1
|
Chen H, Zhou L, Yan M, Li C, Liu B, Liu X, Shan W, Guo Y, Zhang Z, Wang L. Classification of Laboratory Test Outcomes for Maintenance Hemodialysis Patients Using Cellular Bioelectrical Measurements. Int J Gen Med 2024; 17:3733-3743. [PMID: 39219668 PMCID: PMC11365496 DOI: 10.2147/ijgm.s471161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background End-stage kidney disease (ESKD) patients often face complications like anemia, malnutrition, and cardiovascular issues. Serological tests, which are uncomfortable and not frequently conducted, assist in medical assessments. A non-invasive, convenient method for determining these test results would be beneficial for monitoring patient health. Objective This study develops machine learning models to estimate key serological test results using non-invasive cellular bioelectrical impedance measurements, a routine procedure for ESKD patients. Methods The study employs two machine learning models, Support Vector Machine (SVM) and Random Forest (RF), to determine key serological tests by classifying cell bioelectrical indicators. Data from 688 patients, comprising 3,872 biochemical-bioelectrical records, were used for model validation. Results Both SVM and RF models effectively categorized key serological results (albumin, phosphorus, parathyroid hormone) into low, normal, and high. RF generally outperformed SVM, except in classifying calcium levels in women. Conclusion The machine learning models effectively classified serological test results for maintenance hemodialysis patients using cellular bioelectrical indicators, therefore can help in making judgments about physicochemical indicators using electrical signals, thereby reducing the frequency of serological tests.
Collapse
Affiliation(s)
- Hanzhi Chen
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Leting Zhou
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Meilin Yan
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Cheng Li
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Bin Liu
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Xiaobin Liu
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Weiwei Shan
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, People’s Republic of China
| | - Zhijian Zhang
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Liang Wang
- Department of Nephrology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214000, People’s Republic of China
| |
Collapse
|
2
|
Brandl A, Egner C, Schwarze M, Reer R, Schmidt T, Schleip R. Immediate Effects of Instrument-Assisted Soft Tissue Mobilization on Hydration Content in Lumbar Myofascial Tissues: A Quasi-Experiment. J Clin Med 2023; 12:jcm12031009. [PMID: 36769657 PMCID: PMC9917932 DOI: 10.3390/jcm12031009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Instrument-assisted soft tissue mobilization (IASTM) is thought to alter fluid dynamics in human soft tissue. The aim of this study was to investigate the influence of IASTM on the thoracolumbar fascia (TLF) on the water content of the lumbar myofascial tissue. METHODS In total, 21 healthy volunteers were treated with IASTM. Before and after the procedure and 5 and 10 min later, lumbar bioimpedance was measured by bioimpedance analysis (BIA) and TLF stiffness was measured by indentometry. Tissue temperature was recorded at the measurement time points using an infrared thermometer. RESULTS Bioimpedance increased significantly from 58.3 to 60.4 Ω (p < 0.001) at 10-min follow-up after the treatment. Temperature increased significantly from 36.3 to 36.6 °C from 5 to 10 min after treatment (p = 0.029), while lumbar myofascial stiffness did not change significantly (p = 0.84). CONCLUSIONS After the IASTM intervention, there was a significant increase in bioimpedance, which was likely due to a decrease in water content in myofascial lumbar tissue. Further studies in a randomized control trial design are needed to extrapolate the results in healthy subjects to a symptomatic population as well and to confirm the reliability of BIA in myofascial tissue.
Collapse
Affiliation(s)
- Andreas Brandl
- Department of Sports Medicine, Faculty for Psychology and Human Movement Science, Institute for Human Movement Science, University of Hamburg, 20148 Hamburg, Germany
- Department for Medical Professions, Diploma Hochschule, 37242 Bad Sooden-Allendorf, Germany
- Osteopathic Research Institute, Osteopathie Schule Deutschland, 22297 Hamburg, Germany
| | - Christoph Egner
- Department for Medical Professions, Diploma Hochschule, 37242 Bad Sooden-Allendorf, Germany
| | - Monique Schwarze
- Department for Medical Professions, Diploma Hochschule, 37242 Bad Sooden-Allendorf, Germany
| | - Rüdiger Reer
- Department of Sports Medicine, Faculty for Psychology and Human Movement Science, Institute for Human Movement Science, University of Hamburg, 20148 Hamburg, Germany
| | - Tobias Schmidt
- Osteopathic Research Institute, Osteopathie Schule Deutschland, 22297 Hamburg, Germany
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
| | - Robert Schleip
- Department for Medical Professions, Diploma Hochschule, 37242 Bad Sooden-Allendorf, Germany
- Conservative and Rehabilitative Orthopedics, Department of Sport and Health Sciences, Technical University of Munich, 80333 Munich, Germany
- Correspondence: ; Tel.: +49-89-289-24561
| |
Collapse
|
3
|
A New Strategy for Somatotype Assessment Using Bioimpedance Analysis: Stratification According to Sex. J Funct Morphol Kinesiol 2022; 7:jfmk7040086. [PMID: 36278747 PMCID: PMC9590076 DOI: 10.3390/jfmk7040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Body composition assessment is a relevant element in the biomedical field, in research and daily practice in the medical and nutritional fields, and in the management of athletes. This paper aimed to operate in an Italian sample investigating the possibility of predicting the somatotype from bioimpedance analysis and comparing the predicted results with those obtained from anthropometric measurements. This observational study was conducted with retrospective data collected from 2827 subjects. The somatotype of each subject was calculated both with the Heath−Carter method and by a multiple regression model based on bioimpedance and anthropometric parameters. Somatotypes (endomorph, mesomorph, and ectomorph) were predicted with a high goodness of fit (R2 adjusted > 0.80). Two different somatocharts were obtained from anthropometric measures and bioimpedance parameters and subsequentially compared. Bland−Altman plots showed acceptable accuracy. This study could be a first step in developing a new approach that allows the detection of a subject’s somatotype via bioimpedance analysis, stratified according to sex, with a time-saving and more standardized procedure. It would allow, for example, during the COVID-19 pandemic, to minimize operator−patient contact in having measurements.
Collapse
|
4
|
Smith-Ryan AE, Brewer G, Gould LM, Blue MNM, Hirsch KR, Greenwalt CE, Harrison C, Cabre HE, Ryan ED. Acute feeding has minimal effect on the validity of body composition and metabolic measures: dual-energy X-ray absorptiometry and a multi-compartment model. Br J Nutr 2022; 128:311-323. [PMID: 34392839 DOI: 10.1017/s0007114521003147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Understanding the effects of acute feeding on body composition and metabolic measures is essential to the translational component and practical application of measurement and clinical use. To investigate the influence of acute feeding on the validity of dual-energy X-ray absorptiometry (DXA), a four-compartment model (4C) and indirect calorimetry metabolic outcomes, thirty-nine healthy young adults (n 19 females; age: 21·8 (sd 3·1) years, weight; 71·5 (sd 10·0) kg) participated in a randomised cross-over study. Subjects were provided one of four randomised meals on separate occasions (high carbohydrate, high protein, ad libitum or fasted baseline) prior to body composition and metabolic assessments. Regardless of macronutrient content, acute feeding increased DXA percent body fat (%fat) for the total sample and females (average constant error (CE):-0·30 %; total error (TE): 2·34 %), although not significant (P = 0·062); the error in males was minimal (CE: 0·11 %; TE: 0·86 %). DXA fat mass (CE: 0·26 kg; TE: 0·75 kg) and lean mass (LM) (CE: 0·83 kg; TE: 1·23 kg) were not altered beyond measurement error for the total sample. 4C %fat was significantly impacted from all acute feedings (avg CE: 0·46 %; TE: 3·7 %). 4C fat mass (CE: 0·71 kg; TE: 3·38 kg) and fat-free mass (CE: 0·55 kg; TE: 3·05 kg) exceeded measurement error for the total sample. RMR was increased for each feeding condition (TE: 1666·9 kJ/d; 398 kcal/d). Standard pre-testing fasting guidelines may be important when evaluating DXA and 4C %fat, whereas additional DXA variables (fat mass and LM) may not be significantly impacted by an acute meal. Measuring body composition via DXA under less stringent pre-testing guidelines may be valid and increase feasibility of testing in clinical settings.
Collapse
Affiliation(s)
- Abbie E Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabrielle Brewer
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lacey M Gould
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Malia N M Blue
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katie R Hirsch
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Casey E Greenwalt
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Courtney Harrison
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah E Cabre
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric D Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Bertuccioli A, Cardinali M, Benelli P. Segmental Bioimpedance Analysis as a Predictor of Injury and Performance Status in Professional Basketball Players: A New Application Potential? Life (Basel) 2022; 12:life12071062. [PMID: 35888149 PMCID: PMC9321629 DOI: 10.3390/life12071062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/26/2022] Open
Abstract
Bioelectrical impedance vector analysis (BIVA) is a technique used for the assessment of body composition based on the electrical properties of biological tissues and for evaluating variations related to hydration and nutrition status changes. The present study aimed to investigate the possibility of predicting performance status and injuries using segmental BIVA analysis. Data were collected from 14 professional male athletes aged between 20 and 39 years of Caucasian and Afro-American ethnicity belonging to the US Victoria Libertas Pallacanestro Pesaro team in the Italian Serie A basketball championship. From an analysis of training injuries, the data highlight a possible positive link between the number of training injuries and upper hemisoma reactance (XCEmsSup) (t = 2.881, p = 0.007), an inverse relationship between training injury duration and higher right lower limb reactance (XCLegDx) (t = −4.213, p < 0.001), and an inverse relationship between injury duration and higher body mass index (t = −4.213, p < 0.001), highlighting how higher cellularity seems less prone to severe training injuries. Analyzing match-day injuries, right upper-limb higher reactance (XCArmdx) negatively correlates with match-day number of injuries (t = −4.469, p < 0.001), right upper limb resistance (RZArmDx) negatively correlates with lower match-day injury duration (t = −4.202, p < 0.001), and trunk resistance (RZTrunk) positive correlates with lower match-day injury duration (t = 2.803, p = 0.008), in contrast with the training data analysis. Analyzing the relationship between the BIVA parameters and performance indicators, right upper limb resistance (RzArmDx) has a positive link with plus−minus (t = 2.889, p = 0.007); however, RzArmDx negatively correlates with assist number (t = −3.362, p = 0.002), and BMI is directly proportional to assist number (t = 2.254, p = 0.032). These first data suggest a good correlation between the cellularity of different body districts and the risk of injuries in training but still leave several doubts surrounding the concrete predictive potential regarding performance and injuries during competitions while considering the numerous factors involved. Further studies on BIVA and similar applications could provide tools for managing athlete health and physical integrity preservation and potentially help us better understand the factors involved in improving performance.
Collapse
Affiliation(s)
- Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
- Correspondence:
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47921 Rimini, Italy;
| | - Piero Benelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| |
Collapse
|
6
|
Tracking changes in body composition: comparison of methods and influence of pre-assessment standardisation. Br J Nutr 2022; 127:1656-1674. [PMID: 34325758 DOI: 10.1017/s0007114521002579] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study reports the validity of multiple assessment methods for tracking changes in body composition over time and quantifies the influence of unstandardised pre-assessment procedures. Resistance-trained males underwent 6 weeks of structured resistance training alongside a hyperenergetic diet, with four total body composition evaluations. Pre-intervention, body composition was estimated in standardised (i.e. overnight fasted and rested) and unstandardised (i.e. no control over pre-assessment activities) conditions within a single day. The same assessments were repeated post-intervention, and body composition changes were estimated from all possible combinations of pre-intervention and post-intervention data. Assessment methods included dual-energy X-ray absorptiometry (DXA), air displacement plethysmography, three-dimensional optical imaging, single- and multi-frequency bioelectrical impedance analysis, bioimpedance spectroscopy and multi-component models. Data were analysed using equivalence testing, Bland-Altman analysis, Friedman tests and validity metrics. Most methods demonstrated meaningful errors when unstandardised conditions were present pre- and/or post-intervention, resulting in blunted or exaggerated changes relative to true body composition changes. However, some methods - particularly DXA and select digital anthropometry techniques - were more robust to a lack of standardisation. In standardised conditions, methods exhibiting the highest overall agreement with the four-component model were other multi-component models, select bioimpedance technologies, DXA and select digital anthropometry techniques. Although specific methods varied, the present study broadly demonstrates the importance of controlling and documenting standardisation procedures prior to body composition assessments across distinct assessment technologies, particularly for longitudinal investigations. Additionally, there are meaningful differences in the ability of common methods to track longitudinal body composition changes.
Collapse
|
7
|
Gould LM, Gordon AN, Cabre HE, Hoyle AT, Ryan ED, Hackney AC, Smith-Ryan AE. Metabolic effects of menopause: a cross-sectional characterization of body composition and exercise metabolism. Menopause 2022; 29:377-389. [PMID: 35231009 DOI: 10.1097/gme.0000000000001932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To evaluate body composition, fat distribution, and metabolism at rest and during exercise in premenopausal, perimenopausal, and postmenopausal women. METHODS This cross-sectional study in 72 women ages 35 to 60 years evaluated body composition via a fourcompartment model, fat distribution using dual-energy x-ray absorptiometry-derived android to gynoid ratio, metabolic measures via indirect calorimetry, and lifestyle factors using surveys. One-way analyses of variance and one-way analyses of covariance covaried for age and hormone levels (estrogen and progesterone) were used to compare groups. RESULTS Body fat percent was significantly lower in premenopausal than perimenopausal women (mean difference ± standard error: - 10.29 ± 2.73%, P = 0.026) despite similarities in fat mass and fat-free mass between groups (P≥0.217). Android to gynoid ratio was significantly lower in premenopausal than perimenopausal women (MD ± SE: -0.16 ± 0.05 a.u., P = 0.031). Resting energy expenditure was similar between groups (P = 0.999). Fat oxidation during moderate intensity cycle ergometer exercise was significantly greater in premenopausal than postmenopausal women (MD ± SE: 0.09 ± 0.03 g/min, P = 0.045). The change in respiratory exchange ratio between rest and moderate intensity exercise was significantly lower in premenopausal women than peri- (MD ± SE: -0.05 ± 0.03 a.u., P = 0.035) and postmenopausal women (MD ± SE: -0.06 ± 0.03 a.u., P = 0.040). Premenopausal women reported significantly fewer menopause symptoms than peri- (MD ± SE: -6.58 ± 1.52 symptoms, P = 0.002) and postmenopausal participants (MD ± SE: -4.63 ± 1.52 symptoms, P = 0.044), while similarities between groups were observed for lifestyle factors including diet and physical activity (P>0.999). CONCLUSIONS Perimenopause may be the most opportune window for lifestyle intervention, as this group experienced the onset of unfavorable body composition and metabolic characteristics. VIDEO SUMMARY http://links.lww.com/MENO/A932.
Collapse
Affiliation(s)
- Lacey M Gould
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Amanda N Gordon
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Hannah E Cabre
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC. Funding/support: This research study was supported by a grant from the Center for Women's Health Research
| | - Andrew T Hoyle
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Eric D Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC. Funding/support: This research study was supported by a grant from the Center for Women's Health Research
| | - Anthony C Hackney
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC. Funding/support: This research study was supported by a grant from the Center for Women's Health Research
| | - Abbie E Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC. Funding/support: This research study was supported by a grant from the Center for Women's Health Research
| |
Collapse
|
8
|
Gould LM, Cabre HE, Brewer GJ, Hirsch KR, Blue MNM, Smith-Ryan AE. Impact of Follicular Menstrual Phase on Body Composition Measures and Resting Metabolism. Med Sci Sports Exerc 2021; 53:2396-2404. [PMID: 34280938 DOI: 10.1249/mss.0000000000002702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to identify the effects of early follicular (EF) and midfollicular (MF) menstrual phases on body composition, resting metabolic rate (RMR), and respiratory quotient (RQ) assessment accuracy to identify an optimal testing period. METHODS Body composition was obtained from a four-compartment (4C) criterion model (fat mass (FM), fat-free mass, body fat percent, and dual-energy x-ray absorptiometry (DXA; FM, lean mass (LM), trunk FM, and trunk LM) in 19 eumenorrheic females (mean ± SD: age, 21.3 ± 3.1 yr, body mass index, 23.6 ± 1.8 kg·m-2). RMR (kcal·d-1) and RQ (a.u.) were measured via indirect calorimetry for 25 min. Body composition, RMR, and RQ were measured during the EF and MF phases. Dependent-samples t-tests were used to compare outcomes between EF and MF. RESULTS 4C outcomes were similar between phases (P > 0.05). During EF, the following 4C components were significantly greater (P < 0.05): body volume (mean difference (MD) ± SD, 0.70 ± 1.05 L), extracellular fluid (MD ± SD, 0.27 ± 0.51 L), and body mass (MD ± SD, 0.56 ± 0.80 kg). DXA-measured LM, body fat percent, trunk LM, and trunk FM were similar (P > 0.05); however, DXA FM was significantly greater during EF (MD ± SD, 0.29 ± 0.40 kg; P = 0.005), yet within measurement error of the device. Although RMR was not significantly different between phases (MD ± SD, 6.0 ± 190.93 kcal·d-1; P > 0.05), RQ was significantly higher during EF (mean ± SD, 0.03 ± 0.06 a.u.; P = 0.029) compared with MF. CONCLUSIONS Body composition from 4C and DXA do not seem to be affected beyond measurement error as a result of compartmental changes from the menstrual cycle. During MF, women oxidized more fat as demonstrated by a lower RQ. Researchers should aim to be more inclusive and schedule testing for females within 11-12 d from the onset of menstruation.
Collapse
Affiliation(s)
- Lacey M Gould
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Gabrielle J Brewer
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Katie R Hirsch
- Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Malia N M Blue
- Human Biomechanics & Physiology Laboratory, Department of Exercise Science, High Point University, High Point, NC
| | | |
Collapse
|
9
|
Wang TW, Sung YL, Chu HW, Lin SF. IPG-based field potential measurement of cultured cardiomyocytes for optogenetic applications. Biosens Bioelectron 2021; 179:113060. [PMID: 33571936 DOI: 10.1016/j.bios.2021.113060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Electrophysiological sensing of cardiomyocytes (CMs) in optogenetic preparations applies various techniques, such as patch-clamp, microelectrode array, and optical mapping. However, challenges remain in decreasing the cost, system dimensions, and operating skills required for these technologies. OBJECTIVE This study developed a low-cost, portable impedance plethysmography (IPG)-based electrophysiological measurement of cultured CMs for optogenetic applications. METHODS To validate the efficacy of the proposed sensor, optogenetic stimulation with different pacing cycle lengths (PCL) was performed to evaluate whether the channelrhodopsin-2 (ChR2)-expressing CM beating rhythm measured by the IPG sensor was consistent with biological responses. RESULTS The experimental results show that the CM field potential was synchronized with external optical pacing with PCLs ranging from 250 ms to 1000 ms. Moreover, irregular fibrillating waveforms induced by CM arrhythmia were detected after overdrive optical pacing. Through the combined evidence of the theoretical model and experimental results, this study confirmed the feasibility of long-term electrophysiological sensing for optogenetic CMs. CONCLUSION This study proposes an IPG-based sensor that is low-cost, portable, and requires low-operating skills to perform real-time CM field potential measurement in response to optogenetic stimulation. SIGNIFICANCE This study demonstrates a new methodology for convenient electrophysiological sensing of CMs in optogenetic applications.
Collapse
Affiliation(s)
- Ting-Wei Wang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 30010, Hsinchu, Taiwan
| | - Yen-Ling Sung
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 30010, Hsinchu, Taiwan
| | - Hsiao-Wei Chu
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 30010, Hsinchu, Taiwan
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, 30010, Hsinchu, Taiwan.
| |
Collapse
|
10
|
Brewer GJ, Blue MNM, Hirsch KR, Saylor HE, Gould LM, Nelson AG, Smith-Ryan AE. Validation of InBody 770 bioelectrical impedance analysis compared to a four-compartment model criterion in young adults. Clin Physiol Funct Imaging 2021; 41:317-325. [PMID: 33752260 DOI: 10.1111/cpf.12700] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Multi-frequency bioelectrical impedance analysis (MF-BIA) offers enhanced body composition outcomes in a time-efficient manner. The accuracy of stand-up MF-BIA compared against a four-compartment (4C) criterion lacks evidence. OBJECTIVES To validate a stand-up MF-BIA compared to a 4C criterion for fat mass (FM), fat-free mass (FFM) and body fat percentage (%fat). SUBJECTS/METHODS Eighty-two healthy (32% men) normal-weight (BMI: 18.5-24.9 kg/m2 ) young adults were measured for body composition determined from a stand-up MF-BIA and 4C model. Validity statistics included total error (TE) and standard error of the estimate (SEE) to examine prediction error between methods. RESULTS For the total sample, prediction error was the highest for %fat (TE = 4.2%; SEE = 3.9%) followed by FM (TE = 2.4 kg; SEE = 2.2 kg) and FFM (TE = 2.4 kg; SEE = 2.2 kg). In men, %fat (TE = 2.5%; SEE = 2.2%) and FM (TE = 1.9 kg; SEE = 1.6 kg) were ideal; FFM was similar to FM (TE = 1.9 kg; SEE = 1.6 kg). In women, %fat (TE = 4.7%; SEE = 4.4%) ranged from good to fairly good, and FM was very good to excellent (TE = 2.6 kg; SEE = 2.4 kg); FFM was similar to FM (TE = 2.6 kg; SEE = 2.3 kg). CONCLUSIONS Stand-up MF-BIA may overestimate %fat and FM, and underestimate FFM compared to a 4C model. FM and FFM estimates from MF-BIA demonstrate good agreement to a 4C model and may be a practical measure of body composition in normal-weight adults. The highest error was seen in %fat for both sexes, with greater error in women.
Collapse
Affiliation(s)
- Gabrielle J Brewer
- Applied Physiology Laboratory, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC, USA
| | - Malia N M Blue
- Applied Physiology Laboratory, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC, USA.,Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina, Chapel Hill, NC, USA
| | - Katie R Hirsch
- Applied Physiology Laboratory, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC, USA.,Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina, Chapel Hill, NC, USA
| | - Hannah E Saylor
- Applied Physiology Laboratory, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC, USA.,Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina, Chapel Hill, NC, USA
| | - Lacey M Gould
- Applied Physiology Laboratory, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC, USA
| | - Alyson G Nelson
- Applied Physiology Laboratory, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC, USA
| | - Abbie E Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, The University of North Carolina, Chapel Hill, NC, USA.,Human Movement Science Curriculum, Department of Allied Health Science, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Differential assessment of fluid compartments by bioimpedance in pediatric patients with kidney diseases. Pediatr Nephrol 2021; 36:1843-1850. [PMID: 33580407 PMCID: PMC8172513 DOI: 10.1007/s00467-020-04912-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND The kidney is central for maintaining water balance. As a corollary, patients with impaired kidney function are prone to pathological fluid volumes. Total body water (TBW) is distributed between the extracellular (ECW) and intracellular fluid compartments (ICW). In clinical practice, the judgment of hydration status does not allow to distinguish between ECW and ICW. Here, we evaluate the hydration status in children with chronic kidney disease by analyzing TBW, ECW, and ICW. METHODS Hydration was quantified using whole-body bioimpedance spectroscopy (BCM) in 128 outpatients (1-25 years, 52 girls). Forty-two were transplanted (TPL), 43 suffered from chronic kidney disease without kidney replacement therapy (CKD), 21 were on peritoneal dialysis (PD), and 22 on hemodialysis (HD). HD patients were investigated before, after, and sequentially during dialysis. RESULTS The ECW and ICW values obtained by BCM were of the same magnitude as those from the literature using isotope dilution. When compared with a healthy control group, TBW was increased in 9 TPL, 9 CKD, 1 PD, and 11 HD patients before but in none after dialysis. The decline of overhydration during dialysis (p < 0.001, n = 22) correlated with the change in body weight (R2 = 0.62). The kinetics of fluid compartment changes assessed twice in six HD patients revealed a reproducible linear decay of the ECW/ICW ratio due to an increase of ICW and a decrease of ECW. CONCLUSION BCM quantifies TBW and acute changes of ECW and ICW in children with chronic kidney failure. The clinical utility of measuring TBW, ECW, and ICW should be defined in the future.
Collapse
|
12
|
Smith-Ryan AE, Blue MNM, Hirsch KR, Brewer GJ. Application of a dual energy x-ray absorptiometry derived 4-compartment body composition model: Non-discriminatory against leanness and sex. Clin Nutr ESPEN 2020; 40:401-405. [PMID: 33183569 DOI: 10.1016/j.clnesp.2020.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND & AIMS Body composition assessment has large variability. A dual-energy x-ray absorptiometry (DXA) derived four compartment (4C) method has been developed as an accurate and reliable method for assessing body composition in overweight/obese adults. This investigation was aimed at understanding the validity of the DXA-derived 4C equation for use in normal weight individuals, stratified by sex, and with varied levels of lean mass. Values were also compared against DXA alone. METHODS 78 men and women (68% female; Mean ± SD; Age: 19.2 ± 1.2 yrs; Ht: 168.8 ± 9.1 cm; Wt: 62.8 ± kg) completed a traditional 4C body composition reference assessment. Body composition was also assessed using a DXA-4C model. Validity was evaluated from total error (TE), constant error, and standard error of the estimate (SEE). Proportional bias was identified with Bland Altman plots. RESULTS Although significantly different (p < 0.05) the DXA-4C model produced ideal TE and SEE compared to the 4C criterion for all body composition outcomes of fat mass (TE: 2.1 kg; SEE: 1.9 kg), lean mass (TE: 2.1 kg; SEE: 1.8 kg), and percent body fat (TE: 3.6%; SEE: 3.4%). Validity results did not differ for men vs. women. DXA-4C estimates were slightly better in individuals with higher lean mass. DXA alone resulted in significantly greater error than DXA-4C (p < 0.05). CONCLUSION Body composition assessed from DXA-4C is an accurate approach, particularly in those with high levels of lean mass. This model appears to be more accurate than DXA alone.
Collapse
Affiliation(s)
- Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Gillsings School of Public Health, Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Malia N M Blue
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katie R Hirsch
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabrielle J Brewer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Five-component model validation of reference, laboratory and field methods of body composition assessment. Br J Nutr 2020; 125:1246-1259. [PMID: 32921319 DOI: 10.1017/s0007114520003578] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study reports the validity of body fat percentage (BF%) estimates from several commonly employed techniques as compared with a five-component (5C) model criterion. Healthy adults (n 170) were assessed by dual-energy X-ray absorptiometry (DXA), air displacement plethysmography (ADP), multiple bioimpedance techniques and optical scanning. Output was also used to produce a criterion 5C model, multiple variants of three- and four-component models (3C; 4C) and anthropometry-based BF% estimates. Linear regression, Bland-Altman analysis and equivalence testing were performed alongside evaluation of the constant error (CE), total error (TE), se of the estimate (SEE) and coefficient of determination (R2). The major findings were (1) differences between 5C, 4C and 3C models utilising the same body volume (BV) and total body water (TBW) estimates are negligible (CE ≤ 0·2 %; SEE < 0·5 %; TE ≤ 0·5 %; R2 1·00; 95 % limits of agreement (LOA) ≤ 0·9 %); (2) moderate errors from alternate TBW or BV estimates in multi-component models were observed (CE ≤ 1·3 %; SEE ≤ 2·1 %; TE ≤ 2·2 %; R2 ≥ 0·95; 95 % LOA ≤ 4·2 %); (3) small differences between alternate DXA (i.e. tissue v. region) and ADP (i.e. Siri v. Brozek equations) estimates were observed, and both techniques generally performed well (CE < 3·0 %; SEE ≤ 2·3 %; TE ≤ 3·6 %; R2 ≥ 0·88; 95 % LOA ≤ 4·8 %); (4) bioimpedance technologies performed well but exhibited larger individual-level errors (CE < 1·0 %; SEE ≤ 3·1 %; TE ≤ 3·3 %; R2 ≥ 0·94; 95 % LOA ≤ 6·2 %) and (5) anthropometric equations generally performed poorly (CE 0·6- 5·7 %; SEE ≤ 5·1 %; TE ≤ 7·4 %; R2 ≥ 0·67; 95 % LOA ≤ 10·6 %). Collectively, the data presented in this manuscript can aid researchers and clinicians in selecting an appropriate body composition assessment method and understanding the associated errors when compared with a reference multi-component model.
Collapse
|
14
|
Gaubert V, Gidik H, Koncar V. Proposal of a Lab Bench for the Unobtrusive Monitoring of the Bladder Fullness with Bioimpedance Measurements. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3980. [PMID: 32709078 PMCID: PMC7412207 DOI: 10.3390/s20143980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022]
Abstract
(1) Background: millions of people, from children to the elderly, suffer from bladder dysfunctions all over the world. Monitoring bladder fullness with appropriate miniaturized textile devices can improve, significantly, their daily life quality, or even cure them. Amongst the existing bladder sensing technologies, bioimpedance spectroscopy seems to be the most appropriate one to be integrated into textiles. (2) Methods: to assess the feasibility of monitoring the bladder fullness with textile-based bioimpedance spectroscopy; an innovative lab-bench has been designed and fabricated. As a step towards obtaining a more realistic pelvic phantom, ex vivo pig's bladder and skin were used. The electrical properties of the fabricated pelvic phantom have been compared to those of two individuals with tetrapolar impedance measurements. The measurements' reproducibility on the lab bench has been evaluated and discussed. Moreover, its suitability for the continuous monitoring of the bladder filling has been investigated. (3) Results: although the pelvic phantom failed in reproducing the frequency-dependent electrical properties of human tissues, it was found to be suitable at 5 kHz to record bladder volume change. The resistance variations recorded are proportional to the conductivity of the liquid filling the bladder. A 350 mL filling with artificial urine corresponds to a decrease in resistance of 7.2%, which was found to be in the same range as in humans. (4) Conclusions: based on that resistance variation; the instantaneous bladder fullness can be extrapolated. The presented lab-bench will be used to evaluate the ability of textiles electrodes to unobtrusively monitor the bladder volume.
Collapse
Affiliation(s)
- Valentin Gaubert
- GEnie et Matériaux TEXtiles (GEMTEX) Laboratory, École Nationale Supérieure des Arts et Industries Textiles (ENSAIT), F-59100 Roubaix, France; (H.G.); (V.K.)
- Hautes Etudes Ingénieur (HEI)—YNCREA, University of Lille, F-59650 Villeneuve d’Ascq, France
| | - Hayriye Gidik
- GEnie et Matériaux TEXtiles (GEMTEX) Laboratory, École Nationale Supérieure des Arts et Industries Textiles (ENSAIT), F-59100 Roubaix, France; (H.G.); (V.K.)
- Hautes Etudes Ingénieur (HEI)—YNCREA, University of Lille, F-59650 Villeneuve d’Ascq, France
| | - Vladan Koncar
- GEnie et Matériaux TEXtiles (GEMTEX) Laboratory, École Nationale Supérieure des Arts et Industries Textiles (ENSAIT), F-59100 Roubaix, France; (H.G.); (V.K.)
| |
Collapse
|
15
|
Wang K, Zelko D, Delano M. Textile band electrodes as an alternative to spot Ag/AgCl electrodes for calf bioimpedance measurements. Biomed Phys Eng Express 2019; 6:015010. [PMID: 33438598 DOI: 10.1088/2057-1976/ab5b02] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To evaluate the performance of five different types of textiles as band electrodes for calf bioimpedance measurements in comparison with conventional spot Ag/AgCl electrodes. APPROACH Calf bioimpedance measurements were performed in 10 healthy volunteers with five different textile materials cut into bands and Ag/AgCl spot electrodes as a baseline. Collected bioimpedance data were analyzed in terms of precision, fit error and presence of measurement artifacts. Each textile material was also evaluated for participant comfort. MAIN RESULTS Bioimpedance values for spot electrodes were higher at low frequencies as compared with band electrodes but not at high frequencies. This suggests that spot electrodes have frequency dependent current distributions that adversely impact their use for volume measurements and band electrodes are preferable. The SMP130T-B fabric had the highest precision and the lowest best fit error to the Cole model of the tested textile materials. However, it was the least comfortable textile and most expensive. The Stretch material performed slightly worse than the SMP130T-B fabric, but was half the cost and the most comfortable. SIGNIFICANCE These results suggest that there are suitable textile materials for use as dry, band electrodes for calf bioimpedance measurements and that these band electrodes enable greater current uniformity. These textiles could be integrated into a compression sock for remote monitoring of diseases such as Congestive Heart Failure.
Collapse
Affiliation(s)
- Ke Wang
- Department of Biomedical Engineering Duke University Durham, NC 27708, United States of America
| | | | | |
Collapse
|
16
|
Lukaski HC, Vega Diaz N, Talluri A, Nescolarde L. Classification of Hydration in Clinical Conditions: Indirect and Direct Approaches Using Bioimpedance. Nutrients 2019; 11:nu11040809. [PMID: 30974817 PMCID: PMC6521329 DOI: 10.3390/nu11040809] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Although the need to assess hydration is well recognized, laboratory tests and clinical impressions are impractical and lack sensitivity, respectively, to be clinically meaningful. Different approaches use bioelectrical impedance measurements to overcome some of these limitations and aid in the classification of hydration status. One indirect approach utilizes single or multiple frequency bioimpedance in regression equations and theoretical models, respectively, with anthropometric measurements to predict fluid volumes (bioelectrical impedance spectroscopy-BIS) and estimate fluid overload based on the deviation of calculated to reference extracellular fluid volume. Alternatively, bioimpedance vector analysis (BIVA) uses direct phase-sensitive measurements of resistance and reactance, measured at 50 kHz, normalized for standing height, then plotted on a bivariate graph, resulting in a vector with length related to fluid content, and direction with phase angle that indexes hydration status. Comparison with healthy population norms enables BIVA to classify (normal, under-, and over-) and rank (change relative to pre-treatment) hydration independent of body weight. Each approach has wide-ranging uses in evaluation and management of clinical groups with over-hydration with an evolving emphasis on prognosis. This review discusses the advantages and limitations of BIS and BIVA for hydration assessment with comments on future applications.
Collapse
Affiliation(s)
- Henry C Lukaski
- Department of Kinesiology and Public Health Education, University of North Dakota, Grand Forks, ND 58202-7166, USA.
| | - Nicanor Vega Diaz
- Nephrology Service, University Hospital of Grand Canary and Faculty of Science, University Los Palmas, 35019 Los Palmas, Grand Canary, Spain.
| | - Antonio Talluri
- Antonio Talluri, Fatbyte, Inc., 50012 Bagno a Ripoli, Florence, Italy.
| | - Lexa Nescolarde
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain.
| |
Collapse
|
17
|
Al-Surkhi OI, Naser RY. Detection of Cell Morphological Changes of Ischemic Rabbit Liver Tissue Using Bioimpedance Spectroscopy. IEEE Trans Nanobioscience 2018; 17:402-408. [DOI: 10.1109/tnb.2018.2853269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Park JH, Jo YI, Lee JH. Clinical usefulness of bioimpedance analysis for assessing volume status in patients receiving maintenance dialysis. Korean J Intern Med 2018; 33:660-669. [PMID: 29961308 PMCID: PMC6030410 DOI: 10.3904/kjim.2018.197] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 02/08/2023] Open
Abstract
Chronic volume overload is associated with left ventricular hypertrophy and high cardiovascular mortality in patients undergoing dialysis. Therefore, estimating body fluid status is important in these patients. However, most dry-weight assessments are still performed clinically, while attempts have been made to measure the volume status and dry weight of patients undergoing dialysis using bioimpedance analysis (BIA). BIA uses the electrical properties of the human body to alternate current flow and measures resistance values to estimate body water content and composition. BIA is divided into single-frequency BIA, multi-frequency BIA, and bioimpedance spectroscopy (BIS) according to the number of frequencies used, and into whole-body and segmental BIA according to whether or not the whole body is divided into segments. Extracellular water (ECW), intracellular water, and total body water (TBW) contents can be measured with BIA. Dry weight can be estimated by measuring the volume overload of the patient through the ECW/TBW and ECW-to-body weight ratios. Other estimation methods include the normovolemia/hypervolemia slope method, a resistance-reactance (RXc) graph, overhydration measurements using a body composition monitor, and calf BIS. In this review, we will examine the principles of BIA, introduce various volume status measurement methods, and identify the optimal method for patients undergoing dialysis.
Collapse
Affiliation(s)
- Jung Hwan Park
- Division of Nephrology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
- Correspondence to Jung Hwan Park, M.D. Division of Nephrology, Department of Internal Medicine, Konkuk University Medical Center, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea Tel: +82-2-2030-7528 Fax: +82-2-2030-7748 E-mail:
| | - Young-Il Jo
- Division of Nephrology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Jong-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Roumelioti ME, Glew RH, Khitan ZJ, Rondon-Berrios H, Argyropoulos CP, Malhotra D, Raj DS, Agaba EI, Rohrscheib M, Murata GH, Shapiro JI, Tzamaloukas AH. Fluid balance concepts in medicine: Principles and practice. World J Nephrol 2018; 7:1-28. [PMID: 29359117 PMCID: PMC5760509 DOI: 10.5527/wjn.v7.i1.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
The regulation of body fluid balance is a key concern in health and disease and comprises three concepts. The first concept pertains to the relationship between total body water (TBW) and total effective solute and is expressed in terms of the tonicity of the body fluids. Disturbances in tonicity are the main factor responsible for changes in cell volume, which can critically affect brain cell function and survival. Solutes distributed almost exclusively in the extracellular compartment (mainly sodium salts) and in the intracellular compartment (mainly potassium salts) contribute to tonicity, while solutes distributed in TBW have no effect on tonicity. The second body fluid balance concept relates to the regulation and measurement of abnormalities of sodium salt balance and extracellular volume. Estimation of extracellular volume is more complex and error prone than measurement of TBW. A key function of extracellular volume, which is defined as the effective arterial blood volume (EABV), is to ensure adequate perfusion of cells and organs. Other factors, including cardiac output, total and regional capacity of both arteries and veins, Starling forces in the capillaries, and gravity also affect the EABV. Collectively, these factors interact closely with extracellular volume and some of them undergo substantial changes in certain acute and chronic severe illnesses. Their changes result not only in extracellular volume expansion, but in the need for a larger extracellular volume compared with that of healthy individuals. Assessing extracellular volume in severe illness is challenging because the estimates of this volume by commonly used methods are prone to large errors in many illnesses. In addition, the optimal extracellular volume may vary from illness to illness, is only partially based on volume measurements by traditional methods, and has not been determined for each illness. Further research is needed to determine optimal extracellular volume levels in several illnesses. For these reasons, extracellular volume in severe illness merits a separate third concept of body fluid balance.
Collapse
Affiliation(s)
- Maria-Eleni Roumelioti
- Division of Nephrology, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Robert H Glew
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Zeid J Khitan
- Division of Nephrology, Department of Medicine, Joan Edwards School of Medicine, Marshall University, Huntington, WV 25701, United States
| | - Helbert Rondon-Berrios
- Division of Renal and Electrolyte, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Christos P Argyropoulos
- Division of Nephrology, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Deepak Malhotra
- Division of Nephrology, Department of Medicine, University of Toledo School of Medicine, Toledo, OH 43614-5809, United States
| | - Dominic S Raj
- Division of Renal Disease and Hypertension, Department of Medicine, George Washington University, Washington, DC 20037, United States
| | - Emmanuel I Agaba
- Division of Nephology, Department of Medicine, Jos University Medical Center, Jos, Plateau State 930001, Nigeria
| | - Mark Rohrscheib
- Division of Nephrology, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Glen H Murata
- Research Service, Raymond G Murphy VA Medical Center and University of New Mexico School of Medicine, Albuquerque, NM 87108, United States
| | | | - Antonios H Tzamaloukas
- Research Service, Raymond G Murphy VA Medical Center and University of New Mexico School of Medicine, Albuquerque, NM 87108, United States
| |
Collapse
|
20
|
Ferreira J, Pau I, Lindecrantz K, Seoane F. A Handheld and Textile-Enabled Bioimpedance System for Ubiquitous Body Composition Analysis. An Initial Functional Validation. IEEE J Biomed Health Inform 2016; 21:1224-1232. [PMID: 28113962 DOI: 10.1109/jbhi.2016.2628766] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In recent years, many efforts have been made to promote a healthcare paradigm shift from the traditional reactive hospital-centered healthcare approach towards a proactive, patient-oriented, and self-managed approach that could improve service quality and help reduce costs while contributing to sustainability. Managing and caring for patients with chronic diseases accounts over 75% of healthcare costs in developed countries. One of the most resource demanding diseases is chronic kidney disease (CKD), which often leads to a gradual and irreparable loss of renal function, with up to 12% of the population showing signs of different stages of this disease. Peritoneal dialysis and home haemodialysis are life-saving home-based renal replacement treatments that, compared to conventional in-center hemodialysis, provide similar long-term patient survival, less restrictions of life-style, such as a more flexible diet, and better flexibility in terms of treatment options and locations. Bioimpedance has been largely used clinically for decades in nutrition for assessing body fluid distributions. Moreover, bioimpedance methods are used to assess the overhydratation state of CKD patients, allowing clinicians to estimate the amount of fluid that should be removed by ultrafiltration. In this work, the initial validation of a handheld bioimpedance system for the assessment of body fluid status that could be used to assist the patient in home-based CKD treatments is presented. The body fluid monitoring system comprises a custom-made handheld tetrapolar bioimpedance spectrometer and a textile-based electrode garment for total body fluid assessment. The system performance was evaluated against the same measurements acquired using a commercial bioimpedance spectrometer for medical use on several voluntary subjects. The analysis of the measurement results and the comparison of the fluid estimations indicated that both devices are equivalent from a measurement performance perspective, allowing for its use on ubiquitous e-healthcare dialysis solutions.
Collapse
|
21
|
Moorman R, Simmons M. Martin Black award for the best paper published in 2015. Physiol Meas 2016; 37:E27-E28. [PMID: 27754985 DOI: 10.1088/0967-3334/37/11/e27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Brantlov S, Ward LC, Jødal L, Rittig S, Lange A. Critical factors and their impact on bioelectrical impedance analysis in children: a review. J Med Eng Technol 2016; 41:22-35. [DOI: 10.1080/03091902.2016.1209590] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|