomarker for kidney injury. OPN expression is markedly increased in cystic epithelial cells of polycystic kidney disease (PKD) kidneys; however, its role in PKD progression remains unclear. We investigated the in vitro effects of recombinant OPN on the proliferation of tubular epithelial cells from PKD and normal human kidneys and in vivo effects of OPN deletion on kidney cyst formation, fibrosis, and mineral metabolism in pcy/pcy mice, a non-orthologous model of autosomal-dominant PKD. In vitro studies revealed that OPN enhanced the proliferation of PKD cells but had no effect on normal kidney cells. Deletion of OPN in pcy/pcy mice significantly reduced kidney cyst burden; however, this was accompanied by increased fibrosis and no change in kidney function. The loss of OPN had no effect on kidney macrophage numbers, cyst epithelial cell proliferation, or apoptosis. Furthermore, there was no difference in kidney mineral deposition or mineral metabolism parameters between pcy/pcy mice with and without OPN expression. Global deletion of OPN reduced kidney cyst burden, while paradoxically exacerbating kidney fibrosis in mice with cystic kidney disease.
Collapse
Affiliation(s)
- Kyle P. Jansson
- The Jared Grantham Kidney InstituteUniversity of Kansas Medical CenterKansas CityKansasUSA
- Division of Nephrology and Hypertension, Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Jordan Kuluva
- The Jared Grantham Kidney InstituteUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Shiqin Zhang
- The Jared Grantham Kidney InstituteUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Taylor Swanson
- The Jared Grantham Kidney InstituteUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Yan Zhang
- The Jared Grantham Kidney InstituteUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Timothy A. Fields
- The Jared Grantham Kidney InstituteUniversity of Kansas Medical CenterKansas CityKansasUSA
- Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Darren P. Wallace
- The Jared Grantham Kidney InstituteUniversity of Kansas Medical CenterKansas CityKansasUSA
- Division of Nephrology and Hypertension, Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Peter S. Rowe
- The Jared Grantham Kidney InstituteUniversity of Kansas Medical CenterKansas CityKansasUSA
- Division of Nephrology and Hypertension, Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Jason R. Stubbs
- The Jared Grantham Kidney InstituteUniversity of Kansas Medical CenterKansas CityKansasUSA
- Division of Nephrology and Hypertension, Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
17
|
Virgincar RS, Wong AK, Barck KH, Webster JD, Hung J, Caplazi P, Choy MK, Forrest WF, Bell LC, de Crespigny AJ, Dunlap D, Jones C, Kim DE, Weimer RM, Shaw AS, Brightbill HD, Xie L. Diffusion tensor MRI is sensitive to fibrotic injury in a mouse model of oxalate-induced chronic kidney disease. Am J Physiol Renal Physiol 2024; 327:F235-F244. [PMID: 38867676 DOI: 10.1152/ajprenal.00099.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by inflammation and fibrosis in the kidney. Renal biopsies and estimated glomerular filtration rate (eGFR) remain the standard of care, but these endpoints have limitations in detecting the stage, progression, and spatial distribution of fibrotic pathology in the kidney. MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo both in clinical and preclinical studies. However, these imaging studies have not systematically identified fibrosis particularly deeper in the kidney where biopsy sampling is limited, or completed an extensive analysis of whole organ histology, blood biomarkers, and gene expression to evaluate the relative strengths and weaknesses of MRI for evaluating renal fibrosis. In this study, we performed DTI in the sodium oxalate mouse model of CKD. The DTI parameters fractional anisotropy, apparent diffusion coefficient, and axial diffusivity were compared between the control and oxalate groups with region of interest (ROI) analysis to determine changes in the cortex and medulla. In addition, voxel-based analysis (VBA) was implemented to systematically identify local regions of injury over the whole kidney. DTI parameters were found to be significantly different in the medulla by both ROI analysis and VBA, which also spatially matched with collagen III immunohistochemistry (IHC). The DTI parameters in this medullary region exhibited moderate to strong correlations with histology, blood biomarkers, hydroxyproline, and gene expression. Our results thus highlight the sensitivity of DTI to the heterogeneity of renal fibrosis and importance of whole kidney noninvasive imaging.NEW & NOTEWORTHY Chronic kidney disease (CKD) can be characterized by inflammation and fibrosis of the kidney. Although standard of care methods have been limited in scope, safety, and spatial distribution, MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo. In this study, we performed DTI in an oxalate mouse model of CKD to systematically identify local kidney injury. DTI parameters strongly correlated with histology, blood biomarkers, hydroxyproline, and gene expression.
Collapse
Affiliation(s)
- Rohan S Virgincar
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - Aaron K Wong
- Translational Immunology, Genentech, South San Francisco, California, United States
| | - Kai H Barck
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - Joshua D Webster
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Jeffrey Hung
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Patrick Caplazi
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Man Kin Choy
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - William F Forrest
- Bioinformatics, Genentech, South San Francisco, California, United States
| | - Laura C Bell
- Clinical Imaging Group, Genentech, South San Francisco, California, United States
| | - Alex J de Crespigny
- Clinical Imaging Group, Genentech, South San Francisco, California, United States
| | - Debra Dunlap
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Charles Jones
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Dong Eun Kim
- Translational Immunology, Genentech, South San Francisco, California, United States
| | - Robby M Weimer
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - Andrey S Shaw
- Research Biology, Genentech, South San Francisco, California, United States
| | - Hans D Brightbill
- Translational Immunology, Genentech, South San Francisco, California, United States
| | - Luke Xie
- Translational Imaging, Genentech, South San Francisco, California, United States
| |
Collapse
|
18
|
Athinarayanan SJ, Roberts CGP, Vangala C, Shetty GK, McKenzie AL, Weimbs T, Volek JS. The case for a ketogenic diet in the management of kidney disease. BMJ Open Diabetes Res Care 2024; 12:e004101. [PMID: 38677719 PMCID: PMC11057262 DOI: 10.1136/bmjdrc-2024-004101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
Ketogenic diets have been widely used for weight loss and are increasingly used in the management of type 2 diabetes. Despite evidence that ketones have multiple positive effects on kidney function, common misconceptions about ketogenic diets, such as high protein content and acid load, have prevented their widespread use in individuals with impaired kidney function. Clinical trial evidence focusing on major adverse kidney events is sparse. The aim of this review is to explore the effects of a ketogenic diet, with an emphasis on the pleiotropic actions of ketones, on kidney health. Given the minimal concerns in relation to the potential renoprotective effects of a ketogenic diet, future studies should evaluate the safety and efficacy of ketogenic interventions in kidney disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Weimbs
- Department of Molecular Cellular & Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Jeff S Volek
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Wang Z, Liu L, Li CY, Zhao YW, Tong XY, Cheng XY, Ouyang JM. Carboxymethylated Rhizoma alismatis polysaccharides reduces the risk of calcium oxalate stone formation by reducing cellular inflammation and oxidative stress. Urolithiasis 2024; 52:63. [PMID: 38613670 DOI: 10.1007/s00240-024-01565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
This study aims to elucidate the mechanism and potential of Rhizoma alismatis polysaccharides (RAPs) in preventing oxidative damage to human renal proximal tubule epithelial cells. The experimental approach involved incubating HK-2 cells with 100 nm calcium oxalate monohydrate for 24 h to establish a cellular injury model. Protection was provided by RAPs with varying carboxyl group contents: 3.57%, 7.79%, 10.84%, and 15.33%. The safeguarding effect of RAPs was evaluated by analyzing relevant cellular biochemical indicators. Findings demonstrate that RAPs exhibit notable antioxidative properties. They effectively diminish the release of reactive oxygen species, lactate dehydrogenase, and malondialdehyde, a lipid oxidation byproduct. Moreover, RAPs enhance superoxide dismutase activity and mitochondrial membrane potential while attenuating the permeability of the mitochondrial permeability transition pore. Additionally, RAPs significantly reduce levels of inflammatory factors, including NLRP3, TNF-α, IL-6, and NO. This reduction corresponds to the inhibition of overproduced pro-inflammatory mediator nitric oxide and the caspase 3 enzyme, leading to a reduction in cellular apoptosis. RAPs also display the ability to suppress the expression of the HK-2 cell surface adhesion molecule CD44. The observed results collectively underscore the substantial anti-inflammatory and anti-apoptotic potential of all four RAPs. Moreover, their capacity to modulate the expression of cell surface adhesion molecules highlights their potential in inhibiting the formation of kidney stones. Notably, RAP3, boasting the highest carboxyl group content, emerges as the most potent agent in this regard.
Collapse
Affiliation(s)
- Zhi Wang
- Department of urology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China
| | - Li Liu
- Department of urology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China
| | - Chuang-Ye Li
- Department of urology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China
| | - Yao-Wang Zhao
- Department of urology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China.
| | - Xin-Yi Tong
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xiao-Yan Cheng
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
20
|
Wu F, Chen C, Lin G, Wu C, Xie J, Lin K, Dai X, Chen Z, Ye K, Yuan Y, Chen Z, Ma H, Lin Z, Xu Y. Caspase-11/GSDMD contributes to the progression of hyperuricemic nephropathy by promoting NETs formation. Cell Mol Life Sci 2024; 81:114. [PMID: 38436813 PMCID: PMC10912150 DOI: 10.1007/s00018-024-05136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Hyperuricemia is an independent risk factor for chronic kidney disease (CKD) and promotes renal fibrosis, but the underlying mechanism remains largely unknown. Unresolved inflammation is strongly associated with renal fibrosis and is a well-known significant contributor to the progression of CKD, including hyperuricemia nephropathy. In the current study, we elucidated the impact of Caspase-11/Gasdermin D (GSDMD)-dependent neutrophil extracellular traps (NETs) on progressive hyperuricemic nephropathy. We found that the Caspase-11/GSDMD signaling were markedly activated in the kidneys of hyperuricemic nephropathy. Deletion of Gsdmd or Caspase-11 protects against the progression of hyperuricemic nephropathy by reducing kidney inflammation, proinflammatory and profibrogenic factors expression, NETs generation, α-smooth muscle actin expression, and fibrosis. Furthermore, specific deletion of Gsdmd or Caspase-11 in hematopoietic cells showed a protective effect on renal fibrosis in hyperuricemic nephropathy. Additionally, in vitro studies unveiled the capability of uric acid in inducing Caspase-11/GSDMD-dependent NETs formation, consequently enhancing α-smooth muscle actin production in macrophages. In summary, this study demonstrated the contributory role of Caspase-11/GSDMD in the progression of hyperuricemic nephropathy by promoting NETs formation, which may shed new light on the therapeutic approach to treating and reversing hyperuricemic nephropathy.
Collapse
Affiliation(s)
- Fan Wu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Guo Lin
- Department of Intensive Care Unit, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jingzhi Xie
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Kongwen Lin
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xingchen Dai
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zhengyue Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Keng Ye
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ying Yuan
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Huabin Ma
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zishan Lin
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
21
|
Meng W, Shen JJ, Liang TY, Wu Q, Wang LB, Huang D, Xu FP, Bai JY, Yang XJ, Shen PC. Gubentongluo decoction alleviates NLRP3 inflammasome in IgAN cell model. ALL LIFE 2023. [DOI: 10.1080/26895293.2022.2138560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Wei Meng
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiao-Jiao Shen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ting-Yu Liang
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qing Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Luo-Bing Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Di Huang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Fei-Peng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia-Yuan Bai
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xue-Jun Yang
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Pei-Cheng Shen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (20DZ2272200), Shanghai, People’s Republic of China
| |
Collapse
|
22
|
Xiong P, Zheng YY, Ouyang JM. Carboxylated Pocoa polysaccharides inhibited oxidative damage and inflammation of HK-2 cells induced by calcium oxalate nanoparticles. Biomed Pharmacother 2023; 169:115865. [PMID: 37972469 DOI: 10.1016/j.biopha.2023.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
The inhibitory effects of Chinese medicine Pocoa (PCPs) with different carboxyl group (-COOH) contents on oxidative damage and inflammatory response of renal epithelial cells and the influence of -COOH content in polysaccharides were investigated. HK-2 cell damage model was established by nanocalcium oxalate crystals (nanoCOM), and then PCPs with -COOH contents of 2.56% (PCP0), 7.48% (PCP1), 12.07% (PCP2), and 17.18% (PCP3) were used to protect the cells. PCPs could inhibit the damage of nanoCOM to HK-2 cells, increase cell viability, restore cytoskeleton and morphology, and improve lysosomal integrity. PCPs can reduce the oxidative stress response of nanoCOM to cells, inhibit the opening of mPTP and cell necrotic apoptosis, reduce the level of Ca2+ ions in cells, the production of ATP and MDA, and increase SOD expression. PCPs can also reduce the cellular inflammatory response caused by oxidative damage, and reduce the expression of nitric oxide (NO), inflammatory factors TNF-α, IL-6, IL-1β and MCP-1, as well as the content of inflammasome NLRP3. After protection, PCPs can inhibit the endocytosis of nanoCOM crystals by cells. With the increase in -COOH content in PCPs, its ability to inhibit nanoCOM cell damage, reduce oxidative stress, reduce inflammatory response, and inhibit crystal endocytosis increases, that is, PCP3 with the highest -COOH content, shows the best biological activity. Inhibiting cell damage and inflammation and reducing a large amount of endocytosis of crystals by cells are beneficial to inhibit the formation of kidney stones.
Collapse
Affiliation(s)
- Peng Xiong
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China
| | - Yu-Yun Zheng
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Jinan University, Guangzhou 510632, China; Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Guangzhou 510632, China.
| |
Collapse
|
23
|
Sabra MS, Hemida FK, Allam EAH. Adenine model of chronic renal failure in rats to determine whether MCC950, an NLRP3 inflammasome inhibitor, is a renopreventive. BMC Nephrol 2023; 24:377. [PMID: 38114914 PMCID: PMC10731818 DOI: 10.1186/s12882-023-03427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Chronic renal failure (CRF) is defined by a significant decline in renal function that results in decreased salt filtration and inhibition of tubular reabsorption, which ultimately causes volume enlargement. This study evaluated the potential renopreventive effects of the NLRP3 inflammasome inhibitor MCC950 in adenine-induced CRF in rats due to conflicting evidence on the effects of MCC950 on the kidney. METHODS Since the majority of the kidney tubular abnormalities identified in people with chronic renal disease are comparable to those caused by adding 0.75 percent of adenine powder to a rat's diet each day for four weeks, this method has received broad approval as a model for evaluating kidney damage. Throughout the test, blood pressure was checked weekly and at the beginning. Additionally, oxidative stress factors, urine sample examination, histological modifications, and immunohistochemical adjustments of caspase-3 and interleukin-1 beta (IL-1) levels in renal tissues were carried out. RESULTS Results revealed that MCC950, an inhibitor of the NLRP3 inflammasome, had a renopreventive effect, which was demonstrated by a reduction in blood pressure readings and an improvement in urine, serum, and renal tissue indicators that indicate organ damage. This was also demonstrated by the decrease in neutrophil gelatinase-associated lipocalin tubular expression (NGAL). The NLRP3 inflammasome inhibitor MCC950 was found to significantly alleviate the worsening renal cellular alterations evidenced by increased expression of caspase-3 and IL-1, according to immunohistochemical tests. CONCLUSION The NLRP3 inflammasome inhibitor MCC950 demonstrated renopreventive effects in the CRF rat model, suggesting that it might be used as a treatment strategy to stop the progression of CRF.
Collapse
Affiliation(s)
- Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Fahmy K Hemida
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Essmat A H Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
24
|
Casemayou A, Belliere J, Letavernier E, Colliou E, El Hachem H, Zarowski J, Bazin D, Kounde C, Piedrafita A, Feuillet G, Schanstra JP, Faguer S. Abcc6 deficiency prevents rhabdomyolysis-induced acute kidney injury. Sci Rep 2023; 13:21513. [PMID: 38057332 PMCID: PMC10700332 DOI: 10.1038/s41598-023-47894-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Rhabdomyolysis is a risk factor for acute kidney injury, transition towards chronic kidney disease, and death. The role of calcium phosphate deposits in the mechanisms of rhabdomyolysis-induced acute kidney injury (RAKI) is still unclear. Better insight of the role calcium in RAKI could lead to new therapeutic avenues. Here, we show in a mice model of RAKI that calcium phosphate deposits were frequent in the kidney (hydroxyapatite) and partly correlated with the severity of the kidney injury. However, the intensity of deposits was highly heterogeneous between mice. Treatment with sodium chloride, sodium bicarbonate or inorganic pyrophosphate (PPi; an inhibitor of the calcium phosphate crystallization), or combinations thereof, did not improve kidney outcomes and hydroxyapatite deposition during RAKI. Unexpectedly, Abcc6 knockout mice (ko), characterized by PPi deficiency, developed less severe RAKI despite similar rhabdomyolysis severity, and had similar hydroxyapatite deposition suggesting alternative mechanisms. This improved kidney outcome at day 2 translated to a trend in improved glomerular filtration rate at month 2 in Abcc6-/-mice and to significantly less interstitial fibrosis. In addition, whereas the pattern of infiltrating cells at day 2 was similar between wt and ko mice, kidneys of Abcc6-/- mice were characterized by more CD19+ B-cells, less CD3+ T-cells and a lower R1/R2 macrophage ratio at month 2. In summary, kidney calcium phosphate deposits are frequent in RAKI but hydration with sodium bicarbonate or sodium chloride does not modify the kidney outcome. Blocking ABCC6 emerges as a new option to prevent RAKI and subsequent transition toward kidney fibrosis.
Collapse
Affiliation(s)
- Audrey Casemayou
- Department of Nephrology and Organ Transplantation, Reference Centre for Rare Kidney Diseases (SORARE), French Intensive Care Renal Network (FIRN), University Hospital of Toulouse, 1, Avenue du Pr. Jean Poulhes, 31059, Toulouse Cedex, France
- National Institute of Health and Medical Research (INSERM), Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR 1297, Rangueil Hospital, 31000, Toulouse, France
- University Toulouse-3, 31000, Toulouse, France
| | - Julie Belliere
- Department of Nephrology and Organ Transplantation, Reference Centre for Rare Kidney Diseases (SORARE), French Intensive Care Renal Network (FIRN), University Hospital of Toulouse, 1, Avenue du Pr. Jean Poulhes, 31059, Toulouse Cedex, France
- National Institute of Health and Medical Research (INSERM), Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR 1297, Rangueil Hospital, 31000, Toulouse, France
- University Toulouse-3, 31000, Toulouse, France
| | - Emmanuel Letavernier
- National Institute of Health and Medical Research, (INSERM) UMR S 1155, Tenon Hospital, 75020, Paris, France
- Sorbonne University, 75020, Paris, France
- Department of Physiology, Tenon Hospital, Assistance Publique - Hôpitaux de Paris, 75020, Paris, France
| | - Eloïse Colliou
- Department of Nephrology and Organ Transplantation, Reference Centre for Rare Kidney Diseases (SORARE), French Intensive Care Renal Network (FIRN), University Hospital of Toulouse, 1, Avenue du Pr. Jean Poulhes, 31059, Toulouse Cedex, France
- National Institute of Health and Medical Research (INSERM), Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR 1297, Rangueil Hospital, 31000, Toulouse, France
- University Toulouse-3, 31000, Toulouse, France
| | - Hélène El Hachem
- Department of Nephrology and Organ Transplantation, Reference Centre for Rare Kidney Diseases (SORARE), French Intensive Care Renal Network (FIRN), University Hospital of Toulouse, 1, Avenue du Pr. Jean Poulhes, 31059, Toulouse Cedex, France
- National Institute of Health and Medical Research (INSERM), Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR 1297, Rangueil Hospital, 31000, Toulouse, France
| | - Jeremy Zarowski
- Department of Physiology, Tenon Hospital, Assistance Publique - Hôpitaux de Paris, 75020, Paris, France
| | - Dominique Bazin
- Laboratory of Chemistry and Physics, CNRS UMR 8000, University Paris XI, 91405, Orsay, France
| | - Clément Kounde
- Department of Nephrology and Organ Transplantation, Reference Centre for Rare Kidney Diseases (SORARE), French Intensive Care Renal Network (FIRN), University Hospital of Toulouse, 1, Avenue du Pr. Jean Poulhes, 31059, Toulouse Cedex, France
- National Institute of Health and Medical Research (INSERM), Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR 1297, Rangueil Hospital, 31000, Toulouse, France
| | - Alexis Piedrafita
- Department of Nephrology and Organ Transplantation, Reference Centre for Rare Kidney Diseases (SORARE), French Intensive Care Renal Network (FIRN), University Hospital of Toulouse, 1, Avenue du Pr. Jean Poulhes, 31059, Toulouse Cedex, France
- National Institute of Health and Medical Research (INSERM), Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR 1297, Rangueil Hospital, 31000, Toulouse, France
- University Toulouse-3, 31000, Toulouse, France
| | - Guylène Feuillet
- National Institute of Health and Medical Research (INSERM), Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR 1297, Rangueil Hospital, 31000, Toulouse, France
| | - Joost P Schanstra
- National Institute of Health and Medical Research (INSERM), Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR 1297, Rangueil Hospital, 31000, Toulouse, France
- Department of Physiology, Tenon Hospital, Assistance Publique - Hôpitaux de Paris, 75020, Paris, France
| | - Stanislas Faguer
- Department of Nephrology and Organ Transplantation, Reference Centre for Rare Kidney Diseases (SORARE), French Intensive Care Renal Network (FIRN), University Hospital of Toulouse, 1, Avenue du Pr. Jean Poulhes, 31059, Toulouse Cedex, France.
- National Institute of Health and Medical Research (INSERM), Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR 1297, Rangueil Hospital, 31000, Toulouse, France.
- Department of Physiology, Tenon Hospital, Assistance Publique - Hôpitaux de Paris, 75020, Paris, France.
| |
Collapse
|
25
|
Duan C, Liu H, Yang X, Liu J, Deng Y, Wang T, Xing J, Hu Z, Xu H. Sirtuin1 inhibits calcium oxalate crystal-induced kidney injury by regulating TLR4 signaling and macrophage-mediated inflammatory activation. Cell Signal 2023; 112:110887. [PMID: 37717713 DOI: 10.1016/j.cellsig.2023.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Sirtuin1 (Sirt1) activation significantly attenuated calcium oxalate (CaOx) crystal deposition and renal inflammatory injury by regulating renal immune microenvironment. Here, to elucidate the molecular mechanism underlying the therapeutic effects of Sirt1 on macrophage related inflammation and tubular epithelial cells (TECs) necrosis, we constructed a macrophage and CaOx monohydrate (COM)-stimulated tubular cell co-culture system to mimic immune microenvironment in kidney and established a mouse model of CaOx nephrocalcinosis in wild-type and myeloid-specific Sirt1 knockout mice. Target prediction analyses of Gene Expression Omnibus Datasets showed that only miR-34b-5p is regulated by lipopolysaccharides and upregulated by SRT1720 and targets the TLR4 3'-untranslated region. In vitro, SRT1720 suppressed TLR4 expression and M1 macrophage polarization and decreased reactive oxygen species (ROS) production and mitochondrial damage in COM-stimulated TECs by targeting miR-34b-5p. Mechanically, Sirt1 promoted miR-34b-5p expression by suppressing the tri-methylation of H3K27, which directly bound to the miR-34b-5p promoter and abolished the miR-34b-5p transcription. Furthermore, loss of Sirt1 aggravated CaOx nephrocalcinosis-induced inflammatory and oxidative kidney injury, while AgomiR-34b reversed these effects. Therefore, our data suggested that Sirt1 inhibited TLR4 signaling and M1 macrophage polarization and decreased inflammatory and oxidative injury of TECs in vitro and in vivo.
Collapse
Affiliation(s)
- Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 230000 Hefei, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Jianhe Liu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650000 Kunming, China
| | - Yaoliang Deng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 530000 Nanning, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, 361000 Xiamen, China
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, 361000 Xiamen, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China.
| | - Hua Xu
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, 430000 Wuhan, China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China; Department of Urology, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China.; Taikang Center for Life and Medical Sciences, Wuhan University, 430000 Wuhan, China.
| |
Collapse
|
26
|
Liu L, Lin C, Li X, Cheng Y, Wang R, Luo C, Zhao X, Jiang Z. Protective Effect of Alkaline Mineral Water on Calcium Oxalate-Induced Kidney Injury in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4559802. [PMID: 37920186 PMCID: PMC10620026 DOI: 10.1155/2023/4559802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/17/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Background Kidney stone disease induces chronic renal insufficiency by crystal-induced renal tubular epithelial cell injury. It has been reported that the prevalence of kidney stone disease is increasing, accompanied by the high recurrence rate. Alkaline mineral water has been reported to possess beneficial effects to attenuate inflammation. Here, we explored the potential protective effects and underlying mechanisms of alkaline mineral water against calcium oxalate-induced kidney injury. Methods We performed the mice kidney stone model by administering glyoxylate at 100 mg/kg once daily for 7 days. To assess the effects of alkaline mineral water on oxalate-induced kidney injury, mice drank different water (distilled water, natural mineral water at pH = 8.0, as well as natural mineral water at pH = 9.3) for 7 days, respectively, followed by glyoxylate exposure. After collection, crystal formation, kidney injury and cell apoptosis, fibrosis, oxidative stress, as well as inflammation were measured. Results Our results showed that glyoxylate treatment led to kidney crystal formation and fibrosis, which can be attenuated by drinking alkaline mineral water. Furthermore, alkaline mineral water also reduced kidney injury and cell apoptosis, oxidative stress, and inflammation. Conclusion Alkaline mineral water supplement prevents progression of glyoxylate-induced kidney stones through alleviating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chen Lin
- Vectors and Parasitosis Control and Prevention Section, Center of Disease Prevention and Control in Pudong New Area of Shanghai, Shanghai, China
| | - Xiu Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yulan Cheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Chao Luo
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Zhitao Jiang
- College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China
| |
Collapse
|
27
|
Zambom FFF, Albino AH, Tessaro HM, Foresto-Neto O, Malheiros DMAC, Saraiva Camara NO, Zatz R. Chronic environmental hypoxia attenuates innate immunity activation and renal injury in two CKD models. Am J Physiol Renal Physiol 2023; 325:F283-F298. [PMID: 37439199 DOI: 10.1152/ajprenal.00200.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 06/13/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
Tissue hypoxia has been pointed out as a major pathogenic factor in chronic kidney disease (CKD). However, epidemiological and experimental evidence inconsistent with this notion has been described. We have previously reported that chronic exposure to low ambient Po2 promoted no renal injury in normal rats and in rats with 5/6 renal ablation (Nx) unexpectedly attenuated renal injury. In the present study, we investigated whether chronic exposure to low ambient Po2 would also be renoprotective in two additional models of CKD: adenine (ADE) excess and chronic nitric oxide (NO) inhibition. In both models, normobaric ambient hypoxia attenuated the development of renal injury and inflammation. In addition, renal hypoxia limited the activation of NF-κB and NOD-like receptor family pyrin domain containing 3 inflammasome cascades as well as oxidative stress and intrarenal infiltration by angiotensin II-positive cells. Renal activation of hypoxia-inducible factor (HIF)-2α, along with other adaptive mechanisms to hypoxia, may have contributed to these renoprotective effects. The present findings may contribute to unravel the pathogenesis of CKD and to the development of innovative strategies to arrest its progression.NEW & NOTEWORTHY Hypoxia is regarded as a major pathogenic factor in chronic kidney disease (CKD). In disagreement with this view, we show here that sustained exposure to low ambient Po2 lessened kidney injury and inflammation in two CKD models: adenine (ADE) excess and chronic nitric oxide (NO) inhibition. Together with our previous findings in the remnant kidney, these observations indicate that local changes elicited by hypoxia may exert renoprotection in CKD, raising the prospect of novel therapeutic strategies for this disease.
Collapse
Affiliation(s)
| | - Amanda Helen Albino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Helena Mendonça Tessaro
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Orestes Foresto-Neto
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Camara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Saleem M, Shahjahan K, Iftikhar H. Idiopathic Oxalate Nephropathy Leading to End-Stage Kidney Disease: A Case Report. Cureus 2023; 15:e42402. [PMID: 37621792 PMCID: PMC10446903 DOI: 10.7759/cureus.42402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/26/2023] Open
Abstract
Oxalate nephropathy represents a frequently overlooked etiology of renal failure, characterized by the deposition of calcium oxalate crystals within the renal parenchyma. This progressive form of kidney disease is marked by a significant increase in serum creatinine (Cr) level accompanied by evidence of oxalate crystal deposition on renal biopsy causing tubular obstruction and tubular injury leading to fibrosis. In all instances of oxalate nephropathy, examination of stones consistently exhibits multiple birefringent calcium oxalate crystals under polarized light. This case report details the clinical course of a patient who initially presented with progressively worsening renal function and ultimately developed end-stage kidney disease (ESKD) as a consequence of idiopathic hyperoxaluria.
Collapse
Affiliation(s)
- Maryam Saleem
- Nephrology, Ohio Valley Nephrology Associates, Owensboro, USA
- Nephrology, Washington University School of Medicine, St. Louis, USA
- Internal Medicine, Waterbury Hospital, Waterbury, USA
| | | | - Hassaan Iftikhar
- Nephrology, Washington University School of Medicine, Saint Louis, USA
- Internal Medicine, Saint Francis Medical Center, Trenton, USA
- Nephrology, Ohio Valley Nephrology Associates, Owensboro, USA
| |
Collapse
|
29
|
Yan Q, Hu Q, Li G, Qi Q, Song Z, Shu J, Liang H, Liu H, Hao Z. NEAT1 Regulates Calcium Oxalate Crystal-Induced Renal Tubular Oxidative Injury via miR-130/IRF1. Antioxid Redox Signal 2023; 38:731-746. [PMID: 36242511 DOI: 10.1089/ars.2022.0008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Calcium oxalate (CaOx) crystal deposition induces damage to the renal tubular epithelium, increases epithelial adhesion, and contributes to CaOx nephrocalcinosis. The long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) is thought to be involved in this process. In this study, we aimed to investigate the mechanism by which NEAT1 regulates renal tubular epithelium in response to inflammatory and oxidative injury triggered by CaOx crystals. Results: As CaOx crystals were deposited in mouse kidney tissue, the expression of NEAT1 was significantly elevated and positively correlated with interferon regulatory factor 1 (IRF1), Toll-like receptor 4 (TLR4), and NF-κB. NEAT1 targets and inhibits miR-130a-3p as a competitor to endogenous RNA. miR-130 binds to and exerts inhibitory effects on the 3'-untranslated region of IRF1. After transfected with silence-NEAT1, IRF1, TLR4, and NF-κB were also variously inhibited, and oxidative damage in renal calcinosis was subsequently attenuated. When we simultaneously inhibited NEAT1 and miR-130, renal tubular injury was exacerbated. Innovation and Conclusion: We found that the lncRNA NEAT1 can enhance IRF1 signaling through targeted repression of miR-130a-3p and activate TLR4/NF-κB pathways to promote oxidative damage during CaOx crystal deposition. This provides an explanation for the tubular epithelial damage caused by CaOx crystals and offers new ideas and drug targets for the prevention and treatment of CaOx nephrocalcinosis.
Collapse
Affiliation(s)
- Qunsheng Yan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Qingqing Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Guoxiang Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Qiao Qi
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Ziyan Song
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Jie Shu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Hu Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China.,Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| |
Collapse
|
30
|
The Role of Ketone Bodies in Various Animal Models of Kidney Disease. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
The kidney is a vital organ that carries out significant metabolic functions in our body. Due to the complexity of its role, the kidney is also susceptible to many disease conditions, such as acute kidney injury (AKI) and chronic kidney disease (CKD). Despite the prevalence and our increased understanding of the pathophysiology of both AKI and CKD as well as the transition of AKI to CKD, no well-established therapeutics have been applied clinically to these conditions, rendering an urgent need for a novel potential therapeutic target to be developed. In this article, we reviewed the function of ketone bodies in some common kidney conditions, such as drug-induced nephrotoxicity, ischemia and reperfusion injury, fibrosis development, diabetic kidney disease, kidney aging, hypertension, and CKD progression. All the selected studies reviewed were performed in animal models by primarily utilizing rodents, which also provide invaluable sources for future clinical applications. Ketone bodies have shown significant renal protective properties via attenuation of oxidative stress, increased expression of anti-inflammatory proteins, gene regulation, and a reduction of apoptosis of renal cells. A physiological level of ketone bodies could be achieved by fasting, a ketogenic diet, and an exogenous ketone supplement. Finally, the limitations of the long-term ketogenic diet were also discussed.
Collapse
|
31
|
Englisch CN, Paulsen F, Tschernig T. TRPC Channels in the Physiology and Pathophysiology of the Renal Tubular System: What Do We Know? Int J Mol Sci 2022; 24:ijms24010181. [PMID: 36613622 PMCID: PMC9820145 DOI: 10.3390/ijms24010181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The study of transient receptor potential (TRP) channels has dramatically increased during the past few years. TRP channels function as sensors and effectors in the cellular adaptation to environmental changes. Here, we review literature investigating the physiological and pathophysiological roles of TRPC channels in the renal tubular system with a focus on TRPC3 and TRPC6. TRPC3 plays a key role in Ca2+ homeostasis and is involved in transcellular Ca2+ reabsorption in the proximal tubule and the collecting duct. TRPC3 also conveys the osmosensitivity of principal cells of the collecting duct and is implicated in vasopressin-induced membrane translocation of AQP-2. Autosomal dominant polycystic kidney disease (ADPKD) can often be attributed to mutations of the PKD2 gene. TRPC3 is supposed to have a detrimental role in ADPKD-like conditions. The tubule-specific physiological functions of TRPC6 have not yet been entirely elucidated. Its pathophysiological role in ischemia-reperfusion injuries is a subject of debate. However, TRPC6 seems to be involved in tumorigenesis of renal cell carcinoma. In summary, TRPC channels are relevant in multiples conditions of the renal tubular system. There is a need to further elucidate their pathophysiology to better understand certain renal disorders and ultimately create new therapeutic targets to improve patient care.
Collapse
Affiliation(s)
- Colya N. Englisch
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
- Correspondence: ; Tel.: +49-6841-1626-100
| |
Collapse
|
32
|
Nidorf SM. The challenge of reducing residual cardiovascular risk in patients with chronic kidney disease. Eur Heart J 2022; 43:4845-4847. [PMID: 36282732 DOI: 10.1093/eurheartj/ehac531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Stefan Mark Nidorf
- GenesisCare, Cardiology, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, Perth, WA, Australia
| |
Collapse
|
33
|
Jeong J, Lim MK, Han EH, Lee SH, Kang S, Lee S. Extract of Aster glehni ameliorates potassium oxonate-induced hyperuricemia by modulating renal urate transporters and renal inflammation by suppressing TLR4/MyD88 signaling. Food Sci Biotechnol 2022; 31:1729-1739. [PMID: 36312990 PMCID: PMC9596640 DOI: 10.1007/s10068-022-01153-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies suggest that Aster glehni extract (AGE) reduces hyperuricemia by preventing xanthine oxidase activity. However, its effect on renal urate transporters responsible for modulating urate excretion has not been examined. This study investigated whether AGE affects gene expressions of urate transporters using potassium oxonate (PO)-induced hyperuricemia rats. Furthermore, the underlying mechanisms of AGE were explored to ameliorate renal inflammation and injury by PO. AGE effectively restored PO-induced dysregulation of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), ATP-binding cassette transporter subfamily G member 2 (ABCG2), organic anion transporter 1 (OAT1), and organic cation transporter 1 (OCT1), resulting in increasing urate excretion. Additionally, AGE suppressed toll-like receptor 4/myeloid differentiation factor 88 (TLR4/MyD88) signaling, phosphorylation of nuclear factor kappa B (NF-κB), and renal production of IFN-γ, IL-1β, TNF-α, and IL-6. These results suggest that AGE may ameliorate PO-induced hyperuricemia by modulating renal transporters, and further renal inflammation via inhibiting the TLR4/MyD88/NF-κB signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01153-5.
Collapse
Affiliation(s)
- Jeongho Jeong
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Mi Kyung Lim
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Eun Hye Han
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Sang-Ho Lee
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Soyeon Lee
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
34
|
Swenson-Fields KI, Ward CJ, Lopez ME, Fross S, Heimes Dillon AL, Meisenheimer JD, Rabbani AJ, Wedlock E, Basu MK, Jansson KP, Rowe PS, Stubbs JR, Wallace DP, Vitek MP, Fields TA. Caspase-1 and the inflammasome promote polycystic kidney disease progression. Front Mol Biosci 2022; 9:971219. [PMID: 36523654 PMCID: PMC9745047 DOI: 10.3389/fmolb.2022.971219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/15/2022] [Indexed: 05/03/2024] Open
Abstract
We and others have previously shown that the presence of renal innate immune cells can promote polycystic kidney disease (PKD) progression. In this study, we examined the influence of the inflammasome, a key part of the innate immune system, on PKD. The inflammasome is a system of molecular sensors, receptors, and scaffolds that responds to stimuli like cellular damage or microbes by activating Caspase-1, and generating critical mediators of the inflammatory milieu, including IL-1β and IL-18. We provide evidence that the inflammasome is primed in PKD, as multiple inflammasome sensors were upregulated in cystic kidneys from human ADPKD patients, as well as in kidneys from both orthologous (PKD1 RC/RC or RC/RC) and non-orthologous (jck) mouse models of PKD. Further, we demonstrate that the inflammasome is activated in female RC/RC mice kidneys, and this activation occurs in renal leukocytes, primarily in CD11c+ cells. Knock-out of Casp1, the gene encoding Caspase-1, in the RC/RC mice significantly restrained cystic disease progression in female mice, implying sex-specific differences in the renal immune environment. RNAseq analysis implicated the promotion of MYC/YAP pathways as a mechanism underlying the pro-cystic effects of the Caspase-1/inflammasome in females. Finally, treatment of RC/RC mice with hydroxychloroquine, a widely used immunomodulatory drug that has been shown to inhibit the inflammasome, protected renal function specifically in females and restrained cyst enlargement in both male and female RC/RC mice. Collectively, these results provide evidence for the first time that the activated Caspase-1/inflammasome promotes cyst expansion and disease progression in PKD, particularly in females. Moreover, the data suggest that this innate immune pathway may be a relevant target for therapy in PKD.
Collapse
Affiliation(s)
- Katherine I. Swenson-Fields
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Christopher J. Ward
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Micaila E. Lopez
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shaneann Fross
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anna L. Heimes Dillon
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - James D. Meisenheimer
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Adib J. Rabbani
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Emily Wedlock
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Malay K. Basu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kyle P. Jansson
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Peter S. Rowe
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jason R. Stubbs
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Darren P. Wallace
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael P. Vitek
- Duke University Medical Center, Durham, NC, United States
- Resilio Therapeutics LLC, Durham, NC, United States
| | - Timothy A. Fields
- The Jared J. Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
35
|
Liu CJ, Jan HC, Huang HS. Risks of Carotid Artery Stenosis and Atherosclerotic Cardiovascular Disease in Patients with Calcium Kidney Stone: Assessment of Systemic Inflammatory Biomarkers. J Pers Med 2022; 12:jpm12101697. [PMID: 36294835 PMCID: PMC9604970 DOI: 10.3390/jpm12101697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
(1) Background: To assess the clinical significance of preoperative inflammatory biomarkers combined with atherosclerotic cardiovascular disease (ASCVD) risk score to evaluate carotid artery stenosis in patients with calcium kidney stones; (2) Methods: We conducted a prospective observational case-control study, enrolling 74 patients with calcium kidney stones and 66 age- and sex-matched healthy controls. We calculated the inflammatory biomarkers including the neutrophil-lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), and systemic inflammation response index (SIRI). An ultrasound of the carotid arteries was performed on all participants to identify the severity of the stenosis; (3) Results: All inflammatory biomarkers and the severity of carotid artery stenosis were higher in the calcium kidney stone group than in controls. After stratification of ASCVD, inflammatory biomarkers and carotid artery stenosis severity were still significantly higher in the calcium kidney stone group. Multivariate analyses showed that calcium kidney stones significantly increased the risk of ASCVD and carotid artery stenosis. In multivariate linear logistic regression analyses, calcium kidney stone and ASCVD score had a significant association with carotid artery occlusion, but SIRI did not; (4) Conclusions: Calcium kidney stone is associated with higher levels of inflammatory biomarkers and carotid artery stenosis. Calcium kidney stone is associated with higher levels of inflammatory biomarkers and carotid artery stenosis.
Collapse
Affiliation(s)
- Chan-Jung Liu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hau-Chern Jan
- Division of Urology, Department of Surgery, National Cheng Kung University Hospital Dou-Liou Branch, Yunlin 640, Taiwan
| | - Ho-Shiang Huang
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5251); Fax: +886-6-2766179
| |
Collapse
|
36
|
Yifan Z, Luming S, Wei C, Luwei X, Zheng X, Ruipeng J. Cystine crystal-induced reactive oxygen species associated with NLRP3 inflammasome activation: implications for the pathogenesis of cystine calculi. Int Urol Nephrol 2022; 54:3097-3106. [PMID: 36085346 DOI: 10.1007/s11255-022-03347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE To investigate whether cystine crystal-induced production of reactive oxygen species (ROS) and activation of NLRP3 inflammasome contribute to cystine calculi formation. METHODS Slc7a9-knockout rats were created as cystine calculi animal models. Kidney histological examination using TEM and immunohistochemistry were performed. The protein expression of NLRP3 and IL-1β and the concentrations of oxidative stress markers such as ROS, MDA and H2O2 in kidney tissues were estimated. In parallel, HK-2 human renal proximal tubule cells were exposed to cystine crystals and NAC treatment. The protein and mRNA expression levels of NLRP3 were evaluated. Finally, cell apoptosis and cystine crystal adherence were also assessed. RESULTS Activation of the NLRP3 inflammasome and marked elevations in MDA, H2O2 and ROS levels were observed both in vivo and in vitro. In particular, the protein and mRNA expression of NLRP3 was significantly increased by cystine crystals, but could be restored by an inhibitor of ROS. In addition, cell apoptosis and cystine crystal adherence were promoted by the NLRP3 inflammasome. The expression of CD44, OPN and HA in HK-2 cells was markedly increased by cystine crystals, but could be decreased by NLRP3 siRNA treatment. CONCLUSION Notably, we found that the activation of NLRP3 by cystine crystal-induced ROS production was of major importance in the pathogenesis of cystine calculi formation.
Collapse
Affiliation(s)
- Zhang Yifan
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Shen Luming
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121#, Jiangjiayuan, Nanjing, 210000, China
| | - Chen Wei
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Xu Luwei
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Xu Zheng
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jia Ruipeng
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| |
Collapse
|
37
|
Jing GH, Liu YD, Liu JN, Jin YS, Yu SL, An RH. Puerarin prevents calcium oxalate crystal-induced renal epithelial cell autophagy by activating the SIRT1-mediated signaling pathway. Urolithiasis 2022; 50:545-556. [PMID: 35913552 DOI: 10.1007/s00240-022-01347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Calcium oxalate (CaOx) crystals can activate autophagy, causing damage to renal tubular epithelial cells (TECs). Puerarin has been shown to have protective and therapeutic effects against a variety of diseases by inhibiting autophagy activation. However, the protective effect of puerarin against CaOx crystals and the underlying molecular mechanisms are unclear. Cell Counting Kit-8 (CCK-8) assays were used to evaluate the effects of puerarin on cell viability. Intracellular reactive oxygen species (ROS) levels were measured by the cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Immunofluorescence, immunohistochemistry, and western blotting were used to examine the expression of SIRT1, Beclin1, p62, and LC3, and explore the underlying molecular mechanisms in vivo and in vitro. Puerarin treatment significantly attenuated CaOx crystal-induced autophagy of TECs and CaOx cytotoxicity to TECs by altering SIRT1 expression in vitro and in vivo, whereas the SIRT1-specific inhibitor EX527 exerted contrasting effects. In addition, we found that the protective effect of puerarin was related to the SIRT1/AKT/p38 signaling pathway. The findings suggest that puerarin regulates CaOx crystal-induced autophagy by activating the SIRT1-mediated signaling pathway, and they suggest a series of potential therapeutic targets and strategies for treating nephrolithiasis.
Collapse
Affiliation(s)
- Guan-Hua Jing
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ya-Dong Liu
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Nan Liu
- Department of Urology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yin-Shan Jin
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi-Liang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Rui-Hua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
38
|
Collins MT, Marcucci G, Anders HJ, Beltrami G, Cauley JA, Ebeling PR, Kumar R, Linglart A, Sangiorgi L, Towler DA, Weston R, Whyte MP, Brandi ML, Clarke B, Thakker RV. Skeletal and extraskeletal disorders of biomineralization. Nat Rev Endocrinol 2022; 18:473-489. [PMID: 35578027 DOI: 10.1038/s41574-022-00682-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
The physiological process of biomineralization is complex and deviation from it leads to a variety of diseases. Progress in the past 10 years has enhanced understanding of the genetic, molecular and cellular pathophysiology underlying these disorders; sometimes, this knowledge has both facilitated restoration of health and clarified the very nature of biomineralization as it occurs in humans. In this Review, we consider the principal regulators of mineralization and crystallization, and how dysregulation of these processes can lead to human disease. The knowledge acquired to date and gaps still to be filled are highlighted. The disorders of mineralization discussed comprise a broad spectrum of conditions that encompass bone disorders associated with alterations of mineral quantity and quality, as well as disorders of extraskeletal mineralization (hyperphosphataemic familial tumoural calcinosis). Included are disorders of alkaline phosphatase (hypophosphatasia) and phosphate homeostasis (X-linked hypophosphataemic rickets, fluorosis, rickets and osteomalacia). Furthermore, crystallopathies are covered as well as arterial and renal calcification. This Review discusses the current knowledge of biomineralization derived from basic and clinical research and points to future studies that will lead to new therapeutic approaches for biomineralization disorders.
Collapse
Affiliation(s)
- Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA.
| | - Gemma Marcucci
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Department of Medicine IV, Hospital of the University of Munich, Ludwig-Maximilians University, Munich, Germany
| | - Giovanni Beltrami
- Department Paediatric Orthopedic Oncology, Careggi and Meyer Children Hospital, Florence, Italy
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Rajiv Kumar
- Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Agnès Linglart
- APHP, Endocrinologie et diabète de l'enfant, Paris, France
| | - Luca Sangiorgi
- Medical Genetics and Skeletal Rare Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Dwight A Towler
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ria Weston
- Cardiovascular Research Group, Manchester Metropolitan University, Manchester, UK
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St Louis, St Louis, MO, USA
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Wang MX, Wang MM, Liu C, Chen JS, Liu JS, Guo X, Zhang MQ, Zhang J, Sun JY, Liao ZX. A geniposide-phospholipid complex ameliorates posthyperuricemia chronic kidney disease induced by inflammatory reactions and oxidative stress. Eur J Pharmacol 2022; 930:175157. [PMID: 35870480 DOI: 10.1016/j.ejphar.2022.175157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/26/2022]
Abstract
Hyperuricemia is a common metabolic disease and is one of the factors that could induce chronic kidney disease (CKD). Geniposide (GEN) is a typical natural iridoid glucoside compound with a series of biological activities, but the poor bioavailability of GEN limits its clinical application. In this context, the pharmacological activity of the geniposide-phospholipid complex (GEN-PLC) in ameliorating posthyperuricemia CKD was evaluated by in vitro and in vivo experiments in this study. In vitro cell experiments showed that GEN-PLC treatment markedly decreased inflammatory cytokine levels and reactive oxygen species levels compared with those of GEN in uric acid-treated HKC cells. In vivo research results confirmed that a high concentration of uric acid could cause CKD by increasing inflammatory cytokines and reactive oxygen species in hyperuricemic mice. At the same time, GEN-PLC could regulate the PI3K/AKT/NF-κB and Keap1/Nrf2/HO-1 signaling pathways to effectively inhibit the inflammatory response and oxidative stress, thereby ameliorating posthyperuricemia CKD, and the therapeutic effect was better than that of GEN. In addition, the preparation technology of GEN-PLC was optimized, and the physiochemical analysis explained the intermolecular interactions of the two components. Based on the research results, GEN-PLC could enhance the bioavailability of GEN and become a promising candidate for clinical drug development.
Collapse
Affiliation(s)
- Mu-Xuan Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, PR China
| | - Min-Min Wang
- Taian Traditional Chinese Medicine Hospital, Tai'an, 271000, PR China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Jia-Shu Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Jian-Shu Liu
- Shanxi Functional Food Engineering Center Co. Ltd, Xian, 710000, PR China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Meng-Qi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Jing Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Jin-Yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|
40
|
Demoulin N, Aydin S, Gillion V, Morelle J, Jadoul M. Pathophysiology and Management of Hyperoxaluria and Oxalate Nephropathy: A Review. Am J Kidney Dis 2022; 79:717-727. [PMID: 34508834 DOI: 10.1053/j.ajkd.2021.07.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023]
Abstract
Hyperoxaluria results from either inherited disorders of glyoxylate metabolism leading to hepatic oxalate overproduction (primary hyperoxaluria), or increased intestinal oxalate absorption (secondary hyperoxaluria). Hyperoxaluria may lead to urinary supersaturation of calcium oxalate and crystal formation, causing urolithiasis and deposition of calcium oxalate crystals in the kidney parenchyma, a condition termed oxalate nephropathy. Considerable progress has been made in the understanding of pathophysiological mechanisms leading to hyperoxaluria and oxalate nephropathy, whose diagnosis is frequently delayed and prognosis too often poor. Fortunately, novel promising targeted therapeutic approaches are on the horizon in patients with primary hyperoxaluria. Patients with secondary hyperoxaluria frequently have long-standing hyperoxaluria-enabling conditions, a fact suggesting the role of triggers of acute kidney injury such as dehydration. Current standard of care in these patients includes management of the underlying cause, high fluid intake, and use of calcium supplements. Overall, prompt recognition of hyperoxaluria and associated oxalate nephropathy is crucial because optimal management may improve outcomes.
Collapse
Affiliation(s)
- Nathalie Demoulin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Selda Aydin
- Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Valentine Gillion
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Johann Morelle
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Michel Jadoul
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
41
|
Abstract
Medications are a common cause of AKI especially for patients admitted to hospital wards and the intensive care unit. Although drug-related kidney injury occurs through different mechanisms, this review will focus on three specific types of tubulointerstitial injury. Direct acute tubular injury develops from several medications, which are toxic to various cellular functions. Their excretory pathways through the proximal tubules contribute further to AKI. Drug-induced AKI may also develop through induction of inflammation within the tubulointerstitium. Medications can elicit a T cell-mediated immune response that promotes the development of acute interstitial nephritis leading to AKI. Although less common, a third pathway to kidney injury results from the insolubility of drugs in the urine leading to their precipitation as crystals within distal tubular lumens, causing a crystalline-related AKI. Intratubular obstruction, direct tubular injury, and localized inflammation lead to AKI. Clinicians should be familiar with the pathogenesis and clinical-pathologic manifestations of these forms of kidney injury. Prevention and treatment of AKI relies on understanding the pathogenesis and judiciously using these agents in settings where AKI risk is high.
Collapse
Affiliation(s)
- Mark A Perazella
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut .,Veteran's Affairs Medical Center, West Haven, Connecticut
| | - Mitchell H Rosner
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
42
|
Shin S, Ibeh CL, Awuah Boadi E, Choi BE, Roy SK, Bandyopadhyay BC. Hypercalciuria switches Ca 2+ signaling in proximal tubular cells, induces oxidative damage to promote calcium nephrolithiasis. Genes Dis 2022; 9:531-548. [PMID: 35224165 PMCID: PMC8843860 DOI: 10.1016/j.gendis.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
Proximal tubule (PT) transports most of the renal Ca2+, which was usually described as paracellular (passive). We found a regulated Ca2+ entry pathway in PT cells via the apical transient receptor potential canonical 3 (TRPC3) channel, which initiates transcellular Ca2+ transport. Although TRPC3 knockout (-/-) mice were mildly hypercalciuric and displayed luminal calcium phosphate (CaP) crystals at Loop of Henle (LOH), no CaP + calcium oxalate (CaOx) mixed urine crystals were spotted, which are mostly found in calcium nephrolithiasis (CaNL). Thus, we used oral calcium gluconate (CaG; 2%) to raise the PT luminal [Ca2+]o further in TRPC3 -/- mice for developing such mixed stones to understand the mechanistic role of PT-Ca2+ signaling in CaNL. Expectedly, CaG-treated mice urine samples presented with numerous mixed crystals with remains of PT cells, which were pronounced in TRPC3 -/- mice, indicating PT cell damage. Notably, PT cells from CaG-treated groups switched their mode of Ca2+ entry from receptor-operated to store-operated pathway with a sustained rise in intracellular [Ca2+] ([Ca2+]i), indicating the stagnation in PT Ca2+ transport. Moreover, those PT cells from CaG-treated groups demonstrated an upregulation of calcification, inflammation, fibrotic, oxidative stress, and apoptotic genes; effects of which were more robust in TRPC3 ablated condition. Furthermore, kidneys from CaG-treated groups exhibited fibrosis, tubular injury and calcifications with significant reactive oxygen species generation in the urine, thus, indicating in vivo CaNL. Taken together, excess PT luminal Ca2+ due to escalation of hypercalciuria in TRPC3 ablated mice induced surplus CaP crystal formation and caused stagnation of PT [Ca2+]i, invoking PT cell injury, hence mixed stone formation.
Collapse
Affiliation(s)
| | | | - Eugenia Awuah Boadi
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bok-Eum Choi
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Sanjit K. Roy
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| |
Collapse
|
43
|
Identification of Resolvin D1 and Protectin D1 as Potential Therapeutic Agents for Treating Kidney Stones. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4345037. [PMID: 35251472 PMCID: PMC8894018 DOI: 10.1155/2022/4345037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Intrarenal calcium oxalate (CaOx) crystals induce renal tubular epithelial cell (TEC) inflammatory and oxidative injury. This study is aimed at exploring potential therapeutic lipid components in kidney stones because lipids are involved in the development of several diseases and indicate the risk of kidney stones. Serum specimens were collected from 35 kidney stone patients and 35 normal controls. The lipid components in serum were measured, and differences were analyzed. The documented biological importance was comprehensively reviewed to identify lipids that differed significantly between the two groups to find potential agents associated with kidney stones. CaOx nephrocalcinosis mouse model was established to examine the therapeutic effects of specific lipids on CaOx deposition and CaOx-induced oxidative renal injury. Several lipids with significantly different levels were present in the serum of patients with stones and normal controls. Resolvin D1 (RvD1) (4.93-fold change, P < 0.001) and protectin D1 (PD1) (5.06-fold change, P < 0.001) were significantly decreased in the serum of patients with kidney stones, and an integrative review suggested that these factors might be associated with inflammatory responses, which is a crucial mechanism associated with stone damage. The administration of RvD1 and PD1 significantly inhibited kidney CaOx deposition and suppressed CaOx-induced renal tubular cell inflammatory injury and necrosis in a CaOx nephrocalcinosis mouse model. Furthermore, RvD1 and PD1 facilitated the expression of the oxidative indicator superoxide dismutase 2 (SOD2), inhibited NADPH oxidase 2 (NOX2) expression, and diminished intracellular reactive oxygen species (ROS) levels. This study preliminarily elucidated the role of lipids in kidney stones. The inhibitory effects of RvD1 and PD1 on oxidative damage induced by CaOx deposition provide a promising perspective for kidney stone treatment strategies.
Collapse
|
44
|
miR-103a-3p Silencing Ameliorates Calcium Oxalate Deposition in Rat Kidney by Activating the UMOD/TRPV5 Axis. DISEASE MARKERS 2022; 2022:2602717. [PMID: 35251369 PMCID: PMC8890864 DOI: 10.1155/2022/2602717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
Maintaining the balance of calcium (Ca2+) metabolism in the kidney is crucial in preventing the formation of kidney stones. Functionally, the microRNA (miRNA) participating in this process needs to be unveiled. We induced NRK-52E cell injury by oxalate treatment. The role of transient receptor potential cation channel subfamily V member 5 (TRPV5) in oxalate-induced cells was studied by TRPV5 overexpression transfection, qRT-PCR, Western blot, MTT, and crystal adhesion detection. After identifying uromodulin (UMOD) expression in injured cells, we confirmed the interaction between TRPV5 and UMOD by coimmunoprecipitation (CoIP) and cell-surface biotinylation assays. The validation of UMOD-regulating TRPV5 in viability, crystal adhesion, and Ca2+ concentration of oxalate-induced cells was performed. Bioinformatics analysis and luciferase assay were used to identify the miRNA-targeting UMOD. The role of the miR-103a-3p-regulating UMOD/TRPV5 axis was detected by rescue experiments. We constructed a rat model with treatment of ethylene glycol (EG) to investigate the miR-103a-3p/UMOD/TRPV5 axis in vivo by hematoxylin-eosin (H&E) staining, Western blot, and immunohistochemistry (IHC). Upregulation of TRPV5 protected NRK-52E cells from oxalate-induced injury by enhancing cell viability and inhibiting CaOx adhesion. UMOD was depleted in oxalate-induced cells and positively interacted with TRPV5. UMOD silencing reversed the effect of TRPV overexpression on oxalate-induced cells. miR-103a-3p targeted UMOD and was mediated in the regulation of the UMOD/TRPV5 axis in oxalate-induced cells. Downregulating miR-103a-3p mitigated EG-induced CaOx deposition in kidney tissues in vivo by activating the UMOD/TRPV5 axis. miR-103a-3p silencing ameliorated CaOx deposition in the rat kidney by activating the UMOD/TRPV5 axis.
Collapse
|
45
|
Aranda-Rivera AK, Srivastava A, Cruz-Gregorio A, Pedraza-Chaverri J, Mulay SR, Scholze A. Involvement of Inflammasome Components in Kidney Disease. Antioxidants (Basel) 2022; 11:246. [PMID: 35204131 PMCID: PMC8868482 DOI: 10.3390/antiox11020246] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammasomes are multiprotein complexes with an important role in the innate immune response. Canonical activation of inflammasomes results in caspase-1 activation and maturation of cytokines interleukin-1β and -18. These cytokines can elicit their effects through receptor activation, both locally within a certain tissue and systemically. Animal models of kidney diseases have shown inflammasome involvement in inflammation, pyroptosis and fibrosis. In particular, the inflammasome component nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) and related canonical mechanisms have been investigated. However, it has become increasingly clear that other inflammasome components are also of importance in kidney disease. Moreover, it is becoming obvious that the range of molecular interaction partners of inflammasome components in kidney diseases is wide. This review provides insights into these current areas of research, with special emphasis on the interaction of inflammasome components and redox signalling, endoplasmic reticulum stress, and mitochondrial function. We present our findings separately for acute kidney injury and chronic kidney disease. As we strictly divided the results into preclinical and clinical data, this review enables comparison of results from those complementary research specialities. However, it also reveals that knowledge gaps exist, especially in clinical acute kidney injury inflammasome research. Furthermore, patient comorbidities and treatments seem important drivers of inflammasome component alterations in human kidney disease.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; (A.S.); (S.R.M.)
| | - Alfredo Cruz-Gregorio
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Shrikant R. Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; (A.S.); (S.R.M.)
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
46
|
Perazella MA, Herlitz LC. The Crystalline Nephropathies. Kidney Int Rep 2021; 6:2942-2957. [PMID: 34901567 PMCID: PMC8640557 DOI: 10.1016/j.ekir.2021.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Crystalline nephropathies are a unique form of kidney disease characterized by the histologic finding of intrarenal crystal deposition. The intrinsic nature of some molecules and ions combined with a favorable tubular fluid physiology leads to crystal precipitation and deposition within the tubular lumens. Crystal deposition promotes kidney injury through tubular obstruction and both direct and indirect cytotoxicities. Further kidney injury develops from inflammation triggered by these crystals. From a clinical standpoint, the crystalline nephropathies are associated with abnormal urinalysis and urinary sediment findings, tubulopathies, acute kidney injury (AKI), and/or chronic kidney disease (CKD). Urine sediment examination is often helpful in alerting clinicians to the possibility of crystal-related kidney injury. The identification of crystals within the kidneys on biopsy by pathologists prompts clinicians to evaluate patients for medication-related kidney injury, dysproteinemia-related malignancies, and certain inherited disorders. This review will focus on the clinical and pathologic aspects of these 3 categories of crystalline nephropathies.
Collapse
Affiliation(s)
- Mark A Perazella
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Nephrology, Department of Medicine, VA Medical Center, West Haven, Connecticut, USA
| | - Leal C Herlitz
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
47
|
Pan J, Shi M, Guo F, Ma L, Fu P. Pharmacologic inhibiting STAT3 delays the progression of kidney fibrosis in hyperuricemia-induced chronic kidney disease. Life Sci 2021; 285:119946. [PMID: 34516993 DOI: 10.1016/j.lfs.2021.119946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
AIMS Kidney fibrosis is a histological hallmark of chronic kidney disease (CKD), where hyperuricemia is a key independent risk factor. Considerable evidence indicated that STAT3 is one of the crucial signaling pathways in the progression of kidney fibrosis. Here, we investigated that pharmacological blockade of STAT3 delayed the progression of renal fibrosis in hyperuricemia-induced CKD. MAIN METHODS In the study, we used the mixture of adenine and potassium oxonate to perform kidney injury and fibrosis in hyperuricemic mice, accompanied by STAT3 activation in tubular and interstitial cells. KEY FINDINGS Treatment with STAT3 inhibitor S3I-201 improved renal dysfunction, reduced serum uric acid level, and delayed the progression of kidney fibrosis. Furthermore, S3I-201 could suppress fibrotic signaling pathway of TGF-β/Smads, JAK/STAT and NF-κB, as well as inhibit the expression of multiple profibrogenic cytokines/chemokines in the kidneys of hyperuricemic mice. SIGNIFICANCE These data suggested that STAT3 inhibition was a potent anti-fibrotic strategy in hyperuricemia-related CKD.
Collapse
Affiliation(s)
- Jing Pan
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Thoracic Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Shi
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fan Guo
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
XIST Inhibition Attenuates Calcium Oxalate Nephrocalcinosis-Induced Renal Inflammation and Oxidative Injury via the miR-223/NLRP3 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1676152. [PMID: 34512861 PMCID: PMC8429007 DOI: 10.1155/2021/1676152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
The roles of the lncRNA X inactive specific transcript (XIST) in many diseases, including cancers and inflammatory sickness, have been previously elucidated. However, renal calculus remained poorly understood. In this study, we revealed the potential effects of XIST on kidney stones that were exerted via inflammatory response and oxidative stress mechanisms. We established a glyoxylate-induced calcium oxalate (CaOx) stone mouse model and exposed HK-2 cells to calcium oxalate monohydrate (COM). The interactions among XIST, miR-223-3p, and NOD-like receptor protein 3 (NLRP3) and their respective effects were determined by RNAs and protein expression, luciferase activity, and immunohistochemistry (IHC) assays. Cell necrosis, reactive oxygen species (ROS) generation, and inflammatory responses were detected after silencing XIST, activating and inhibiting miR-223-3p, and both knocking down XIST and activating miR-223-3p in vitro and in vivo. The XIST, NLRP3, caspase-1, and IL-1β levels were notably increased in kidney samples from glyoxylate-induced CaOx stone model mice. XIST knockdown significantly suppressed the inflammatory damage and ROS production and further attenuated oxalate crystal deposition. miRNA-223-3p mimics also exerted the same effects. Moreover, we verified the interactions among XIST, miRNA-223-3p and NLRP3, and the subsequent effects. Our results suggest that the lncRNA XIST participates in the formation and progression of renal calculus by interacting with miR-223-3p and the NLRP3/Caspase-1/IL-1β pathway to mediate the inflammatory response and ROS production.
Collapse
|
49
|
Xu X, Yan J. β-Caryophyllene may attenuate hyperoxaluria-induced kidney dysfunction in rats by regulating stress marker KIM-1/MCP-1 and NF-κB signaling pathway. J Biochem Mol Toxicol 2021; 35:e22891. [PMID: 34468068 DOI: 10.1002/jbt.22891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/16/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
β-Caryophyllene (BCP), a bicyclic sesquiterpene, has proved to exhibit antioxidant and anti-inflammatory activities. The present study is carried out to investigate BCP impact on hyperoxaluria-induced kidney dysfunction in male Wistar rats. The animals were categorized into four groups, namely, Group I, control rats; Group II, ethylene glycol (inducer); Group III, inducer + BCP (100 µM/kg bw); Group IV, BCP alone. After the treatment period, the rate of creatinine clearance and the concentration of urea in urine and serum were assessed. Histopathology reports were conducted to study renal and liver tissues, while the reverse transcription-polymerase chain reaction studies were carried out for messenger RNA expression of inflammatory (nuclear factor kappa B) and endoplasmic reticulum (ER) stress (kidney dysfunction molecule-1, monocyte chemoattractant protein-1, glucose binding protein 78, CHOP, activating factor 4, and X-box binding protein-1) markers as well as antioxidant activity for the hyperoxaluric rats. Western blot was performed to investigate the level of protein expression by the treatment group on apoptotic (Bcl-2, Bax, caspase-3, and caspase-9) proteins. The results show BCP to possess a renoprotective effect under hyperoxaluric conditions by decreasing the level of the inflammatory and ER stress markers and restoring the enzymes' antioxidant activities. The histology reports depicted the satisfactory morphology of glomerulus in diseased rats. Furthermore, the results of Western blot suggested that BCP may possess inhibitory action on apoptosis by affecting the mitochondrial-dependent apoptotic pathway. Therefore, BCP can be considered as a potential candidate for the therapy of hyperoxaluric-induced kidney complications.
Collapse
Affiliation(s)
- Xia Xu
- Department of Pharmacy, Ankang Hospital of Traditional Chinese Medicine, Ankang, China
| | - Jiamiao Yan
- Department of Pharmacy, Ankang Hospital of Traditional Chinese Medicine, Ankang, China
| |
Collapse
|
50
|
TRPV1 Hyperfunction Contributes to Renal Inflammation in Oxalate Nephropathy. Int J Mol Sci 2021; 22:ijms22126204. [PMID: 34201387 PMCID: PMC8228656 DOI: 10.3390/ijms22126204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation worsens oxalate nephropathy by exacerbating tubular damage. The transient receptor potential vanilloid 1 (TRPV1) channel is present in kidney and has a polymodal sensing ability. Here, we tested whether TRPV1 plays a role in hyperoxaluria-induced renal inflammation. In TRPV1-expressed proximal tubular cells LLC-PK1, oxalate could induce cell damage in a time- and dose-dependent manner; this was associated with increased arachidonate 12-lipoxygenase (ALOX12) expression and synthesis of endovanilloid 12(S)-hydroxyeicosatetraenoic acid for TRPV1 activation. Inhibition of ALOX12 or TRPV1 attenuated oxalate-mediated cell damage. We further showed that increases in intracellular Ca2+ and protein kinase C α activation are downstream of TRPV1 for NADPH oxidase 4 upregulation and reactive oxygen species formation. These trigger tubular cell inflammation via increased NLR family pyrin domain-containing 3 expression, caspase-1 activation, and interleukin (IL)-1β release, and were alleviated by TRPV1 inhibition. Male hyperoxaluric rats demonstrated urinary supersaturation, tubular damage, and oxidative stress in a time-dependent manner. Chronic TRPV1 inhibition did not affect hyperoxaluria and urinary supersaturation, but markedly reduced tubular damage and calcium oxalate crystal deposition by lowering oxidative stress and inflammatory signaling. Taking all these results together, we conclude that TRPV1 hyperfunction contributes to oxalate-induced renal inflammation. Blunting TRPV1 function attenuates hyperoxaluric nephropathy.
Collapse
|