1
|
Nasrollahzadeh Saravi M, Mohseni M, Menbari Oskouie I, Razavi J, Delgado Cidranes E, Majidi Zolbin M. Exosome Therapy in Stress Urinary Incontinence: A Comprehensive Literature Review. Biomedicines 2025; 13:1229. [PMID: 40427055 DOI: 10.3390/biomedicines13051229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 05/29/2025] Open
Abstract
Stress urinary incontinence (SUI) is characterized by the involuntary leakage of urine when bladder pressure exceeds urethral closing pressure during routine activities such as physical exertion, coughing, exercise, or sneezing. SUI is the most prevalent form of urinary incontinence, with a reported prevalence ranging from 10% to 70%, and its incidence increases with age. As the global population continues to age, the prevalence and clinical significance of SUI are expected to rise accordingly. The pathophysiology of SUI is primarily driven by two mechanisms: urethral hypermobility, resulting from compromised supporting structures, and intrinsic urethral sphincter deficiency, characterized by the deterioration of urethral mucosa and muscle tone. Current treatment options for SUI include conservative management strategies, which heavily rely on patient adherence and are associated with high recurrence rates, and surgical interventions, such as sling procedures, which offer effective solutions but are costly and carry the risk of adverse side effects. These limitations highlight the urgent need for more effective and comprehensive treatment modalities. Exosomes, nano-sized (30-150 nm) extracellular vesicles secreted by nearly all cell types, have emerged as a novel therapeutic option due to their regenerative, anti-fibrotic, pro-angiogenic, anti-apoptotic, anti-inflammatory, and anti-hypoxic properties. These biological functions position exosomes as a promising alternative to conventional therapies for SUI. Exosome therapy has the potential to enhance tissue regeneration, restore urethral function, and repair nerve and muscle damage, thereby reducing symptom burden and improving patients' quality of life. Additionally, exosome-based treatments could offer a less invasive alternative to surgery, potentially decreasing the need for repeated interventions and minimizing complications associated with current procedures. In this literature review, we critically assess the current state of research on the potential use of exosomes in treating SUI, highlighting their therapeutic mechanisms and potential clinical benefits.
Collapse
Affiliation(s)
| | - Mahdi Mohseni
- Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran
| | - Iman Menbari Oskouie
- Urology Research Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran
| | - Jafar Razavi
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | | | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran
| |
Collapse
|
2
|
Wang Q, Li L, Zhao H, Dong X, Cui G, Geng Z, Xu T. The plasma-derived exosomal Gomafu levels are associated with psychopathological symptoms and symptomatic remission in drug-naïve patients with first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-02023-x. [PMID: 40350522 DOI: 10.1007/s00406-025-02023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Long non-coding RNA (lncRNA) Gomafu has been implicated in the onset and progression of schizophrenia. In this study, we investigated the association between the plasma-derived exosomal Gomafu levels and psychopathological symptoms, as well as symptomatic remission following short-term treatment (4 weeks), in patients with drug-naïve patients with first-episode schizophrenia (DFSZ). We measured the plasma-derived exosomal Gomafu levels in 65 DFSZ schizophrenia patients and 65 healthy matched controls. All DFSZ patients received aripiprazole treatment. Positive and Negative Syndrome Scale (PANSS) assessment was performed to evaluate the psychotic symptoms. Cognitive function was assessed using the validated Chinese version of the MATRICS Consensus Cognitive Battery (MCCB). We found that the expression level of plasma-derived exosomal Gomafu in DFSZ patients was significantly higher than in the healthy control group. Receiver operating characteristic (ROC) curve analysis demonstrated a high diagnostic value for plasma-derived exosomal Gomafu in identifying DFSZ, with an area under the curve (AUC) of 0.921. Multiple linear regression analysis results showed that duration of untreated psychosis (DUP), PANSS negative score, PANSS total score, MCCB-attention and vigilance score, MCCB-social cognition score, and MCCB-total score were independent influencing factors of the expression level of plasma-derived exosomal Gomafu in patients with DFSZ. After 4 weeks of treatment with aripiprazole, the Gomafu levels significantly decreased in DFSZ patients. Moreover, the reduction in PANSS total score was positively correlated with the decrease in Gomafu levels. The Gomafu levels at baseline of remitters was lower than that of non-remitters. ROC curve analysis further suggested that baseline Gomafu levels could predict symptomatic remission, with an AUC of 0.695. The results of our study shows that plasma-derived exosomal Gomafu levels are ssociated with psychopathological symptoms (especially negative symptoms and cognitive impairment) and symptomatic remission with short-term aripiprazole treatment. Plasma-derived exosomal Gomafu may be a biological biomarker for DFSZ. Further studies are warranted to elucidate the mechanisms linking Gomafu to schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Qi Wang
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning Province, China
| | - Li Li
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning Province, China
| | - Hongyan Zhao
- Department of Jingzhong Medical District, The Chinese People's Liberation Army General Hospital, Lishi Road Outpatient, Beijing, China
| | - Xiaomei Dong
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning Province, China
| | - Gang Cui
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning Province, China
| | - Zhongli Geng
- Department of Mental Health Prevention and Treatment, Shenyang Mental Health Center, Shenyang, Liaoning Province, China
| | - Tianchao Xu
- Department of Psychiatry and Psychology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning Province, China.
| |
Collapse
|
3
|
Olsen DA, Hansen TF, Brandslund I, Madsen JS. Development of a high-sensitivity assay for direct quantitation of EGFr on extracellular vesicles in plasma. J Immunol Methods 2025; 541:113877. [PMID: 40345522 DOI: 10.1016/j.jim.2025.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication and hold promise for cancer diagnostics and therapeutic monitoring, particularly in Epidermal Growth Factor receptor (EGFr)-driven malignancies. This study aims to develop a method to quantitate EGFr on EVs directly in plasma samples without using an EV purification step first. Additionally assays for quantitating the total concentrations of EVs were established. The assays were developed using Single molecule array (Simoa) technology with antibodies targeting the EV surface markers EGFr, CD9, CD63 and CD81. Plasma samples from healthy individuals and cancer patients were used for assay development, validation and testing. In this pilot study we observed a lower concentration of EGFr on EVs in cancer patients as compared to healthy individuals, though the difference was not statistically significant. The total EV concentrations were significantly increased in plasma from cancer patients compared to healthy individuals (p < 0.0001). Positive correlations were observed among the total EV assays (r = 0.6, p < 0.0001). The developed EV assays present non-invasive methods for quantitating both total EVs and EGFr on EVs directly in plasma samples. Next step will be a comprehensive validation using large cohorts of cancer samples to explore the clinical relevance.
Collapse
Affiliation(s)
- Dorte Aalund Olsen
- Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - Torben Frøstrup Hansen
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Ivan Brandslund
- Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Jonna Skov Madsen
- Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Xu W, Boer K, Hesselink DA, Baan CC. Extracellular Vesicles and Immune Activation in Solid Organ Transplantation: The Impact of Immunosuppression. BioDrugs 2025; 39:445-459. [PMID: 40140222 PMCID: PMC12031870 DOI: 10.1007/s40259-025-00713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Recent advances in extracellular vesicle (EV) research in organ transplantation have highlighted the crucial role of donor-derived EVs in triggering alloimmune responses, ultimately contributing to transplant rejection. Following transplantation, EVs carrying donor major histocompatibility complex (MHC) molecules activate recipient antigen-presenting cells (APCs), initiating both alloreactive and regulatory T-cell responses. While immunosuppressive drugs are essential for preventing rejection, they may also influence the biogenesis and release of EVs from donor cells. This review examines the impact of maintenance immunosuppressive therapy on EV biogenesis and release post-transplantation. In addition, EV release and uptake may be influenced by specific factors such as the patient's end-stage organ disease and the transplant procedure itself. In-vitro studies using primary human parenchymal and immune cells-integrated with cutting-edge multi-omics techniques, including genomics, proteomics, lipidomics, and single-EV analysis-will offer deeper insights into EV biology and the mechanisms by which immunosuppressive agents regulate EV-initiated immune processes. A detailed understanding of how organ failure, the transplantation procedure and immunosuppressive drugs affect the biology of EVs may uncover new roles for EVs in immune activation and regulation in patients, ultimately leading to improved immunosuppressive strategies and better transplant outcomes.
Collapse
Affiliation(s)
- Weicheng Xu
- Department of Internal Medicine, Sector Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam Erasmus MC, Doctor Molewaterplein 40, Room Nc 508, 3015 GD, Rotterdam, The Netherlands.
| | - Karin Boer
- Department of Internal Medicine, Sector Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam Erasmus MC, Doctor Molewaterplein 40, Room Nc 508, 3015 GD, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Sector Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam Erasmus MC, Doctor Molewaterplein 40, Room Nc 508, 3015 GD, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Sector Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam Erasmus MC, Doctor Molewaterplein 40, Room Nc 508, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Alexandrova M, Manchorova D, Vangelov I, Terzieva A, Dimitrova V, Mor G, Dimova T. First trimester extravillous trophoblast secretes HLA class I molecules via small extracellular vesicles. Placenta 2025; 167:11-21. [PMID: 40300266 DOI: 10.1016/j.placenta.2025.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
INTRODUCTION Human pregnancy requires acceptance and support for the semi-allogeneic embryo and effective protection of both mother and fetus. A failure to adapt, from either side, may cause abortion. The placenta-derived extracellular vesicles (EVs) have a crucial role in human implantation and pregnancy. These are lipid bilayer membrane-delimited, nano-to-micro sized extracellular microvesicles of endosomal origin, containing diverse signaling molecules, and functioning as short and long-distance messengers. We have already shown that first-trimester placenta releases the soluble HLA-C and HLA-G KIR ligands to modulate maternal cytotoxicity via the KIR/HLA axis. This study is to find whether extravillous trophoblast (EVT) secretes these HLA class I molecules via small EVs. METHODS sEVs were isolated by ultrafiltration or precipitation from serum-free conditioned media from primary trophoblast-derived EVT, and non-tumor EVT-like model Sw71 cell line, cultured as monolayer and spheroids. sEVs from cultured placental explants served as a positive control. Combined data from several methods was used for their characterization including BCA, DLS, TEM, IEM, Dot blot, and FACS. RESULTS Primary trophoblast-derived EVT and Sw71 EVT-like cells produced intact and well-visible CD63+, HLA-G- and HLA-C-bearing sEVs, regardless of culture mode and type of isolation. Both methods yielded sEVs sized 30-100 nm. DISCUSSION We show original data on the HLA-C secretion via sEVs by early pregnancy EVT and confirm the production of HLA-G-positive sEVs. A new asset to the usefulness of the Sw71 spheroid model as an implanting blastocyst surrogate is added as a tool to elucidate the sEV-based signalization in the implantation.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivaylo Vangelov
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Antonia Terzieva
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Violeta Dimitrova
- University Obstetrics and Gynecology Hospital "Maichin dom", Medical University, Sofia, Bulgaria
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
6
|
Kranc W, Kaczmarek M, Kowalska K, Pieńkowski W, Ciesiółka S, Konwerska A, Mozdziak P, Brązert M, Jeseta M, Spaczyński RZ, Pawelczyk L, Kempisty B. Morphological characteristics, extracellular vesicle structure and stem-like specificity of human follicular fluid cell subpopulation during osteodifferentiation. Exp Mol Pathol 2025; 142:104965. [PMID: 40253818 DOI: 10.1016/j.yexmp.2025.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Extracellular vesicles can play an important role in the processes occurring after stem cell transplantation, preventing cell apoptosis, stimulating immunological processes, and promoting the synthesis of extracellular matrix. Human follicular fluid (FF) can be a source of a subpopulation of cells with mesenchymal stem cells (MSCs) properties. Moreover these subpopulations of FF cells can differentiate into osteoblasts. In presented studies flow cytometry of ovarian FF cells confirmed positive expression of MSCs markers such as: CD44, CD90, CD105, CD73 and negative expression of a hematopoietic marker: CD45. The CD90+, CD105+, CD45- cell subpopulation has been obtained during magnetic separation using appropriate antibodies conjugated with microbeads. The extracellular vesicles (EVs) secreted by the cells during osteodifferentiation process differed from those secreted by cells culture in the basal medium. Based on the previous and current electron microscopy research, changes in size, number, and shape would support the notion that released EVs could be crucial to the ovarian FF cell subpopulation differentiation process. Osteogenic differentiation has been confirmed via Alizarin red staining. Therefore, follicular fluid (FF) can be a new source of a cell subpopulation with MSC properties, with the cells capable of differentiating into the osteogenic lineage. EVs could play a key role as mediators in tissue regeneration, especially bone tissue regeneration.
Collapse
Affiliation(s)
- Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland.
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, 15 Garbary St., 61-866 Poznań, Poland; Department of Cancer Immunology, Poznan University of Medical Sciences, 5 Garbary St., 61-866 Poznań, Poland.
| | - Katarzyna Kowalska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland.
| | - Wojciech Pieńkowski
- Division of Perinatology and Women's Diseases, Poznan University of Medical Sciences, 33 Polna St. 60-535 Poznan, Poland.
| | - Sylwia Ciesiółka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland.
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland.
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA; Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA.
| | - Maciej Brązert
- Department of Diagnostic and Treatment of Infertility, Department of Gynecological Endocrinology and Infertility Treatment Karol Marcinkowski University, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland.
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 62500 Brno, Czechia.
| | - Robert Z Spaczyński
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Pastelowa 8, 60-198, Poznan, Poland..
| | - Leszek Pawelczyk
- Department of Diagnostic and Treatment of Infertility, Department of Gynecological Endocrinology and Infertility Treatment Karol Marcinkowski University, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland.
| | - Bartosz Kempisty
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA; Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 62500 Brno, Czechia; Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland; Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Torun, Poland.
| |
Collapse
|
7
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
8
|
Anyanwu NCJ, Premadasa LS, Naushad W, Okeoma BC, Mahesh M, Okeoma CM. Rigorous Process for Isolation of Gut-Derived Extracellular Vesicles (EVs) and the Effect on Latent HIV. Cells 2025; 14:568. [PMID: 40277894 PMCID: PMC12025545 DOI: 10.3390/cells14080568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 04/26/2025] Open
Abstract
The human gastrointestinal (GI) track host trillions of microorganisms that secrete molecules, including extracellular vesicles (EVs) and extracellular condensates (ECs) that may affect physiological and patho-physiological activities in the host. However, efficient protocols for the isolation of pure and functional GI-derived EVs|ECs is lacking. Here, we describe the use of high-resolution particle purification liquid chromatography (PPLC) gradient-bead-column integrated with polyvinylpolypyrrolidone (PVPP)-mediated extraction of impurities to isolate EVs from colonic content (ColEVs). PVPP facilitates the isolation of pure, non-toxic, and functionally active ColEVs that were internalized by cells and functionally activate HIV LTR promoter. ColEVs isolated without PVPP have a reductive effect on MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) without living cells, suggesting that ColEVs contain reductases capable of catalyzing the reduction of MTT to formazan. The assessment of the origin of ColEVs reveals that they are composed of both bacteria and host particles. This protocol requires ~12 h (5 h preprocessing, 7 h isolation) to complete and should be used to purify EVs from sources contaminated with microbial agents to improve rigor. This protocol provides a robust tool for researchers and clinicians investigating GI-derived EVs and the translational use of GI-derived EVs for diagnostic and therapeutic use. Additionally, GI-derived EVs may serve as a window into the pathogenesis of diseases.
Collapse
Affiliation(s)
- Nneoma C. J. Anyanwu
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
| | - Lakmini S. Premadasa
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
| | - Bryson C. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
| | - Mohan Mahesh
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
9
|
Bonisoli GL, Argentino G, Friso S, Tinazzi E. Extracellular Vesicles Analysis as Possible Signatures of Antiphospholipid Syndrome Clinical Features. Int J Mol Sci 2025; 26:2834. [PMID: 40243411 PMCID: PMC11989148 DOI: 10.3390/ijms26072834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Antiphospholipid syndrome (APS) is a rare autoimmune disease characterized by thrombosis and obstetric complications. Extracellular vesicles (EVs) of either platelet and endothelial origin are recognized to be involved in the pathophysiology of the disease. This study aimed to evaluate the potential role of endothelial- and platelet-derived extracellular vesicles and the clinical features or progression of APS. We enrolled 22 patients diagnosed with APS and 18 age and sex-matched healthy controls. We determined APS-specific antibody positivity and clinical manifestations in APS affected patients, with a focus on neurological, cardiovascular, dermatological, hematological manifestations, and pregnancy-related complications. Platelet-poor plasma was collected from either patients and controls for the analysis of EVs by flow cytometry technology using monoclonal antibodies to specifically identify those derived from either platelets and/or endothelial cells. EVs of endothelial and platelet origins were overall significantly increased in patients as compared to healthy controls. Furthermore, a significant association was also observed between the number of extracellular vesicles and specific organ involvement, particularly central nervous system manifestations, hematological abnormalities, and obstetric complications. An elevated proportion of endothelial-derived EVs in APS and a reduction of resting endothelial cell-derived EVs were observed in APS-affected women with obstetric complications. Our findings highlight the involvement of endothelial cells and platelets in mirroring the activities of endothelial cells and platelets in APS. Additionally, extracellular vesicles may serve as potential predictors of organ involvement and disease-related damage.
Collapse
Affiliation(s)
| | | | | | - Elisa Tinazzi
- Department of Medicine, University of Verona, 37134 Verona, Italy
| |
Collapse
|
10
|
Madhan S, Dhar R, Devi A. Clinical Impact of Exosome Chemistry in Cancer. ACS APPLIED BIO MATERIALS 2025; 8:1862-1876. [PMID: 39936581 DOI: 10.1021/acsabm.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
As we progress into the 21st century, cancer stands as one of the most dreaded diseases. With approximately one in every four individuals facing a lifetime risk of developing cancer, cancer remains one of the most serious health challenges worldwide. Its multifaceted nature makes it an arduous and tricky problem to diagnose and treat. Over the years, researchers have explored plenty of approaches and avenues to improve cancer management. One notable strategy includes the study of extracellular vesicles (EVs) as potential biomarkers and therapeutics. Among these EVs, exosomes have emerged as particularly promising candidates due to their unique characteristic properties and functions. They are small membrane-bound vesicles secreted by cells carrying a cargo of biomolecules such as proteins, nucleic acids, and lipids. These vesicles play crucial roles in intercellular communication, facilitating the transfer of biological information between cell-to-cell communication. Exosomes transport cargoes such as DNA, RNA, proteins, and lipids involved in cellular reprogramming and promoting cancer. In this review, we explore the molecular composition of exosomes, significance of exosomes chemistry in cancer development, and its theranostic application as well as exosomes research complications and solutions.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| |
Collapse
|
11
|
Xu Y, Zhang R, Du X, Huang Y, Gao Y, Wen Y, Qiao D, Sun N, Liu Z. Identification of aberrant plasma vesicles containing AAK1 and CCDC18-AS1 in adolescents with major depressive disorder and preliminary exploration of treatment efficacy. Genomics 2025; 117:110993. [PMID: 39798887 DOI: 10.1016/j.ygeno.2025.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) during adolescence significantly jeopardizes both mental and physical health. However, the etiology underlying MDD in adolescents remains unclear. METHODS A total of 74 adolescents with MDD and 40 health controls (HCs) who underwent comprehensive clinical and cognitive assessments were enrolled. Differential expression analysis was conducted on plasma extracellular vesicles (EVs) carrying long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) by microarray analysis. Two possible lncRNA-miR-mRNA networks were established and candidate regulatory axes were generated using the StarBase, miRDB, and TargetScan bioinformatics databases. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the candidate molecules and signaling axes in a clinical cohort. RESULTS A total of 3752 dysregulated lncRNAs and 1789 dysfunctional mRNAs were identified. Two candidate regulatory axes (AC156455.1/miR-126-5p/AAK1 and CCDC18-AS1/miR-6835-5p/CCND2) with potential connections with MDD were selected. The candidate molecules exhibit differential expression patterns among adolescents with MDD and HCs, as well as before and after treatment with sertraline in adolescents with MDD. Furthermore, AAK1, CCDC18-AS1, and miR-6835-5p expressions exhibited significant differences between the response and non-response groups. Baseline expression of CCDC18-AS1, miR-6835-5p, and CCND2 could predict the therapeutic effect of sertraline, which may be associated with reducing suicidal ideation and improving cognitive function. CONCLUSION Our study may provide insights into the understanding of the underlying pathological mechanisms in adolescents with MDD.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Psychiatry, First Hospital /First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Rong Zhang
- Department of Psychiatry, First Hospital /First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, First Hospital /First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yangxi Huang
- Department of Psychiatry, First Hospital /First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yao Gao
- Department of Psychiatry, First Hospital /First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujiao Wen
- Department of Psychiatry, First Hospital /First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Dan Qiao
- Department of Psychiatry, First Hospital /First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, First Hospital /First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital /First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China..
| |
Collapse
|
12
|
Wang X, Chen Y, Ma C, Bi L, Su Z, Li W, Wang Z. Current advances and future prospects of blood-based techniques for identifying benign and malignant pulmonary nodules. Crit Rev Oncol Hematol 2025; 207:104608. [PMID: 39761937 DOI: 10.1016/j.critrevonc.2024.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, highlighting the urgent need for more accurate and minimally invasive diagnostic tools to improve early detection and patient outcomes. While low-dose computed tomography (LDCT) is effective for screening in high-risk individuals, its high false-positive rate necessitates more precise diagnostic strategies. Liquid biopsy, particularly ctDNA methylation analysis, represents a promising alternative for non-invasive classification of indeterminate pulmonary nodules (IPNs). This review highlights the progress and clinical potential of liquid biopsy technologies, including traditional proteins markers, cfDNA, exosomes, metabolomics, circulating tumor cells (CTCs) and platelets, in lung cancer diagnosis. We discuss the integration of ctDNA methylation analysis with traditional imaging and clinical data to enhance the early detection of IPNs, as well as potential solutions to address the challenges of low biomarker concentration and background noise. By advancing precision diagnostics, liquid biopsy technologies could transform lung cancer management, improve survival rates, and reduce the disease burden.
Collapse
Affiliation(s)
- Xin Wang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanmei Chen
- Health Management Center, West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhixi Su
- Singlera Genomics Ltd., Shanghai, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Xia W, Tan Y, Liu Y, Xie N, Zhu H. Prospect of extracellular vesicles in tumor immunotherapy. Front Immunol 2025; 16:1525052. [PMID: 40078996 PMCID: PMC11897508 DOI: 10.3389/fimmu.2025.1525052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Extracellular vesicles (EVs), as cell-derived small vesicles, facilitate intercellular communication within the tumor microenvironment (TME) by transporting biomolecules. EVs from different sources have varied contents, demonstrating differentiated functions that can either promote or inhibit cancer progression. Thus, regulating the formation, secretion, and intake of EVs becomes a new strategy for cancer intervention. Advancements in EV isolation techniques have spurred interest in EV-based therapies, particularly for tumor immunotherapy. This review explores the multifaceted functions of EVs from various sources in tumor immunotherapy, highlighting their potential in cancer vaccines and adoptive cell therapy. Furthermore, we explore the potential of EVs as nanoparticle delivery systems in tumor immunotherapy. Finally, we discuss the current state of EVs in clinical settings and future directions, aiming to provide crucial information to advance the development and clinical application of EVs for cancer treatment.
Collapse
Affiliation(s)
- Wenbo Xia
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunhan Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongen Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Feng Y, Tang M, Li H, Yao S, Li B. Mouse mesenchymal stem cell-derived exosomal miR-205-5p modulates LPS-induced macrophage polarization and alleviates lung injury by regulating the USP7/FOXM1 axis. Drug Deliv Transl Res 2025:10.1007/s13346-025-01813-z. [PMID: 40000557 DOI: 10.1007/s13346-025-01813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Exosomal microRNAs produced from mesenchymal stem cells (MSCs) are crucial in the management of acute lung injury (ALI). In this work, mMSCs separated from bone marrow were used to extract exosomes (MSC-Exos). MSC-Exos treatment attenuated pathological changes and scores, and edema in ALI mice. Also, MSC-Exos administration modulated the concentrations of inflammatory factors as well as the macrophage polarization both in vivo and in vitro. Upregulation of miR-205-5p in MSC-Exos regulated the macrophage polarization and the contents of inflammatory factors in animal and cell models. MiR-205-5p targeted USP7, and negatively modulated the expression of USP7. USP7 interacted with FOXM1, and reduced the ubiquitination degradation of FOXM1. MSC-derived exosomal miR-205-5p modulated ubiquitination of FOXM1 by targeting USP7. The ameliorative effect of MSC-Exos on the macrophage polarization and the inflammatory factors release was reversed with the overexpression of USP7 in animal and cell models. Collectively, MSC-derived exosomal miR-205-5p regulated lipopolysaccharide (LPS)-induced macrophage polarization and alleviated lung injury by the USP7/FOXM1 axis, which developed a potential target for the treatment of ALI.
Collapse
Affiliation(s)
- Yinglu Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Min Tang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Haopeng Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| | - Bo Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
15
|
Cruz CG, Sodawalla HM, Mohanakumar T, Bansal S. Extracellular Vesicles as Biomarkers in Infectious Diseases. BIOLOGY 2025; 14:182. [PMID: 40001950 PMCID: PMC11851951 DOI: 10.3390/biology14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles that are secreted by all cells into the extracellular space. EVs are involved in cell-to-cell communication and can be found in different bodily fluids (bronchoalveolar lavage fluid, sputum, and urine), tissues, and in circulation; the composition of EVs reflects the physiological condition of the releasing cell. The ability to use EVs from bodily fluids for minimally invasive detection to monitor diseases makes them an attractive target. EVs carry a snapshot of the releasing cell's internal state, and they can serve as powerful biomarkers for diagnosing diseases. EVs also play a role in the body's immune and pathogen detection responses. Pathogens, such as bacteria and viruses, can exploit EVs to enhance their survival and spread and to evade detection by the immune system. Changes in the number or contents of EVs can signal the presence of an infection, offering a potential avenue for developing new diagnostic methods for infectious diseases. Ongoing research in this area aims to address current challenges and the potential of EVs as biomarkers in diagnosing a range of diseases, including infections and infectious diseases. There is limited literature on the development of EVs as diagnostic biomarkers for infectious diseases using existing molecular biology approaches. We aim to address this gap by reviewing recent EV-related investigations in infectious disease studies.
Collapse
Affiliation(s)
- Cinthia Gonzalez Cruz
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| | - Husain M. Sodawalla
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | | | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| |
Collapse
|
16
|
Caccialupi Da Prato L, Rezzag Lebza A, Consumi A, Tessier M, Srinivasan A, Rivera C, Laurin J, Pellegrino C. Ectopic expression of the cation-chloride cotransporter KCC2 in blood exosomes as a biomarker for functional rehabilitation. Front Mol Neurosci 2025; 18:1522571. [PMID: 39974187 PMCID: PMC11835807 DOI: 10.3389/fnmol.2025.1522571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of disabilities in industrialized countries. Cognitive decline typically occurs in the chronic phase of the condition, following cellular and molecular processes. In this study, we described the use of KCC2, a neuronal-specific potassium-chloride cotransporter, as a potent biomarker to predict cognitive dysfunction after TBI. Methods Using neuronal and total exosome collections from the blood serum of the controls and patients with TBI, we were able to anticipate the decline in cognitive performance. Results After TBI, we observed a significant and persistent loss of KCC2 expression in the blood exosomes, which was correlated with the changes in the network activity and cellular processes such as secondary neurogenesis. Furthermore, we established a correlation between this decrease in KCC2 expression and the long-term consequences of brain trauma and identified a link between the loss of KCC2 expression and the emergence of depressive-like behavior observed in the mice. Conclusion We successfully validated our previous findings, supporting the potential therapeutic benefits of bumetanide in mitigating post-traumatic depression (PTD) following TBI. This effect was correlated with the recovery of KCC2 expression in the blood exosomes, the prevention of extensive neuronal loss among the interneurons, and changes in secondary neurogenesis.
Collapse
Affiliation(s)
| | | | - A. Consumi
- Inmed, INSERM, Aix-Marseille University, Marseille, France
| | - M. Tessier
- Inmed, INSERM, Aix-Marseille University, Marseille, France
| | - A. Srinivasan
- Division of Nanoscience and Technology, School of Life Sciences, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Academy of Higher Education and Research, Mysore, India
| | - C. Rivera
- Inmed, INSERM, Aix-Marseille University, Marseille, France
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - J. Laurin
- Inmed, INSERM, Aix-Marseille University, Marseille, France
| | - C. Pellegrino
- Inmed, INSERM, Aix-Marseille University, Marseille, France
| |
Collapse
|
17
|
Clarissa EM, Karmacharya M, Choi H, Kumar S, Cho YK. Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409353. [PMID: 39901476 DOI: 10.1002/smll.202409353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Indexed: 02/05/2025]
Abstract
The advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing technologies has opened up groundbreaking possibilities for treating a wide spectrum of genetic disorders and diseases. However, the success of these technologies relies heavily on the development of efficient and safe delivery systems. Among the most promising approaches are natural and synthetic nanocarrier-mediated delivery systems, including viral vectors, extracellular vesicles (EVs), engineered cellular membrane particles, liposomes, and various nanoparticles. These carriers enhance the efficacy of the CRISPR system by providing a unique combination of efficiency, specificity, and reduced immunogenicity. Synthetic carriers such as liposomes and nanoparticles facilitate CRISPR delivery with high reproducibility and customizable functions. Viral vectors, renowned for their high transduction efficiency and broad tropism, serve as powerful vehicles for delivering CRISPR components to various cell types. EVs, as natural carriers of RNA and proteins, offer a stealth mechanism to evade immune detection, allowing for the targeted delivery of genome editors with minimal off-target effects. Engineered cellular membrane particles further improve delivery by simulating the cellular environment, enhancing uptake, and minimizing immune response. This review explores the innovative integration of CRISPR genome editors with various nanocarrier systems, focusing on recent advancements, applications, and future directions in therapeutic genome editing.
Collapse
Affiliation(s)
- Elizabeth Maria Clarissa
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyunmin Choi
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
18
|
Zhang Y, Chen F, Cao Y, Zhang H, Zhao L, Xu Y. Identifying diagnostic markers and establishing prognostic model for lung cancer based on lung cancer-derived exosomal genes. Cancer Biomark 2025; 42:18758592251317400. [PMID: 40179422 DOI: 10.1177/18758592251317400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Background: Lung cancer (LC) is the most common malignancy and the leading cause of cancer death. LC-derived exosomes have been found to play a critical role in tumor initiation, progression, metastasis and drug resistance. Therefore, the objective of this study is to identify prognostic markers based on lung cancer-derived exosomes in patients with different subtypes of lung cancer, including small cell lung cancer (SCLC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and large cell carcinoma (LCC). Additionally, we aim to develop corresponding prognostic models to predict the outcomes of these patients. Methods: In this study, the mRNAs information about LC-derived exosomes was collected from Vesiclependia database, and the mRNAs data of LCC, LUAD, LUSC and LCC tumors and paracancerous tissues was obtained from the GEO database and UCSC database. The prognostic models based on exosomes-related differential expression genes (ExoDEGs) by univariate Cox, LASSO, and multivariate Cox regression analyses. The independent prognostic value of the risk model was systematically analyzed. Results: A LUAD prognostic risk model of 12 ExoDEGs (CDH17, DAAM2, FKBP3, FLNC, GSTM2, PGAM4, HPCAL1, FERMT2, LYPD1, SNRNP70, KIR3DL2 and GPX3) and a LUSC prognostic risk model of 7 ExoDEGs (FGA, ERH, HID1, CSNK2A1, SLC7A5, ACOT7 and FUNDC1) were constructed. Kaplan-Meier curve, ROC curve and stratification survival analysis confirmed that the LUAD and LUSC risk models both possessed reliable predictive value for the prognosis of LUAD and LUSC patients. The expression level of ExoDEGs for building the LUAD and LUSC risk models is significantly correlated with immunosuppressive activity of patients, and the immunosuppressive activity is lower in the high-risk groups. Conclusions: We established a LUAD prognostic model with 12 ExoDEGs and a LUSC prognostic model with 7 ExoDEGs, which can be used as independent prognostic indicators for patients LUAD and LUSC. The identified ExoDEGs have the potential to be as prognostic markers and may also serve as novel candidate targets for the treatment of LUAD and LUSC.
Collapse
Affiliation(s)
- Yongxiang Zhang
- Department of Respiratory and Critical Care Medicine, Tianjin chest Hospital, Tianjin, China
| | - Feng Chen
- Department of Thoracic surgery, Tianjin chest Hospital, Tianjin, China
| | - Yuqi Cao
- Department of Thoracic surgery, Tianjin chest Hospital, Tianjin, China
| | - Hao Zhang
- Department of Thoracic surgery, Tianjin chest Hospital, Tianjin, China
| | - Lingling Zhao
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Yijun Xu
- Department of Thoracic surgery, Tianjin chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Steiner L, Eldh M, Offens A, Veerman RE, Johansson M, Hemdan T, Netterling H, Huge Y, Abdul-Sattar Aljabery F, Alamdari F, Lidén O, Sherif A, Gabrielsson S. Protein profile in urinary extracellular vesicles is a marker of malignancy and correlates with muscle invasiveness in urinary bladder cancer. Cancer Lett 2025; 609:217352. [PMID: 39586489 DOI: 10.1016/j.canlet.2024.217352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Urinary Bladder Cancer (UBC) ranks among the most prevalent cancers worldwide, has a high recurrence rate and unpredictable treatment responses. Thus, biomarkers are urgently needed. Extracellular vesicles (EVs) are released from both cancer- and immune cells and provide a snapshot of the originating cell. They are abundant in urine and are therefore candidate biomarkers for UBC. Isolated urinary EVs from 39 UBC patients were compared with EVs from healthy controls, prostate cancer patients and whole urine. Samples were from bladder urine at time of both transurethral resection of the bladder tumour (TURB) and cystectomy, as well as urine taken from the ureter at cystectomy. EVs were isolated by tangential flow filtration and differential ultracentrifugation and their protein composition was detected by Proximity Extension Assay (PEA; Olink, immuno-oncology panel). In UBC patients, the proteomic signature of bladder urine EVs differed from ureter urine EVs from the same individuals, and from bladder urine derived EVs of both healthy and prostate cancer controls. Pairwise comparison was performed with matched whole urine revealing proteins solely detected in isolated vesicles. Additionally, a distinct signature was identified in bladder urine EVs correlating with muscle invasiveness, and a trained classifier could predict UBC with 92 % accuracy. Some differentially expressed proteins, HO-1 and MMP7, were analysed by bead-based flow cytometry, where HO-1 was detected on the EV surface. Taken together, these results strengthen the rationale of using EVs as non-invasive biomarkers and prognostic tools for UBC.
Collapse
Affiliation(s)
- Loïc Steiner
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eldh
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Annemarijn Offens
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Rosanne E Veerman
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Johansson
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden; Department of Surgery, Urology Section, Sundsvall-Härnösand Hospital, Sundsvall, Sweden
| | - Tammer Hemdan
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Hans Netterling
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Ylva Huge
- Department of Clinical and Experimental Medicine, Division of Urology, Linköping University, Linköping, Sweden
| | - Firas Abdul-Sattar Aljabery
- Department of Clinical and Experimental Medicine, Division of Urology, Linköping University, Linköping, Sweden
| | | | - Oskar Lidén
- Department of Surgery and Urology, Hudiksvall Hospital, Hudiksvall, Sweden
| | - Amir Sherif
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden; Department of Biomedical and Clinical Sciences, Division of Urology, Linköping University, 581 85, Linköping, Sweden
| | - Susanne Gabrielsson
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Voke E, Arral M, Squire HJ, Lin TJ, Coreas R, Lui A, Iavarone AT, Pinals RL, Whitehead KA, Landry M. Protein corona formed on lipid nanoparticles compromises delivery efficiency of mRNA cargo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633942. [PMID: 39896592 PMCID: PMC11785072 DOI: 10.1101/2025.01.20.633942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lipid nanoparticles (LNPs) are the most clinically advanced nonviral RNA-delivery vehicles, though challenges remain in fully understanding how LNPs interact with biological systems. In vivo , proteins form an associated corona on LNPs that redefines their physicochemical properties and influences delivery outcomes. Despite its importance, the LNP protein corona is challenging to study owing to the technical difficulty of selectively recovering soft nanoparticles from biological samples. Herein, we developed a quantitative, label-free mass spectrometry-based proteomics approach to characterize the protein corona on LNPs. Critically, this protein corona isolation workflow avoids artifacts introduced by the presence of endogenous nanoparticles in human biofluids. We applied continuous density gradient ultracentrifugation for protein-LNP complex isolation, with mass spectrometry for protein identification normalized to protein composition in the biofluid alone. With this approach, we quantify proteins consistently enriched in the LNP corona including vitronectin, C-reactive protein, and alpha-2-macroglobulin. We explore the impact of these corona proteins on cell uptake and mRNA expression in HepG2 human liver cells, and find that, surprisingly, increased levels of cell uptake do not correlate with increased mRNA expression in part likely due to protein corona-induced lysosomal trafficking of LNPs. Our results underscore the need to consider the protein corona in the design of LNP-based therapeutics. Abstract Figure
Collapse
|
21
|
Khalid W, Aslam A, Ahmed N, Sarfraz M, Khan JA, Mohsin S, Rajoka MSR, Nazir I, Amirzada MI. Human Plasma-Derived Exosomes: A Promising Carrier System for the Delivery of Hydroxyurea to Combat Breast Cancer. AAPS PharmSciTech 2025; 26:42. [PMID: 39843767 DOI: 10.1208/s12249-024-03028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
The aim of the present study was to investigate the potential of human plasma derived exosomes for the delivery of hydroxyurea to enhance its therapeutic efficacy in breast cancer. Plasma derived exosomes were isolated using differential centrifugation along with ultrafiltration method. Hydroxyurea was encapsulated in exosomes using a freeze-thaw method. The exosomes and Exo-HU were characterized for their size distribution, drug entrapment efficiency, in-vitro drug release profile, morphological analysis and cytotoxic effects on MCF-7 cell line. The results showed a mean size of 178.8 nm and a zeta potential of -18.3 mV, indicating good stability and 70% encapsulation effectiveness for HU. Exo-HU produced sustained drug release action with a considerable percentage released within 72 h. The morphological analysis indicated that the plasma derived exosomes were spherical, and cup shaped. In cytotoxicity studies on MCF-7 cells, Exo-HU has reduced cell viability compared to HU and blank exosomes. Findings of this study showed that human plasma-derived exosomes have been considered as effective delivery vehicle for hydroxyurea, potentially improving breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Wajeeha Khalid
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Afeefa Aslam
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, 64141, Al Ain, United Arab Emirates
| | | | - Sabeeh Mohsin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | | | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
| | - Muhammad Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
22
|
Anyanwu NCJ, Premadasa LS, Naushad W, Okeoma BC, Mahesh M, Okeoma CM. Rigorous process for isolation of gut-derived extracellular vesicles and the effect on latent HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632234. [PMID: 39829800 PMCID: PMC11741325 DOI: 10.1101/2025.01.09.632234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aim Extracellular particles (EPs) are produced/secreted by cells from all domains of life and are present in all body fluids, brain, and gut. EPs consist of extracellular vesicles (EVs) made up of exosomes, microvesicles, and other membranous vesicles; and extracellular condensates (ECs) that are non-membranous carriers of lipid-protein-nucleic acid aggregates. The purity of EVs|ECs, which ultimately depends on the isolation method used to obtain them is critical, particularly EVs|ECs from the gastrointestinal (GI) tract that is colonized by a huge number of enteric bacteria. Therefore, identifying GI derived EVs|ECs of bacterial and host origin may serve as a window into the pathogenesis of diseases and as a potential therapeutic target. Methods Here, we describe the use of high-resolution particle purification liquid chromatography (PPLC) gradient-bead-column integrated with polyvinylpolypyrrolidone (PVPP)-mediated extraction of impurities to isolate GI-derived EPs. Results and Conclusion PVPP facilitates isolation of pure and functionally active, non-toxic EVs ColEVs from colonic contents. ColEVs are internalized by cells and they activate HIV LTR promoter. In the absence of PVPP, ColEVs have a direct reductive potential of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) absorbance in a cell-free system. Assessment of the origin of ColEVs reveals that they are composed of both bacteria and host particles. This protocol requires ∼12 hours (5 hours preprocessing, 7 hours isolation) to complete and should be used to purify EVs from sources contaminated with microbial agents to improve rigor. Additionally, this protocol provides a robust tool for researchers and clinicians investigating GI-derived EVs and the translational use of GI-derived EVs for diagnostic and therapeutic use. Highlight ColEVs but not ColECs are present in colonic content (GI tract) and can be isolated with gradient or single bead PPLC column.ColEVs isolated without PVPP are toxic to cells and they have a direct reductive potential of MTT. Addition of PVPP treatment in the isolation protocol results in clean and non-toxic ColEVs that transactivate the HIV LTR promoter.
Collapse
|
23
|
Karimi N, Dinçsoy AB. The Role of Mesenchymal Stem Cell-Derived Exosomes in Skin Regeneration, Tissue Repair, and the Regulation of Hair Follicle Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:1-17. [PMID: 39841379 DOI: 10.1007/5584_2024_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes. Exosomes, emerging as a promising cell-free therapy in tissue engineering, hold substantial potential due to their ability to influence various biological functions. This review explores the mechanisms by which MSC-derived exosomes facilitate skin regeneration and repair, and hair growth, their therapeutic applications, and the future research directions in this emerging field.
Collapse
Affiliation(s)
- Nazli Karimi
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Adnan Berk Dinçsoy
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
24
|
Yazdi ZF, Roshannezhad S, Sharif S, Abbaszadegan MR. Recent progress in prompt molecular detection of liquid biopsy using Cas enzymes: innovative approaches for cancer diagnosis and analysis. J Transl Med 2024; 22:1173. [PMID: 39741289 DOI: 10.1186/s12967-024-05908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
Creating fast, non-invasive, precise, and specific diagnostic tests is crucial for enhancing cancer treatment outcomes. Among diagnostic methods, those relying on nucleic acid detection are highly sensitive and specific. Recent developments in diagnostic technologies, particularly those leveraging Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), are revolutionizing cancer detection, providing accurate and timely results. In clinical oncology, liquid biopsy has become a noninvasive and early-detectable alternative to traditional biopsies over the last two decades. Analyzing the nucleic acid content of liquid biopsy samples, which include Circulating Tumor Cells (CTCs), Circulating Tumor DNA (ctDNA), Circulating Cell-Free RNA (cfRNA), and tumor extracellular vesicles, provides a noninvasive method for cancer detection and monitoring. In this review, we explore how the characteristics of various Cas (CRISPR-associated) enzymes have been utilized in diagnostic assays for cancer liquid biopsy and highlight their main applications of innovative approaches in monitoring, as well as early and rapid detection of cancers.
Collapse
Affiliation(s)
- Zahra Farshchian Yazdi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Samaneh Sharif
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| |
Collapse
|
25
|
Boulestreau J, Molina L, Ouedraogo A, Laramy L, Grich I, Van TNN, Molina F, Kahli M. Salivary extracellular vesicles isolation methods impact the robustness of downstream biomarkers detection. Sci Rep 2024; 14:31233. [PMID: 39732788 DOI: 10.1038/s41598-024-82488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Extracellular vesicles (EVs), crucial mediators in cell-to-cell communication, are implicated in both homeostatic and pathological processes. Their detectability in easily accessible peripheral fluids like saliva positions them as promising candidates for non-invasive biomarker discovery. However, the lack of standardized methods for salivary EVs isolation greatly limits our ability to study them. Therefore, we rigorously compared salivary EVs isolated using two scalable techniques-co-precipitation and immuno-affinity-against the long-established but labor-intensive ultracentrifugation method. Employing Cryo-Electron Microscopy (Cryo-EM), Nanoparticle Tracking Analysis, Western blots (WB), and proteomics, we identified significant method-dependent variances in the size, concentration, and protein content of EVs. Importantly, our study uniquely demonstrates the ability of EV isolation to detect specific biomarkers that remain undetected in whole saliva by WB. RT-qPCR analysis targeting six miRNAs confirmed a consistent enrichment of these miRNAs in EV-derived cargo across all three isolation methods. We also found that pre-filtering saliva samples with 0.22 or 0.45 µm pores adversely affects subsequent analyses. Our findings highlight the untapped potential of salivary EVs in diagnostics and advocate for the co-precipitation method as an efficient, cost-effective, and clinically relevant approach for small-volume saliva samples. This work not only sheds light on a neglected source of EVs but also paves the way for their application in routine clinical diagnostics.
Collapse
Affiliation(s)
- Jérémy Boulestreau
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
- Department of Anatomy, Biochemistry, and Physiology John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St. BSB 211, Honolulu, HI, 96813, USA
| | - Laurence Molina
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
| | - Alimata Ouedraogo
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
| | - Louën Laramy
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
| | - Ines Grich
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
| | - Thi Nhu Ngoc Van
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France
- SkillCell, Montpellier, France
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France.
| | - Malik Kahli
- Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France.
| |
Collapse
|
26
|
Liu Z, Pang B, Wang Y, Zheng J, Li Y, Jiang J. Advances of New Extracellular Vesicle Isolation and Detection Technologies in Cancer Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405872. [PMID: 39676429 DOI: 10.1002/smll.202405872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Cancer is a global health issue threatening people's lives. Currently, cancer detection methods still have a lot of room for improvement in both efficiency and accuracy. The development and application of new technologies are urgently required for early cancer diagnosis and prognosis. Extracellular vesicles (EVs) are a type of phospholipid bilayer vesicle secreted by cells and play an important role in cancer development and metastasis. These small vesicles participate in cancer information transmission, antigen presentation, angiogenesis, immune response, tumor invasion, and mediate signaling pathways in the tumor microenvironment. Liquid biopsy of EV cargo contents is a fast-developing research area, holding promise for early cancer diagnosis and monitoring cancer progression in real-time. However, current EV detection technologies for clinical translation are still facing many challenges. Recent advancements in developing techniques for EV isolation and detection have made significant progress and are paving the way toward clinical application. Here, the advantages and limitations of traditional EV detection and isolation technologies in cancer diagnosis and prognosis are reviewed. The review also focuses on emerging EV detection and isolation technologies in cancer, discusses the challenges faced by current methods, and explores the perspective of new EV detection techniques for future cancer diagnosis.
Collapse
Affiliation(s)
- Zhihan Liu
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Bairen Pang
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, 315010, China
| | - Yuhui Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese, Chinese Academy of Sciences, Ningbo, 315000, China
| | - Jianping Zheng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese, Chinese Academy of Sciences, Ningbo, 315000, China
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Junhui Jiang
- The First Affiliated Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Zhejiang Engineering Research Center of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
27
|
Kumari S, Lausted C, Scherler K, Ng AHC, Lu Y, Lee I, Hood L, Wang K. Approaches and Challenges in Characterizing the Molecular Content of Extracellular Vesicles for Biomarker Discovery. Biomolecules 2024; 14:1599. [PMID: 39766306 PMCID: PMC11674167 DOI: 10.3390/biom14121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanoparticles released from all known cells and are involved in cell-to-cell communication via their molecular content. EVs have been found in all tissues and body fluids, carrying a variety of biomolecules, including DNA, RNA, proteins, metabolites, and lipids, offering insights into cellular and pathophysiological conditions. Despite the emergence of EVs and their molecular contents as important biological indicators, it remains difficult to explore EV-mediated biological processes due to their small size and heterogeneity and the technical challenges in characterizing their molecular content. EV-associated small RNAs, especially microRNAs, have been extensively studied. However, other less characterized RNAs, including protein-coding mRNAs, long noncoding RNAs, circular RNAs, and tRNAs, have also been found in EVs. Furthermore, the EV-associated proteins can be used to distinguish different types of EVs. The spectrum of EV-associated RNAs, as well as proteins, may be associated with different pathophysiological conditions. Therefore, the ability to comprehensively characterize EVs' molecular content is critical for understanding their biological function and potential applications in disease diagnosis. Here, we set out to provide an overview of EV-associated RNAs and proteins as well as approaches currently being used to characterize them.
Collapse
Affiliation(s)
- Suman Kumari
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Christopher Lausted
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kelsey Scherler
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Alphonsus H. C. Ng
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yue Lu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| |
Collapse
|
28
|
Zhu Y, Huang Z, Li C, Li C, Wei M, Deng L, Deng W, Zhou X, Wu K, Yang B, Qu Y, Liu Q, Chen X, Li D, Wang C. Blood mir-331-3p is a potential diagnostic marker for giant panda (Ailuropoda melanoleuca) testicular tumor. BMC Vet Res 2024; 20:515. [PMID: 39548579 PMCID: PMC11566409 DOI: 10.1186/s12917-024-04326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND In recent years, several giant pandas have suffered from testicular tumor, which has seriously affected giant panda health. However, the pathogenesis of testicular tumor in giant panda is still unclear. Studies have shown that miRNAs are involved in the occurrence and development of a variety of cancers. However, the effect of miRNAs on giant panda testicular tumor has been little studied. Therefore, this study explored the pathogenesis of giant panda testicular tumor through miRNA and mRNA sequencing, and screened out diagnostic markers of testicular tumor. RESULTS Combined with phenotypic symptoms and pathological section results, three giant pandas were diagnosed with testicular tumor and divided into tumor group, and three other giant pandas were divided into normal group. A total of 29 differentially expressed miRNAs (DEmiRNAs) were screened by blood miRNA-seq, and 3149 target gene candidates were predicted. Functional enrichment analysis showed that the target genes were mainly involved in intermembrane lipid transfer and ATP-dependent chromatin remodeling. However, only 5 DEmiRNAs were screened by miRNA-seq of blood-derived exosomes and 364 target genes were predicted, which were mainly involved in antigen processing and presentation. In addition, 216 differentially expressed genes (DEGs) were screened by RNA-seq, and functional enrichment analysis showed that tumor-specific DEGs significantly enriched to protein phosphorylation. Spearman correlation analysis of miRNA-mRNA showed that the expressions of miR-331-3p and PKIG were significantly positively correlated (spearman = 0.943, p < 0.01), while the expressions of miR-331-3p and ENSAMEG00000013628 were significantly negatively correlated (spearman= -0.829, p < 0.05). RT-PCR showed that the expression of miR-331-3p was significantly decreased in giant panda with tumor (p < 0.01). CONCLUSIONS blood miRNAs and exosomal miRNAs exhibit distinct regulatory patterns concerning giant panda testicular tumor, potentially reflecting divergent biological processes in the disease's etiology. Meanwhile, miR-331-3p could be used as a potential diagnostic marker for giant panda testicular tumor. Our findings are conducive to the rapid clinical diagnosis of testicular tumor in giant pandas, and are also expected to provide scientific reference for further research on the pathogenesis of testicular tumor.
Collapse
Affiliation(s)
- Yan Zhu
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Zhi Huang
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Caiwu Li
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Chengyao Li
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Ming Wei
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Linhua Deng
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Wenwen Deng
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Xiao Zhou
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Kai Wu
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Bo Yang
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Yuanyuan Qu
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Qin Liu
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Xuemei Chen
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China
| | - Desheng Li
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China.
| | - Chengdong Wang
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Chengdu, 610081, China.
| |
Collapse
|
29
|
Kilic F. The Coordinated Changes in Platelet Glycan Patterns with Blood Serotonin and Exosomes. Int J Mol Sci 2024; 25:11940. [PMID: 39596010 PMCID: PMC11593536 DOI: 10.3390/ijms252211940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The structures of glycans, specifically their terminal positions, play an important role as ligands for receptors in regulating the adhesion ability of platelets. Recent advances in our understanding of free/unbound serotonin (5-HT) in blood plasma at supraphysiological levels implicate it as one of the most profound influencers in remodeling the platelet's surface N-glycans. Proteomic analysis of the membrane vesicles identified enzymes, specifically glycosyltransferases, only on the surface of the platelets isolated from the supraphysiological level of 5-HT-containing blood plasma. However, these enzymes can only be effective on the cell surface under certain biological conditions, such as the level of their substrates, temperature, and pH of the environment. We hypothesize that exosomes released from various cells coordinate the required criteria for the enzymatic reaction on the platelet surface. The elevated plasma 5-HT level also accelerates the release of exosomes from various cells, as reported. This review summarizes the findings from a wide range of literature and proposes mechanisms to coordinate the exosomes and plasma 5-HT in remodeling the structures of N-glycans to make platelets more prone to aggregation.
Collapse
Affiliation(s)
- Fusun Kilic
- Retired Professor of Biochemistry and Molecular Cellular Biology
| |
Collapse
|
30
|
Fukutomi K, Fujimoto E, Shimokawatoko M, Takano E, Sunayama H, Takeuchi T, Tawa K. Single-Extracellular-Vesicle Detection with a Plasmonic Chip and Enhanced Fluorescence Microscopy. ACS OMEGA 2024; 9:44396-44406. [PMID: 39524643 PMCID: PMC11541535 DOI: 10.1021/acsomega.4c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Endocytosis-derived extracellular vesicles (EVs), which can be as small as 100 nm, are useful for disease prediction. However, very small EVs are below the optical diffraction limit and are difficult to visualize with conventional fluorescence microscopy. In this study, single EVs captured on a plasmonic chip, where fluorescently labeled antibodies were bound over the EV surface, were detected as bright spots using plasmon-field enhanced fluorescence without any pretreatment of isolating labeled EVs, followed by analyzing the full width at half-maximum and the fluorescence peak value for each enhanced fluorescence bright spot. Bright spots smaller than the threshold determined by the observation of the fluorescent nanospheres were attributed to single EVs. The number of single EVs was quantitatively evaluated against the concentration of EV solution injected in the 1.4 pM-95 fM range. Furthermore, single EVs were detected by labeling two different membrane proteins. A molecularly imprinted polymer was applied to a capture interface on a plasmonic chip, and it is found that nonspecific adsorption of aggregates was suppressed. To accurately distinguish single EVs from aggregates of labeled antibodies, the fluorescence microscopy with transmitted light was superior to the epifluorescence method. Finally, single EVs were successfully detected with multiple targets at multiple wavelengths by using different fluorescently labeled antibodies.
Collapse
Affiliation(s)
- Kazuma Fukutomi
- Graduate
School of Science and Technology, Kwansei
Gakuin University, 1
GakuenUegahara, Sanda, Hyogo 669-1330, Japan
| | - Eri Fujimoto
- Graduate
School of Science and Technology, Kwansei
Gakuin University, 1
GakuenUegahara, Sanda, Hyogo 669-1330, Japan
| | - Masaya Shimokawatoko
- Graduate
School of Science and Technology, Kwansei
Gakuin University, 1
GakuenUegahara, Sanda, Hyogo 669-1330, Japan
| | - Eri Takano
- Graduate
School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Hirobumi Sunayama
- Graduate
School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Toshifumi Takeuchi
- Innovation
Commercialization Division, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Keiko Tawa
- Graduate
School of Science and Technology, Kwansei
Gakuin University, 1
GakuenUegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
31
|
Schoettler FI, Fatehi Hassanabad A, Jadli AS, Patel VB, Fedak PWM. Exploring the role of pericardial miRNAs and exosomes in modulating cardiac fibrosis. Cardiovasc Pathol 2024; 73:107671. [PMID: 38906439 DOI: 10.1016/j.carpath.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/26/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
The potential of the pericardial space as a therapeutic delivery tool for cardiac fibrosis and heart failure (HF) treatment has yet to be elucidated. Recently, miRNAs and exosomes have been discovered to be present in human pericardial fluid (PF). Novel studies have shown characteristic human PF miRNA compositions associated with cardiac diseases and higher miRNA expressions in PF compared to peripheral blood. Five key studies found differentially expressed miRNAs in HF, angina pectoris, aortic stenosis, ventricular tachycardia, and congenital heart diseases with either atrial fibrillation or sinus rhythm. As miRNA-based therapeutics for cardiac fibrosis and HF showed promising results in several in vivo studies for multiple miRNAs, we hypothesize a potential role of miRNA-based therapeutics delivered through the pericardial cavity. This is underlined by the favorable results of the first phase 1b clinical trial in this emerging field. Presenting the first human miRNA antisense drug trial, inhibition of miR-132 by intravenous administration of a novel antisense oligonucleotide, CDR132L, established efficacy in reducing miR-132 in plasma samples in a dose-dependent manner. We screened the literature, provided an overview of the miRNAs and exosomes present in PF, and drew a connection to those miRNAs previously elucidated in cardiac fibrosis and HF. Further, we speculate about clinical implications and potential delivery methods.
Collapse
Affiliation(s)
- Friederike I Schoettler
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ali Fatehi Hassanabad
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anshul S Jadli
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
32
|
Wang X, Zheng Y, Cai H, Kou W, Yang C, Li S, Zhu B, Wu J, Zhang N, Feng T, Li X, Xiao F, Yu Z. α-Synuclein species in plasma neuron-derived extracellular vesicles as biomarkers for iRBD. Ann Clin Transl Neurol 2024; 11:2891-2903. [PMID: 39291779 PMCID: PMC11572749 DOI: 10.1002/acn3.52200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Isolated REM sleep behavior disorder (iRBD) is considered as the strongest predictor of Parkinson's disease (PD). Reliable and accurate biomarkers for iRBD detection and the prediction of phenoconversion are in urgent need. This study aimed to investigate whether α-Synuclein (α-Syn) species in plasma neuron-derived extracellular vesicles (NDEVs) could differentiate between iRBD patients and healthy controls (HCs). METHODS Nanoscale flow cytometry was used to detect α-Syn-containing NDEVs in plasma. RESULTS A total of 54 iRBD patients and 53 HCs were recruited. The concentrations of total α-Syn, α-Syn aggregates, and phosphorylated α-Syn at Ser129 (pS129)-containing NDEVs in plasma of iRBD individuals were significantly higher than those in HCs (p < 0.0001 for all). In distinguishing between iRBD and HCs, the area under the receiver operating characteristic (ROC) curve (AUC) for an integrative model incorporating the levels of α-Syn, pS129, and α-Syn aggregate-containing NDEVs in plasma was 0.965. This model achieved a sensitivity of 94.3% and a specificity of 88.9%. In iRBD group, the concentrations of α-Syn aggregate-containing NDEVs exhibited a negative correlation with Sniffin' Sticks olfactory scores (r = -0.351, p = 0.039). Smokers with iRBD exhibited lower levels of α-Syn aggregates and pS129-containing NDEVs in plasma compared to nonsmokers (pα-Syn aggregates = 0.014; ppS129 = 0.003). INTERPRETATION The current study demonstrated that the levels of total α-Syn, α-Syn aggregates, and pS129-containing NDEVs in the plasma of individuals with iRBD were significantly higher compared to HCs. The levels of α-Syn species-containing NDEVs in plasma may serve as biomarkers for iRBD.
Collapse
Affiliation(s)
- Xuemei Wang
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yuanchu Zheng
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Huihui Cai
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Wenyi Kou
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Chen Yang
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Siming Li
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Bingxu Zhu
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Jiayi Wu
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical PsychologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Tao Feng
- Center for Movement Disorders, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xiaohong Li
- Department of NeurologyAffiliated Dalian Municipal Friendship Hospital of Dalian Medical UniversityDalianChina
| | - Fulong Xiao
- Division of Sleep MedicinePeking University People's HospitalBeijingChina
| | - Zhenwei Yu
- Department of PathophysiologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| |
Collapse
|
33
|
Palakurthi SS, Shah B, Kapre S, Charbe N, Immanuel S, Pasham S, Thalla M, Jain A, Palakurthi S. A comprehensive review of challenges and advances in exosome-based drug delivery systems. NANOSCALE ADVANCES 2024; 6:5803-5826. [PMID: 39484149 PMCID: PMC11523810 DOI: 10.1039/d4na00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/22/2024] [Indexed: 11/03/2024]
Abstract
Exosomes or so-called natural nanoparticles have recently shown enormous potential for targeted drug delivery systems. Several studies have reported that exosomes as advanced drug delivery platforms offer efficient targeting of chemotherapeutics compared to individual polymeric nanoparticles or liposomes. Taking structural constituents of exosomes, viz., proteins, nucleic acids, and lipids, into consideration, exosomes are the most promising carriers as genetic messengers and for treating genetic deficiencies or tumor progression. Unfortunately, very little attention has been paid to the factors like source, scalability, stability, and validation that contribute to the quality attributes of exosome-based drug products. Some studies suggested that exosomes were stable at around -80 °C, which is impractical for storing pharmaceutical products. Currently, no reports on the shelf-life and in vivo stability of exosome formulations are available. Exosomes are quickly cleared from blood circulation, and their in vivo distribution depends on the source. Considering these challenges, further studies are necessary to address major limitations such as poor drug loading, reduced in vivo stability, a need for robust, economical, and scalable production methods, etc., which may unlock the potential of exosomes in clinical applications. A few reports based on hybrid exosomes involving hybridization between different cell/tumor/macrophage-derived exosomes with synthetic liposomes through membrane fusion have shown to overcome some limitations associated with natural or synthetic exosomes. Yet, sufficient evidence is indispensable to prove their stability and clinical efficacy.
Collapse
Affiliation(s)
- Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Brijesh Shah
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Susan Immanuel
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Maharshi Thalla
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Ankit Jain
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| |
Collapse
|
34
|
Abid AI, Conzatti G, Toti F, Anton N, Vandamme T. Mesenchymal stem cell-derived exosomes as cell free nanotherapeutics and nanocarriers. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102769. [PMID: 38914247 DOI: 10.1016/j.nano.2024.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Many strategies for regenerating the damaged tissues or degenerating cells are employed in regenerative medicine. Stem cell technology is a modern strategy of the recent approaches, particularly the use of mesenchymal stem cells (MCSs). The ability of MSCs to differentiate as well as their characteristic behaviour as paracrine effector has established them as key elements in tissue repair. Recently, extracellular vesicles (EVs) shed by MSCs have emerged as a promising cell free therapy. This comprehensive review encompasses MSCs-derived exosomes and their therapeutic potential as nanotherapeutics. We also discuss their potency as drug delivery nano-carriers in comparison with liposomes. A better knowledge of EVs behaviour in vivo and of their mechanism of action are key to determine parameters of an optimal formulation in pilot studies and to establish industrial processes.
Collapse
Affiliation(s)
- Ali Imran Abid
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France
| | - Guillaume Conzatti
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France.
| | - Florence Toti
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Nicolas Anton
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Thierry Vandamme
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France.
| |
Collapse
|
35
|
Yang L, Niu Z, Ma Z, Wu X, Vong CT, Li G, Feng Y. Exploring the clinical implications and applications of exosomal miRNAs in gliomas: a comprehensive study. Cancer Cell Int 2024; 24:323. [PMID: 39334350 PMCID: PMC11437892 DOI: 10.1186/s12935-024-03507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gliomas are aggressive brain tumors associated with poor prognosis and limited treatment options due to their invasive nature and resistance to current therapeutic modalities. Research suggests that exosomal microRNAs have emerged as key players in intercellular communication within the tumor microenvironment, influencing tumor progression and therapeutic responses. Exosomal microRNAs (miRNAs), small non-coding RNAs, are crucial in glioma development, invasion, metastasis, angiogenesis, and immune evasion by binding to target genes. This comprehensive review examines the clinical relevance and implications of exosomal miRNAs in gliomas, highlighting their potential as diagnostic biomarkers, therapeutic targets and prognosis biomarker. Additionally, we also discuss the limitations of current exsomal miRNA treatments and address challenges and propose future directions for leveraging exosomal miRNAs in precision oncology for glioma management.
Collapse
Affiliation(s)
- Liang Yang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhen Niu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhixuan Ma
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaojie Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
| | - Ying Feng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Mishra DD, Maurya PK, Tiwari S. Reference gene panel for urinary exosome-based molecular diagnostics in patients with kidney disease. World J Nephrol 2024; 13:99105. [PMID: 39351186 PMCID: PMC11439094 DOI: 10.5527/wjn.v13.i3.99105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Kidney disease is a severe complication of diabetes that often leads to end-stage renal disease. Early diagnosis is crucial for prevention or delay. However, the current diagnostic methods, with their limitations in detecting the disease in its early stages, underscore the urgency and importance of finding new solutions. miRNAs encapsulated inside urinary exosomes (UEs) have potential as early biomarkers for kidney diseases. The need for reference miRNAs for accurate interpretation currently limits their translational potential. AIM To identify consistently expressing reference miRNAs from UEs of controls and patients with type 2 diabetesmellitus (T2DM) and biopsy-confirmed kidney diseases. METHODS miRNA profiling was performed on UEs from 31 human urine samples using a rigorous and unbiased method. The UEs were isolated from urine samples collected from healthy individuals (n = 6), patients with T2DM (n = 13), and T2DM patients who also had kidney diseases (including diabetic nephropathy, n = 5; membranous nephropathy, n = 5; and IgA nephropathy, n = 2) through differential ultracentrifugation. After characterizing the UEs, miRNA expression profiling using microarray technology was conducted. RESULTS Microarray data analysis identified 14 miRNAs that were consistently expressed in UEs from 31 human samples, representing various kidney conditions: diabetic controls, diabetic nephropathy, membrane nephropathy, IgA nephropathy, and healthy controls. Through in silico analysis, we determined that 10 of these miRNAs had significant potential to serve as reference genes in UEs. CONCLUSION We identified uniformly expressing UE miRNAs that could serve as reference genes kidney disease biomarkers.
Collapse
Affiliation(s)
- Deendayal D Mishra
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Pramod K Maurya
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
37
|
Li B, Hao K, Li M, Wang A, Tang H, Xu L, Ma C, Du W, Sun L, Hou X, Jia T, Liu A, Gao Q, Zhao Z, Jin R, Yang R. Five miRNAs identified in fucosylated extracellular vesicles as non-invasive diagnostic signatures for hepatocellular carcinoma. Cell Rep Med 2024; 5:101716. [PMID: 39241773 PMCID: PMC11525029 DOI: 10.1016/j.xcrm.2024.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/25/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer that presents significant challenges for early detection. This study introduces the GlyExo-Capture method for isolating fucosylated extracellular vesicles (Fu-EVs) from serum. We analyze microRNA (miRNA) profiles from Fu-EVs in 88 HCC patients and 179 non-HCC controls using next-generation sequencing (NGS) and identify five miRNAs (hsa-let-7a, hsa-miR-21, hsa-miR-125a, hsa-miR-200a, and hsa-miR-150) as biomarkers for HCC diagnosis. The five-miRNA panel demonstrates exceptional HCC diagnostic performance, with a sensitivity of 0.90 and specificity of 0.92 in a combined cohort of 194 HCC and 412 non-HCC controls, significantly surpassing the performance of alpha-fetoprotein (AFP) and des-gamma-carboxy prothrombin (DCP). Notably, the miRNA model achieves recall rates of 85.7% and 90.8% for stage 0 and stage A early-stage HCC, respectively, identifies 88.1% of AFP-negative HCC cases, and effectively differentiates HCC from other cancers. This study provides a high-throughput, rapid, and non-invasive approach for early HCC detection.
Collapse
Affiliation(s)
- Boan Li
- Department of Laboratory Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kun Hao
- Beijing Hotgen Biotech Co., Ltd., Beijing, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mengyang Li
- The Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ailan Wang
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Huixue Tang
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Lida Xu
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Cuidie Ma
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Wenqian Du
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Lijuan Sun
- Beijing Youngen Technology Co., Ltd., Beijing, China
| | - Xufeng Hou
- Beijing Youngen Technology Co., Ltd., Beijing, China
| | - Tianye Jia
- Department of Laboratory Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Aixia Liu
- Department of Laboratory Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qi Gao
- Beijing Hotgen Biotech Co., Ltd., Beijing, China; Beijing Youngen Technology Co., Ltd., Beijing, China.
| | - Zhiming Zhao
- The Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Ronghua Jin
- Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China.
| | - Ruifu Yang
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No. BZ0329), Beijing, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
38
|
Yao J, Li Y, Wang S, Dong X, Feng L, Gong X, Chen T, Lai L, Xu H, Jiang Z, Chen J, Xia H, Li G, Lou J. Exosomal proteomics and cytokine analysis distinguish silicosis cases from controls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124469. [PMID: 38945194 DOI: 10.1016/j.envpol.2024.124469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Occupational silica exposure caused a serious disease burden of silicosis. There is currently a lack of sensitive and effective biomarkers for silicosis, and the pathogenesis of silicosis is unclear. Exosomes were significant in the pathogenesis of silicosis, and our study was carried out from exosomal proteomics and cytokine analysis. Firstly, the plasma levels of cytokines were detected using a Luminex multiplex assay, and the results indicated that the plasma levels of TNF-α, IL-6, CCL2, CXCL10, and PDGF-AB were significantly higher in silicosis patients than in silica-exposed workers and controls (p < 0.05). After correlation analysis, the plasma levels of cytokines were positively correlated with exosomal protein concentration. Secondly, data-independent acquisition (DIA) was performed on plasma-derived exosomes in the screening population, which identified 88, 151, 293, and 53 differentially expressed proteins (DEPs) in exposure/control, silicosis/control, silicosis/exposure, and silicosis stage Ⅲ/silicosis stage Ⅰ groups respectively. After parallel reaction monitoring (PRM) in an independent verification population, the results indicated that the changing trend of 15 DEPs was coincident in screening and verification results. The result of correlation analysis indicated that the plasma level of TNF-α was negatively correlated with the expression of exosomal DSP, KRT78, SERPINB12, and CALML5. The AUC of combined determination of TNF-α and CALML5 reached 0.900, with a sensitivity of 0.714 and a specificity of 0.933. Overall, our study revealed the exosomal proteomic profiling of silicosis patients, silica-exposed workers, and controls, indicating that exosomes were significant in the pathogenesis of silicosis. It also revealed that the combined of the plasma levels of cytokines and the expression of exosomal DEPs could increase determination efficiency. This study provided directions for the development of silicosis biomarkers and a scientific basis for the pathogenesis research of silicosis in the future.
Collapse
Affiliation(s)
- Jiahui Yao
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Yongxin Li
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Shujuan Wang
- Department of Occupational Medicine, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang Province, China
| | - Xiaowen Dong
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Xiaoxue Gong
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Tiancheng Chen
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Luqiao Lai
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Huadong Xu
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Zhaoqiang Jiang
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Junfei Chen
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Hailing Xia
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Guohui Li
- Department of Occupational Medicine, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang Province, China.
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China; School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, China.
| |
Collapse
|
39
|
Amato L, De Rosa C, De Rosa V, Heydari Sheikhhossein H, Ariano A, Franco P, Nele V, Capaldo S, Di Guida G, Sepe F, Di Liello A, De Rosa G, Tuccillo C, Gambardella A, Ciardiello F, Morgillo F, Tirino V, Della Corte CM, Iommelli F, Vicidomini G. Immune-Cell-Derived Exosomes as a Potential Novel Tool to Investigate Immune Responsiveness in SCLC Patients: A Proof-of-Concept Study. Cancers (Basel) 2024; 16:3151. [PMID: 39335123 PMCID: PMC11430591 DOI: 10.3390/cancers16183151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Small cell lung cancer (SCLC) is a highly invasive and rapidly proliferating lung tumor subtype. Most patients respond well to a combination of platinum-based chemotherapy and PD-1/PDL-1 inhibitors. Unfortunately, not all patients benefit from this treatment regimen, and few alternative therapies are available. In this scenario, the identification of new biomarkers and differential therapeutic strategies to improve tumor response becomes urgent. Here, we investigated the role of exosomes (EXs) released from the peripheral blood mononuclear cells (PBMCs) of SCLC patients in mediating the functional crosstalk between the immune system and tumors in response to treatments. In this study, we showed that PBMC-EXs from SCLC patients with different responses to chemoimmunotherapy showed different levels of immune (STING and MAVS) and EMT (Snail and c-Myc) markers. We demonstrated that PBMC-EXs derived from best responder (BR) patients were able to induce a significant increase in apoptosis in SCLC cell lines in vitro compared to PBMC-EXs derived from non-responder (NR) SCLC patients. PBMC-EXs were able to affect cell viability and modulate apoptotic markers, DNA damage and the replication stress pathway, as well as the occurrence of EMT. Our work provides proof of concept that PBMC-EXs can be used as a tool to study the crosstalk between cancer cells and immune cells and that PBMC-EXs exhibit an in vitro ability to promote cancer cell death and reduce tumor aggressiveness.
Collapse
Affiliation(s)
- Luisa Amato
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (A.A.); (S.C.); (G.D.G.); (F.S.); (A.D.L.); (C.T.); (A.G.); (F.C.); (F.M.)
| | - Caterina De Rosa
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (A.A.); (S.C.); (G.D.G.); (F.S.); (A.D.L.); (C.T.); (A.G.); (F.C.); (F.M.)
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy; (V.D.R.); (F.I.)
| | - Hamid Heydari Sheikhhossein
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy
| | - Annalisa Ariano
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (A.A.); (S.C.); (G.D.G.); (F.S.); (A.D.L.); (C.T.); (A.G.); (F.C.); (F.M.)
| | - Paola Franco
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, National Research Council, 80131 Naples, Italy;
| | - Valeria Nele
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.N.); (G.D.R.)
| | - Sara Capaldo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (A.A.); (S.C.); (G.D.G.); (F.S.); (A.D.L.); (C.T.); (A.G.); (F.C.); (F.M.)
| | - Gaetano Di Guida
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (A.A.); (S.C.); (G.D.G.); (F.S.); (A.D.L.); (C.T.); (A.G.); (F.C.); (F.M.)
| | - Filippo Sepe
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (A.A.); (S.C.); (G.D.G.); (F.S.); (A.D.L.); (C.T.); (A.G.); (F.C.); (F.M.)
| | - Alessandra Di Liello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (A.A.); (S.C.); (G.D.G.); (F.S.); (A.D.L.); (C.T.); (A.G.); (F.C.); (F.M.)
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.N.); (G.D.R.)
| | - Concetta Tuccillo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (A.A.); (S.C.); (G.D.G.); (F.S.); (A.D.L.); (C.T.); (A.G.); (F.C.); (F.M.)
| | - Antonio Gambardella
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (A.A.); (S.C.); (G.D.G.); (F.S.); (A.D.L.); (C.T.); (A.G.); (F.C.); (F.M.)
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (A.A.); (S.C.); (G.D.G.); (F.S.); (A.D.L.); (C.T.); (A.G.); (F.C.); (F.M.)
| | - Floriana Morgillo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (A.A.); (S.C.); (G.D.G.); (F.S.); (A.D.L.); (C.T.); (A.G.); (F.C.); (F.M.)
| | - Virginia Tirino
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Carminia Maria Della Corte
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy (A.A.); (S.C.); (G.D.G.); (F.S.); (A.D.L.); (C.T.); (A.G.); (F.C.); (F.M.)
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy; (V.D.R.); (F.I.)
| | - Giovanni Vicidomini
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
40
|
McDonald MLN. The Need for Biomarkers Common to Blood and Lung Tissue in Emphysema: Anyone Would Rather Give You a Blood Sample than a Lung Sample. Am J Respir Crit Care Med 2024; 211:8-9. [PMID: 39197093 PMCID: PMC11755363 DOI: 10.1164/rccm.202407-1416ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 08/30/2024] Open
Affiliation(s)
- Merry-Lynn N McDonald
- University of Alabama at Birmingham, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, Alabama, United States;
| |
Collapse
|
41
|
Okeoma CM, Naushad W, Okeoma BC, Gartner C, Santos-Ortega Y, Vary C, Carregari VC, Larsen MR, Noghero A, Grassi-Oliveira R, Walss-Bass C. Lipidomic and Proteomic Insights from Extracellular Vesicles in Postmortem Dorsolateral Prefrontal Cortex Reveal Substance Use Disorder-Induced Brain Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607388. [PMID: 39211229 PMCID: PMC11360920 DOI: 10.1101/2024.08.09.607388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Substance use disorder (SUD) significantly increases the risk of neurotoxicity, inflammation, oxidative stress, and impaired neuroplasticity. The activation of inflammatory pathways by substances may lead to glial activation and chronic neuroinflammation, potentially mediated by the release of extracellular particles (EPs), such as extracellular condensates (ECs) and extracellular vesicles (EVs). These particles, which reflect the physiological, pathophysiological, and metabolic states of their cells of origin, might carry molecular signatures indicative of SUD. In particular, our study investigated neuroinflammatory signatures in SUD by isolating EVs from the dorsolateral prefrontal cortex (dlPFC) Brodmann's area 9 (BA9) in postmortem subjects. We isolated BA9-derived EVs from postmortem brain tissues of eight individuals (controls: n=4, SUD: n=4). The EVs were analyzed for physical properties (concentration, size, zeta potential, morphology) and subjected to integrative multi-omics analysis to profile the lipidomic and proteomic characteristics. We assessed the interactions and bioactivity of EVs by evaluating their uptake by glial cells. We further assessed the effects of EVs on complement mRNA expression in glial cells as well as their effects on microglial migration. No significant differences in EV concentration, size, zeta potential, or surface markers were observed between SUD and control groups. However, lipidomic analysis revealed significant enrichment of glycerophosphoinositol bisphosphate (PIP2) in SUD EVs. Proteomic analysis indicates downregulation of SERPINB12, ACYP2, CAMK1D, DSC1, and FLNB, and upregulation of C4A, C3, and ALB in SUD EVs. Gene ontology and protein-protein interactome analyses highlight functions such as cell motility, focal adhesion, and acute phase response signaling that is associated with the identified proteins. Both control and SUD EVs increased C3 and C4 mRNA expression in microglia, but only SUD EVs upregulated these genes in astrocytes. SUD EVs also significantly enhanced microglial migration in a wound healing assay.This study successfully isolated EVs from postmortem brains and used a multi-omics approach to identify EV-associated lipids and proteins in SUD. Elevated C3 and C4 in SUD EVs and the distinct effects of EVs on glial cells suggest a crucial role in acute phase response signaling and neuroinflammation.
Collapse
|
42
|
Slusher N, Jones N, Nonaka T. Liquid biopsy for diagnostic and prognostic evaluation of melanoma. Front Cell Dev Biol 2024; 12:1420360. [PMID: 39156972 PMCID: PMC11327088 DOI: 10.3389/fcell.2024.1420360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Melanoma is the most aggressive form of skin cancer, and the majority of cases are associated with chronic or intermittent sun exposure. The incidence of melanoma has grown exponentially over the last 50 years, especially in populations of fairer skin, at lower altitudes and in geriatric populations. The gold standard for diagnosis of melanoma is performing an excisional biopsy with full resection or an incisional tissue biopsy. However, due to their invasiveness, conventional biopsy techniques are not suitable for continuous disease monitoring. Utilization of liquid biopsy techniques represent substantial promise in early detection of melanoma. Through this procedure, tumor-specific components shed into circulation can be analyzed for not only diagnosis but also treatment selection and risk assessment. Additionally, liquid biopsy is significantly less invasive than tissue biopsy and offers a novel way to monitor the treatment response and disease relapse, predicting metastasis.
Collapse
Affiliation(s)
- Nicholas Slusher
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Nicholas Jones
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
43
|
Tamimi A, Javid M, Sedighi-Pirsaraei N, Mirdamadi A. Exosome prospects in the diagnosis and treatment of non-alcoholic fatty liver disease. Front Med (Lausanne) 2024; 11:1420281. [PMID: 39144666 PMCID: PMC11322140 DOI: 10.3389/fmed.2024.1420281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The growing prevalence of NAFLD and its global health burden have provoked considerable research on possible diagnostic and therapeutic options for NAFLD. Although various pathophysiological mechanisms and genetic factors have been identified to be associated with NAFLD, its treatment remains challenging. In recent years, exosomes have attracted widespread attention for their role in metabolic dysfunctions and their efficacy as pathological biomarkers. Exosomes have also shown tremendous potential in treating a variety of disorders. With increasing evidence supporting the significant role of exosomes in NAFLD pathogenesis, their theragnostic potential has become a point of interest in NAFLD. Expectedly, exosome-based treatment strategies have shown promise in the prevention and amelioration of NAFLD in preclinical studies. However, there are still serious challenges in preparing, standardizing, and applying exosome-based therapies as a routine clinical option that should be overcome. Due to the great potential of this novel theragnostic agent in NAFLD, further investigations on their safety, clinical efficacy, and application standardization are highly recommended.
Collapse
|
44
|
Din MAU, Wan A, Chu Y, Zhou J, Yan Y, Xu Z. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder. Front Med (Lausanne) 2024; 11:1406547. [PMID: 39139783 PMCID: PMC11319305 DOI: 10.3389/fmed.2024.1406547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
The chronic immune-mediated inflammatory condition known as inflammatory bowel disease (IBD) significantly affects the gastrointestinal system. While the precise etiology of IBD remains elusive, extensive research suggests that a range of pathophysiological pathways and immunopathological mechanisms may significantly contribute as potential factors. Mesenchymal stem cells (MSCs) have shown significant potential in the development of novel therapeutic approaches for various medical conditions. However, some MSCs have been found to exhibit tumorigenic characteristics, which limit their potential for medical treatments. The extracellular vesicles (EVs), paracrine factors play a crucial role in the therapeutic benefits conferred by MSCs. The EVs consist of proteins, microRNAs, and lipids, and are instrumental in facilitating intercellular communication. Due to the ease of maintenance, and decreased immunogenicity, tumorigenicity the EVs have become a new and exciting option for whole cell treatment. This review comprehensively assesses recent preclinical research on human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs as a potential IBD therapy. It comprehensively addresses key aspects of various conditions, including diabetes, cancer, dermal injuries, neurological disorders, cardiovascular issues, liver and kidney diseases, and bone-related afflictions.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, China
| | | | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Zhiliang Xu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| |
Collapse
|
45
|
Jumat MI, Chin KL. Transcriptome analysis and molecular characterization of novel small RNAs in Mycobacterium tuberculosis Lineage 1. World J Microbiol Biotechnol 2024; 40:279. [PMID: 39048776 DOI: 10.1007/s11274-024-04089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the tuberculosis-causing agent, exhibits diverse genetic lineages, with known links to virulence. While genomic and transcriptomic variations between modern and ancient Mtb lineages have been explored, the role of small non-coding RNA (sRNA) in post-translational gene regulation remains largely uncharted. In this study, Mtb Lineage 1 (L1) Sabahan strains (n = 3) underwent sRNA sequencing, revealing 351 sRNAs, including 23 known sRNAs and 328 novel ones identified using ANNOgesic. Thirteen sRNAs were selected based on the best average cut-off value of 300, with RT-qPCR revealing significant expression differences for sRNA 1 (p = 0.0132) and sRNA 29 (p = 0.0012) between Mtb L1 and other lineages (L2 and L4, n = 3) (p > 0.05). Further characterization using RACE (rapid amplification of cDNA ends), followed by target prediction with TargetRNA3 unveils that sRNA 1 (55 base pairs) targets Rv0506, Rv0697, and Rv3590c, and sRNA 29 (86 base pairs) targets Rv33859c, Rv3345c, Rv0755c, Rv0107c, Rv1817, Rv2950c, Rv1181, Rv3610c, and Rv3296. Functional characterization with Mycobrowser reveals these targets involved in regulating intermediary metabolism and respiration, cell wall and cell processes, lipid metabolism, information pathways, and PE/PPE. In summary, two novel sRNAs, sRNA 1 and sRNA 29, exhibited differential expression between L1 and other lineages, with predicted roles in essential Mtb functions. These findings offer insights into Mtb regulatory mechanisms, holding promise for the development of improved tuberculosis treatment strategies in the future.
Collapse
Affiliation(s)
- Mohd Iskandar Jumat
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
| |
Collapse
|
46
|
Shi M, Jia JS, Gao GS, Hua X. Advances and challenges of exosome-derived noncoding RNAs for hepatocellular carcinoma diagnosis and treatment. Biochem Biophys Rep 2024; 38:101695. [PMID: 38560049 PMCID: PMC10979073 DOI: 10.1016/j.bbrep.2024.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/10/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes, also termed extracellular vesicles (EVs), are an important component of the tumor microenvironment (TME) and exert versatile effects on the molecular communications in the TME of hepatocellular carcinoma (HCC). Exosome-mediated intercellular communication is closely associated with the tumorigenesis and development of HCC. Exosomes can be extracted through ultracentrifugation and size exclusion, followed by molecular analysis through sequencing. Increasing studies have confirmed the important roles of exosome-derived ncRNAs in HCC, including tumorigenesis, progression, immune escape, and treatment resistance. Due to the protective membrane structure of exosomes, the ncRNAs carried by exosomes can evade degradation by enzymes in body fluids and maintain good expression stability. Thus, exosome-derived ncRNAs are highly suitable as biomarkers for the diagnosis and prognostic prediction of HCC, such as exosomal miR-21-5p, miR-221-3p and lncRNA-ATB. In addition, substantial studies revealed that the up-or down-regulation of exosome-derived ncRNAs had an important impact on HCC progression and response to treatment. Exosomal biomarkers, such as miR-23a, lncRNA DLX6-AS1, miR-21-5p, lncRNA TUC339, lncRNA HMMR-AS1 and hsa_circ_0004658, can reshape immune microenvironment by regulating M2-type macrophage polarization and then promote HCC development. Therefore, by controlling exosome biogenesis and modulating exosomal ncRNA levels, HCC may be inhibited or eliminated. In this current review, we summarized the recent findings on the role of exosomes in HCC progression and analyzed the relationship between exosome-derived ncRNAs and HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Min Shi
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Jun-Su Jia
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Guo-Sheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Xin Hua
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
47
|
Simoneau S, Igel A, Ciric D, Moudjou M, Tcherniuk S, Béringue V, Rezaei H, Flan B. Characterization of the 263K-derived microsomal fraction: a source of prions for nanofiltration validation studies. Transfusion 2024; 64:1315-1322. [PMID: 38745533 DOI: 10.1111/trf.17860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The manufacturing processes of plasma products include steps that can remove prions. The efficacy of these steps is measured in validation studies using animal brain-derived prion materials called spikes. Because the nature of the prion agent in blood is not known, the relevance of these spikes, particularly with steps that are based on retention mechanisms such as nanofiltration, is important to investigate. STUDY DESIGN AND METHODS The aggregation and sizes of PrPres assemblies of microsomal fractions (MFs) extracted from 263K-infected hamster brains were analyzed using velocity gradients. The separated gradient fractions were either inoculated to Tg7 mice expressing hamster-PrPc to measure infectivity or used in Protein Misfolding Cyclic Amplification for measuring seeding activity. The collected data allowed for reanalyzing results from previous nanofiltration validation studies. RESULTS A significant portion of MFs was found to be composed of small PrPres assemblies, estimated to have a size ≤24 mers (~22-528 kDa), and to contain a minimum of 20% of total prion infectivity. With this data we could calculate reductions of 4.10 log (15 N), 2.53 log (35 N), and 1.77 log (35 N) from validation studies specifically for these small PrPres objects. CONCLUSION Our gradient data provided evidence that nanofilters can remove the majority of the smallest PrPres entities within microsomes spikes, estimated to be in a size below 24 mers, giving insight about the fact that, in our conditions, size exclusion may not be the only mechanism for retention nanofiltration.
Collapse
Affiliation(s)
- Steve Simoneau
- Department of Biological Safety Surveillance, Laboratoire du Fractionnement et des Biotechnologies (LFB), Les Ulis, France
| | - Angélique Igel
- VIM, INRAE, Paris-Saclay University, Jouy-en-Josas, France
| | - Danica Ciric
- VIM, INRAE, Paris-Saclay University, Jouy-en-Josas, France
| | | | - Sergey Tcherniuk
- Department of Biological Safety Surveillance, Laboratoire du Fractionnement et des Biotechnologies (LFB), Les Ulis, France
| | | | - Human Rezaei
- VIM, INRAE, Paris-Saclay University, Jouy-en-Josas, France
| | - Benoit Flan
- Department of Biological Safety Surveillance, Laboratoire du Fractionnement et des Biotechnologies (LFB), Les Ulis, France
| |
Collapse
|
48
|
Rahmani A, Soleymani A, Almukhtar M, Behzad Moghadam K, Vaziri Z, Hosein Tabar Kashi A, Adabi Firoozjah R, Jafari Tadi M, Zolfaghari Dehkharghani M, Valadi H, Moghadamnia AA, Gasser RB, Rostami A. Exosomes, and the potential for exosome-based interventions against COVID-19. Rev Med Virol 2024; 34:e2562. [PMID: 38924213 DOI: 10.1002/rmv.2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Since late 2019, the world has been devastated by the coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with more than 760 million people affected and ∼seven million deaths reported. Although effective treatments for COVID-19 are currently limited, there has been a strong focus on developing new therapeutic approaches to address the morbidity and mortality linked to this disease. An approach that is currently being investigated is the use of exosome-based therapies. Exosomes are small, extracellular vesicles that play a role in many clinical diseases, including viral infections, infected cells release exosomes that can transmit viral components, such as miRNAs and proteins, and can also include receptors for viruses that facilitate viral entry into recipient cells. SARS-CoV-2 has the ability to impact the formation, secretion, and release of exosomes, thereby potentially facilitating or intensifying the transmission of the virus among cells, tissues and individuals. Therefore, designing synthetic exosomes that carry immunomodulatory cargo and antiviral compounds are proposed to be a promising strategy for the treatment of COVID-19 and other viral diseases. Moreover, exosomes generated from mesenchymal stem cells (MSC) might be employed as cell-free therapeutic agents, as MSC-derived exosomes can diminish the cytokine storm and reverse the suppression of host anti-viral defences associated with COVID-19, and boost the repair of lung damage linked to mitochondrial activity. The present article discusses the significance and roles of exosomes in COVID-19, and explores potential future applications of exosomes in combating this disease. Despite the challenges posed by COVID-19, exosome-based therapies could represent a promising avenue for improving patient outcomes and reducing the impact of this disease.
Collapse
Affiliation(s)
- Abolfazl Rahmani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Soleymani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Kimia Behzad Moghadam
- Independent Researcher, Former University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Zahra Vaziri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Hosein Tabar Kashi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Reza Adabi Firoozjah
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehrdad Jafari Tadi
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Maryam Zolfaghari Dehkharghani
- Department of Healthcare Administration and Policy, School of Public Health, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, Babol University of Medical Sciences, Babol, Iran
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Robin B Gasser
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
49
|
Torres A, Bernardo L, Sánchez C, Morato E, Solana JC, Carrillo E. Comparing the Proteomic Profiles of Extracellular Vesicles Isolated using Different Methods from Long-term Stored Plasma Samples. Biol Proced Online 2024; 26:18. [PMID: 38898416 PMCID: PMC11188224 DOI: 10.1186/s12575-024-00243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The lack of standardized protocols for isolating extracellular vesicles (EVs), especially from biobank-stored blood plasma, translates to limitations for the study of new biomarkers. This study examines whether a combination of current isolation methods could enhance the specificity and purity of isolated EVs for diagnosis and personalized medicine purposes. RESULTS EVs were isolated from healthy human plasma stored for one year by ultracentrifugation (UC), size exclusion chromatography (SEC), or SEC and UC combined (SEC + UC). The EV isolates were then characterized by transmission electron microscopy imaging, nanoparticle tracking analysis (NTA) and western blotting. Proteomic procedures were used to analyze protein contents. The presence of EV markers in all isolates was confirmed by western blotting yet this analysis revealed higher albumin expression in EVs-UC, suggesting plasma protein contamination. Proteomic analysis identified 542 proteins, SEC + UC yielding the most complex proteome at 364 proteins. Through gene ontology enrichment, we observed differences in the cellular components of EVs and plasma in that SEC + UC isolates featured higher proportions of EV proteins than those derived from the other two methods. Analysis of proteins unique to each isolation method served to identify 181 unique proteins for the combined approach, including those normally appearing in low concentrations in plasma. This indicates that with this combined method, it is possible to detect less abundant plasma proteins by proteomics in the resultant isolates. CONCLUSIONS Our findings reveal that the SEC + UC approach yields highly pure and diverse EVs suitable for comprehensive proteomic analysis with applications for the detection of new biomarkers in biobank-stored plasma samples.
Collapse
Affiliation(s)
- Ana Torres
- WHO Collaborating Centre for Leishmaniasis, Spanish National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lorena Bernardo
- WHO Collaborating Centre for Leishmaniasis, Spanish National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Sánchez
- WHO Collaborating Centre for Leishmaniasis, Spanish National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Esperanza Morato
- Proteomics Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose Carlos Solana
- WHO Collaborating Centre for Leishmaniasis, Spanish National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Spanish National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
50
|
Laitano R, Calzetta L, Motta E, Puxeddu E, Rogliani P. Role of exosomes in exacerbations of asthma and COPD: a systematic review. Front Mol Biosci 2024; 11:1356328. [PMID: 38957448 PMCID: PMC11217169 DOI: 10.3389/fmolb.2024.1356328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease are chronic respiratory disorders characterized by airways obstruction and chronic inflammation. Exacerbations lead to worsening of symptoms and increased airflow obstruction in both airways diseases, and they are associated with increase in local and systemic inflammation. Exosomes are cell-derived membrane vesicles containing proteins, lipids, and nucleic acids that reflect their cellular origin. Through the transfer of these molecules, exosomes act as mediators of intercellular communication. Via selective delivery of their contents to target cells, exosomes have been proved to be involved in regulation of immunity and inflammation. Although, exosomes have been extensively investigated in different diseases, little is currently known about their role in asthma and COPD pathogenesis, and particularly in exacerbations. This review aims to systemically assess the potential role of exosomes in asthma and COPD exacerbations.
Collapse
Affiliation(s)
- Rossella Laitano
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Enrico Motta
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Ermanno Puxeddu
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|