1
|
Saffe S, Doerry K, Büscher AK, Hansen M, Rohmann M, Kanzelmeyer N, Latta K, Kemper MJ, Loos S. Variable treatment response to lumasiran in pediatric patients with primary hyperoxaluria type 1. Pediatr Nephrol 2025; 40:1929-1937. [PMID: 39869204 PMCID: PMC12031841 DOI: 10.1007/s00467-025-06665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Primary hyperoxaluria type 1 (PH 1) is a rare genetic condition due to mutations in the AGXT gene. This leads to an overproduction of oxalate in the liver. Hyperoxaluria often causes kidney stones, nephrocalcinosis, and chronic kidney disease. Lumasiran is a recently approved drug that reduces the hepatic oxalate production by mRNA interference. METHODS In this multicenter study, we evaluated the response to lumasiran treatment in PH 1 patients (n = 8) with a median age of 10.9 years (range 1.2-17.9 years), including two patients on hemodialysis. We retrospectively analyzed the reduction of urinary and plasma oxalate levels as well as changes in kidney stone events, nephrocalcinosis, and kidney function. RESULTS In patients without kidney failure, the median reduction of urinary oxalate was 64% (range 10-80%) and 71% (61-86%) at 6 and 12 months, respectively. However, only one patient reached urinary oxalate levels within the age-specific normal range. Two patients did not respond to lumasiran and treatment was stopped. In one of the two patients on hemodialysis, the frequency of sessions could be reduced. The only notable side effects were injection site reactions. CONCLUSION There was a variable response to lumasiran in PH 1. Despite a reduction of hyperoxaluria in many patients with PH 1, only one patient reached normal values and 2 of 8 patients did not respond. Regular monitoring of urinary oxalate values and registry data collection seems mandatory to monitor the efficacy and the long-term outcome of PH 1 treated with lumasiran.
Collapse
Affiliation(s)
- Sina Saffe
- Department of Pediatrics, Asklepios Klinik Nord Heidberg, Hamburg, Germany
| | - Katja Doerry
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Martinistrasse 52, Hamburg, 20246, Germany
| | - Anja K Büscher
- Pediatric Nephrology, Children's Hospital, University of Essen, Essen, Germany
| | - Matthias Hansen
- Department of Pediatric Nephrology, KfH-Nierenzentrum Für Kinder Und Jugendliche Beim Clementine Kinderhospital, Frankfurt, Germany
| | - Melanie Rohmann
- Department of Pediatric Nephrology, Universitätsklinikum Jena, Jena, Germany
| | - Nele Kanzelmeyer
- Department of Pediatric Nephrology, Medizinische Hochschule Hannover, Kinderklinik, Hannover, Germany
| | - Kay Latta
- Department of Pediatric Nephrology, Clementine Kinderhospital, Frankfurt, Germany
| | - Markus J Kemper
- Department of Pediatrics, Asklepios Klinik Nord Heidberg, Hamburg, Germany
| | - Sebastian Loos
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Martinistrasse 52, Hamburg, 20246, Germany.
| |
Collapse
|
2
|
Michael M, Harvey E, Milliner DS, Frishberg Y, Sas DJ, Calle J, Copelovitch L, Penniston KL, Saland J, Somers MJG, Baum MA. Diagnosis and management of primary hyperoxalurias: best practices. Pediatr Nephrol 2024; 39:3143-3155. [PMID: 38753085 DOI: 10.1007/s00467-024-06328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 09/20/2024]
Abstract
The primary hyperoxalurias (PH 1, 2, and 3) are rare autosomal recessive disorders of glyoxylate metabolism resulting in hepatic overproduction of oxalate. Clinical presentations that should prompt consideration of PH include kidney stones, nephrocalcinosis, and kidney failure of unknown etiology, especially with echogenic kidneys on ultrasound. PH1 is the most common and severe of the primary hyperoxalurias with a high incidence of kidney failure as early as infancy. Until the recent availability of a novel RNA interference (RNAi) agent, PH care was largely supportive of eventual need for kidney/liver transplantation in PH1 and PH2. Together with the Oxalosis and Hyperoxaluria Foundation, the authors developed a diagnostic algorithm for PH1 and in this report outline best clinical practices related to its early diagnosis, supportive treatment, and long-term management, including the use of the novel RNAi. PH1-focused approaches to dialysis and kidney/liver transplantation for PH patients with progression to chronic kidney disease/kidney failure and systemic oxalosis are suggested. Therapeutic advances for this devastating disease heighten the importance of early diagnosis and informed treatment.
Collapse
Affiliation(s)
- Mini Michael
- Division of Pediatric Nephrology, Baylor College of Medicine, Texas Children's Hospital, Houston, USA.
| | - Elizabeth Harvey
- Division of Pediatric Nephrology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Yaacov Frishberg
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - David J Sas
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Juan Calle
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, USA
| | - Lawrence Copelovitch
- Division of Nephrology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Jeffrey Saland
- Division of Pediatric Nephrology and Hypertension, Mount Sinai Kravis Children's Hospital, New York, NY, USA
| | - Michael J G Somers
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle A Baum
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Hawkins-van der Cingel G, Walsh SB, Eckardt KU, Knauf F. Oxalate Metabolism: From Kidney Stones to Cardiovascular Disease. Mayo Clin Proc 2024; 99:1149-1161. [PMID: 38762815 DOI: 10.1016/j.mayocp.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 05/20/2024]
Abstract
Oxalate kidney stones are common and exert a huge burden of morbidity worldwide. However, circulating or excreted concentrations of oxalate are rarely measured. We argue that oxalate and its metabolism are important above and beyond kidney stone formation. There is emerging evidence that increased concentrations of oxalate could be a driver of chronic kidney disease progression. Furthermore, oxalate has been implicated in cardiovascular disease. Thus, the reduction of elevated plasma oxalate concentrations may represent a novel cardioprotective and nephroprotective strategy.
Collapse
Affiliation(s)
- Gerlineke Hawkins-van der Cingel
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; UCL Department of Renal Medicine, University College London, London, United Kingdom.
| | - Stephen B Walsh
- UCL Department of Renal Medicine, University College London, London, United Kingdom
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Knauf
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Huang Y, Zhu W, Zhou J, Huang Q, Zeng G. Navigating the Evolving Landscape of Primary Hyperoxaluria: Traditional Management Defied by the Rise of Novel Molecular Drugs. Biomolecules 2024; 14:511. [PMID: 38785918 PMCID: PMC11117870 DOI: 10.3390/biom14050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Primary hyperoxalurias (PHs) are inherited metabolic disorders marked by enzymatic cascade disruption, leading to excessive oxalate production that is subsequently excreted in the urine. Calcium oxalate deposition in the renal tubules and interstitium triggers renal injury, precipitating systemic oxalate build-up and subsequent secondary organ impairment. Recent explorations of novel therapeutic strategies have challenged and necessitated the reassessment of established management frameworks. The execution of diverse clinical trials across various medication classes has provided new insights and knowledge. With the evolution of PH treatments reaching a new milestone, prompt and accurate diagnosis is increasingly critical. Developing early, effective management and treatment plans is essential to improve the long-term quality of life for PH patients.
Collapse
Affiliation(s)
- Yueqi Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
| | - Wei Zhu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China;
| | - Jia Zhou
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
| | - Qiulin Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
| | - Guohua Zeng
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China;
| |
Collapse
|
5
|
Büscher R, Pape L, Büscher AK. Bone health in children with primary hyperoxaluria type 1 following liver and kidney transplantation. Front Pediatr 2024; 12:1353880. [PMID: 38455394 PMCID: PMC10917879 DOI: 10.3389/fped.2024.1353880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Background Primary hyperoxaluria type 1 is characterized by hepatic oxalate overproduction, leading to nephrocalcinosis, kidney stones, kidney failure and systemic oxalosis, including oxalate osteopathy. Combined liver-kidney transplantation (CLKT) and kidney after liver transplantation (KALT) were established therapeutic options to stop the devastating consequences of oxalate bone disease. Methods We describe a retrospective cohort of 10 children with PH1who were referred to our hospital from different countries for combined transplantation. Demographic and clinical data were collected and symptoms of bone disease, conventional radiological examinations, plasma oxalate levels and other determinants of calcium-phosphate metabolism were compared pre and post transplantation. Results Ten patients (7 male, median age 5.8 years, median follow-up time 8.1 years) were included in this study. Seven patients were diagnosed with infantile oxalosis and 9 patients received an intensified dialysis regime prior to transplantation. In one patient the transplanted kidney never achieved primary function and the boy remained on HD. All other patients remained without graft failure and retained stable kidney and liver function. Prior to transplantation, seven patients suffered from severe skeletal pain and three children presented with 1-3 series of pathological fractures. Pathological fractures did no longer occur in children who underwent successful CLKT or KALT. Plasma oxalate levels dropped within 6 months following Tx. Determinants of calcium-phosphorus metabolism did not differ significantly in comparison to other HD children. Seven of ten children showed a restricted growth at the time of transplantation and presented a moderate catch-up-growth at the time of last follow-up. Conclusions Patients with PH1 suffer from severe consequences of a disturbed bone metabolism. However, bone health and growth can partially improve following CLKT/KALT.
Collapse
Affiliation(s)
- Rainer Büscher
- Department of Pediatrics II, Pediatric Nephrology, University Hospital Essen, Essen, Germany
| | | | | |
Collapse
|
6
|
Ferraro PM, D'Ambrosio V, Gambaro G, Giachino D, Groothoff J, Mandrile G. A clinical screening algorithm for primary hyperoxaluria type 1 in adults on dialysis. Nephrol Dial Transplant 2024; 39:367-370. [PMID: 37708050 PMCID: PMC10828199 DOI: 10.1093/ndt/gfad184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
| | - Viola D'Ambrosio
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Daniela Giachino
- Medical Genetic Unit, San Luigi Gonzaga University Hospital, Torino, Italy
| | - Jaap Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Giorgia Mandrile
- Genetic Unit and Thalassemia Center, San Luigi Gonzaga University Hospital, Torino, Italy
| |
Collapse
|
7
|
George RP, Winterberg PD, Garro R. Multidisciplinary and multidimensional approaches to transplantation in children with rare genetic kidney diseases. Pediatr Transplant 2023; 27:e14567. [PMID: 37522570 DOI: 10.1111/petr.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 08/01/2023]
Abstract
In this review, we describe the multidisciplinary, multidimensional care required to optimize outcomes for pediatric transplant recipients with rare genetic kidney diseases. Transplant success, recipient survival, and improvement in quality of life depend on collaboration between patients, families, and a team of specialists with medical, as well as nonmedical expertise. A multidisciplinary transplant team composed of experts from medicine, surgery, nursing, nutrition, social services, transplant coordination, psychology, and pharmacology, is now standard in most transplant centers and is critical to the success of a transplant. In addition to these professionals, other specialists, such as cardiologists, urologists, geneticists, metabolic disease specialists, occupational therapists, case management, child life, chaplain, and palliative care services, have a crucial role to play in the preparation, surgery, and follow-up care, especially when a pediatric patient has a rare genetic disorder leading to renal involvement, and the need for transplantation. In order to describe this multidisciplinary care, we divide the genetic renal diseases into five subgroups-metabolic and tubular disorders, glomerular diseases, congenital anomalies of the kidney and urinary tract, ciliopathies including cystic diseases, and miscellaneous renal conditions; and describe for each, the need for care beyond that provided by the standard transplant team members.
Collapse
Affiliation(s)
- Roshan P George
- Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Pamela D Winterberg
- Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Rouba Garro
- Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Kashiv P, Dubey S, Sejpal KN, Malde S, Gurjar P, Pasari A, Balwani M. Young Male With End-Stage Renal Disease Due to Primary Hyperoxaluria Type 2: A Rare Presentation. Cureus 2023; 15:e46555. [PMID: 37933374 PMCID: PMC10625654 DOI: 10.7759/cureus.46555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023] Open
Abstract
Primary hyperoxaluria type 2 (PH2) is a rare genetic disorder characterized by excessive oxalate production due to glyoxylate metabolism alterations. This case report presents a 26-year-old male with PH2 who experienced recurrent nephrolithiasis since childhood, leading to end-stage renal disease (ESRD). The patient's history prompted genetic testing, which revealed a heterozygous missense variant in the GRHPR gene, confirming PH2. Early genetic diagnosis is crucial for preventing ESRD and planning effective treatments. Patients with PH2 require intensive hemodialysis and may benefit from kidney transplantation. However, even after transplantation, ongoing preventive measures are essential due to the risk of hyperoxaluria-related graft damage. This case highlights the importance of early detection and genetic testing in managing PH2 to delay ESRD and improve patient outcomes.
Collapse
Affiliation(s)
- Pranjal Kashiv
- Nephrology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Shubham Dubey
- Nephrology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Kapil N Sejpal
- Nephrology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sunny Malde
- Nephrology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Prasad Gurjar
- Nephrology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Amit Pasari
- Nephrology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Manish Balwani
- Nephrology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
9
|
Wannous H. Primary hyperoxaluria type 1 in children: clinical and laboratory manifestations and outcome. Pediatr Nephrol 2023; 38:2643-2648. [PMID: 36917293 DOI: 10.1007/s00467-023-05917-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Primary hyperoxaluria (PH) results from genetic mutations in different genes of glyoxylate metabolism, which cause significant increases in production of oxalate by the liver. This study aimed to report clinical and laboratory manifestations and outcome of PH type 1 in children in our center. METHODS A single-center observational cohort study was conducted at Children's University Hospital in Damascus, and included all patients admitted from 2018 to 2020, with a diagnosis of hyperoxaluria (urinary oxalate excretion > 45 mg/1.73 m2/day, or > 0.5 mmol/1.73 m2/day). PH type 1 (PH1) diagnosis was established by identification of biallelic pathogenic variants (compound heterozygous or homozygous mutations) in AGXT gene on molecular genetic testing. RESULTS The study included 100 patients with hyperoxaluria, with slight male dominance (57%), and median age 1.75 years (range, 1 month-14 years). Initial complaint was urolithiasis or nephrocalcinosis in 47%, kidney failure manifestations in 29%, and recurrent urinary tract infection in 24%. AGXT mutations were detected in 40 patients, and 72.5% of PH1 patients had kidney failure at presentation. Neither gender, age nor urinary oxalate excretion in 24 h had statistical significance in distinguishing PH1 from other forms of hyperoxaluria (P-Value > 0.05). Parental consanguinity, family history of kidney stones, bilateral nephrocalcinosis, presence of oxalate crystals in random urine sample, kidney failure and mortality were statistically significantly higher in PH1 (P-values < 0.05). Mortality was 32.5% among PH1 patients, with 4 PH1 patients (10%) on hemodialysis awaiting combined liver-kidney transplantation. CONCLUSION PH1 is still a grave disease with wide variety of clinical presentations which frequent results in delays in diagnosis, thus kidney failure is still a common presentation. In Syria, we face many challenges in diagnosis of PH, especially PH2 and PH3, and in management, with hopes that diagnosis tools and modern therapies will become available in our country. Graphical abstract A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Hala Wannous
- Faculty Member of Pediatric Nephrology in Faculty of Medicine, Damascus University, Damascus, Syria.
- Pediatric Nephrology, Hemodialysis, and Kidney Transplantation Department at Children's University Hospital, Damascus University, Damascus, Syria.
| |
Collapse
|
10
|
Mejia C, Tariq A, Alotaibi M, Lakhani L, Greenspan W, Naqvi F, Alasfar S, Brennan DC. Prospective Assessment of the Prevalence of Enter Hyperoxalosis in Kidney Transplant Candidates. Transplant Direct 2023; 9:e1464. [PMID: 37009166 PMCID: PMC10065837 DOI: 10.1097/txd.0000000000001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 04/01/2023] Open
Abstract
Enteric hyperoxalosis (EH) is an emerging cause of kidney transplantation (KT) dysfunction. We sought to determine the prevalence of EH and factors that affect plasma oxalate (POx) among at-risk KT candidates. Methods We prospectively measured POx among KT candidates evaluated at our center from 2017 to 2020 with risk factors for EH namely bariatric surgery, inflammatory bowel disease, or cystic fibrosis. EH was defined by a POx ≥10 μmol/L. Period-prevalence of EH was calculated. We compared mean POx across 5 factors: underlying condition, chronic kidney disease (CKD) stage, dialysis modality, phosphate binder type, and body mass index. Results Of 40 KT candidates screened, 23 had EH for a 4-y period prevalence of 58%. Mean POx was 21.6 ± 23.5 μmol/L ranging from 0 to 109.6 μmol/L. 40% of screened had POx >20 μmol/L. Sleeve gastrectomy was the most common underlying condition associated with EH. Mean POx did not differ by underlying condition (P = 0.27), CKD stage (P = 0.17), dialysis modality (P = 0.68), phosphate binder (P = 0.58), and body mass index (P = 0.56). Conclusions Bariatric surgery and inflammatory bowel disease were associated with a high prevalence of EH among KT candidates. Contrary to prior studies, sleeve gastrectomy was also associated with hyperoxalosis in advanced CKD. POx concentrations observed in EH reached levels associated with tissue and potentially allograft deposition. Concentrations can be as high as that seen in primary hyperoxaluria. More studies are needed to assess if POx is indeed a modifiable factor affecting allograft function in patients with EH.
Collapse
|
11
|
Groothoff JW, Metry E, Deesker L, Garrelfs S, Acquaviva C, Almardini R, Beck BB, Boyer O, Cerkauskiene R, Ferraro PM, Groen LA, Gupta A, Knebelmann B, Mandrile G, Moochhala SS, Prytula A, Putnik J, Rumsby G, Soliman NA, Somani B, Bacchetta J. Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope. Nat Rev Nephrol 2023; 19:194-211. [PMID: 36604599 DOI: 10.1038/s41581-022-00661-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/06/2023]
Abstract
Primary hyperoxaluria (PH) is an inherited disorder that results from the overproduction of endogenous oxalate, leading to recurrent kidney stones, nephrocalcinosis and eventually kidney failure; the subsequent storage of oxalate can cause life-threatening systemic disease. Diagnosis of PH is often delayed or missed owing to its rarity, variable clinical expression and other diagnostic challenges. Management of patients with PH and kidney failure is also extremely challenging. However, in the past few years, several new developments, including new outcome data from patients with infantile oxalosis, from transplanted patients with type 1 PH (PH1) and from patients with the rarer PH types 2 and 3, have emerged. In addition, two promising therapies based on RNA interference have been introduced. These developments warrant an update of existing guidelines on PH, based on new evidence and on a broad consensus. In response to this need, a consensus development core group, comprising (paediatric) nephrologists, (paediatric) urologists, biochemists and geneticists from OxalEurope and the European Rare Kidney Disease Reference Network (ERKNet), formulated and graded statements relating to the management of PH on the basis of existing evidence. Consensus was reached following review of the recommendations by representatives of OxalEurope, ESPN, ERKNet and ERA, resulting in 48 practical statements relating to the diagnosis and management of PH, including consideration of conventional therapy (conservative therapy, dialysis and transplantation), new therapies and recommendations for patient follow-up.
Collapse
Affiliation(s)
- Jaap W Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ella Metry
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Deesker
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander Garrelfs
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cecile Acquaviva
- Service de Biochimie et Biologie Moléculaire, UM Pathologies Héréditaires du Métabolisme et du Globule Rouge, Hospices Civils de Lyon, Lyon, France
| | - Reham Almardini
- Department of Pediatric Nephrology, Princes Rahma Children Teaching Hospital, Applied Balqa University, Medical School, Amman, Jordan
| | - Bodo B Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, and Center for Rare and Hereditary Kidney Disease, Cologne, University Hospital of Cologne, Cologne, Germany
| | - Olivia Boyer
- Néphrologie Pédiatrique, Centre de Référence MARHEA, Institut Imagine, Université Paris Cité, Hôpital Necker - Enfants Malades, Paris, France
| | - Rimante Cerkauskiene
- Clinic of Paediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Pietro Manuel Ferraro
- Chronic Kidney Disease Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luitzen A Groen
- Department of Pediatric Urology, Amsterdam UMC University of Amsterdam, Amsterdam, The Netherlands
| | - Asheeta Gupta
- Department of Nephrology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Bertrand Knebelmann
- Faculté de Santé, UFR de Médecine, AP-HP Centre-Universite de Paris, Departement Néphrologie, Dialyse, Transplantation Adultes, Paris, France
| | - Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, Orbassano, Italy
| | | | - Agnieszka Prytula
- Department of Paediatric Nephrology and Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Jovana Putnik
- Department of Pediatric Nephrology, Mother and Child Health Care Institute of Serbia "Dr Vukan Čupić", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Gill Rumsby
- Kintbury, UK, formerly Department of Clinical Biochemistry, University College London Hospitals NHS Foundation Trust, London, UK
| | - Neveen A Soliman
- Center of Pediatric Nephrology & Transplantation, Kasr Al Ainy Medical School, Cairo University, Cairo, Egypt
| | - Bhaskar Somani
- Department of Urology, University Hospital Southampton NHS Trust, Southampton, UK
| | - Justine Bacchetta
- Reference Center for Rare Renal Diseases, Pediatric Nephrology-Rheumatology-Dermatology Unit, Femme Mere Enfant Hospital, Hospices Civils de Lyon, INSERM 1033 Unit, Lyon 1 University, Bron, France
| |
Collapse
|
12
|
Ghannoum M, Gosselin S, Hoffman RS, Lavergne V, Mégarbane B, Hassanian-Moghaddam H, Rif M, Kallab S, Bird S, Wood DM, Roberts DM, for the EXTRIP Workgroup AlhataliBadriaAnseeuwKurtBerlingIngridBouchardJoséeBunchmanTimothy E.CalelloDiane P.ChinPaul K.DoiKentGalvaoTaisGoldfarbDavid S.HoegbergLotte C. G.KebedeSofiaKielsteinJan T.LewingtonAndrewLiYiMacedoEtienne M.MacLarenRobMowryJames B.NolinThomas D.OstermannMarliesPengAiRoyJean-PhilippeShepherdGreeneVijayanAnithaWalshSteven J.WongAnselmYatesChristopher, Anseeuw K, Berling I, Bouchard J, Bunchman TE, Calello DP, Chin PK, Doi K, Galvao T, Goldfarb DS, Hoegberg LCG, Kebede S, Kielstein JT, Lewington A, Li Y, Macedo EM, MacLaren R, Mowry JB, Nolin TD, Ostermann M, Peng A, Roy JP, Shepherd G, Vijayan A, Walsh SJ, Wong A, Yates C, for the EXTRIP Workgroup. Extracorporeal treatment for ethylene glycol poisoning: systematic review and recommendations from the EXTRIP workgroup. Crit Care 2023; 27:56. [PMID: 36765419 PMCID: PMC9921105 DOI: 10.1186/s13054-022-04227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/18/2022] [Indexed: 02/12/2023] Open
Abstract
Ethylene glycol (EG) is metabolized into glycolate and oxalate and may cause metabolic acidemia, neurotoxicity, acute kidney injury (AKI), and death. Historically, treatment of EG toxicity included supportive care, correction of acid-base disturbances and antidotes (ethanol or fomepizole), and extracorporeal treatments (ECTRs), such as hemodialysis. With the wider availability of fomepizole, the indications for ECTRs in EG poisoning are debated. We conducted systematic reviews of the literature following published EXTRIP methods to determine the utility of ECTRs in the management of EG toxicity. The quality of the evidence and the strength of recommendations, either strong ("we recommend") or weak/conditional ("we suggest"), were graded according to the GRADE approach. A total of 226 articles met inclusion criteria. EG was assessed as dialyzable by intermittent hemodialysis (level of evidence = B) as was glycolate (Level of evidence = C). Clinical data were available for analysis on 446 patients, in whom overall mortality was 18.7%. In the subgroup of patients with a glycolate concentration ≤ 12 mmol/L (or anion gap ≤ 28 mmol/L), mortality was 3.6%; in this subgroup, outcomes in patients receiving ECTR were not better than in those who did not receive ECTR. The EXTRIP workgroup made the following recommendations for the use of ECTR in addition to supportive care over supportive care alone in the management of EG poisoning (very low quality of evidence for all recommendations): i) Suggest ECTR if fomepizole is used and EG concentration > 50 mmol/L OR osmol gap > 50; or ii) Recommend ECTR if ethanol is used and EG concentration > 50 mmol/L OR osmol gap > 50; or iii) Recommend ECTR if glycolate concentration is > 12 mmol/L or anion gap > 27 mmol/L; or iv) Suggest ECTR if glycolate concentration 8-12 mmol/L or anion gap 23-27 mmol/L; or v) Recommend ECTR if there are severe clinical features (coma, seizures, or AKI). In most settings, the workgroup recommends using intermittent hemodialysis over other ECTRs. If intermittent hemodialysis is not available, CKRT is recommended over other types of ECTR. Cessation of ECTR is recommended once the anion gap is < 18 mmol/L or suggested if EG concentration is < 4 mmol/L. The dosage of antidotes (fomepizole or ethanol) needs to be adjusted during ECTR.
Collapse
Affiliation(s)
- Marc Ghannoum
- grid.14848.310000 0001 2292 3357Research Center, CIUSSS du Nord-de-l’île-de-Montréal, University of Montreal, Montreal, QC Canada ,grid.137628.90000 0004 1936 8753Nephrology Division, NYU Langone Health, NYU Grossman School of Medicine, New York, NY USA ,grid.5477.10000000120346234Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sophie Gosselin
- grid.420748.d0000 0000 8994 4657Centre Intégré de Santé et de Services Sociaux (CISSS) de la Montérégie-Centre Emergency Department, Hôpital Charles-Lemoyne, Greenfield Park, QC Canada ,grid.86715.3d0000 0000 9064 6198Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada ,Centre Antipoison du Québec, Quebec, QC Canada
| | - Robert S. Hoffman
- grid.137628.90000 0004 1936 8753Division of Medical Toxicology, Ronald O. Perelman Department of Emergency Medicine, NYU Grossman School of Medicine, New York, NY USA
| | - Valery Lavergne
- grid.14848.310000 0001 2292 3357Research Center, CIUSSS du Nord-de-l’île-de-Montréal, University of Montreal, Montreal, QC Canada
| | - Bruno Mégarbane
- grid.411296.90000 0000 9725 279XDepartment of Medical and Toxicological Critical Care, Lariboisière Hospital, INSERM UMRS-1144, Paris Cité University, Paris, France
| | - Hossein Hassanian-Moghaddam
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Clinical Toxicology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Siba Kallab
- grid.411323.60000 0001 2324 5973Department of Internal Medicine-Division of Nephrology, Lebanese American University - School of Medicine, Byblos, Lebanon
| | - Steven Bird
- Department of Emergency Medicine, U Mass Memorial Health, U Mass Chan Medical School, Worcester, MA USA
| | - David M. Wood
- grid.13097.3c0000 0001 2322 6764Clinical Toxicology, Guy’s and St Thomas’ NHS Foundation Trust and King’s Health Partners, and Clinical Toxicology, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Darren M. Roberts
- grid.430417.50000 0004 0640 6474New South Wales Poisons Information Centre, Sydney Children’s Hospitals Network, Westmead, NSW Australia ,grid.413249.90000 0004 0385 0051Drug Health Services, Royal Prince Alfred Hospital, Sydney, NSW Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Aziz F, Jorgenson M, Garg N. Secondary oxalate nephropathy and kidney transplantation. Curr Opin Organ Transplant 2023; 28:15-21. [PMID: 36342385 DOI: 10.1097/mot.0000000000001035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Secondary hyperoxaluria is associated with poor kidney allograft outcomes after the kidney transplant. Calcium oxalate (CaOx) deposition is common in early allograft biopsies leading to acute tubular necrosis and poor kidney allograft function. Though treatment options for secondary hyperoxaluria are limited, it is crucial to identify patients at increased risk of oxalate nephropathy after the transplant. RECENT FINDINGS Recent data suggest that significant changes in renal replacement therapies and dietary modifications in high-risk patients can prevent kidney allograft damage from the calcium oxalate deposition leading to improve allograft outcomes. SUMMARY The accurate and timely diagnosis of secondary oxalate nephropathy in kidney transplant recipients is paramount to preserving graft function in the long-term. This review will discuss the incidence, risk factors, prevention, and management of oxalate nephropathy in the kidney allograft.
Collapse
Affiliation(s)
- Fahad Aziz
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health
| | - Margaret Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, USA
| | - Neetika Garg
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health
| |
Collapse
|
14
|
Merchant AA, Attieh RM. ESKD in a Young Patient with Chronic Bilateral Flank Pain. KIDNEY360 2022; 3:1817-1818. [PMID: 36514735 PMCID: PMC9717673 DOI: 10.34067/kid.0002902022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Asad A Merchant
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| | | |
Collapse
|
15
|
Chronic liver disease and hepatic calcium-oxalate deposition in patients with primary hyperoxaluria type I. Sci Rep 2022; 12:16725. [PMID: 36202824 PMCID: PMC9537520 DOI: 10.1038/s41598-022-19584-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with primary hyperoxaluria type I (PH I) are prone to develop early kidney failure. Systemic deposition of calcium-oxalate (CaOx) crystals starts, when renal function declines and plasma oxalate increases. All tissue, but especially bone, heart and eyes are affected. However, liver involvement, as CaOx deposition or chronic hepatitis/fibrosis has never been reported. We examined liver specimen from 19 PH I patients (aged 1.5 to 52 years at sample collection), obtained by diagnostic biopsy (1), at autopsy (1), or transplantation (17). With polarization microscopy, birefringent CaOx crystals located in small arteries, but not within hepatocytes were found in 3/19 patients. Cirrhosis was seen in one, fibrosis in 10/19 patients, with porto-portal and nodular fibrosis (n = 1), with limitation to the portal field in 8 and/or to central areas in 5 patients. Unspecific hepatitis features were observed in 7 patients. Fiber proliferations were detectable in 10 cases and in one sample transformed Ito-cells (myofibroblasts) were found. Iron deposition, but also megakaryocytes as sign of extramedullary erythropoiesis were found in 9, or 3 patients, respectively. Overall, liver involvement in patients with PH I was more pronounced, as previously described. However, CaOx deposition was negligible in liver, although the oxalate concentration there must be highest.
Collapse
|
16
|
Deesker LJ, Garrelfs SF, Mandrile G, Oosterveld MJ, Cochat P, Deschênes G, Harambat J, Hulton SA, Gupta A, Hoppe B, Beck BB, Collard L, Topaloglu R, Prikhodina L, Salido E, Neuhaus T, Groothoff JW, Bacchetta J. Improved Outcome of Infantile Oxalosis Over Time in Europe: Data From the OxalEurope Registry. Kidney Int Rep 2022; 7:1608-1618. [PMID: 35812297 PMCID: PMC9263236 DOI: 10.1016/j.ekir.2022.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Infantile oxalosis is the most severe form of primary hyperoxaluria type 1 (PH1), with onset of end-stage kidney disease (ESKD) during infancy. We aimed to analyze the outcome of these patients as our current understanding is limited owing to a paucity of reports. METHODS A retrospective registry study was conducted using data from the OxalEurope registry. All PH1 patients with ESKD onset at age <1 year were analyzed. RESULTS We identified 95 patients born between 1980 and 2018 with infantile oxalosis. Median (interquartile range [IQR]) age at ESKD was 0.4 (0.3-0.5) year. There were 4 patients diagnosed by family screening who developed ESKD despite early diagnosis. There were 11 patients who had biallelic missense mutations associated with vitamin B6 responsiveness. Of 89 patients, 27 (30%) died at a median age of 1.4 (0.6-2.0) years (5-year patient survival of 69%). Systemic oxalosis was described in 54 of 56 screened patients (96%). First transplantation was performed at a median age of 1.7 (1.3-2.9) years. In 42 cases, this procedure was a combined liver-kidney transplantation (LKTx), and in 23 cases, liver transplantations (LTx) was part of a sequential procedure. Survival rates of both strategies were similar. Patient survival was significantly higher in patients born after 2000. Intrafamilial phenotypic variability was present in 14 families of patients with infantile oxalosis. CONCLUSION Nearly all screened patients with infantile oxalosis developed systemic disease. Mortality is still high but has significantly improved over time and might further improve under new therapies. The intrafamilial phenotypic variability warrants further investigation.
Collapse
Affiliation(s)
- Lisa J. Deesker
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Correspondence: Lisa J. Deesker, Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Sander F. Garrelfs
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Giorgia Mandrile
- Medical Genetics Unit, San Luigi University Hospital, University of Torino, Orbassano (TO), Italy
- Thalassemia Center, San Luigi University Hospital, University of Torino, Orbassano (TO), Italy
| | - Michiel J.S. Oosterveld
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre Cochat
- Department of Pediatric Nephrology, Hospices Civils de Lyon and University de Lyon, Lyon, France
| | - Georges Deschênes
- Department of Pediatric Nephrology, Paris University Hospital Robert Debré, Paris, France
| | - Jérôme Harambat
- Department of Pediatrics, Pediatric Nephrology Unit, Bordeaux University Hospital, Bordeaux, France
| | - Sally-Anne Hulton
- Department of Nephrology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Asheeta Gupta
- Department of Nephrology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Bernd Hoppe
- Department of Pediatric Nephrology, Children’s Hospital of the University of Bonn, Bonn, Germany
| | - Bodo B. Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
- Center for Rare and hereditary Kidney Disease, Cologne, University Hospital of Cologne, Cologne, Germany
| | - Laure Collard
- Pediatric Nephrology unit, Department of Pediatrics, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Larisa Prikhodina
- Department of Inherited and Acquired Kidney Diseases, Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Eduardo Salido
- Department of Pathology, Centre for Biomedical Research on Rare Diseases, Hospital Universitario Canarias, Universidad La Laguna, Tenerife, Spain
| | - Thomas Neuhaus
- Department of Pediatrics, Children's Hospital Lucerne, Lucerne, Switzerland
| | - Jaap W. Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Justine Bacchetta
- Department of Pediatric Nephrology, Hospices Civils de Lyon and University de Lyon, Lyon, France
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Primary hyperoxaluria type 1 (PH1) is a rare genetic disorder that causes hepatic overproduction of oxalate and, often, nephrocalcinosis, nephrolithiasis, chronic kidney disease, and kidney failure. The purpose of the review is to provide an update on current emerging therapies for the treatment of PH1. RECENT FINDINGS Use of ribonucleic acid interference (RNAi) therapeutics that target the liver to block production of key enzymes along pathways that generate oxalate is a promising approach. Available evidence supports the efficacy of both Lumasiran (targeting glycolate oxidase) and Nedosiran (targeting hepatic lactate dehydrogenase (LDHa)) to reduce urinary oxalate excretion in PH1. The efficacy of alternative approaches including stiripentol (an anticonvulsant drug that also targets LDHa), lanthanum (a potential gastrointestinal oxalate binder), and Oxalobacter formigenes (a bacterium that can degrade oxalate within the gastrointestinal tract and may also increase its secretion from blood) are all also under study. Genetic editing tools including clustered regularly interspaced short palindromic repeats/Cas9 are also in preclinical study as a potential PH1 therapeutic. SUMMARY Novel treatments can reduce the plasma oxalate concentration and urinary oxalate excretion in PH1 patients. Thus, it is possible these approaches will reduce the need for combined kidney and liver transplantation to significantly decrease the morbidity and mortality of affected patients.
Collapse
Affiliation(s)
| | - John C Lieske
- Division of Nephrology and Hypertension
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Abstract
The primary hyperoxalurias are three rare inborn errors of the glyoxylate metabolism in the liver, which lead to massively increased endogenous oxalate production, thus elevating urinary oxalate excretion and, based on that, recurrent urolithiasis and/or progressive nephrocalcinosis. Frequently, especially in type 1 primary hyperoxaluria, early end-stage renal failure occurs. Treatment possibilities are scare, namely, hyperhydration and alkaline citrate medication. In type 1 primary hyperoxaluria, vitamin B6, though, is helpful in patients with specific missense or mistargeting mutations. In those vitamin B6 responsive, urinary oxalate excretion and concomitantly urinary glycolate is significantly decreased, or even normalized. In patients non-responsive to vitamin B6, RNA interference medication is now available. Lumasiran® is already available on prescription and targets the messenger RNA of glycolate oxidase, thus blocking the conversion of glycolate into glyoxylate, hence decreasing oxalate, but increasing glycolate production. Nedosiran blocks liver-specific lactate dehydrogenase A and thus the final step of oxalate production. Similar to vitamin B6 treatment, where both RNA interference urinary oxalate excretion can be (near) normalized and plasma oxalate decreases, however, urinary and plasma glycolate increases with lumasiran treatment. Future treatment possibilities are on the horizon, for example, substrate reduction therapy with small molecules or gene editing, induced pluripotent stem cell-derived autologous hepatocyte-like cell transplantation, or gene therapy with newly developed vector technologies. This review provides an overview of current and especially new and future treatment options.
Collapse
Affiliation(s)
| | - Cristina Martin-Higueras
- German Hyperoxaluria Center, Bonn, Germany.
- Institute of Biomedical Technologies, CIBERER, Campus de Ofra s/n 38200, University of La Laguna, Tenerife, Spain.
| |
Collapse
|
19
|
D’Ambrosio V, Ferraro PM. Lumasiran in the Management of Patients with Primary Hyperoxaluria Type 1: From Bench to Bedside. Int J Nephrol Renovasc Dis 2022; 15:197-206. [PMID: 35747094 PMCID: PMC9211742 DOI: 10.2147/ijnrd.s293682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Primary hyperoxaluria (PH) is a rare genetic disease caused by excessive hepatic production and elevated urinary excretion of oxalate that leads to recurrent nephrolithiasis, nephrocalcinosis and, eventually, kidney failure. As glomerular filtration rate declines, oxalate accumulates leading to systemic oxalosis, a debilitating condition with high morbidity and mortality. Although PH is usually diagnosed during infancy, it can present at any age with different phenotypes, ranging from mild symptoms to extremely debilitating manifestations. PH is an autosomal recessive disorder and, to date, three types have been identified: PH1, PH2 and PH3. PH1 is the most common and most aggressive type, accounting for almost 80% of primary hyperoxaluria diagnoses. Until 2020, general treatment for PH1 consisted mainly in high fluid intake, urine alkalization, surgical management of recurrent nephrolithiasis and eventually, if and when kidney failure occurred, intensive dialysis regimens and transplantation strategies (simultaneous or sequential liver-kidney transplant or isolated liver/kidney transplant in carefully selected patients). Specific treatment did and still consists in administration of pyridoxine hydrochloride, although it is only effective in a subset of PH1 patients. Lumasiran, a novel biological drug based on mRNA interference that has been recently approved in the US and European Union, showed promising results and is set to be a turning point in the management of PH1. This literature review aims to summarize the available evidence on PH1 treatment with lumasiran, in order to provide both pediatric and adult nephrologists and clinicians with the knowledge for the identification and management of PH1 patients suitable for treatment.
Collapse
Affiliation(s)
- Viola D’Ambrosio
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, U.O.C. Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Pietro Manuel Ferraro
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, U.O.C. Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
20
|
Gupta A, Somers MJG, Baum MA. Treatment of primary hyperoxaluria type 1. Clin Kidney J 2022; 15:i9-i13. [PMID: 35592620 PMCID: PMC9113429 DOI: 10.1093/ckj/sfab232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Supportive treatment for primary hyperoxaluria type 1 (PH1) focuses on high fluid intake and crystallization inhibitors. A subset of patients with specific PH1 genotypes (c.508G>A and c.454T>A) will respond to pyridoxine, defined as a >30% reduction in urinary oxalate excretion. Response to pyridoxine is variable and in some patients, urinary oxalate may normalize. The first focused treatment for PH1 using an RNA interference agent to reduce urinary oxalate was approved in 2020, and such therapies may significantly alter treatment approaches and long-term outcomes in PH1. Currently PH1 often presents with kidney function impairment and frequently results in end-stage kidney disease (ESKD). With kidney dysfunction, urinary oxalate clearance decreases and multisystem deposition of oxalate (oxalosis) occurs, commonly in bones, eyes, heart and skin. Once plasma oxalate levels exceed 30 µmol/L, aggressive haemodialysis is indicated to prevent oxalosis, even if the glomerular filtration rate (GFR) remains better than for typical dialysis initiation. Peritoneal dialysis alone does not achieve the needed oxalate clearance. Dialysis is a bridge to future transplantation. Liver transplantation restores hepatic alanine-glyoxylate transaminase enzyme activity, allowing glyoxylate detoxification and preventing further oxalosis. The native liver must be removed as part of this process to avoid ongoing pathologic oxalate production. The timing and type of liver transplantation are dependent on pyridoxine sensitivity, age, weight, residual GFR and evidence of systemic oxalate deposition in extrarenal organs. Liver transplant can be isolated or combined with kidney transplantation in a sequential or simultaneous fashion. Isolated kidney transplantation is generally reserved for pyridoxine-sensitive patients only. Although liver transplantation is curative for PH1 and kidney transplantation treats ESKD, ensuing necessary immunosuppression and potential allograft dysfunction impart significant long-term risks.
Collapse
Affiliation(s)
- Asheeta Gupta
- Consultant Paediatric Nephrologist, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Michael J G Somers
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle A Baum
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Ben-Shalom E, Garrelfs SF, Groothoff JW. Primary hyperoxaluria: the pediatric nephrologist's point of view. Clin Kidney J 2022; 15:i23-i28. [PMID: 35592624 PMCID: PMC9113416 DOI: 10.1093/ckj/sfab231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/14/2022] Open
Abstract
The clinical presentation of primary hyperoxaluria in children ranges from mildly symptomatic nephrocalcinosis to very early onset end-stage kidney failure with systemic oxalosis, a devastating complication. We review the various manifestations of pediatric hyperoxaluria, treatment options for children with preserved kidney function and appropriate dialysis regimens. Liver or combined liver/kidney transplantation is currently the only definitive treatment for primary hyperoxaluria type 1, but novel RNA interference treatments offer hope for the future. Finally, we address the medical and ethical dilemmas facing pediatricians treating children with hyperoxaluria.
Collapse
Affiliation(s)
- Efrat Ben-Shalom
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Sander F Garrelfs
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jaap W Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Cornell LD, Amer H, Viehman JK, Mehta RA, Lieske JC, Lorenz EC, Heimbach JK, Stegall MD, Milliner DS. Posttransplant recurrence of calcium oxalate crystals in patients with primary hyperoxaluria: Incidence, risk factors, and effect on renal allograft function. Am J Transplant 2022; 22:85-95. [PMID: 34174139 PMCID: PMC8710184 DOI: 10.1111/ajt.16732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 01/25/2023]
Abstract
Primary hyperoxaluria (PH) is a metabolic defect that results in oxalate overproduction by the liver and leads to kidney failure due to oxalate nephropathy. As oxalate tissue stores are mobilized after transplantation, the transplanted kidney is at risk of recurrent disease. We evaluated surveillance kidney transplant biopsies for recurrent calcium oxalate (CaOx) deposits in 37 kidney transplants (29 simultaneous kidney and liver [K/L] transplants and eight kidney alone [K]) in 36 PH patients and 62 comparison transplants. Median follow-up posttransplant was 9.2 years (IQR: [5.3, 15.1]). The recurrence of CaOx crystals in surveillance biopsies in PH at any time posttransplant was 46% overall (41% in K/L, 62% in K). Higher CaOx crystal index (which accounted for biopsy sample size) was associated with higher plasma and urine oxalate following transplant (p < .01 and p < .02, respectively). There was a trend toward higher graft failure among PH patients with CaOx crystals on surveillance biopsies compared with those without (HR 4.43 [0.88, 22.35], p = .07). CaOx crystal deposition is frequent in kidney transplants in PH patients. The avoidance of high plasma oxalate and reduction of CaOx crystallization may decrease the risk of recurrent oxalate nephropathy following kidney transplantation in patients with PH. This study was approved by the IRB at Mayo Clinic.
Collapse
Affiliation(s)
- Lynn D. Cornell
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905
| | - Hatem Amer
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Jason K. Viehman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota 55905
| | - Ramila A. Mehta
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota 55905
| | - John C. Lieske
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Elizabeth C. Lorenz
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Julie K. Heimbach
- Division of Transplant Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota 55905
| | - Mark D. Stegall
- Division of Transplant Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota 55905
| | - Dawn S. Milliner
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | | |
Collapse
|
23
|
Shee K, Stoller ML. Perspectives in primary hyperoxaluria - historical, current and future clinical interventions. Nat Rev Urol 2021; 19:137-146. [PMID: 34880452 PMCID: PMC8652378 DOI: 10.1038/s41585-021-00543-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
Primary hyperoxalurias are a devastating family of diseases leading to multisystem oxalate deposition, nephrolithiasis, nephrocalcinosis and end-stage renal disease. Traditional treatment paradigms are limited to conservative management, dialysis and combined transplantation of the kidney and liver, of which the liver is the primary source of oxalate production. However, transplantation is associated with many potential complications, including operative risks, graft rejection, post-transplant organ failure, as well as lifelong immunosuppressive medications and their adverse effects. New therapeutics being developed for primary hyperoxalurias take advantage of biochemical knowledge about oxalate synthesis and metabolism, and seek to specifically target these pathways with the goal of decreasing the accumulation and deposition of oxalate in the body. Primary hyperoxalurias are a devastating family of diseases that eventually lead to end-stage renal disease. In this Review, Shee and Stoller discuss current treatment paradigms for primary hyperoxalurias, new therapeutics and their mechanisms of action, and future directions for novel research in the field.
Primary hyperoxalurias (PHs) are a devastating family of rare, autosomal-recessive genetic disorders that lead to multisystem oxalate deposition, nephrolithiasis, nephrocalcinosis and end-stage renal disease. Traditional treatment paradigms are limited to conservative management, dialysis and inevitably transplantation of the kidney and liver, which is associated with high morbidity and the need for lifelong immunosuppression. New therapeutics being developed for PHs take advantage of biochemical knowledge about oxalate synthesis and metabolism to specifically target these pathways, with the goal of decreasing the accumulation and deposition of plasma oxalate in the body. New therapeutics can be divided into classes, and include substrate reduction therapy, intestinal oxalate degradation, chaperone therapy, enzyme restoration therapy and targeting of the inflammasome. Lumasiran, a mRNA therapeutic targeting glycolate oxidase, was the first primary hyperoxaluria-specific therapeutic approved by the European Medicines Agency and the FDA in 2020. Future work includes further clinical trials for promising therapeutics in the pipeline, identification of biomarkers of response to PH-directed therapy, optimization of drug development and delivery of new therapeutics.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Urology, UCSF, San Francisco, CA, USA.
| | | |
Collapse
|
24
|
Cai Z, Ding M, Chen R, Zhu J, Li L, Wu X. Primary hyperoxaluria diagnosed after kidney transplantation: a case report and literature review. BMC Nephrol 2021; 22:393. [PMID: 34837989 PMCID: PMC8626922 DOI: 10.1186/s12882-021-02546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/29/2021] [Indexed: 12/02/2022] Open
Abstract
Background Primary hyperoxaluria (PH) is a rare inherited autosomal recessive disease caused by disturbed glyoxylate metabolism. The disease is characterized by calcium oxalate crystal deposition in various organs, especially in the kidney. Due to the lack of current understanding of PH, nearly all patients are only initially diagnosed with PH when recurrent lithiasis and progressive end-stage renal disease occur. Many cases are not diagnosed in patients until renal allograft insufficiency occurs after renal transplantation. This case report and literature review aim to emphasize the need for careful pre-transplant PH screening of patients with bilateral nephrocalcinosis or nephrolithiasis. Case presentation Renal allograft insufficiency was diagnosed as PH after kidney transplantation. Here, we detail the complete clinical course, including computed tomography images of the original kidney and renal graft, histopathological images of a biopsy of the transplanted kidney, the results of laboratory and molecular genetic tests, and the treatment. In addition, we reviewed the literature from 2000 to 2021 and analyzed 19 reported cases of PH diagnosed after kidney transplantation, and provide a summary of the characteristics, complications, treatment, and prognosis of these cases. Conclusions By reviewing and analyzing these cases, we concluded that patients with a history of nephrocalcinosis or nephrolithiasis in both kidneys need preoperative screening for PH and appropriate treatment before kidney transplantation. Delayed graft function caused by PH is easily misdiagnosed as acute rejection, and needle biopsy should be performed at an early stage. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02546-0.
Collapse
Affiliation(s)
- Zhitao Cai
- Center of Nephrology, Dialysis and Transplantation, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Mao Ding
- Center of Nephrology, Dialysis and Transplantation, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Rengui Chen
- Center of Nephrology, Dialysis and Transplantation, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Jiefu Zhu
- Center of Nephrology, Dialysis and Transplantation, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Lian Li
- Center of Nephrology, Dialysis and Transplantation, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Xiongfei Wu
- Center of Nephrology, Dialysis and Transplantation, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
25
|
Long-term complications of systemic oxalosis in children-a retrospective single-center cohort study. Pediatr Nephrol 2021; 36:3123-3132. [PMID: 33651179 DOI: 10.1007/s00467-021-05002-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Accepted: 02/11/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Systemic oxalosis is a severe complication seen in primary hyperoxaluria type I patients with kidney failure. Deposition of insoluble calcium oxalate crystals in multiple organs leads to significant morbidity and mortality. METHODS We describe a retrospective cohort of 11 patients with systemic oxalosis treated at our dialysis unit from 1982 to 1998 (group 1) and 2007-2019 (group 2). Clinical and demographic data were collected from medical records. Imaging studies were only available for patients in group 2 (n = 5). RESULTS Median age at dialysis initiation was 6.1 months (IQR 4-21.6), 64% were male. Dialysis modality was mostly peritoneal dialysis in group 1 and daily hemodialysis in group 2. Bone disease was the first manifestation of systemic oxalosis, starting with the appearance of sclerotic bands (mean 166 days, range 1-235), followed by pathological fractures in long bones (mean 200.4 days, range 173-235 days). Advanced disease was characterized by vertebral fractures with resulting kyphosis, worsening splenomegaly, and adynamic bone disease. Two patients developed pulmonary hypertension, 4 and 8 months prior to their death. Four of 11 patients developed hypothyroidism 0-60 months after dialysis initiation. Only one patient survived after a successful liver-kidney transplantation. Four patients died after liver or liver-kidney transplantation. CONCLUSIONS This is the first comprehensive description of the natural history of pediatric systemic oxalosis. We hope that our findings will provide basis for a quantitative severity score in future, larger studies.
Collapse
|
26
|
Shee K, Ahn J, Hamouche F, Mena J, Chi T, Stoller ML. Nedosiran Dramatically Reduces Serum Oxalate in Dialysis-Dependent Primary Hyperoxaluria 1: A Compassionate Use Case Report. Urology 2021; 156:e147-e149. [PMID: 33774044 DOI: 10.1016/j.urology.2021.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Primary hyperoxaluria 1 (PH1) is a devastating condition involving recurrent urolithiasis, early end-stage renal disease and multisystemic deposition of calcium oxalate crystals. Treatment options for PH1 are limited, inevitably requiring transplantation, usually combined kidney and liver transplant. Here we report successful compassionate use of Nedosiran, an RNA interference targeting lactate dehydrogenase, in an index patient. Monthly Nedosiran injections led to dramatically decreased plasma oxalate levels, decreased frequency of weekly hemodialysis sessions from 6 to 3, and deferral of combined kidney and liver transplant. Nedosiran represents a novel and impactful potential therapeutic for PH1 patients with end-stage renal disease.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Urology, UCSF, San Francisco, CA.
| | - Justin Ahn
- Department of Urology, UCSF, San Francisco, CA
| | | | - Jorge Mena
- Department of Urology, UCSF, San Francisco, CA
| | - Thomas Chi
- Department of Urology, UCSF, San Francisco, CA
| | | |
Collapse
|
27
|
Belostotsky R, Frishberg Y. Novel therapeutic approaches for the primary hyperoxalurias. Pediatr Nephrol 2021; 36:2593-2606. [PMID: 33156410 DOI: 10.1007/s00467-020-04817-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 08/04/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Loss-of-function mutations in three genes, involved in the metabolic pathway of glyoxylate, result in increased oxalate production and its crystallization in the form of calcium oxalate. This leads to three forms of primary hyperoxaluria-an early-onset inherited kidney disease with wide phenotypic variability ranging from isolated kidney stone events to stage 5 chronic kidney disease in infancy. This review provides a description of metabolic processes resulting in oxalate overproduction and summarizes basic therapeutic approaches. Unfortunately, current treatment of primary hyperoxaluria does not allow the prevention of loss of kidney function or to substantially diminish other symptoms in most patients. However, latest breakthroughs in biotechnology provide new promising directions for drug development. Some of them have already progressed to the level of clinical trials; others are just at the stage of proof of concept. Here we review the most advanced technologies including those that have been harnessed as possible therapeutic modalities.
Collapse
Affiliation(s)
- Ruth Belostotsky
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, 12 Bait Street, 9103102, Jerusalem, Israel
| | - Yaacov Frishberg
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, 12 Bait Street, 9103102, Jerusalem, Israel. .,Hebrew University School of Medicine, Jerusalem, Israel.
| |
Collapse
|
28
|
Pozdzik A, David C, Vekeman J, Tielens F, Daudon M. Lanthanum carbonate to control plasma and urinary oxalate level in type 1 primary hyperoxaluria? IJU Case Rep 2021; 4:235-238. [PMID: 34258537 PMCID: PMC8255283 DOI: 10.1002/iju5.12296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The therapy to reduce urinary oxalate excretion in primary hyperoxaluria type 1 is still required. CASE PRESENTATION A 37-year-old hemodialyzed man suffered from systemic oxalosis secondary to primary hyperoxaluria type 1 exhibited a drastic plasma oxalate decrease from 110 to 22 µmol/L two months after adjunction of lanthanum carbonate to classical treatment (intensive hemodialysis with pyridoxine). A 34-year-old woman with normal kidney function presented 10 years of bilateral kidney stones due to primary hyperoxaluria type 1 [hyperoxaluria (109.2 mg/24 h), plasma oxalate (56.0 µmol/L)]. The oxalate level remained uncontrolled despite of low oxalate-normal calcium diet, pyridoxine and increased water intake though the lanthanum carbonate adjunction resulted in significant decrease in plasma oxalate and oxaluria. CONCLUSION We report the lanthanum efficacy in reducing circulating and urinary oxalate levels in type 1 primary hyperoxaluria. Possible mechanism of observed falls in oxalate concentration would be a decrease in the intestinal absorption of oxalate.
Collapse
Affiliation(s)
- Agnieszka Pozdzik
- Department of Nephrology and DialysisKidney Stone ClinicCentre Hospitalier UniversitaireBrugmann HospitalBrusselsBelgium
- Faculty of MedicineUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Cristina David
- Department of Nephrology and DialysisKidney Stone ClinicCentre Hospitalier UniversitaireBrugmann HospitalBrusselsBelgium
| | - Jelle Vekeman
- General Chemistry (ALGC)Materials Modelling GroupVrije Universiteit BrusselsBrusselsBelgium
| | - Frederik Tielens
- General Chemistry (ALGC)Materials Modelling GroupVrije Universiteit BrusselsBrusselsBelgium
| | - Michel Daudon
- Service des explorations fonctionnelles multidisciplinairesTenon HospitalAP_HPParisFrance
- INSERM UMRS 1155Université Pierre et Marie Curie‐Paris VI‐Sorbonne UniversitésParisFrance
| |
Collapse
|
29
|
Forbes TA, Brown BD, Lai C. Therapeutic RNA interference: A novel approach to the treatment of primary hyperoxaluria. Br J Clin Pharmacol 2021; 88:2525-2538. [PMID: 34022071 PMCID: PMC9291495 DOI: 10.1111/bcp.14925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/19/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
RNA interference (RNAi) is a natural biological pathway that inhibits gene expression by targeted degradation or translational inhibition of cytoplasmic mRNA by the RNA induced silencing complex. RNAi has long been exploited in laboratory research to study the biological consequences of the reduced expression of a gene of interest. More recently RNAi has been demonstrated as a therapeutic avenue for rare metabolic diseases. This review presents an overview of the cellular RNAi machinery as well as therapeutic RNAi design and delivery. As a clinical example we present primary hyperoxaluria, an ultrarare inherited disease of increased hepatic oxalate production which leads to recurrent calcium oxalate kidney stones. In the most common form of the disease (Type 1), end‐stage kidney disease occurs in childhood or young adulthood, often necessitating combined kidney and liver transplantation. In this context we discuss nedosiran (Dicerna Pharmaceuticals, Inc.) and lumasiran (Alnylam Pharmaceuticals), which are both novel RNAi therapies for primary hyperoxaluria that selectively reduce hepatic expression of lactate dehydrogenase and glycolate oxidase respectively, reducing hepatic oxalate production and urinary oxalate levels. Finally, we consider future optimizations advances in RNAi therapies.
Collapse
Affiliation(s)
- Thomas A Forbes
- Royal Children's Hospital, Parkville, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia.,University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
30
|
Fadel FI, Kotb MA, Abdel Mawla MA, Hasanin RM, Salem AM, Fathallah MG, Amr KS, Ahmed HA, Salah DM. Primary hyperoxaluria type 1 in children: Clinical classification, renal replacement therapy, and outcome in a single centre experience. Ther Apher Dial 2021; 26:162-170. [PMID: 33945205 DOI: 10.1111/1744-9987.13666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare disease that is challenged by the overproduced oxalate and commonly presented with radiopaque renal stones or obstructive uropathy. This study aimed to report clinical presentations, renal replacement therapy (RRT), and outcome of PH1 in end stage kidney disease (ESKD) children. This is an observational cohort study. Data of 22 patients with ESKD due to PH1 were analyzed at Pediatric Nephrology Unit, Faculty of Medicine Cairo University. Infantile onset patients (n = 10) had worst renal outcome (80% with ESRD at presentation, p = 0.019) and worse patient outcome (mortality 40%, p = 0.016) than juvenile (n = 9) and late onset (PH1 n = 3) patients. RRT modalities include peritoneal dialysis (PD) in 7 (31.8%), hemodialysis (HD) in 11 (50%), and combined liver kidney transplantation (CLKT) in 4 (18.2%) patients. Infectious complications were encountered in 42.8% of PD patients. Better HD adequacy was observed with frequent HD (n = 6) and/or HD via arteriovenous fistula (AVF) than with infrequent dialysis (n = 5) and/or via central venous line (CVL) (p = 0.0001 and 0.0047, respectively). Morbidity and mortality (infection related) rates of the whole cohort were 63.6% and 31.8%, respectively. Clinical presentation of PH1 varies according to the age of onset (infantile onset being the most aggressive form). Aggressive HD (better through AVF) is needed to achieve acceptable HD adequacy, PD was challenged by infection. Infection found to be the main cause of mortality even after successful CLKT.
Collapse
Affiliation(s)
- Fatina I Fadel
- Department of Pediatrics & Pediatric Nephrology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Magd A Kotb
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Rasha M Hasanin
- Department of Pediatrics, National Research Center, Giza, Egypt
| | - Amr Mohamed Salem
- Department of Pediatrics & Pediatric Nephrology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Gamal Fathallah
- Department of Pediatrics & Pediatric Nephrology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Khalda Sayed Amr
- Department of Medical Molecular Genetics, National Research Center, Giza, Egypt
| | - Hoda Abdalla Ahmed
- Department of Medical Molecular Genetics, National Research Center, Giza, Egypt
| | - Doaa M Salah
- Department of Pediatrics & Pediatric Nephrology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
31
|
Sas DJ, Enders FT, Gunderson TM, Mehta RA, Olson JB, Seide BM, Banks CJ, Dehmel B, Pellikka PA, Lieske JC, Milliner DS. Natural History of Clinical, Laboratory, and Echocardiographic Parameters of a Primary Hyperoxaluria Cohort on Long Term Hemodialysis. Front Med (Lausanne) 2021; 8:592357. [PMID: 33898474 PMCID: PMC8062902 DOI: 10.3389/fmed.2021.592357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Primary hyperoxaluria type 1 (PH1) is a rare monogenic disorder characterized by excessive hepatic production of oxalate leading to recurrent nephrolithiasis, nephrocalcinosis, and progressive kidney damage, often requiring renal replacement therapy (RRT). Though systemic oxalate deposition is well-known, the natural history of PH1 during RRT has not been systematically described. In this study, we describe the clinical, laboratory, and echocardiographic features of a cohort of PH1 patients on RRT. Methods: Patients with PH1 enrolled in the Rare Kidney Stone Consortium PH Registry who progressed to require RRT, had ≥2 plasma oxalate (pOx) measurements 3–36 months after start of RRT, and at least one pair of pOx measurements between 6 and 18 months apart were retrospectively analyzed. Clinical, echocardiographic, and laboratory results were obtained from the Registry. Results: The 17 PH1 patients in our cohort had a mean total HD hours/week of 17.4 (SD 7.9; range 7.5–36) and a range of age of RRT start of 0.2–75.9 years. The average change in plasma oxalate (pOx) over time on RRT was −0.74 [−2.9, 1.4] μmol/L/month with the mean pOx never declining below 50 μmol/L. Over time on RRT, oxalosis progressively developed in multiple organ systems. Echocardiography performed on 13 subjects showed worsening of left ventricular global longitudinal strain correlated with pOx (p < 0.05). Conclusions: Even when a cohort of PH1 patients were treated with intensified RRT, their predialysis pOx remained above target and they developed increasing evidence of oxalosis. Echocardiographic data suggest that cardiac dysfunction could be related to elevated pOx and may worsen over time.
Collapse
Affiliation(s)
- David J Sas
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Felicity T Enders
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Tina M Gunderson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Ramila A Mehta
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Julie B Olson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Barbara M Seide
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Carly J Banks
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | | | - Patricia A Pellikka
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - John C Lieske
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Dawn S Milliner
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
32
|
Guillaume A, Chiodini B, Adams B, Dahan K, Deschênes G, Ismaili K. The Struggling Odyssey of Infantile Primary Hyperoxaluria. Front Pediatr 2021; 9:615183. [PMID: 33959570 PMCID: PMC8093378 DOI: 10.3389/fped.2021.615183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction: Oxalate overproduction in Primary Hyperoxaluria type I (PH1) leads to progressive renal failure and systemic oxalate deposition. In severe infantile forms of PH1 (IPH1), end-stage renal disease (ESRD) occurs in the first years of life. Usually, the management of these infantile forms is challenging and consists in an intensive dialysis regimen followed by a liver-kidney transplantation (combined or sequential). Methods: Medical records of all infants with IPH1 reaching ESRD within the first year of life, diagnosed and followed between 2005 and 2018 in two pediatric nephrology departments in Brussels and Paris, have been reviewed. Results: Seven patients were included. They reached ESRD at a median age of 3.5 (2-7) months. Dialysis was started at a median age of 4 (2-10 months). Peritoneal dialysis (PD) was the initial treatment for 6 patients and hemodialysis (HD) for one patient. Liver transplantation (LT) was performed in all patients and kidney transplantation (KT) in six of them. A sequential strategy has been chosen in 5 patients, a combined in one. The kidney transplanted as part of the combined strategy was lost. Median age at LT and KT was 25 (10-41) months and 32.5 (26-75) months, respectively. No death occurred in the series. At the end of a median follow-up of 3 years, mean eGFR was 64 ± 29 ml/min/1.73 m2. All patients presented retinal and bone lesions and five patients presented bones fractures. Conclusion: Despite encouraging survival figures, the morbidity in IPH1 patients remains extremely heavy and its management presents a huge challenge. Thanks to the newly developed RNA-interference drug, the future holds brighter prospects.
Collapse
Affiliation(s)
- Adrien Guillaume
- Department of Neonatology, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Pediatric Nephrology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Benedetta Chiodini
- Department of Pediatric Nephrology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Brigitte Adams
- Department of Pediatric Nephrology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Karin Dahan
- Department of Genetics, Institute Pathology and Genetic (IPG), Gosselies, Belgium
| | - Georges Deschênes
- Department of Pediatric Nephrology, Paris University Hospital Robert Debré, Paris, France
| | - Khalid Ismaili
- Department of Pediatric Nephrology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
33
|
Devresse A, Cochat P, Godefroid N, Kanaan N. Transplantation for Primary Hyperoxaluria Type 1: Designing New Strategies in the Era of Promising Therapeutic Perspectives. Kidney Int Rep 2020; 5:2136-2145. [PMID: 33305106 PMCID: PMC7710835 DOI: 10.1016/j.ekir.2020.09.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disease caused by the functional defect of alanine-glyoxylate aminotransferase that results in the overproduction of oxalate. It can be devastating especially for kidneys, leading to end-stage renal disease (ESRD) during the first 2 to 3 decades of life in most patients. Consequently, many PH1 patients need kidney transplantation. However, because PH1 is caused by a liver enzyme deficiency, the only cure of the metabolic defect is liver transplantation. Thus, current transplant strategies to treat PH1 patients with ESRD include dual liver-kidney transplantation. However, the morbidity and mortality associated with liver transplantation make these strategies far from optimal. Fortunately, a therapeutic revolution is looming. Indeed, innovative drugs are being currently tested in clinical trials, and preliminary data show impressive efficacy to reduce the hepatic overproduction of oxalate. Hopefully, with these therapies, liver transplantation will no longer be necessary. However, some patients with progressing renal disease or those who will be diagnosed with PH1 at an advanced stage of chronic kidney disease will ultimately need kidney transplantation. Here we review the current knowledge on this subject and discuss the future of kidney transplant management in PH1 patients in the era of novel therapies.
Collapse
Affiliation(s)
- Arnaud Devresse
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Pierre Cochat
- Service de Néphrologie Rhumatologie Dermatologie Pédiatriques, Centre de Référence des Maladies Rénales Rares, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon et Université Claude-Bernard Lyon 1, Lyon, France
- EPICIME Epidémiologie Pharmacologie Investigation Clinique Information Médicale de l'Enfant, Hospices Civils de Lyon, Lyon, France
| | - Nathalie Godefroid
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Division of Pediatric Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nada Kanaan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
34
|
Hoppe B, Pellikka PA, Dehmel B, Banos A, Lindner E, Herberg U. Effects of Oxalobacter formigenes in subjects with primary hyperoxaluria Type 1 and end-stage renal disease: a Phase II study. Nephrol Dial Transplant 2020; 36:1464-1473. [PMID: 32810261 DOI: 10.1093/ndt/gfaa135] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In primary hyperoxaluria Type 1 (PH1), endogenous oxalate overproduction significantly elevates urinary oxalate excretion, resulting in recurrent urolithiasis and/or progressive nephrocalcinosis and often early end-stage renal disease (ESRD). In ESRD, dialysis cannot sufficiently remove oxalate; plasma oxalate (Pox) increases markedly, inducing systemic oxalate deposition (oxalosis) and often death. Interventions to reduce Pox in PH1 subjects with ESRD could have significant clinical impact. This ongoing Phase II, open-label trial aimed to evaluate whether long-term Oxabact™ (Oxalobacter formigenes, OC5, OxThera Intellectual Property AB, Sweden) lowers Pox in PH1 ESRD subjects, ameliorating clinical outcome. METHODS PH1 ESRD subjects on stable dialysis regimens were examined. Subjects were administered one OC5 capsule twice daily for up to 36 months or until transplantation. Total Pox values, cardiac function and safety were evaluated. Free Pox was evaluated in a comparative non-treated PH1 dialysis group using retrospective chart reviews and analyses. RESULTS Twelve subjects enrolled in an initial 6-week treatment phase. Following a washout of up to 4 weeks, eight subjects entered a continuation study; outcomes after 24 months of treatment are presented. After 24 months, all subjects had reduced or non-elevated Pox compared with baseline. Cardiac function improved, then stabilized. No treatment-related serious adverse events were reported. CONCLUSIONS Compared with an untreated natural control cohort, 24 months OC5 administration was beneficial to PH1 ESRD subjects by substantially decreasing Pox concentrations, and improving or stabilizing cardiac function and clinical status, without increasing dialysis frequency. OC5 was safe and well-tolerated.
Collapse
Affiliation(s)
- Bernd Hoppe
- Division of Pediatric Nephrology, Department of Pediatrics, University Hospital Bonn, Bonn, Germany
| | | | | | - Ana Banos
- OxThera Intellectual Property AB, Stockholm, Sweden
| | | | - Ulrike Herberg
- Department of Pediatric Cardiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
35
|
Xiang J, Chen Z, Xu F, Mei S, Li Z, Zhou J, Dong Y, Gu Y, Huang Z, Hu Z. Outcomes of liver-kidney transplantation in patients with primary hyperoxaluria: an analysis of the scientific registry of transplant recipients database. BMC Gastroenterol 2020; 20:208. [PMID: 32620094 PMCID: PMC7333252 DOI: 10.1186/s12876-020-01349-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/17/2020] [Indexed: 12/23/2022] Open
Abstract
Background Primary hyperoxaluria (PH) is an inherited disease lacking of hepatic oxalic acid metabolic enzymes which could lead to irreverisible renal damage. Currently, liver–kidney transplantation is a curative but highly invasive therapy used to treat patients with PH. However, limited studies have focused on combined liver–kidney transplantation (CLKT) and sequential liver and kidney transplantation (SLKT) in patients with PH. Methods The present study included 201 patients with PH who received both liver and kidney transplants and who were listed on the Scientific Registry of Transplant Recipients from 1987 to 2018. According to the liver–kidney transplant procedure, patients were separated into a CLKT group and a SLKT group. Patient demographics and transplant outcomes were assessed in each group. Results Compared with the SLKT group, The CLKT group got a worse pretransplant dialysis condition in both the proportion of patients under pretransplant dialysis (p = 0.048) and the duration of the pretransplant dialysis (p < 0.001). The SLKT group got higher human leukocyte antigen mismatch score of kidney donor (p < 0.001) and liver donor (p = 0.003). The CLKT group utilized higher proportion (98.9%) of organs from a single deceased donor, while the SLKT group utilized 75.0% of organs from deceased liver donors and only 35.0% of organs from deceased kidney donors (p < 0.001). Kidney function measured by serum creatinine concentration before liver transplantation (LT) or CLKT was similar (p = 0.305) between groups. Patient survival was not significantly different between the two groups (p = 0.717) and liver (p = 0.685) and kidney (p = 0.464) graft outcomes were comparable between the two groups. Conclusions SLKT seems to be an alternative option with strict condition for CLKT, further exploration about the SLKT is still required.
Collapse
Affiliation(s)
- Jie Xiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health Key Laboratory of Organ Transplantation, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China
| | - Zheng Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health Key Laboratory of Organ Transplantation, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China
| | - Fangshen Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health Key Laboratory of Organ Transplantation, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Shengmin Mei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health Key Laboratory of Organ Transplantation, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China
| | - Zhiwei Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health Key Laboratory of Organ Transplantation, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China
| | - Jie Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health Key Laboratory of Organ Transplantation, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China
| | - Yinlei Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health Key Laboratory of Organ Transplantation, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China
| | - Yangjun Gu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health Key Laboratory of Organ Transplantation, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China
| | - Zhichao Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health Key Laboratory of Organ Transplantation, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China
| | - Zhenhua Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health Key Laboratory of Organ Transplantation, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China. .,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China. .,Division of Hepatobiliary and Pancreatic Surgery, Yiwu Central Hospital, Yiwu, Zhejiang, China.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Prevalence of pediatric urolithiasis is increasing, which is definitively visible in increasing numbers of presentations in emergency or outpatient clinics. In pediatric patients, a genetic or metabolic disease has to be excluded, so that adequate treatment can be installed as early as possible. Only then either recurrent stone events and chronic or even end-stage kidney disease can be prevented. RECENT FINDINGS The genetic background of mostly monogenic kidney stone diseases was unravelled recently. In hypercalcuria, for example, the commonly used definition of idiopathic hypercalciuria was adopted to the genetic background, here three autosomal recessive hereditary forms of CYP24A1, SLC34A1 and SLC34A3 associated nephrocalcinosis/urolithiasis with elevated 1.25-dihydroxy-vitamin D3 (1.25-dihydroxy-vitamin D3) (calcitriol) levels. In addition either activating or inactivating mutations of the calcium-sensing receptor gene lead either to hypocalcemic hypercalciuria or hypercalcemic hypocalciuria. In primary hyperoxaluria, a third gene defect was unravelled explaining most of the so far unclassified patients. In addition, these findings lead to new treatment options, which are currently evaluated in phase III studies. SUMMARY Kidney stones are not the disease itself, but only its first symptom. The underlying disease has to be diagnosed in every pediatric patient with the first stone event.
Collapse
|
37
|
Kaaroud H, Harzallah A, Sayhi M, Bacha M, Khadhar M, Goucha R, Bouzid K, Ayed H, Bouzouita A, Cherif M, Chebil M, Mrad R, Omezzine A, Jallouli M, Gargah T, Ben Hamida F, Ben Abdallah T. [Inherited kidney stones: A nephrology center experience]. Prog Urol 2019; 29:962-973. [PMID: 31537493 DOI: 10.1016/j.purol.2019.08.262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/06/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Genetic factors must be considered in etiological diagnosis of urinary lithiasis. The aim of this study was to determine clinical, metabolic characteristics and the progression of hereditary urinary lithiasis in our patients. METHODS A retrospective study was conducted between 2008 and 2018 and 60 patients were included. Patients were referred to our department from pediatrics departments to be followed-up in adulthood in 9 cases, for etiological investigation in 42 cases and for chronic renal failure in 9 cases. RESULTS Thirty-five men and twenty-five women were enrolled in this study with a M/F sex ratio equal to 1.4. The mean age at the time of diagnosis of the hereditary character of the urinary lithiasis was 28.6years (3months-63years). The average delay between the onset of the lithiasis disease and the etiological diagnosis was 8years (0-42years). We noted 31 cases of cystinuria, 18 cases of primary hyperoxaluria type 1 with two mutations (I244T in 14 cases, 33-34 Insc in 23 cases) and 11 cases of renal tubulopathy. Fourteen patients were affected with chronic renal failure, of which five were in the end-stage renal disease. Crystalluria was positive in 62% of cases. The morpho-constitutional analysis of stones was performed in 37 cases and it contributed to the diagnosis in 29 cases. After an average follow-up of 16years, we noted normal renal function in 42 cases, chronic renal failure in 7 cases, hemodialysis in 10 cases all with primary hyperoxaluria and transplantation in 1 case. CONCLUSION The etiological diagnosis of hereditary urinary lithiasis in our study was made with considerable delay. Cystinuria was the most frequent etiology and primary hyperoxaluria was the most serious affection. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- H Kaaroud
- Service de médecine A, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie.
| | - A Harzallah
- Service de médecine A, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - M Sayhi
- Service de médecine A, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - M Bacha
- Service de médecine A, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - M Khadhar
- Service de néphrologie, hôpital La Marsa, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - R Goucha
- Service de néphrologie, hôpital La Marsa, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - K Bouzid
- Service de biochimie, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - H Ayed
- Service d'urologie, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - A Bouzouita
- Service d'urologie, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - M Cherif
- Service d'urologie, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - M Chebil
- Service d'urologie, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - R Mrad
- Service de génétique, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - A Omezzine
- Service de biochimie, hôpital Sahloul, Sousse, Tunisie
| | - M Jallouli
- Service de pédiatrie, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - T Gargah
- Service de pédiatrie, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - F Ben Hamida
- Laboratoire de pathologie rénale LR00SP01, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| | - T Ben Abdallah
- Service de médecine A, hôpital Charles-Nicolle, Tunis, Tunisie; Faculté de médecine de Tunis, université de Tunis El Manar, Tunis, Tunisie
| |
Collapse
|
38
|
Ozer A, Aktas H, Bulum B, Emiroglu R. The experience of combined and sequential liver and kidney transplantation from a single living donor in patients with primary hyperoxaluria type 1. Pediatr Transplant 2019; 23:e13406. [PMID: 30932299 DOI: 10.1111/petr.13406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
LKT is the only effective treatment for PH1 because it replaces both the source (liver) and the target (kidney) of the disease. Most studies report on LKT in patients with PH1 from deceased donors. This study reports on five patients who underwent LKT from a single living donor between April 2017 and March 2018. Combined LKT was performed for 1 patient and sequential LKT for the remainder. The median age of the patients at the time of diagnosis and transplantation was 5.5 (0.3-18) and 10 (6-21) years, respectively. All patients received left lateral liver segment transplantation, except one patient who received right liver lobe transplantation. No liver graft loss was observed, and liver function tests were stable at the final evaluation of all patients. Renal function tests of the patients were also stable at the final assessment, except for the young adult patient. None of the patients suffered from acute rejection. One patient died at the second month following liver transplantation due to severe pneumonia and sepsis. This study concludes that combined or sequential LKT from a single living donor can be safely performed and provides encouraging results for even the youngest and smallest patients with PH1.
Collapse
Affiliation(s)
- Ali Ozer
- Department of Organ Transplantation, Acibadem Mehmet Ali Aydinlar University Atakent Hospital, Istanbul, Turkey
| | - Hikmet Aktas
- Department of Organ Transplantation, Acibadem Mehmet Ali Aydinlar University Atakent Hospital, Istanbul, Turkey
| | - Burcu Bulum
- Department of Pediatric Nephrology, Acibadem Mehmet Ali Aydinlar University Atakent Hospital, Istanbul, Turkey
| | - Remzi Emiroglu
- Department of Organ Transplantation, Acibadem Mehmet Ali Aydinlar University Atakent Hospital, Istanbul, Turkey
| |
Collapse
|
39
|
Snijders MLH, Hesselink DA, Clahsen-van Groningen MC, Roodnat JI. Oxalate deposition in renal allograft biopsies within 3 months after transplantation is associated with allograft dysfunction. PLoS One 2019; 14:e0214940. [PMID: 30990835 PMCID: PMC6467373 DOI: 10.1371/journal.pone.0214940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium oxalate (CaOx) deposition in the kidney may lead to loss of native renal function but little is known about the prevalence and role of CaOx deposition in transplanted kidneys. METHODS In patients transplanted in 2014 and 2015, all for-cause renal allograft biopsies obtained within 3 months post-transplantation were retrospectively investigated for CaOx deposition. Additionally, all preimplantation renal biopsies obtained in 2000 and 2001 were studied. RESULTS In 2014 and 2015, 388 patients were transplanted, of whom 149 had at least one for-cause renal biopsy. Twenty-six (17%) patients had CaOx deposition. In the population with CaOx deposition: Patients had significantly more often been treated with dialysis before transplantation (89 vs. 64%; p = 0.011); delayed graft function occurred more frequently (42 vs. 23%; p = 0.038); and the eGFR at the time of first biopsy was significantly worse (21 vs. 29 ml/min/1.73m2; p = 0.037). In a multivariate logistic regression analysis, eGFR at the time of first biopsy (OR 0.958, 95%-Cl: 0.924-0.993, p = 0.019), dialysis before transplantation (OR 4.868, 95%-Cl: 1.128-21.003, p = 0.034) and the time of first biopsy after transplantation (OR 1.037, 95%-Cl: 1.013-1.062, p = 0.002) were independently associated with CaOx deposition. Graft survival censored for death was significantly worse in patients with CaOx deposition (p = 0.018). In only 1 of 106 preimplantation biopsies CaOx deposition was found (0.94%). CONCLUSION CaOx deposition appears to be primarily recipient-derived and is frequently observed in for-cause renal allograft biopsies obtained within 3 months post-transplantation. It is associated with inferior renal function at the time of biopsy and worse graft survival.
Collapse
Affiliation(s)
- Malou L H Snijders
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marian C Clahsen-van Groningen
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joke I Roodnat
- Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Affiliation(s)
- Gill Rumsby
- Clinical Biochemistry, UCL Hospitals, London, UK
| | - Sally-Anne Hulton
- Department of Nephrology, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
41
|
Genetische Nierensteinerkrankungen. MED GENET-BERLIN 2018. [DOI: 10.1007/s11825-018-0227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Zusammenfassung
Die Inzidenz und Prävalenz von Steinerkrankungen haben in den letzten Jahren deutlich zugenommen. Es ist von entscheidender Bedeutung, möglichst frühzeitig eine richtige Diagnose der zugrunde liegenden Erkrankung zu stellen, um die richtige Therapie einzuleiten und damit möglicherweise schwerwiegende Folgen, wie terminales Nierenversagen, zu verhindern. Bei Kindern lassen sich in ca. 75 % der Fälle genetische oder anatomische Ursachen identifizieren. Die verschiedenen zugrunde liegenden Erkrankungen für die jeweiligen lithogenen Risikofaktoren werden hier präsentiert und die entsprechenden Therapieoptionen, sofern vorhanden, erläutert.
Collapse
|
42
|
Weigert A, Martin-Higueras C, Hoppe B. Novel therapeutic approaches in primary hyperoxaluria. Expert Opin Emerg Drugs 2018; 23:349-357. [PMID: 30540923 DOI: 10.1080/14728214.2018.1552940] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Currently, three types of primary hyperoxaluria (PH I-III) are known, all based on different gene-mutations affecting the glyoxylate metabolism in the liver. Disease hallmark is an increased endogenous oxalate production and thus massively elevated urinary excretion of oxalate and other type-specific metabolites. Hyperoxaluria induces the formation of calcium-oxalate kidney stones and/or nephrocalcinosis. In addition to that, a chronic inflammasome activation by hyperoxaluria per se, often leads to an early deterioration of kidney function, regularly resulting in end-stage renal disease (ESRD) at least in patients with type I PH. Except for vitamin B6 treatment in PH I, therapeutic regimen nowadays consists only of supportive measures, like significantly increased fluid intake and medication increasing the urinary solubility like alkaline citrate. Areas covered: Disease burden can be severe, and both clinicians and scientist are eager in finding new therapeutic approaches. The currently ongoing clinical studies and promising research in this field are reported in this paper. To present a complete overview, we searched electronic databases, like Clinical trial gov, National Center for Biotechnology Information PubMed, congress reports, press releases and personal information acquired at congresses and conventions. Searches were conducted using the following medical headings: (primary) hyperoxaluria, PH, therapy, treatment and research. Expert opinion: There is light on the horizon that new treatment options will be available in due time, as there are several promising therapeutic agents currently under investigation, some being at the first levels of drug development, but some already in ongoing clinical trials (phase I-III).
Collapse
Affiliation(s)
- Alexander Weigert
- a Division of Pediatric Nephrology , University Childrens Hospital, Universitatsklinikum Bonn , Bonn , Germany
| | - Christina Martin-Higueras
- a Division of Pediatric Nephrology , University Childrens Hospital, Universitatsklinikum Bonn , Bonn , Germany.,b Institute of Experimental Immunology , University Hospital of the Rheinische Friedrich-Wilhelms-University , Bonn , Germany
| | - Bernd Hoppe
- a Division of Pediatric Nephrology , University Childrens Hospital, Universitatsklinikum Bonn , Bonn , Germany
| |
Collapse
|
43
|
Lee E, Ramos-Gonzalez G, Rodig N, Elisofon S, Vakili K, Kim HB. Bilateral native nephrectomy to reduce oxalate stores in children at the time of combined liver-kidney transplantation for primary hyperoxaluria type 1. Pediatr Nephrol 2018; 33:881-887. [PMID: 29243158 DOI: 10.1007/s00467-017-3855-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Primary hyperoxaluria type-1 (PH-1) is a rare genetic disorder in which normal hepatic metabolism of glyoxylate is disrupted resulting in diffuse oxalate deposition and end-stage renal disease (ESRD). While most centers agree that combined liver-kidney transplant (CLKT) is the appropriate treatment for PH-1, perioperative strategies for minimizing recurrent oxalate-related injury to the transplanted kidney remain unclear. We present our management of children with PH-1 and ESRD on hemodialysis (HD) who underwent CLKT at our institution from 2005 to 2015. METHODS On chart review, three patients (2 girls, 1 boy) met study criteria. Two patients received deceased-donor split-liver grafts, while one patient received a whole liver graft. All patients underwent bilateral native nephrectomy at transplant to minimize the total body oxalate load. Median preoperative serum oxalate was 72 μmol/L (range 17.8-100). All patients received HD postoperatively until predialysis serum oxalate levels fell <20 μmol/L. All patients, at a median of 7.5 years of follow-up (range 6.5-8.9), demonstrated stable liver and kidney function. CONCLUSIONS While CLKT remains the definitive treatment for PH-1, bilateral native nephrectomy at the time of transplant reduces postoperative oxalate stores and may mitigate damage to the renal allograft.
Collapse
Affiliation(s)
- Eliza Lee
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Gabriel Ramos-Gonzalez
- Department of Surgery, Pediatric Transplant Center, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Nancy Rodig
- Department of Pediatrics, Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott Elisofon
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Khashayar Vakili
- Department of Surgery, Pediatric Transplant Center, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Heung Bae Kim
- Department of Surgery, Pediatric Transplant Center, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA.
| |
Collapse
|
44
|
Affiliation(s)
- Barbara Cellini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona (VR), Italy
| |
Collapse
|
45
|
Sinangil A, Celik V, Barlas S, Altunrende F, Akin EB, Ecder T. Calcified Double J Stent after Sequential Liver and Renal Transplantation Associated to Primary Oxalosis: Case Report. BANTAO JOURNAL 2016. [DOI: 10.1515/bj-2015-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Hyperoxaluria type I (HPI) is a metabolic disorder secondary to liver alanine glyoxylate aminotransferase deficiency. Renal failure occurs due to the excessive production and precipitation of oxalate in the kidney. Combined liver-renal transplantation is the correct treatment for this condition when end-stage renal failure occurs since in renal transplantation alone the risk of recurrence of the same pathology in the transplanted kidney would be high.
We determined the calcification surrounding the double J stent inserted to the transplant ureter in a short time in a 22-year-old patient who underwent sequential liver and renal transplantation with the diagnoses of oxalosis. In the literature we have not found papers on calcification of double J stent following combined or sequential transplantation. Although after the sequential transplantation the calcification, nephrocalcinosis, and renal stones were practically not of great concern, these patients should be followed up more carefully in terms of stent calcification during the early post-transplant period.
Collapse
Affiliation(s)
- Ayse Sinangil
- Division of Nephrology, Department of Internal Medicine
| | - Vedat Celik
- Division of Nephrology, Department of Internal Medicine
| | | | - Fatih Altunrende
- Division of Urology, Istanbul Bilim University, Istanbul- Turkey
| | | | - Tevfik Ecder
- Division of Nephrology, Department of Internal Medicine
| |
Collapse
|
46
|
Hulton SA. The primary hyperoxalurias: A practical approach to diagnosis and treatment. Int J Surg 2016; 36:649-654. [PMID: 27815184 DOI: 10.1016/j.ijsu.2016.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 02/01/2023]
Abstract
Although the primary hyperoxalurias (PH) are rare disorders, they are of considerable clinical importance in relation to calcium oxalate urolithiasis and as a cause of renal failure worldwide. Three distinct disorders have been described at the molecular level. The investigation of any child or adult presenting with urinary tract stones or nephrocalcinosis, must exclude PH as an underlying cause. This paper provides a practical approach to the investigation and diagnosis of PH, indicating the importance of distinguishing between the PH types for the purposes of targeting appropriate therapy. Conservative management is explored and the various transplant options are discussed.
Collapse
Affiliation(s)
- Sally-Anne Hulton
- Birmingham Children's Hospital NHS Trust, Steelhouse Lane, Birmingham, B4 6NH, UK.
| |
Collapse
|
47
|
Rajakumar A, Gupta S, Malleeswaran S, Varghese J, Kaliamoorthy I, Rela M. Anaesthesia and intensive care for simultaneous liver-kidney transplantation: A single-centre experience with 12 recipients. Indian J Anaesth 2016; 60:476-83. [PMID: 27512163 PMCID: PMC4966351 DOI: 10.4103/0019-5049.186025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background and Aims: The perioperative management of patients presenting for simultaneous liver and kidney transplantation (SLKT) is a complex process. We analysed SLKTs performed in our institution to identify preoperative, intraoperative and post-operative challenges encountered in the management. Methods: We retrospectively studied the case records of 12 patients who underwent SLKT between 2009 and 2014 and analysed details of pre-operative evaluation and optimisation, intraoperative anaesthetic management and the implications of use of perioperative continuous renal replacement therapy (CRRT) and the post-operative course of these patients. Results: Of the total 12 cases, 4 were under 16 years of age. The indications for SLKT were primary hyperoxaluria (5), congenital hepatic fibrosis with polycystic kidney disease (2), ethanol-related end-stage liver disease (ESLD) with hepatorenal syndrome type 1 (1). Four patients had ESLD with end-stage renal disease due to other causes. Six recipients received live donor grafts and 6 patients received cadaveric grafts. Seven patients received intraoperative CRRT. Mean duration of surgery was 12.5 h. Cardiac output monitors used were trans-oesophageal echocardiogram (2), pulmonary artery catheter (1) and pulse contour cardiac output monitor (3). There was 1 sepsis-related mortality on 7th post-operative day. Conclusion: A thorough pre-operative evaluation and optimisation, knowledge and anticipation of potential problems, and meticulous intraoperative fluid management guided by appropriate monitoring and use of CRRT when needed can help in achieving successful outcomes.
Collapse
Affiliation(s)
- Akila Rajakumar
- Department of Liver Transplant Anaesthesia and Intensive Care, Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India
| | - Shiwalika Gupta
- Department of Liver Transplant Anaesthesia and Intensive Care, Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India
| | - Selvakumar Malleeswaran
- Department of Liver Transplant Anaesthesia and Intensive Care, Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India
| | - Joy Varghese
- Department of Hepatology, Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India
| | - Ilankumaran Kaliamoorthy
- Department of Liver Transplant Anaesthesia and Intensive Care, Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India
| | - Mohamed Rela
- Department of Hepatobiliary and Liver Transplant Surgery, Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India; Department of Hepatobiliary and Liver Transplant Surgery, Institute of Liver Studies, King's College, London
| |
Collapse
|
48
|
Büscher R, Büscher AK, Cetiner M, Treckmann JW, Paul A, Vester U, Hoyer PF. Combined liver and kidney transplantation and kidney after liver transplantation in children: Indication, postoperative outcome, and long-term results. Pediatr Transplant 2015; 19:858-65. [PMID: 26341656 DOI: 10.1111/petr.12595] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 12/26/2022]
Abstract
CLKT and sequential KALT are decided on a case-by-case basis in children for special indications such as ARPKD or PH1. We report on 21 children who underwent CLKT or KALT at our hospital between 1998 and 2013. Eleven children were diagnosed with PH1 and six with ARPKD. Other diagnosis were Joubert syndrome (n = 1), nephronophthisis (n = 1), CF (n = 1), and hepatocellular carcinoma (n = 1). Children (12 males, nine females) were aged 7.8 ± 6.2 yr (range, 10 months to 18 yr) at time of transplantation. Average wait time was 1.9 ± 0.9 yr (range, four months to 2.3 yr). Fifteen patients received dialysis prior to transplantation. In PH1 patients, four children received CLKT, five received KALT, and two infants have received only an LTx, whereas all six patients with ARPKD received CLKT. In patients with other indications, CLKT was performed in three cases and KALT in one girl. Cumulative 10-yr survival of all 21 patients was 78.4%. At the time of transfer into adult care, 13 patients retained stable liver and kidney function. Regardless the underlying diagnosis, CLKT and KALT can be performed in children with good surgical outcomes and long-term survival.
Collapse
Affiliation(s)
- Rainer Büscher
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Anja K Büscher
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Metin Cetiner
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Jürgen W Treckmann
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Andreas Paul
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Udo Vester
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Peter F Hoyer
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| |
Collapse
|
49
|
Ben-Shalom E, Frishberg Y. Primary hyperoxalurias: diagnosis and treatment. Pediatr Nephrol 2015; 30:1781-91. [PMID: 25519509 DOI: 10.1007/s00467-014-3030-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 01/22/2023]
Abstract
Primary hyperoxalurias (PH) comprise a group of three distinct metabolic diseases caused by derangement of glyoxylate metabolism in the liver. Recent years have seen advances in several aspects of PH research. This paper reviews current knowledge of the genetic and biochemical basis of PH, the specific epidemiology and clinical presentation of each type, and therapeutic approaches in different disease stages. Potential future specific therapies are discussed.
Collapse
Affiliation(s)
- Efrat Ben-Shalom
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, P.O.Box 3235, Jerusalem, Israel
| | | |
Collapse
|
50
|
Bollée G, Cochat P, Daudon M. Recurrence of crystalline nephropathy after kidney transplantation in APRT deficiency and primary hyperoxaluria. Can J Kidney Health Dis 2015; 2:31. [PMID: 26380104 PMCID: PMC4570695 DOI: 10.1186/s40697-015-0069-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/24/2015] [Indexed: 01/25/2023] Open
Abstract
Purpose of review To provide transplant physicians with a summary of the pathogenesis and diagnosis of adenine phosphoribosyl transferase (APRT) deficiency and primary hyperoxaluria and, focussed on kidney transplantation, and to discuss interventions aimed at preventing and treating the recurrence of crystalline nephropathy in renal transplant recipients. Source of information Pubmed literature search. Setting Primary hyperoxaluria and APRT deficiency are rare inborn errors of human metabolism. The hallmark of these diseases is the overproduction and urinary excretion of compounds (2,8 dihydroxyadenine in APRT deficiency, oxalate in primary hyperoxaluria) that form urinary crystals. Although recurrent urolithiasis represents the main clinical feature of these diseases, kidney injury can occur as a result of crystal precipitation within the tubules and interstitium, a condition referred to as crystalline nephropathy. Some patients develop end-stage renal disease (ESRD) and may become candidates for kidney transplantation. Since kidney transplantation does not correct the underlying metabolic defect, transplant recipients have a high risk of recurrence of crystalline nephropathy, which can lead to graft loss. In some instances, the disease remains undiagnosed until after the occurrence of ESRD or even after kidney transplantation. Key messages Patients with APRT deficiency or primary hyperoxaluria may develop ESRD as a result of crystalline nephropathy. In the absence of diagnosis and adequate management, the disease is likely to recur after kidney transplantation, which often leads to rapid loss of renal allograft function. Primary hyperoxaluria, but not APRT deficiency, becomes a systemic disease at low GFR with oxalate deposition leading to malfunction in non-renal organs (systemic oxalosis). We suggest that these diagnoses should be considered in patients with low glomerular filtration rate (GFR) and a history of kidney stones. In APRT deficiency, stones may be confused with uric acid stones, unless specialized techniques are used (infrared spectroscopy or X-ray crystallography for urinary crystals or stone analysis; Fourier transform infrared microscopy for crystals in kidney biopsy). Where these are unavailable, and for confirmation, the diagnosis can be made by measurement of enzyme activity in red blood cell lysates or by genetic testing. In patients with primary hyperoxaluria, levels of urinary and plasma oxalate; and the presence of nearly pure calcium oxalate monohydrate in stones, which often also have an unusually pale colour and unorganized structure, increase diagnostic suspicion. Molecular genetic testing is the criterion measure. Lifelong allopurinol therapy, with high fluid intake if appropriate, may stabilize kidney function in APRT deficiency; if ESRD has occurred or is near, results with kidney transplantation after initiation of allopurinol are excellent. In primary hyperoxaluria recognized before ESRD, pyridoxine treatment and high fluid intake may lead to a substantial decrease in urinary calcium oxalate supersaturation and prevent renal failure. In non-responsive patients or those recognized later in their disease, liver transplantation cures the underlying defect and should be considered when the GFR falls below 30 ml/min/1.73 m2; in those which or near ESRD, liver transplantation and intensive dialysis before kidney transplantation may be considered to reduce the total body oxalate burden before kidney transplantation. Limitations The availability of diagnostic tests varies between countries and centres. Data on long term outcomes after kidney transplantation are limited, especially for APRT deficiency patients. Implications Increasing transplant physicians knowledge of APRT deficiency and primary hyperoxaluria should enable them to implement adequate diagnostic and therapeutic interventions, thereby achieving good outcomes after kidney transplantation.
Collapse
Affiliation(s)
- Guillaume Bollée
- Division of Nephrology and Research Centre of the Centre Hospitalier de l'Université de Montréal and Université de Montréal, Montréal, Québec Canada ; Division of Nephrology, Hôpital Notre Dame, 1560 Sherbrooke Street East, Montreal, QC H2L 4 M1 Canada
| | - Pierre Cochat
- Centre de Référence des Maladies Rénales Rares, Hospices Civils de Lyon and Université Claude-Bernard Lyon 1, Lyon, France
| | - Michel Daudon
- Service d'Explorations Fonctionnelles, AP-HP, Hôpital Tenon, Paris, France
| |
Collapse
|