1
|
Zhang J, Cai Y, Qin Y, Liu J, Ding J, Xu M, Yang L, Zheng Y, Zhang X. miR-1225-3p regulates fibrosis in mesangial cells via SMURF2-mediated ubiquitination of ChREBP in diabetic kidney disease. Ren Fail 2025; 47:2484632. [PMID: 40211762 PMCID: PMC11995769 DOI: 10.1080/0886022x.2025.2484632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/27/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD), characterized by mesangial fibrosis and renal dysfunction, is a major microvascular complication of diabetes. Studies have shown that miRNAs are closely related to the progression of DKD. Therefore, in this study, we aimed to explore whether miR-1225-3p can regulate Smad ubiquitin regulatory factor 2 (SMURF2)-mediated carbohydrate response element binding protein (ChREBP) ubiquitination through Rho GTPase-activating protein 5 (ARHGAP5) to affect fibrosis in DKD. METHODS DKD mice were established by intraperitoneally injecting streptozocin (STZ), and a DKD cell model was generated by culturing in media supplemented with 25 mmol/L glucose (high glucose, HG). StarBase was used to predict the target binding sites between miR-1225-3p and ARHGAP5, and a dual-luciferase reporter gene assay was used to verify this relationship. Western blotting, RT-qPCR, flow cytometry, immunoprecipitation, ELISAs, HE staining, and Masson staining were used to detect relevant indicators. RESULTS ARHGAP5 and SMURF2 expression was decreased, but ChREBP was highly expressed in the renal tissue of DKD mice and HG-induced mouse mesangial cells (MMCs). miR-1225-3p could target and regulate the transcription of ARHGAP5, and an association between ARHGAP5 and SMURF2 was revealed. miR-1225-3p facilitated fibrosis and oxidative stress in MCCs by inhibiting ARHGAP5. In addition, SMURF2 promoted the ubiquitination of HA-ChREBP, and miR-1225-3p facilitated fibrosis and oxidative stress by mediating the ARHGAP5/SMURF2-mediated ubiquitination of ChREBP in MCCs. Furthermore, the miR-1225-3p inhibitor inhibited fibrosis and inflammation in the renal tissues of DKD mice. CONCLUSION miR-1225-3p facilitates fibrosis and oxidative stress by mediating ARHGAP5/SMURF2-mediated ubiquitination of ChREBP.
Collapse
Affiliation(s)
- Juntai Zhang
- Department of Nephrology & Immunology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Cai
- Department of Nephrology, The Fifth Affiliated Hospital of Kunming Medical University, Gejiu, Yunnan, China
| | - Yan Qin
- Department of Nephrology & Immunology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jie Liu
- Department of Pathology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jie Ding
- Department of Ultrasound, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Mengying Xu
- Department of Nephrology & Immunology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li Yang
- Department of Nephrology & Immunology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuanxin Zheng
- Department of Nephrology & Immunology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi Zhang
- Department of Nephrology & Immunology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Adedeji AO, Tackett MR, Tejada G, McDuffie JE. Investigation of urinary miRNA profile changes in amphotericin B-induced nephrotoxicity in C57BL/6 mouse, Sprague-Dawley rats and Beagle dogs. Toxicol Sci 2025; 205:53-64. [PMID: 40036580 PMCID: PMC12038256 DOI: 10.1093/toxsci/kfaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
MicroRNA (miRNAs) have been associated with drug-induced kidney injury (DIKI). However, there are few reports on the utility of miRNAs, when monitoring for nephrotoxicity across multiple species. The purpose of this study was to assess the value of urinary miRNA profile changes as renal safety biomarkers, when monitoring for kidney injury in investigative toxicology studies. To this end, we evaluated urine miRNA expression levels in response to amphotericin B (AmpB)-induced nephrotoxicity in mice, rats, and dogs. The results showed that 35 miRNAs were significantly differentially expressed across the 3 species in response to the induced renal injuries. Dogs showed the highest number of miRNAs with significant changes. miR-205-5p and miR-31-5p were the most consistently altered miRNA biomarkers across all 3 species. In rodents, these 2 miRNAs were the most sensitive markers and showed comparable or better sensitivities than the previously published urine protein biomarkers with the same nephrotoxicant. In dogs, none of the upregulated miRNAs were as sensitive as urine clusterin protein as observed in a previously published study with AmpB. Taken together, these miRNAs could complement the more established urinary protein biomarkers in monitoring DIKI in mice, rats, and dogs. To our knowledge, this is the first report that demonstrates the comparative utility of urinary miRNAs for the early detection of DIKI across 3 nonclinical animal models.
Collapse
Affiliation(s)
- Adeyemi O Adedeji
- Genentech, A Member of the Roche Group, South San Francisco, CA 94080, United States
| | | | | | - James E McDuffie
- Johnson & Johnson Innovative Medicine, La Jolla, CA 92121, United States
| |
Collapse
|
3
|
Karam F, Sayadi M, Dadi S, Sarab GA. Overexpression of miR-192 in fibroblasts accelerates wound healing in diabetic rats: research article. Eur J Med Res 2025; 30:239. [PMID: 40186269 PMCID: PMC11969854 DOI: 10.1186/s40001-025-02449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a severe diabetic complication. Transplantation of skin substitutes, stem cells, and platelet-rich plasma (PRP) treatments are promising tools to promote ulcer healing in diabetes. An important aspect of the remodeling phase of wound healing is collagen deposition. miR-192 increases the expression of COL1A2 by specifically targeting Smad-interacting protein 1 (SIP1). This study was designed to investigate the impact of combined treatment with platelet-rich plasma and fibroblast cells expressing miR-192 on the healing process of wounds using an experimental diabetic animal model. METHODS After transfection of HDF cells and induction of increased miR-192 expression, relative changes in COL1A2 gene expression were determined by the RT-PCR method. Rats were randomly divided into 6 groups: non-diabetic control group, diabetic control, backbone, PRP, miR-192, and PRP + miR-192 groups. Diabetes was induced in male Wistar rats of all treated groups except non-diabetic control through a 21-day high-fat diet and an intraperitoneal injection of 40 mg/kg streptozotocin. A 10-mm skin biopsy punch was used to create two full-thickness wounds on the dorsal part of the upper body in all six groups of animals. Hematoxylin-eosin and Mason's trichrome staining were used to evaluate the wounds and analyze histological changes. RESULTS The overexpression of miR-192 in HDF cells resulted in a significant increase in COL1A2 gene expression, which was 15.77-fold higher than the control group. PRP and pLenti-III-miR-192-GFP-expressing cells significantly increased wound closure rates, granulation tissue area, and collagen fiber density in rats, according to a histological examination. CONCLUSION The combined use of PRP and HDFs expressing pLenti-III-miR-192-GFP speeds up the healing of wounds by increasing collagen expression, demonstrating the efficacy of this approach in improving wound healing results.
Collapse
Affiliation(s)
- Forouzan Karam
- Department of Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahtab Sayadi
- Department of Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeedeh Dadi
- Department of Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Gholamreza Anani Sarab
- Department of Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
4
|
Parfenyev SE, Daks AA, Shuvalov OY, Fedorova OA, Pestov NB, Korneenko TV, Barlev NA. Dualistic role of ZEB1 and ZEB2 in tumor progression. Biol Direct 2025; 20:32. [PMID: 40114235 PMCID: PMC11927373 DOI: 10.1186/s13062-025-00604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/10/2025] [Indexed: 03/22/2025] Open
Abstract
It is generally accepted that ZEB1 and ZEB2 act as master regulators of the epithelial-mesenchymal transition, which arguably is the key mechanism of metastasis. Accordingly, they are deemed as negative predictors of the survival of cancer patients by promoting the emergence of secondary foci of the disease. Paradoxically, in some types of cancer types the opposite effect is observed, i.e. ZEB1 and ZEB2 are associated with better prognosis for cancer patients. In this review, we discuss the hypothesis that the tumorigenic effects of ZEB1/ZEB2 can be different in various tissues depending on the initial status of these proteins in the corresponding healthy tissues. Emerging evidence suggests that ZEB1 and ZEB2 are constitutively expressed in several healthy tissues, performing vital functions. Consequently, reducing the expression of ZEB1 and ZEB2 could negatively affect these tissues causing various diseases, including cancer. Finally, the dualistic role of ZEB1 and ZEB2 as immune modulators and their effect on tumor microenvironment is also discussed.
Collapse
Affiliation(s)
- Sergey E Parfenyev
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg, 164064, Russia
| | - Alexandra A Daks
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg, 164064, Russia
| | - Oleg Y Shuvalov
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg, 164064, Russia
| | - Olga A Fedorova
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg, 164064, Russia
| | - Nikolay B Pestov
- Vavilov Institute of General Genetics, Moscow, 119991, Russia.
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow, 108819, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Tatyana V Korneenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Nickolai A Barlev
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg, 164064, Russia.
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow, 108819, Russia.
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, 01000, Kazakhstan.
| |
Collapse
|
5
|
Sun Y, Liu S, Ding W, Zhu C, Jiang G, Li H. Recent Advances in miRNA Biomarkers for Diagnosis and Prognosis of Focal Segmental Glomerulosclerosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2025; 11:283-291. [PMID: 40401151 PMCID: PMC12094685 DOI: 10.1159/000545240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 02/28/2025] [Indexed: 05/23/2025]
Abstract
Background Focal segmental glomerulosclerosis (FSGS) is an increasingly prevalent group of refractory glomerular diseases and a significant aetiology of end-stage renal disease. Podocyte injury and depletion significantly contribute to the pathogenesis and progression of FSGS. MicroRNAs (miRNAs) are noncoding RNAs that regulate the expression of specific genes in relevant cells, thereby playing crucial roles in the pathogenesis of FSGS. Many studies have shown that miRNAs can be secreted from cells into body fluids and that these miRNAs in the circulation are highly stable. The gold standard for FSGS diagnosis is kidney biopsy; however, the clinical heterogeneity of FSGS, along with variations in histology and nonspecific morphological features, can impact its diagnostic accuracy. Thus, the discovery of novel and efficacious biomarkers is crucial in facilitating the diagnosis of FSGS. In addition, the degree of kidney damage in patients with FSGS varies at different stages, necessitating individualized diagnosis and treatment approaches. Considering the side effects of glucocorticoids, determining whether a patient is steroid resistant is vital. Thus, ideal biomarkers should not only be specific and sensitive but also have the ability to accurately reflect the stage or prognosis of the disease to improve the treatment for patients. Summary To date, numerous studies have shown that both urinary miRNAs and plasma miRNAs are potential biomarkers for FSGS. In addition, the identification of miRNA biomarkers specific for the FSGS disease state may provide new insights into the underlying pathological mechanism of FSGS. Key Messages Here we summarize the currently available miRNA biomarkers that could help us better understand the diagnosis, disease activity, prognosis, and clinical features of FSGS.
Collapse
Affiliation(s)
- Yufei Sun
- Division of Nephrology, Department of Internal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Liu
- Division of Nephrology, Department of Internal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wan Ding
- Division of Nephrology, Department of Internal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Zhu
- Department of Nephrology, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gengru Jiang
- Division of Nephrology, Department of Internal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Huilin Li
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
6
|
Al-Tantawy SM, Eraky SM, Eissa LA. Novel therapeutic target for diabetic kidney disease through downregulation of miRNA-192-5p and miRNA-21-5p by celastrol: implication of autophagy, oxidative stress, and fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03669-5. [PMID: 39702603 DOI: 10.1007/s00210-024-03669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
One of the most common microvascular effects of diabetes mellitus (DM) that may result in end-stage renal failure is diabetic kidney disease (DKD). Current treatments carry a substantial residual risk of disease progression regardless of treatment. By modulating various molecular targets, pentacyclic triterpenoid celastrol has been found to possess curative properties in the treatment of diabetes and other inflammatory diseases. Therefore, the present study investigated whether celastrol has anti-inflammatory, antioxidant, and antifibrotic effects as a natural compound against experimental DKD. Streptozotocin (55 mg/kg) was utilized for inducing DKD in a rat model. Antioxidant enzymes and renal function tests were assessed in serum samples. In kidney homogenate, relative miRNA-192-5p and miRNA-21-5p gene expressions were measured. Furthermore, using real-time PCR to evaluate the gene expressions of nucleus erythroid 2-related factor-2 (Nrf-2), matrix metalloproteinase-2 (MMP-2), proapoptotic caspase-3, antiapoptotic Bcl-2, LC-3, and Beclin-1. Moreover, the transforming growth factor β1 (TGF-β1), LC-3, Bcl-2, caspase-3 and NADPH oxidase 4 (NOX4) renal expressions were assessed semi-quantitatively using immunohistochemistry. Seven weeks of celastrol (1.5 mg/kg/day) treatment significantly ameliorated DKD. Celastrol improves kidney functions. Moreover, celastrol treatment demonstrated potent antioxidant effect. The mechanism of apoptosis resulting from the administration of celastrol included the modulation of Bcl-2 and caspase-3 expression in the kidney. Celasterol administration leads to an increase in LC-3 and Beclin-1 renal expression that resulting in autophagy. Celastrol treatment improved renal fibrosis by decreasing TGF-β1 and MMP-2 renal expression. These antifibrotic effects could be due to their ability to inhibit miRNA-192-5p and miRNA-21-5p expression in renal tissues. Celastrol exerts a renoprotective effect by targeting miRNA-21 and miRNA-192, as well as their downstream pathways, such as autophagy, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Samar M Al-Tantawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Wong YS, Mançanares AC, Navarrete F, Poblete P, Mendez-Pérez L, Cabezas J, Riadi G, Rodríguez-Alvarez L, Castro FO. Extracellular vesicles secreted by equine adipose mesenchymal stem cells preconditioned with transforming growth factor β-1 are enriched in anti-fibrotic miRNAs and inhibit the expression of fibrotic genes in an in vitro system of endometrial stromal cells fibrosis. Vet Q 2024; 44:1-11. [PMID: 39086189 PMCID: PMC11295685 DOI: 10.1080/01652176.2024.2384906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Mare endometrosis is a major reproductive problem associated with low fertility and is characterized by persistent inflammation, TGFβ-1 signaling, and consequently, extracellular matrix deposition, which compromises endometrial glands. Mesenchymal stem cell-based products (MSCs), such as extracellular vesicles (EVs), have gained attention due to the regulatory effects exerted by their miRNA cargo. Here, we evaluated the impact of preconditioning equine adipose mesenchymal stem cells with TGFβ-1 for short or long periods on the anti-fibrotic properties of secreted extracellular vesicles. MSCs were isolated from six healthy horses and exposed to TGFβ-1 for 4, 24, and 0 h. The expression of anti-fibrotic and pro-fibrotic miRNAs and mRNAs in treated cells and miRNAs in the cargo of secreted extracellular vesicles was measured. The resulting EVs were added for 48 h to endometrial stromal cells previously induced to a fibrotic status. The expression of anti-fibrotic and pro-fibrotic genes and miRNAs was evaluated in said cells using qPCR and next-generation sequencing. Preconditioning MSCs with TGFβ-1 for 4 h enriched the anti-fibrotic miRNAs (mir29c, mir145, and mir200) in cells and EVs. Conversely, preconditioning the cells for 24 h leads to a pro-fibrotic phenotype overexpressing mir192 and mir433. This finding might have implications for developing an EV-based protocol to treat endometrial fibrosis in mares.
Collapse
Affiliation(s)
- Yat Sen Wong
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Ana Carolina Mançanares
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Felipe Navarrete
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Pamela Poblete
- Ph.D. Program on Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Lídice Mendez-Pérez
- Ph.D. Program on Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Joel Cabezas
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Gonzalo Riadi
- Center for Bioinformatics Simulation and Modeling (CBSM), Universidad de Talca, Talca, Chile
| | | | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
8
|
He K, Zhou X, Zhao J, Du H, Guo J, Deng R, Wang J. Identification and Functional Mechanism Verification of Novel MicroRNAs Associated with the Fibrosis Progression in Chronic Kidney Disease. Biochem Genet 2024; 62:4472-4493. [PMID: 38316653 PMCID: PMC11604686 DOI: 10.1007/s10528-024-10688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Chronic kidney disease (CKD) is a serious threat to human health worldwide, and its incidence is increasing annually. A growing amount of information is emerging about the role of micoRNAs (miRNAs) in the regulation of renal fibrosis, which has aroused interest in the development of drugs that block pathogenic miRNAs or restore protective miRNAs levels. To clarify the role of miRNAs in CKD, we selected patients with significant renal fibrotic disease (diabetic nephropathy (DN) and focal segmental glomerulosclerosis (FSGS)) as the disease group, and patients with little or no renal fibrotic disease (minimal change disease (MCD) and renal carcinoma adjacent to normal kidney) as controls. Significantly differentially expressed miRNAs were obtained by human kidney tissue sequencing, subsequently verified in mice models of DN and FSGS, and subsequently inhibited or overexpressed in human renal tubular epithelial cells (HK-2) stimulated by high glucose (HG) and TGF-β1 in vitro. Therefore, the mechanism of its action in renal fibrosis was further elaborated. Finally, the downstream target genes of the corresponding miRNAs were verified by bioinformatics analysis, qRT-PCR, western blot and double luciferase report analysis. Two novel miRNAs, hsa-miR-1470-3p (miR-1470) and hsa-miR-4483-3p (miR-4483), were detected by renal tissue sequencing in the disease group with significant renal fibrosis (DN and FSGS) and the control group with little or no renal fibrosis (MCD and normal renal tissue adjacent to renal carcinoma). Subsequent human renal tissue qRT-PCR verified that the expression of miR-1470 was significantly increased, while the expression of miR-4483 was markedly decreased in the disease group (p < 0.05). Moreover, in vivo DN and FSGS mice models, the expression levels of miR-1470 and miR-4483 were consistent with the results of human kidney tissue. In vitro, miR-4483 was suppressed, whereas miR-1470 was induced by treatment with TGF-β1 or HG. Inhibition of miR-1470 or overexpression of miR-4483 promoted HG or TGF-β1-induced fibrosis in HK-2 cells. Further study revealed that MMP-13 and TIMP1 were the target genes ofmiR-1470 and miR-4483, respectively. Our study identifies newly dysregulated miRNA profiles related to fibrosis kidneys. miR-1470 and miR-4483 are demonstrated to participate in kidney fibrosis by regulation of MMP-13, TIMP1 respectively. Our results may represent a promising research direction for renal disorders and help identify new biomarkers and therapeutic targets for CKD.
Collapse
Affiliation(s)
- Kaiying He
- Lanzhou University, Lanzhou, Gansu, China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu, China
| | - Xiaochun Zhou
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu, China
| | - Jing Zhao
- Lanzhou University, Lanzhou, Gansu, China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu, China
| | - Hongxuan Du
- Lanzhou University, Lanzhou, Gansu, China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu, China
| | - Juan Guo
- Xi'an Huyi District Hospital Of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Rongrong Deng
- Lanzhou University, Lanzhou, Gansu, China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu, China
| | - Jianqin Wang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu, China.
| |
Collapse
|
9
|
Hauwanga WN, Abdalhamed TY, Ezike LA, Chukwulebe IS, Ko Oo A, Wilfred A, Khan ARAKA, Chukwuwike J, Florial E, Lawan H, Felix A, McBenedict B. The Pathophysiology and Vascular Complications of Diabetes in Chronic Kidney Disease: A Comprehensive Review. Cureus 2024; 16:e76498. [PMID: 39872596 PMCID: PMC11770394 DOI: 10.7759/cureus.76498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
The coexistence of type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) represents a significant global health challenge, contributing to substantial morbidity, mortality, and economic burden. T2DM is the leading cause of CKD, and CKD exacerbates diabetes-related complications, creating a bidirectional relationship driven by oxidative stress, inflammation, and endothelial dysfunction. Diabetic kidney disease (DKD), affecting some individuals with T2DM, accelerates progression to end-stage renal disease (ESRD) and increases cardiovascular mortality. Microvascular complications, including nephropathy, retinopathy, and neuropathy, and macrovascular complications, such as coronary artery disease and stroke, are prevalent in this population, further diminishing the quality of life. The pathophysiology underlying these complications is multifaceted. Hyperglycemia-induced oxidative stress and inflammation drive kidney damage and systemic vascular complications, while CKD alters glucose metabolism and antidiabetic drug pharmacokinetics. Endothelial dysfunction exacerbates vascular complications through impaired nitric oxide production and heightened thrombogenicity. Emerging insights into genetic and epigenetic mechanisms, including DNA methylation and mitochondrial dysfunction, have highlighted new therapeutic targets. Management strategies emphasize early screening, glycemic control, and a multidisciplinary approach integrating lifestyle modifications, pharmacotherapy, and patient education. Interventions targeting oxidative stress, inflammation, and endothelial dysfunction have shown promise in mitigating disease progression. Current evidence on the interconnected mechanisms driving DKD and associated vascular complications highlights the critical need for proactive, patient-centered management and further research into innovative diagnostic and therapeutic approaches to address this global health challenge.
Collapse
Affiliation(s)
- Wilhelmina N Hauwanga
- Cardiology, Gaffrée and Guinle University Hospital, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | | | | | | - Aung Ko Oo
- Medicine, Monash University, Melbourne, AUS
| | - Amal Wilfred
- Neurosurgery, Federal Fluminense University, Niterói, BRA
| | | | | | - Edisond Florial
- General Medicine, Hôpital Sainte Thérèse de Hinche, Port-au-Prince, HTI
| | - Habeebah Lawan
- Neurosurgery, Federal Fluminense University, Niterói, BRA
| | - Asaju Felix
- General Practice, Dorset County Hospital, Dorchester, GBR
| | | |
Collapse
|
10
|
Ou H, Csuth TI, Czompoly T, Kvell K. Dairy: Friend or Foe? Bovine Milk-Derived Extracellular Vesicles and Autoimmune Diseases. Int J Mol Sci 2024; 25:11499. [PMID: 39519052 PMCID: PMC11546213 DOI: 10.3390/ijms252111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Due to the availability, scalability, and low immunogenicity, bovine milk-derived extracellular vesicles (MEVs) are increasingly considered to be a promising carrier of nanomedicines for future therapy. However, considering that extracellular vesicles (EVs) are of biological origin, different sources of EVs, including the host origin and the specific cells that produce the EVs, may have different effects on the structure and function of EVs. Additionally, MEVs play an important role in immune regulation, due to their evolutionary conserved cargo, such as cytokines and miRNAs. Their potential effects on different organs, as well as their accumulation in the human body, should not be overlooked. In this review, we have summarized current impacts and research progress brought about by utilizing MEVs as nano-drug carriers. Nevertheless, we also aim to explore the possible connections between the molecules involved in cellular immunity, cytokines and miRNAs of MEVs produced under different health conditions, and autoimmune diseases.
Collapse
Affiliation(s)
- Hairui Ou
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (H.O.); (T.I.C.); (K.K.)
| | - Tamas Imre Csuth
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (H.O.); (T.I.C.); (K.K.)
- Soft Flow Ltd., 7634 Pecs, Hungary
| | | | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (H.O.); (T.I.C.); (K.K.)
| |
Collapse
|
11
|
Tariq Z, Abusnana S, Mussa BM, Zakaria H. New insights on genetic background of major diabetic vascular complications. Diabetol Metab Syndr 2024; 16:243. [PMID: 39375805 PMCID: PMC11457557 DOI: 10.1186/s13098-024-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND By 2045, it is expected that 693 million individuals worldwide will have diabetes and with greater risk of morbidity, mortality, loss of vision, renal failure, and a decreased quality of life due to the devastating effects of macro- and microvascular complications. As such, clinical variables and glycemic control alone cannot predict the onset of vascular problems. An increasing body of research points to the importance of genetic predisposition in the onset of both diabetes and diabetic vascular complications. OBJECTIVES Purpose of this article is to review these approaches and narrow down genetic findings for Diabetic Mellitus and its consequences, highlighting the gaps in the literature necessary to further genomic discovery. MATERIAL AND METHODS In the past, studies looking for genetic risk factors for diabetes complications relied on methods such as candidate gene studies, which were rife with false positives, and underpowered genome-wide association studies, which were constrained by small sample sizes. RESULTS The number of genetic findings for diabetes and diabetic complications has over doubled due to the discovery of novel genomics data, including bioinformatics and the aggregation of global cohort studies. Using genetic analysis to determine whether diabetes individuals are at the most risk for developing diabetic vascular complications (DVC) might lead to the development of more accurate early diagnostic biomarkers and the customization of care plans. CONCLUSIONS A newer method that uses extensive evaluation of single nucleotide polymorphisms (SNP) in big datasets is Genome-Wide Association Studies (GWAS).
Collapse
Affiliation(s)
- Zuira Tariq
- Diabetes and Endocrinology Department, University Hospital Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Salah Abusnana
- Diabetes and Endocrinology Department, University Hospital Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Bashair M Mussa
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hala Zakaria
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
12
|
Lee AT, Yang MY, Tsai IN, Chang YC, Hung TW, Wang CJ. Gallic Acid Alleviates Glucolipotoxicity-Induced Nephropathy by miR-709-NFE2L2 Pathway in db/db Mice on a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39365293 PMCID: PMC11487656 DOI: 10.1021/acs.jafc.4c05898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has become a major global issue, with diabetic nephropathy (DN) ranking as one of its most serious complications. The involvement of microRNAs (miRNAs) in the progression of T2DM and DN is an area of active research, yet the molecular mechanisms remain only partially elucidated. Gallic acid (GA), a naturally occurring polyphenolic compound found in various plants such as bearberry leaves, pomegranate root bark, tea leaves, and oak bark, has demonstrated antioxidant properties that may offer therapeutic benefits in DN. METHODS AND RESULTS The study aimed to investigate the therapeutic potential of GA in mitigating kidney fibrosis, oxidative stress and inflammation, within a glucolipotoxicity-induced diabetic model using db/db mice. The mice were subjected to a high-fat diet to induce glucolipotoxicity, a condition that mimics the metabolic stress experienced in T2DM. Through microarray data analysis, we identified a significant upregulation of renal miR-709a-5p in the diabetic mice, linking this miRNA to the pathological processes underlying DN. GA treatment was shown to boost the activity of including catalase, essential antioxidant enzymes, glutathione peroxidase and superoxide dismutase, while also reducing lipid accumulation in the kidneys, indicating a protective effect against HFD-induced steatosis. In vitro experiments further revealed that silencing miR-709a-5p in MES-13 renal cells led to a reduction in oxidative stress markers, notably lowering lipid peroxidation markers, and significantly boosting the activity of antioxidant defenses. Additionally, NFE2L2, a crucial transcription factor involved in the antioxidant response, was identified as a direct target of miR-709a-5p. The downregulation of miR-709a-5p by GA suggests that this polyphenol mitigates glucolipotoxicity-induced lipogenesis and oxidative stress, potentially offering a novel therapeutic avenue for managing diabetic fatty liver disease and DN. CONCLUSION Our findings indicate that GA exerts a protective effect in DN by downregulating miR-709a-5p, thereby alleviating oxidative stress through the suppression of NFE2L2. The results highlight the potential of GA and NFE2L2-activating agents as promising therapeutic strategies in the treatment of DN.
Collapse
Affiliation(s)
- Ang-Tse Lee
- Institute
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Mon-Yuan Yang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
| | - I-Ning Tsai
- Institute
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yun-Ching Chang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
- Department
of Medical Research, Chung Shan Medical
University Hospital, Taichung 402, Taiwan
| | - Tung-Wei Hung
- Division
of Nephrology, Department of Medicine, Chung
Shan Medical University Hospital, Taichung 40201, Taiwan
- School
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chau-Jong Wang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
- Department
of Medical Research, Chung Shan Medical
University Hospital, Taichung 402, Taiwan
| |
Collapse
|
13
|
Liu Z, Fu Y, Yan M, Zhang S, Cai J, Chen G, Dong Z. microRNAs in kidney diseases: Regulation, therapeutics, and biomarker potential. Pharmacol Ther 2024; 262:108709. [PMID: 39181246 DOI: 10.1016/j.pharmthera.2024.108709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in regulating gene expression by inhibiting the translation of their specific target messenger RNAs. To date, numerous studies have demonstrated changes in the expression of miRNAs in the kidneys throughout the progression of both acute kidney injury (AKI) and chronic kidney disease (CKD) in both human patients and experimental models. The role of specific microRNAs in the pathogenesis of kidney diseases has also been demonstrated. Further studies have elucidated the regulation of these microRNAs in diseased kidneys. Besides, certain miRNAs are detected in plasma and/or urine in kidney diseases and are potential diagnostic biomarkers. In this review, we provide an overview of recent developments in our understanding of how miRNAs contribute to kidney diseases. We also explore the potential of miRNAs as both biomarkers and therapeutic targets for these conditions, and highlight future research directions.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Ying Fu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Mingjuan Yan
- Changde Hospital, Xiangya School of Medicine, Central South University, China
| | - Subing Zhang
- Youxian People's Hospital, Youxian, Hunan 412300, China
| | - Juan Cai
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA.
| |
Collapse
|
14
|
Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U. Complex Pathophysiology of Acute Kidney Injury (AKI) in Aging: Epigenetic Regulation, Matrix Remodeling, and the Healing Effects of H 2S. Biomolecules 2024; 14:1165. [PMID: 39334931 PMCID: PMC11429536 DOI: 10.3390/biom14091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The kidney is an essential excretory organ that works as a filter of toxins and metabolic by-products of the human body and maintains osmotic pressure throughout life. The kidney undergoes several physiological, morphological, and structural changes with age. As life expectancy in humans increases, cell senescence in renal aging is a growing challenge. Identifying age-related kidney disorders and their cause is one of the contemporary public health challenges. While the structural abnormalities to the extracellular matrix (ECM) occur, in part, due to changes in MMPs, EMMPRIN, and Meprin-A, a variety of epigenetic modifiers, such as DNA methylation, histone alterations, changes in small non-coding RNA, and microRNA (miRNA) expressions are proven to play pivotal roles in renal pathology. An aged kidney is vulnerable to acute injury due to ischemia-reperfusion, toxic medications, altered matrix proteins, systemic hemodynamics, etc., non-coding RNA and miRNAs play an important role in renal homeostasis, and alterations of their expressions can be considered as a good marker for AKI. Other epigenetic changes, such as histone modifications and DNA methylation, are also evident in AKI pathophysiology. The endogenous production of gaseous molecule hydrogen sulfide (H2S) was documented in the early 1980s, but its ameliorative effects, especially on kidney injury, still need further research to understand its molecular mode of action in detail. H2S donors heal fibrotic kidney tissues, attenuate oxidative stress, apoptosis, inflammation, and GFR, and also modulate the renin-angiotensin-aldosterone system (RAAS). In this review, we discuss the complex pathophysiological interplay in AKI and its available treatments along with future perspectives. The basic role of H2S in the kidney has been summarized, and recent references and knowledge gaps are also addressed. Finally, the healing effects of H2S in AKI are described with special emphasis on epigenetic regulation and matrix remodeling.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
15
|
Chen Z, Malek V, Natarajan R. Update: the role of epigenetics in the metabolic memory of diabetic complications. Am J Physiol Renal Physiol 2024; 327:F327-F339. [PMID: 38961840 PMCID: PMC11460341 DOI: 10.1152/ajprenal.00115.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Vajir Malek
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
16
|
Garmaa G, Nagy R, Kói T, To UND, Gergő D, Kleiner D, Csupor D, Hegyi P, Kökény G. Panel miRNAs are potential diagnostic markers for chronic kidney diseases: a systematic review and meta-analysis. BMC Nephrol 2024; 25:261. [PMID: 39138396 PMCID: PMC11323638 DOI: 10.1186/s12882-024-03702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Accurate detection of kidney damage is key to preventing renal failure, and identifying biomarkers is essential for this purpose. We aimed to assess the accuracy of miRNAs as diagnostic tools for chronic kidney disease (CKD). METHODS We thoroughly searched five databases (MEDLINE, Web of Science, Embase, Scopus, and CENTRAL) and performed a meta-analysis using R software. We assessed the overall diagnostic potential using the pooled area under the curve (pAUC), sensitivity (SEN), and specificity (SPE) values and the risk of bias by using the QUADAS-2 tool. The study protocol was registered on PROSPERO (CRD42021282785). RESULTS We analyzed data from 8351 CKD patients, 2989 healthy individuals, and 4331 people with chronic diseases. Among the single miRNAs, the pooled SEN was 0.82, and the SPE was 0.81 for diabetic nephropathy (DN) vs. diabetes mellitus (DM). The SEN and SPE were 0.91 and 0.89 for DN and healthy controls, respectively. miR-192 was the most frequently reported miRNA in DN patients, with a pAUC of 0.91 and SEN and SPE of 0.89 and 0.89, respectively, compared to those in healthy controls. The panel of miRNAs outperformed the single miRNAs (pAUC of 0.86 vs. 0.79, p < 0.05). The SEN and SPE of the panel miRNAs were 0.89 and 0.73, respectively, for DN vs. DM. In the lupus nephritis (LN) vs. systemic lupus erythematosus (SLE) cohorts, the SEN and SPE were 0.84 and 0.81, respectively. Urinary miRNAs tended to be more effective than blood miRNAs (p = 0.06). CONCLUSION MiRNAs show promise as effective diagnostic markers for CKD. The detection of miRNAs in urine and the use of a panel of miRNAs allows more accurate diagnosis.
Collapse
Affiliation(s)
- Gantsetseg Garmaa
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator, 14210, Mongolia
| | - Rita Nagy
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Heim Pál National Pediatric Institute, Üllői út 86, Budapest, 1089, Hungary
| | - Tamás Kói
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Uyen Nguyen Do To
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- András Pető Faculty, Semmelweis University, 1Üllői út 26, Budapest, 1089, Hungary
| | - Dorottya Gergő
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Dénes Kleiner
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Department of Pharmacy Administration, University Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dezső Csupor
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szikra út 8, Szeged, 6725, Hungary
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, 1085 Budapest, Üllői út 26, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Tömő út 25-29, Budapest, Hungary
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| |
Collapse
|
17
|
Ren H, Shao Y, Ma X, An L, Liu Y, Wang Q. Interaction of circulating TGFβ regulatory miRNAs in different severity of diabetic kidney disease. Arch Physiol Biochem 2024; 130:285-299. [PMID: 35147479 DOI: 10.1080/13813455.2022.2034884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 11/02/2022]
Abstract
AIMS To explore the interaction of TGFβ regulatory microRNAs (miRNAs) with different severities of diabetic kidney disease (DKD). METHODS According to different UACR (30 and 300 mg/g), 436 subjects were included, and high glucose induced RMCs were cultured. Real-time PCR, ELISA, and automatic biochemical analysis were used to measure miRNAs, TGFβ1, and other biochemical indicators in serum and RMCs. Target genes of miRNA were predicted and visualised by bioinformatics. RESULTS HbA1c, TGFβ1, miR-217, and miR-224 in T2DM patients increased with UACR, while miR-192 and miR-216a decreased. Ln UACR was positively correlated with HbA1c, TGFβ1, miR-217, and miR-224, and negatively correlated with miR-192 and miR-216a. High glucose and TGFβ1 affected miRNAs and these miRNAs affected each other. The miRNA target genes mainly revolve around PTEN, PI3K/Akt, and MAPK signalling pathways. CONCLUSION TGFβ regulatory miRNAs and different severity of DKD have a potential interaction regulating fibrosis through PTEN, PI3K/Akt, and MAPK pathways.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Shao
- Department of Endocrinology, The Second Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoyu Ma
- The Cadre Department, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li An
- Department of Gastroenterology, Tieling Central Hospital, Tieling, Liaoning, China
| | - Yu Liu
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiuyue Wang
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Choi S, Sarker MK, Yu MR, Lee H, Kwon SH, Jeon JS, Noh H, Kim H. MicroRNA-5010-5p ameliorates high-glucose induced inflammation in renal tubular epithelial cells by modulating the expression of PPP2R2D. BMJ Open Diabetes Res Care 2024; 12:e003784. [PMID: 38442987 PMCID: PMC11146382 DOI: 10.1136/bmjdrc-2023-003784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
INTRODUCTION We previously reported the significant upregulation of eight circulating exosomal microRNAs (miRNAs) in patients with diabetic kidney disease (DKD). However, their specific roles and molecular mechanisms in the kidney remain unknown. Among the eight miRNAs, we evaluated the effects of miR-5010-5p on renal tubular epithelial cells under diabetic conditions in this study. RESEARCH DESIGN AND METHODS We transfected the renal tubular epithelial cell line, HK-2, with an miR-5010-5p mimic using recombinant plasmids. The target gene of hsa-miR-5010-5p was identified using a dual-luciferase assay. Cell viability was assessed via the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Moreover, mRNA and protein expression levels were determined via real-time PCR and western blotting, respectively. RESULTS High glucose levels did not significantly affect the intracellular expression of miR-5010-5p in HK-2 cells. Transfection of the miR-5010-5p mimic caused no change in cell viability. However, miR-5010-5p-transfected HK-2 cells exhibited significantly decreased expression levels of inflammatory cytokines, such as the monocyte chemoattractant protein-1, interleukin-1β, and tumor necrosis factor-ɑ, under high-glucose conditions. These changes were accompanied by the restored expression of phosphorylated AMP-activated protein kinase (AMPK) and decreased phosphorylation of nuclear factor-kappa B. Dual-luciferase assay revealed that miR-5010-5p targeted the gene, protein phosphatase 2 regulatory subunit B delta (PPP2R2D), a subunit of protein phosphatase 2A, which modulates AMPK phosphorylation. CONCLUSIONS Our findings suggest that increased miR-5010-5p expression reduces high glucose-induced inflammatory responses in renal tubular epithelial cells via the regulation of the target gene, PPP2R2D, which modulates AMPK phosphorylation. Therefore, miR-5010-5p may be a promising therapeutic target for DKD.
Collapse
Affiliation(s)
- Sunghee Choi
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
| | | | - Mi Ra Yu
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
| | - Haekyung Lee
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Soon Hyo Kwon
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Jin Seok Jeon
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Hyunjin Noh
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| | - Hyoungnae Kim
- Hyonam Kidney Laboratory, Seoul, Korea (the Republic of)
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea (the Republic of)
| |
Collapse
|
19
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Gu YY, Liu XS, Lan HY. Therapeutic potential for renal fibrosis by targeting Smad3-dependent noncoding RNAs. Mol Ther 2024; 32:313-324. [PMID: 38093516 PMCID: PMC10861968 DOI: 10.1016/j.ymthe.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Renal fibrosis is a characteristic hallmark of chronic kidney disease (CKD) that ultimately results in renal failure, leaving patients with few therapeutic options. TGF-β is a master regulator of renal fibrosis and mediates progressive renal fibrosis via both canonical and noncanonical signaling pathways. In the canonical Smad signaling, Smad3 is a key mediator in tissue fibrosis and mediates renal fibrosis via a number of noncoding RNAs (ncRNAs). In this regard, targeting Smad3-dependent ncRNAs may offer a specific therapy for renal fibrosis. This review highlights the significance and innovation of TGF-β/Smad3-associated ncRNAs as biomarkers and therapeutic targets in renal fibrogenesis. In addition, the underlying mechanisms of these ncRNAs and their future perspectives in the treatment of renal fibrosis are discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xu-Sheng Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hui-Yao Lan
- Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Huang J, Yang F, Liu Y, Wang Y. N6-methyladenosine RNA methylation in diabetic kidney disease. Biomed Pharmacother 2024; 171:116185. [PMID: 38237350 DOI: 10.1016/j.biopha.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes, and hyperglycemic memory associated with diabetes carries the risk of disease occurrence, even after the termination of blood glucose injury. The existence of hyperglycemic memory supports the concept of an epigenetic mechanism involving n6-methyladenosine (m6A) modification. Several studies have shown that m6A plays a key role in the pathogenesis of DKD. This review addresses the role and mechanism of m6A RNA modification in the progression of DKD, including the regulatory role of m6A modification in pathological processes, such as inflammation, oxidative stress, fibrosis, and non-coding (nc) RNA. This reveals the importance of m6A in the occurrence and development of DKD, suggesting that m6A may play a role in hyperglycemic memory phenomenon. This review also discusses how some gray areas, such as m6A modified multiple enzymes, interact to affect the development of DKD and provides countermeasures. In conclusion, this review enhances our understanding of DKD from the perspective of m6A modifications and provides new targets for future therapeutic strategies. In addition, the insights discussed here support the existence of hyperglycemic memory effects in DKD, which may have far-reaching implications for the development of novel treatments. We hypothesize that m6A RNA modification, as a key factor regulating the development of DKD, provides a new perspective for the in-depth exploration of DKD and provides a novel option for the clinical management of patients with DKD.
Collapse
Affiliation(s)
- Jiaan Huang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Fan Yang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Yan Liu
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Yuehua Wang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China.
| |
Collapse
|
22
|
Rai B, Srivastava J, Saxena P. The Functional Role of microRNAs and mRNAs in Diabetic Kidney Disease: A Review. Curr Diabetes Rev 2024; 20:e201023222412. [PMID: 37867275 DOI: 10.2174/0115733998270983231009094216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
Diabetes is a group of diseases marked by poor control of blood glucose levels. Diabetes mellitus (DM) occurs when pancreatic cells fail to make insulin, which is required to keep blood glucose levels stable, disorders, and so on. High glucose levels in the blood induce diabetic effects, which can cause catastrophic damage to bodily organs such as the eyes and lower extremities. Diabetes is classified into many forms, one of which is controlled by hyperglycemia or Diabetic Kidney Disease (DKD), and another that is not controlled by hyperglycemia (nondiabetic kidney disease or NDKD) and is caused by other factors such as hypertension, hereditary. DKD is associated with diabetic nephropathy (DN), a leading cause of chronic kidney disease (CKD) and end-stage renal failure. The disease is characterized by glomerular basement membrane thickening, glomerular sclerosis, and mesangial expansion, resulting in a progressive decrease in glomerular filtration rate, glomerular hypertension, and renal failure or nephrotic syndrome. It is also represented by some microvascular complications such as nerve ischemia produced by intracellular metabolic changes, microvascular illness, and the direct impact of excessive blood glucose on neuronal activity. Therefore, DKD-induced nephrotic failure is worse than NDKD. MicroRNAs (miRNAs) are important in the development and progression of several diseases, including diabetic kidney disease (DKD). These dysregulated miRNAs can impact various cellular processes, including inflammation, fibrosis, oxidative stress, and apoptosis, all of which are implicated during DKD. MiRNAs can alter the course of DKD by targeting several essential mechanisms. Understanding the miRNAs implicated in DKD and their involvement in disease development might lead to identifying possible therapeutic targets for DKD prevention and therapy. Therefore, this review focuses specifically on DKD-associated DN, as well as how in-silico approaches may aid in improving the management of the disease.
Collapse
Affiliation(s)
- Bhuvnesh Rai
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Jyotika Srivastava
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Pragati Saxena
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
23
|
Trivedi A, Bose D, Saha P, Roy S, More M, Skupsky J, Klimas NG, Chatterjee S. Prolonged Antibiotic Use in a Preclinical Model of Gulf War Chronic Multisymptom-Illness Causes Renal Fibrosis-like Pathology via Increased micro-RNA 21-Induced PTEN Inhibition That Is Correlated with Low Host Lachnospiraceae Abundance. Cells 2023; 13:56. [PMID: 38201260 PMCID: PMC10777912 DOI: 10.3390/cells13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Gulf War (GW) veterans show gastrointestinal disturbances and gut dysbiosis. Prolonged antibiotic treatments commonly employed in veterans, especially the use of fluoroquinolones and aminoglycosides, have also been associated with dysbiosis. This study investigates the effect of prolonged antibiotic exposure on risks of adverse renal pathology and its association with gut bacterial species abundance in underlying GWI and aims to uncover the molecular mechanisms leading to possible renal dysfunction with aging. Using a GWI mouse model, administration of a prolonged antibiotic regimen involving neomycin and enrofloxacin treatment for 5 months showed an exacerbated renal inflammation with increased NF-κB activation and pro-inflammatory cytokines levels. Involvement of the high mobility group 1 (HMGB1)-mediated receptor for advanced glycation end products (RAGE) activation triggered an inflammatory phenotype and increased transforming growth factor-β (TGF-β) production. Mechanistically, TGF-β- induced microRNA-21 upregulation in the renal tissue leads to decreased phosphatase and tensin homolog (PTEN) expression. The above event led to the activation of protein kinase-B (AKT) signaling, resulting in increased fibronectin production and fibrosis-like pathology. Importantly, the increased miR-21 was associated with low levels of Lachnospiraceae in the host gut which is also a key to heightened HMGB1-mediated inflammation. Overall, though correlative, the study highlights the complex interplay between GWI, host gut dysbiosis, prolonged antibiotics usage, and renal pathology via miR-21/PTEN/AKT signaling.
Collapse
Affiliation(s)
- Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | | | - Nancy G. Klimas
- Institute for Neuro-Immune Medicine, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
- Long Beach VA Medical Center, Long Beach, CA 90822, USA;
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
24
|
王 一, 郭 建, 邵 宝, 陈 海, 蓝 辉. [The Role of TGF-β1/SMAD in Diabetic Nephropathy: Mechanisms and Research Development]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1065-1073. [PMID: 38162063 PMCID: PMC10752761 DOI: 10.12182/20231160108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 01/03/2024]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes and a leading cause of end-stage renal disease. Transforming growth factor-β1 (TGF-β1)/SMAD signaling activation plays an important role in the onset and progression of DN. Reported findings suggest that the activation of TGF-β1 (including the latent form, the active form, and the receptors) and its downstream signaling proteins (SMAD3, SMAD7, etc.) plays a critical role in DN. In addition, TGF-β1/SMAD signaling may mediate the pathogenesis and progression of DN via various microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence shows that TGF-β1, SMAD3, and SMAD7 are the main signaling proteins that contribute to the development of DN, and that they can be potential targets for the treatment of DN. However, recent clinical trials have shown that the anti-TGF-β1 monoclonal antibody treatment fails to effectively alleviate DN, which suggests that upstream inhibition of TGF-β1/SMAD signaling does not alleviate clinical symptoms and that this may be related to the fact that TGF-β1/SMAD has multiple biological effects. Targeted inhibition of the downstream TGF-β1 signaling (e.g., SMAD3 and SMAD7) may be an effective approach to attenuate DN. This article discussed the current understanding of the molecular mechanisms and potential targets for the treatment and prevention of DN by focusing on TGF-β1/SMAD signaling.
Collapse
Affiliation(s)
- 一帆 王
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 建波 郭
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 宝仪 邵
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
| | - 海勇 陈
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
- 香港大学深圳医院 中医部 (深圳 518053)Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - 辉耀 蓝
- 香港大学中医药学院 (香港 999000)School of Chinese Medicine, The University of Hong Kong, Hong Kong 999000, China
- 香港大学深圳医院 中医部 (深圳 518053)Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
25
|
Yang S, Jiang K, Li L, Xiang J, Li Y, Kang L, Yang G, Liang Z. MircroRNA-92b as a negative regulator of the TGF-β signaling by targeting the type I receptor. iScience 2023; 26:108131. [PMID: 37867958 PMCID: PMC10587525 DOI: 10.1016/j.isci.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Transforming growth factor β1 (TGFβ1) has been identified as a major pathogenic factor underlying the development of chronic kidney disease (CKD). This study investigated the role of miR-92b-3p in the progression of renal fibrosis in unilateral ureteral occlusion (UUO) and unilateral ischemia-reperfusion injury (uIRI) mouse models, as well as explored its underlying mechanisms in human proximal tubular epithelial (HK2) cells. We found that renal fibrosis increased in UUO mice after miR-92b knockout, while it reduced in miR-92b overexpressing mice. MiR-92b knockout aggravated renal fibrosis in uIRI mice. RNA-sequencing analysis, the luciferase reporter assay, qPCR analysis, and western blotting confirmed that miR-92b-3p directly targeted TGF-β receptor 1, thereby ameliorating renal fibrosis by suppressing the TGF-β signaling pathway. Furthermore, we found that TGF-β suppressed miR-92b transcription through Snail family transcriptional repressors 1 and 2. Our results suggest that miR-92b-3p may serve as a novel therapeutic for mitigating fibrosis in CKD.
Collapse
Affiliation(s)
- Shu Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Kewei Jiang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Lixing Li
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Yanchun Li
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Lin Kang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
- The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People’s Hospital, Shenzhen 518000, China
| | - Guangyan Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| |
Collapse
|
26
|
Wen W, Wei Y, Gao S. Functional nucleic acids for the treatment of diabetic complications. NANOSCALE ADVANCES 2023; 5:5426-5434. [PMID: 37822913 PMCID: PMC10563837 DOI: 10.1039/d3na00327b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
In recent decades, diabetes mellitus (DM) has become a major global health problem owing to its high prevalence and increased incidence of diabetes-associated complications, including diabetic wounds (DWs), diabetic nephropathy, metabolic syndrome, diabetic retinopathy, and diabetic neuropathy. In both type 1 and type 2 diabetes, tissue damage is organ-specific, but closely related to the overproduction of reactive oxygen species (ROS) and hyperglycaemia-induced macrovascular system damage. However, existing therapies have limited effects on complete healing of diabetic complications. Fortunately, recent advances in functional nucleic acid materials have provided new opportunities for the treatment and diagnosis of diabetic complications. Functional nucleic acids possess independent structural functions that can replace traditional proteases and antibodies and perform specific biological non-genetic functions. This review summarises the current functional nucleic acid materials reported for the treatment of diabetic complications, including tetrahedral framework nucleic acids (tFNAs), short interfering RNA (siRNA), micorRNA (miRNA), locked nucleic acids, antisense oligonucleotides (ASOs), and DNA origami, which may assist in the development of novel nucleic acids with new functions and capabilities for better healing of diabetic complications.
Collapse
Affiliation(s)
- Wen Wen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yuzi Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
27
|
Dwivedi S, Chavan A, Paul AT. SET7, a lysine-specific methyl transferase: An intriguing epigenetic target to combat diabetic nephropathy. Drug Discov Today 2023; 28:103754. [PMID: 37648018 DOI: 10.1016/j.drudis.2023.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Diabetic nephropathy (DN) is a dreadful complication of diabetes that affects ∼50% of diabetics and is a leading cause of end-stage renal disease (ESRD). Studies have linked aberrant expression of lysine methyltransferases (KMTs) to the onset and progression of DN. SET7 is a KMT that methylates specific lysine residues of the histone and nonhistone proteins. It plays an important role in the transforming growth factor-β (TGF-β)-induced upregulation of extracellular matrix (ECM)-associated genes that are responsible for the inflammatory cascade observed in DN. Inhibiting SET7 has potential to attenuate renal disorders in animal studies. This review will focus on the role of SET7 in DN and its potential as a therapeutic target to combat DN.
Collapse
Affiliation(s)
- Samarth Dwivedi
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India
| | - Atharva Chavan
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India
| | - Atish T Paul
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India.
| |
Collapse
|
28
|
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska M, Ławiński J, Rysz J. The Role of miRNA in Renal Fibrosis Leading to Chronic Kidney Disease. Biomedicines 2023; 11:2358. [PMID: 37760798 PMCID: PMC10525803 DOI: 10.3390/biomedicines11092358] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is an important health concern that is expected to be the fifth most widespread cause of death worldwide by 2040. The presence of chronic inflammation, oxidative stress, ischemia, etc., stimulates the development and progression of CKD. Tubulointerstitial fibrosis is a common pathomechanism of renal dysfunction, irrespective of the primary origin of renal injury. With time, fibrosis leads to end-stage renal disease (ESRD). Many studies have demonstrated that microRNAs (miRNAs, miRs) are involved in the onset and development of fibrosis and CKD. miRNAs are vital regulators of some pathophysiological processes; therefore, their utility as therapeutic agents in various diseases has been suggested. Several miRNAs were demonstrated to participate in the development and progression of kidney disease. Since renal fibrosis is an important problem in chronic kidney disease, many scientists have focused on the determination of miRNAs associated with kidney fibrosis. In this review, we present the role of several miRNAs in renal fibrosis and the potential pathways involved. However, as well as those mentioned above, other miRs have also been suggested to play a role in this process in CKD. The reports concerning the impact of some miRNAs on fibrosis are conflicting, probably because the expression and regulation of miRNAs occur in a tissue- and even cell-dependent manner. Moreover, different assessment modes and populations have been used. There is a need for large studies and clinical trials to confirm the role of miRs in a clinical setting. miRNAs have great potential; thus, their analysis may improve diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-055 Rzeszow, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
29
|
Park H. Unraveling the Molecular Puzzle: Exploring Gene Networks across Diverse EMT Status of Cell Lines. Int J Mol Sci 2023; 24:12784. [PMID: 37628965 PMCID: PMC10454379 DOI: 10.3390/ijms241612784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Understanding complex disease mechanisms requires a comprehensive understanding of the gene regulatory networks, as complex diseases are often characterized by the dysregulation and dysfunction of molecular networks, rather than abnormalities in single genes. Specifically, the exploration of cell line-specific gene networks can provide essential clues for precision medicine, as this methodology can uncover molecular interplays specific to particular cell line statuses, such as drug sensitivity, cancer progression, etc. In this article, we provide a comprehensive review of computational strategies for cell line-specific gene network analysis: (1) cell line-specific gene regulatory network estimation and analysis of gene networks under varying epithelial-mesenchymal transition (EMT) statuses of cell lines; and (2) an explainable artificial intelligence approach for interpreting the estimated massive multiple EMT-status-specific gene networks. The objective of this review is to help readers grasp the concept of computational network biology, which holds significant implications for precision medicine by offering crucial clues.
Collapse
Affiliation(s)
- Heewon Park
- School of Mathematics, Statistics and Data Science, Sungshin Women's University, Seoul 02844, Republic of Korea
| |
Collapse
|
30
|
Barreiro K, Dwivedi OP, Rannikko A, Holthöfer H, Tuomi T, Groop PH, Puhka M. Capturing the Kidney Transcriptome by Urinary Extracellular Vesicles-From Pre-Analytical Obstacles to Biomarker Research. Genes (Basel) 2023; 14:1415. [PMID: 37510317 PMCID: PMC10379145 DOI: 10.3390/genes14071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Urinary extracellular vesicles (uEV) hold non-invasive RNA biomarkers for genitourinary tract diseases. However, missing knowledge about reference genes and effects of preanalytical choices hinder biomarker studies. We aimed to assess how preanalytical variables (urine storage temperature, isolation workflow) affect diabetic kidney disease (DKD)-linked miRNAs or kidney-linked miRNAs and mRNAs (kidney-RNAs) in uEV isolates and to discover stable reference mRNAs across diverse uEV datasets. We studied nine raw and normalized sequencing datasets including healthy controls and individuals with prostate cancer or type 1 diabetes with or without albuminuria. We focused on kidney-RNAs reviewing literature for DKD-linked miRNAs from kidney tissue, cell culture and uEV/urine experiments. RNAs were analyzed by expression heatmaps, hierarchical clustering and selecting stable mRNAs with normalized counts (>200) and minimal coefficient of variation. Kidney-RNAs were decreased after urine storage at -20 °C vs. -80 °C. Isolation workflows captured kidney-RNAs with different efficiencies. Ultracentrifugation captured DKD -linked miRNAs that separated healthy and diabetic macroalbuminuria groups. Eleven mRNAs were stably expressed across the datasets. Hence, pre-analytical choices had variable effects on kidney-RNAs-analyzing kidney-RNAs complemented global correlation, which could fade differences in some relevant RNAs. Replicating prior DKD-marker results and discovery of candidate reference mRNAs encourages further uEV biomarker studies.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPREP Core, University of Helsinki, 00290 Helsinki, Finland
| | - Om Prakash Dwivedi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Urology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Harry Holthöfer
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Endocrinology, Abdominal Centre, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Nephrology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, EV and HiPREP Core, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
31
|
Sadee W, Wang D, Hartmann K, Toland AE. Pharmacogenomics: Driving Personalized Medicine. Pharmacol Rev 2023; 75:789-814. [PMID: 36927888 PMCID: PMC10289244 DOI: 10.1124/pharmrev.122.000810] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Personalized medicine tailors therapies, disease prevention, and health maintenance to the individual, with pharmacogenomics serving as a key tool to improve outcomes and prevent adverse effects. Advances in genomics have transformed pharmacogenetics, traditionally focused on single gene-drug pairs, into pharmacogenomics, encompassing all "-omics" fields (e.g., proteomics, transcriptomics, metabolomics, and metagenomics). This review summarizes basic genomics principles relevant to translation into therapies, assessing pharmacogenomics' central role in converging diverse elements of personalized medicine. We discuss genetic variations in pharmacogenes (drug-metabolizing enzymes, drug transporters, and receptors), their clinical relevance as biomarkers, and the legacy of decades of research in pharmacogenetics. All types of therapies, including proteins, nucleic acids, viruses, cells, genes, and irradiation, can benefit from genomics, expanding the role of pharmacogenomics across medicine. Food and Drug Administration approvals of personalized therapeutics involving biomarkers increase rapidly, demonstrating the growing impact of pharmacogenomics. A beacon for all therapeutic approaches, molecularly targeted cancer therapies highlight trends in drug discovery and clinical applications. To account for human complexity, multicomponent biomarker panels encompassing genetic, personal, and environmental factors can guide diagnosis and therapies, increasingly involving artificial intelligence to cope with extreme data complexities. However, clinical application encounters substantial hurdles, such as unknown validity across ethnic groups, underlying bias in health care, and real-world validation. This review address the underlying science and technologies germane to pharmacogenomics and personalized medicine, integrated with economic, ethical, and regulatory issues, providing insights into the current status and future direction of health care. SIGNIFICANCE STATEMENT: Personalized medicine aims to optimize health care for the individual patients with use of predictive biomarkers to improve outcomes and prevent adverse effects. Pharmacogenomics drives biomarker discovery and guides the development of targeted therapeutics. This review addresses basic principles and current trends in pharmacogenomics, with large-scale data repositories accelerating medical advances. The impact of pharmacogenomics is discussed, along with hurdles impeding broad clinical implementation, in the context of clinical care, ethics, economics, and regulatory affairs.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Danxin Wang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Katherine Hartmann
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| |
Collapse
|
32
|
Liu Z, Liu J, Wang W, An X, Luo L, Yu D, Sun W. Epigenetic modification in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1133970. [PMID: 37455912 PMCID: PMC10348754 DOI: 10.3389/fendo.2023.1133970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common microangiopathy in diabetic patients and the main cause of death in diabetic patients. The main manifestations of DKD are proteinuria and decreased renal filtration capacity. The glomerular filtration rate and urinary albumin level are two of the most important hallmarks of the progression of DKD. The classical treatment of DKD is controlling blood glucose and blood pressure. However, the commonly used clinical therapeutic strategies and the existing biomarkers only partially slow the progression of DKD and roughly predict disease progression. Therefore, novel therapeutic methods, targets and biomarkers are urgently needed to meet clinical requirements. In recent years, increasing attention has been given to the role of epigenetic modification in the pathogenesis of DKD. Epigenetic variation mainly includes DNA methylation, histone modification and changes in the noncoding RNA expression profile, which are deeply involved in DKD-related inflammation, oxidative stress, hemodynamics, and the activation of abnormal signaling pathways. Since DKD is reversible at certain disease stages, it is valuable to identify abnormal epigenetic modifications as early diagnosis and treatment targets to prevent the progression of end-stage renal disease (ESRD). Because the current understanding of the epigenetic mechanism of DKD is not comprehensive, the purpose of this review is to summarize the role of epigenetic modification in the occurrence and development of DKD and evaluate the value of epigenetic therapies in DKD.
Collapse
Affiliation(s)
- Zhe Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiahui Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wanning Wang
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
33
|
Wan X, Liao J, Lai H, Zhang S, Cui J, Chen C. Roles of microRNA-192 in diabetic nephropathy: the clinical applications and mechanisms of action. Front Endocrinol (Lausanne) 2023; 14:1179161. [PMID: 37396169 PMCID: PMC10309560 DOI: 10.3389/fendo.2023.1179161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common and intractable microvascular complications of diabetes worldwide, serving as the main cause of terminal renal disease. Due to the lack of early specific symptoms and diagnostic markers, DN severely threatens the sufferer's life. MicroRNA-192 (miR-192) was early identified in human renal cortical tissue and stored and excreted in urine as microvesicles. MiR-192 was found to be involved in the development of DN. For the first time, the present review summarized all the current evidence on the topic of the roles of miR-192 in DN. Finally, 28 studies (ten clinical trials and eighteen experimental studies) were eligible for thorough reviewing. Most of the clinical trials (7/10, 70%) indicated miR-192 might be a protective factor for DN development and progression, while the majority of experimental studies (14/18, 78%) suggested miR-192 might be a pathogenic factor for DN. Mechanistically, miR-192 interacts with various direct targeted proteins (i.e., ZEB1, ZEB2, SIP1, GLP1R, and Egr1) and signaling cascades (i.e., SMAD/TGF-β and PTEN/PI3K/AKT), together contribute to the pathogenesis of DN through epithelial-to-mesenchymal transition (EMT), extracellular matrix deposition, and fibrosis formation. The current review highlights the dual role of miR-192 in the development of DN. Low serum miR-192 expression could be applied for the early prediction of DN (the early stage of DN), while the high miR-192 level in renal tissues and urine may imply the progression of DN (the late stage of DN). Further investigations are still warranted to illustrate this inconsistent phenomenon, which may facilitate promoting the therapeutic applications of miR-192 in predicting and treating DN.
Collapse
Affiliation(s)
- Xiaoqing Wan
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Hongting Lai
- Clinical Medical College, Tianjin Medical University, Tianjin, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianling Cui
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chunyan Chen
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| |
Collapse
|
34
|
Yang W, Zhao H, Dou Y, Wang P, Chang Q, Qiao X, Wang X, Xu C, Zhang Z, Zhang L. CYP3A4 and CYP3A5 Expression is Regulated by C YP3A4*1G in CRISPR/Cas9-Edited HepG2 Cells. Drug Metab Dispos 2023; 51:492-498. [PMID: 36623883 DOI: 10.1124/dmd.122.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023] Open
Abstract
Functional CYP3A4*1G (G>A, rs2242480) in cytochrome P450 3A4 (CYP3A4) regulates the drug-metabolizing enzyme CYP3A4 expression. The objective of this study was to investigate whether CYP3A4*1G regulates both basal and rifampicin (RIF)-induced expression and enzyme activity of CYP3A4 and CYP3A5 in gene-edited human HepG2 cells. CYP3A4*1G GG and AA genotype HepG2 cells were established using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) single nucleotide polymorphism technology and homology-directed repair in the CYP3A4*1G GA HepG2 cell line. In CYP3A4*1G GG, GA, and AA HepG2 cells, CYP3A4*1G regulated expression of CYP3A4 and CYP3A5 mRNA and protein in an allele-dependent manner. Of note, significantly decreased expression level of CYP3A4 and CYP3A5 was observed in CYP3A4*1G AA HepG2 cells. Moreover, the results after RIF treatment showed that CYP3A4*1G decreased the induction level of CYP3A4 and CYP3A5 mRNA expression in CYP3A4*1G AA HepG2 cells. At the same time, CYP3A4*1G decreased CYP3A4 enzyme activity and tacrolimus metabolism, especially in CYP3A4*1G GA HepG2 cells. In summary, we successfully constructed CYP3A4*1G GG and AA homozygous HepG2 cell models and found that CYP3A4*1G regulates both basal and RIF-induced expression and enzyme activity of CYP3A4 and CYP3A5 in CRISPR/Cas9 CYP3A4*1G HepG2 cells. SIGNIFICANCE STATEMENT: Cytochrome P450 (CYP) 3A4*1G regulates both basal and rifampicin (RIF)-induced expression and enzyme activity of CYP3A4 and CYP3A5. This study successfully established CYP3A4*1G (G>A, rs2242480), GG, and AA HepG2 cell models using CRISPR/Cas9, thus providing a powerful tool for studying the mechanism by which CYP3A4*1G regulates the basal and RIF-induced expression of CYP3A4 and CYP3A5.
Collapse
Affiliation(s)
- Weihong Yang
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Huan Zhao
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Yaojie Dou
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Pei Wang
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Qi Chang
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Xiaomeng Qiao
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Xiaofei Wang
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Chen Xu
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Zhe Zhang
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Lirong Zhang
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| |
Collapse
|
35
|
Szostak J, Gorący A, Durys D, Dec P, Modrzejewski A, Pawlik A. The Role of MicroRNA in the Pathogenesis of Diabetic Nephropathy. Int J Mol Sci 2023; 24:ijms24076214. [PMID: 37047185 PMCID: PMC10094215 DOI: 10.3390/ijms24076214] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Diabetic nephropathy is one of the most common and severe complications of diabetes mellitus, affecting one in every five patients suffering from diabetes. Despite extensive research, the exact pathogenesis of diabetic nephropathy is still unclear. Several factors and pathways are known to be involved in the development of the disease, such as reactive oxygen species or the activation of the renin–angiotensin–aldosterone system. The expression of those proteins might be extensively regulated by microRNA. Recent research suggests that in diabetic nephropathy patients, the profile of miRNA is significantly changed. In this review, we focus on the actions of miRNA in various pathways involved in the pathogenesis of diabetic nephropathy and the clinical usage of miRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Joanna Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Gorący
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Damian Durys
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Paweł Dec
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
36
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 243] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Pediatric Diabetic Nephropathy: Novel Insights from microRNAs. J Clin Med 2023; 12:jcm12041447. [PMID: 36835983 PMCID: PMC9961327 DOI: 10.3390/jcm12041447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Diabetic nephropathy (DN) represents the most common microvascular complication in patients with diabetes. This progressive kidney disease has been recognized as the major cause of end-stage renal disease with higher morbidity and mortality. However, its tangled pathophysiology is still not fully known. Due to the serious health burden of DN, novel potential biomarkers have been proposed to improve early identification of the disease. In this complex landscape, several lines of evidence supported a critical role of microRNAs (miRNAs) in regulating posttranscriptional levels of protein-coding genes involved in DN pathophysiology. Indeed, intriguing data showed that deregulation of certain miRNAs (e.g., miRNAs 21, -25, -92, -210, -126, -216, and -377) were pathogenically linked to the onset and the progression of DN, suggesting not only a role as early biomarkers but also as potential therapeutic targets. To date, these regulatory biomolecules represent the most promising diagnostic and therapeutic options for DN in adult patients, while similar pediatric evidence is still limited. More, findings from these elegant studies, although promising, need to be deeper investigated in larger validation studies. In an attempt to provide a comprehensive pediatric overview in the field, we aimed to summarize the most recent evidence on the emerging role of miRNAs in pediatric DN pathophysiology.
Collapse
|
38
|
Kabir A, Sarkar A, Barui A. Acute and Chronic Wound Management: Assessment, Therapy and Monitoring Strategies. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
39
|
Peng Z, Xu Q, Hu W, Cheng Y. Review on Molecular Mechanism of Hypertensive Nephropathy. Curr Pharm Des 2023; 29:2568-2578. [PMID: 37927071 DOI: 10.2174/0113816128266582231031111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Hypertension, a prevalent chronic ailment, has the potential to impair kidney function, and thereby resulting in hypertensive nephropathy. The escalating incidence of hypertensive nephropathy attributed to the aging population in urban areas, has emerged as a prominent cause of end-stage renal disease. Nevertheless, the intricate pathogenesis of hypertensive nephropathy poses considerable obstacles in terms of precise clinical diagnosis and treatment. This paper aims to consolidate the research findings on the pathogenesis of hypertensive nephropathy by focusing on the perspective of molecular biology.
Collapse
Affiliation(s)
- Zhen Peng
- Department of Pharmacy, Yichun People's Hospital, Yichun, Jiangxi 336000, China
| | - Qiaohong Xu
- Department of Pharmacy, Yichun People's Hospital, Yichun, Jiangxi 336000, China
| | - Wen Hu
- Department of Pharmacy, Yichun People's Hospital, Yichun, Jiangxi 336000, China
| | - Yimin Cheng
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi 336000, China
| |
Collapse
|
40
|
Tang C, Wang M, Liu J, Zhang C, Li L, Wu Y, Chu Y, Wu D, Liu H, Yuan X. A Cyclopentanone Compound Attenuates the Over-Accumulation of Extracellular Matrix and Fibrosis in Diabetic Nephropathy via Downregulating the TGF-β/p38MAPK Axis. Biomedicines 2022; 10:biomedicines10123270. [PMID: 36552026 PMCID: PMC9775671 DOI: 10.3390/biomedicines10123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Excessive accumulation of the extracellular matrix (ECM) is a crucial pathological process in chronic kidney diseases, such as diabetic nephropathy, etc. The underlying mechanisms of how to decrease ECM deposition to improve diabetic nephropathy remain elusive. The present study investigated whether cyclopentanone compound H8 alleviated ECM over-deposition and fibrosis to prevent and treat diabetic nephropathy. HK-2 cell viability after treatment with H8 was measured by an MTT assay. ECM alterations and renal fibrosis were identified in vitro and in vivo. A pharmacological antagonist was used to detect associations between H8 and the p38 mitogen-activated protein kinase (p38MAPK) signaling pathway. H8 binding was identified through computer simulation methods. Studies conducted on high glucose and transforming growth factor β1 (TGF-β1)-stimulated HK-2 cells revealed that the p38MAPK inhibitor SB 202190 and H8 had similar pharmacological effects. In addition, excessive ECM accumulation and fibrosis in diabetic nephropathy were remarkably improved after H8 administration in vivo and in vitro. Finally, the two molecular docking models further proved that H8 is a specific p38MAPK inhibitor that forms a hydrogen bond with the LYS-53 residue of p38MAPK. The cyclopentanone compound H8 alleviated the over-deposition of ECM and the development of fibrosis in diabetic nephropathy by suppressing the TGF-β/p38MAPK axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haifeng Liu
- Correspondence: (H.L.); (X.Y.); Tel.: +86-0453-6984403 (H.L.); +86-0453-6984401 (X.Y.)
| | - Xiaohuan Yuan
- Correspondence: (H.L.); (X.Y.); Tel.: +86-0453-6984403 (H.L.); +86-0453-6984401 (X.Y.)
| |
Collapse
|
41
|
Noncoding RNAs associated with IgA nephropathy. J Nephrol 2022; 36:911-923. [PMID: 36495425 DOI: 10.1007/s40620-022-01498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
IgA nephropathy (IgAN) is one of the most common glomerulonephritides. The disease is characterized by haematuria, proteinuria, deposition of galactose-deficient IgA1 in the glomerular mesangium and mesangial hypercellularity, further leading to extracellular matrix expansion. Kidney biopsy is the gold standard for IgAN diagnosis. Due to the invasiveness of renal biopsy, there is an unmet need for noninvasive biomarkers to diagnose and estimate the severity of IgAN. Understanding the role of RNA molecules as genetic markers to target diseases may allow developing therapeutic and diagnostic markers. In this review we have focused on intrarenal, extrarenal and extracellular noncoding RNAs involved in the progression of IgAN. This narrative review summarizes the pathogenesis of IgAN along with the correlation of noncoding RNA molecules such as microRNAs, small interfering RNAs, circular RNAs and long non-coding RNAs that play an important role in regulating gene expression, and that represent another type of regulation affecting the expression of specific glycosyltranferases, a key element contributing to the development of IgAN.
Collapse
|
42
|
Abdollahi M, Kato M, Lanting L, Wang M, Tunduguru R, Natarajan R. Role of miR-379 in high-fat diet-induced kidney injury and dysfunction. Am J Physiol Renal Physiol 2022; 323:F686-F699. [PMID: 36227097 PMCID: PMC9705025 DOI: 10.1152/ajprenal.00213.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity is associated with increased risk for diabetes and damage to the kidneys. Evidence suggests that miR-379 plays a role in the pathogenesis of diabetic kidney disease. However, its involvement in obesity-induced kidney injury is not known and was therefore investigated in this study by comparing renal phenotypes of high-fat diet (HFD)-fed wild-type (WT) and miR-379 knockout (KO) mice. Male and female WT mice on the HFD for 10 or 24 wk developed obesity, hyperinsulinemia, and kidney dysfunction manifested by albuminuria and glomerular injuries. However, these adverse alterations in HFD-fed WT mice were significantly ameliorated in HFD-fed miR-379 KO mice. HFD feeding increased glomerular expression of miR-379 and decreased its target gene, endoplasmic reticulum (ER) degradation enhancing α-mannosidase-like protein 3 (Edem3), a negative regulator of ER stress. Relative to the standard chow diet-fed controls, expression of profibrotic transforming growth factor-β1 (Tgf-β1) was significantly increased, whereas Zeb2, which encodes ZEB2, a negative regulator of Tgf-β1, was decreased in the glomeruli in HFD-fed WT mice. Notably, these changes as well as HFD-induced increased expression of other profibrotic genes, glomerular hypertrophy, and interstitial fibrosis in HFD-fed WT mice were attenuated in HFD-fed miR-379 KO mice. In cultured primary glomerular mouse mesangial cells (MMCs) isolated from WT mice, treatment with high insulin (mimicking hyperinsulinemia) increased miR-379 expression and decreased its target, Edem3. Moreover, insulin also upregulated Tgf-β1 and downregulated Zeb2 in WT MMCs, but these changes were significantly attenuated in MMCs from miR-379 KO mice. Together, these experiments revealed that miR-379 deletion protects mice from HFD- and hyperinsulinemia-induced kidney injury at least in part through reduced ER stress.NEW & NOTEWORTHY miR-379 knockout mice are protected from high-fat diet (HFD)-induced kidney damage through key miR-379 targets associated with ER stress (Edem3). Mechanistically, treatment of mesangial cells with insulin (mimicking hyperinsulinemia) increased expression of miR-379, Tgf-β1, miR-200, and Chop and decreases Edem3. Furthermore, TGF-β1-induced fibrotic genes are attenuated by a GapmeR targeting miR-379. The results implicate a miR-379/EDEM3/ER stress/miR-200c/Zeb2 signaling pathway in HFD/obesity/insulin resistance-induced renal dysfunction. Targeting miR-379 with GapmeRs can aid in the treatment of obesity-induced kidney disease.
Collapse
Affiliation(s)
- Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California
| | - Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California
| | - Ragadeepthi Tunduguru
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
43
|
Akpınar K, Aslan D, Fenkçi SM, Caner V. miR-21-3p and miR-192-5p in patients with type 2 diabetic nephropathy. Diagnosis (Berl) 2022; 9:499-507. [PMID: 35976169 DOI: 10.1515/dx-2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/23/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Microribonucleic acids (microRNA/miRNA/miR-) are predicted to be useful in the early diagnosis, monitoring, and treatment of diabetic nephropathy (DN). We aimed to investigate the relationship of DN to miR-21-3p, miR-29a-3p, miR-29b-3p, miR-29c-3p, miR-126-3p, miR-129-1-3p, miR-137, miR-192-5p, miR-212-3p, and miR-320c. METHODS There were 50 healthy controls and 100 patients with type 2 diabetes mellitus (T2DM). The diabetic patients were divided into three subgroups: normal to mildly increased (A1, n=51), moderately increased (A2, n=25), and severely increased (A3, n=24) albuminuria. The biochemical measurements were analysed using Roche Cobas 8000. The plasma miRNAs were analysed using RT-qPCR based on SYBR green chemistry. RESULTS The relative expression of miR-21-3p was significantly lower in the (A3 p=0.005, 6.6-fold decrease) and DN (A1 + A3) (p=0.005, 6.6-fold decrease) groups compared to the controls. The relative expression of miR-192-5p was also significantly lower in the DN group (p=0.027, 2.4-fold decrease) compared to the controls. The area under curve value was 0.726 for miR-21-3p and 0.717 for miR-192-5p for distinguishing the DN group from the controls. CONCLUSIONS The decreased expressions of miR-21-3p and miR-192-5p are associated with the development of DN and may be potential biomarkers for the early diagnosis of DN.
Collapse
Affiliation(s)
- Kadriye Akpınar
- Department of Medical Biochemistry, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Diler Aslan
- Department of Medical Biochemistry, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Semin Melahat Fenkçi
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Vildan Caner
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
44
|
Park HR, Lee SE, Yi Y, Moon S, Yoon H, Kang CW, Kim J, Park YS. Integrated analysis of miRNA and mRNA expression profiles in diabetic mouse kidney treated to Korean Red Ginseng. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Mahtal N, Lenoir O, Tinel C, Anglicheau D, Tharaux PL. MicroRNAs in kidney injury and disease. Nat Rev Nephrol 2022; 18:643-662. [PMID: 35974169 DOI: 10.1038/s41581-022-00608-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by degrading or repressing the translation of their target messenger RNAs. As miRNAs are critical regulators of cellular homeostasis, their dysregulation is a crucial component of cell and organ injury. A substantial body of evidence indicates that miRNAs are involved in the pathophysiology of acute kidney injury (AKI), chronic kidney disease and allograft damage. Different subsets of miRNAs are dysregulated during AKI, chronic kidney disease and allograft rejection, which could reflect differences in the physiopathology of these conditions. miRNAs that have been investigated in AKI include miR-21, which has an anti-apoptotic role, and miR-214 and miR-668, which regulate mitochondrial dynamics. Various miRNAs are downregulated in diabetic kidney disease, including the miR-30 family and miR-146a, which protect against inflammation and fibrosis. Other miRNAs such as miR-193 and miR-92a induce podocyte dedifferentiation in glomerulonephritis. In transplantation, miRNAs have been implicated in allograft rejection and injury. Further work is needed to identify and validate miRNAs as biomarkers of graft function and of kidney disease development and progression. Use of combinations of miRNAs together with other molecular markers could potentially improve diagnostic or predictive power and facilitate clinical translation. In addition, targeting specific miRNAs at different stages of disease could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nassim Mahtal
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France
| | - Olivia Lenoir
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| | - Claire Tinel
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| |
Collapse
|
46
|
Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022; 13:958790. [PMID: 36045667 PMCID: PMC9420855 DOI: 10.3389/fimmu.2022.958790] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a chronic, inflammatory disease affecting millions of diabetic patients worldwide. DN is associated with proteinuria and progressive slowing of glomerular filtration, which often leads to end-stage kidney diseases. Due to the complexity of this metabolic disorder and lack of clarity about its pathogenesis, it is often more difficult to diagnose and treat than other kidney diseases. Recent studies have highlighted that the immune system can inadvertently contribute to DN pathogenesis. Cells involved in innate and adaptive immune responses can target the kidney due to increased expression of immune-related localization factors. Immune cells then activate a pro-inflammatory response involving the release of autocrine and paracrine factors, which further amplify inflammation and damage the kidney. Consequently, strategies to treat DN by targeting the immune responses are currently under study. In light of the steady rise in DN incidence, this timely review summarizes the latest findings about the role of the immune system in the pathogenesis of DN and discusses promising preclinical and clinical therapies.
Collapse
Affiliation(s)
| | | | - Jinhan He
- *Correspondence: Jinhan He, ; Yanping Li,
| | - Yanping Li
- *Correspondence: Jinhan He, ; Yanping Li,
| |
Collapse
|
47
|
Rafiee Z, Orazizadeh M, Nejad Dehbashi F, Neisi N, Babaahmadi-Rezaei H, Mansouri E. Mesenchymal stem cells derived from the kidney can ameliorate diabetic nephropathy through the TGF-β/Smad signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53212-53224. [PMID: 35278177 DOI: 10.1007/s11356-021-17954-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Diabetic nephropathy (DN) has been introduced as one of the main microvascular complications in diabetic patients, the most common cause of end-stage renal disease (ESRD). Based on the therapeutic potential of mesenchymal stem cells in tissue repair, we aimed to test the hypothesis that kidney stem cells (KSCs) might be effective in the kidney regeneration process. Stem cells from rat kidney were separated, and the surface stem cell markers were determined by flow cytometry analysis. Thirty-two Sprague Dawley rats were divided into four groups (control, control that received kidney stem cells, diabetic, diabetic treated with stem cells). To establish diabetic, model STZ (streptozotocin) (60 mg/kg) was used. The KSCs were injected into experimental groups via tail vein (2 × 106 cells/rat). In order to determine the impact of stem cells on the function and structure of the kidney, biochemical and histological parameters were measured. Further, the expression of miRNA-29a, miR-192, IL-1β, and TGF-β was determined through the real-time PCR technique. Phosphorylation of Smad2/3 was evaluated by using the standard western blotting. The KSCs significantly reduced blood nitrogen (BUN), serum creatinine (Scr), and 24-h urinary proteins in DN (P < 0.05). IL-1β and TGF-β significantly increased in the kidney of diabetic rats. In addition, the expression of miR-29a is significantly increased, whereas miR-192 decreased after treatment with KSCs (P < 0.05). Diabetic rats showed an increased level of phosphorylation of both Smad2 and Smad3 (P < 0.05). Periodic acid-Schiff (PAS) staining showed improved histopathological changes in the presence of KSCs. Stem cells derived from adult rat kidney may be an option for treating the early DN to improve the functions and structure of kidneys in rats with DN.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61335, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61335, Ahvaz, Iran
| | - Fereshteh Nejad Dehbashi
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- Alimentary Tract Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Infectious and Tropical Diseases Research Center, Department of Virology, the School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61335, Ahvaz, Iran.
| |
Collapse
|
48
|
LCZ696 (sacubitril/valsartan) protects against cyclophosphamide-induced nephrotoxicity in adult male rats: Up-regulation of Apelin-13/ACE2, miR-200, and down-regulation of TGF-β/SMAD 2/3 and miR-192. Life Sci 2022; 306:120850. [PMID: 35917938 DOI: 10.1016/j.lfs.2022.120850] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
|
49
|
Nano-delivery of salvianolic acid B induces the quiescence of tumor-associated fibroblasts via interfering with TGF-β1/Smad signaling to facilitate chemo- and immunotherapy in desmoplastic tumor. Int J Pharm 2022; 623:121953. [PMID: 35753535 DOI: 10.1016/j.ijpharm.2022.121953] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023]
Abstract
As the key stromal cells that mediate the desmoplastic reaction, tumor-associated fibroblasts (TAFs) play a critical role in the limited nanoparticle penetration and suppressive immune tumor microenvironment. Herein, we found that salvianolic acid B-loaded PEGylated liposomes (PEG-SAB-Lip) can interfere with the activation of TAFs by inhibiting the secretion of TGF-β1. After inhibiting the activation of TAFs, collagen deposition in tumors was reduced, and the penetration of nanoparticles in tumors was enhanced. The results of RT-qPCR and immunofluorescence staining showed the high expression of Th1 cytokines and chemokines (CXCL9 and CXCL10) and the recruitment of CD4+, CD8+ T cells, and M1 macrophages in the tumor area. At the same time, the low expression of Th2 cytokine and chemokine CXCL13, as well as the decrease of MDSCs, Tregs, and M2 macrophages were also observed in the tumor area. These results were related to the inactivation of TAFs. The combined treatment of PEG-SAB-Lip and docetaxel-loaded PEG-modified liposomes (PEG-DTX-Lip) can significantly inhibit tumor growth. Moreover, PEG-SAB-Lip further inhibited tumor metastasis to the lung. Therefore, our results showed that PEG-SAB-Lip can remodel the tumor microenvironment and improve the efficacy of nanoparticles.
Collapse
|
50
|
Cao S, Xiao Y, Huang R, Zhao D, Xu W, Li S, Tang J, Qu F, Jin J, Xie S, Liu Z. Dietary Supplementation With Hydroxyproline Enhances Growth Performance, Collagen Synthesis and Muscle Quality of Carassius auratus Triploid. Front Physiol 2022; 13:913800. [PMID: 35721560 PMCID: PMC9198714 DOI: 10.3389/fphys.2022.913800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 01/26/2023] Open
Abstract
An eight-week experiment was undertaken to examine the effect of dietary hydroxyproline (Hyp) supplementation on growth performance, collagen synthesis, muscle quality of an improved triploid crucian carp (Carassius auratus Triploid) (ITCC). Six isonitrogenous (340 g/kg diet), isolipidic (60 g/kg diet) and isocaloric (17.80 MJ/kg diet) diets were formulated containing a certain amount of Hyp: 0.09% (the control group), 0.39, 0.76, 1.14, 1.53 and 1.90%. Each diet was randomly assigned to three tanks and each group was fed two times daily until apparent satiation. The results showed that growth performance and feed utilization of ITCC were significantly improved with the dietary Hyp level was increased from 0.09 to 0.76%. Crude protein, threonine and arginine content in the dorsal muscle in 0.76% hydroxyproline group were significantly higher than those in basic diet group (p < 0.05). The muscle textural characteristics increased remarkably with the amount of Hyp in the diet rising from 0.09 to 1.53% (p < 0.05). Meanwhile, the contents of type I collagen (Col I) and Pyridinium crosslink (PYD) in the muscle of fish were significantly increased by dietary Hyp (p < 0.05). The muscle fiber diameter and density of the fish were significantly increased when fed with 0.76% Hyp (p < 0.05). Furthermore, dietary supplementation with an appropriate concentration of Hyp substantially increased the expression of genes involved in collagen synthesis (col1a1, col1a2, p4hα1, p4hβ, smad4, smad5, smad9, and tgf-β) and muscle growth (igf-1, tor, myod, myf5, and myhc) (p < 0.05). In conclusion, dietary supplementation of Hyp can enhance fish growth performance, collagen production, muscle textural characteristics and muscle growth of ITCC. According to the SGR broken-line analysis, the recommended supplementation level of Hyp was 0.74% in the diet for ITCC, corresponding to 2.2% of dietary protein.
Collapse
Affiliation(s)
- Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yangbo Xiao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Rong Huang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Dafang Zhao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Shitao Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
- *Correspondence: Zhen Liu,
| |
Collapse
|