1
|
Radhakrishnan P, Quadri N, Erger F, Fuhrmann N, Geist OM, Netzer C, Khyriem I, Muranjan M, Udani V, Yeole M, Mascarenhas S, Limaye S, Siddiqui S, Upadhyai P, Shukla A. Biallelic Variants in LRRC45 Impair Ciliogenesis and Cause a Severe Neurological Disorder. Clin Genet 2025; 107:311-322. [PMID: 39638757 PMCID: PMC11790379 DOI: 10.1111/cge.14663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Leucine - rich repeat containing 45 protein (LRRC45) protein localizes at the proximal end of centrioles and forms a component of the proteinaceous linker between them, with an important role in centrosome cohesion. In addition, a pool of it localizes at the distal appendages of the modified parent centriole that forms the primary cilium and it has essential functions in the establishment of the transition zone and axonemal extension during early ciliogenesis. Here, we describe three individuals from two unrelated families with severe central nervous system anomalies. Exome sequencing identified biallelic variants in LRRC45 in the affected individuals: P1: c.1402-2A>G; P2 and P3: c.1262G>C (p.Arg421Thr). Investigation of the variant c.1402-2A>G in patient-derived skin fibroblasts revealed that it triggers aberrant splicing, leading to an abnormal LRRC45 transcript that lacks exon 14. Consistent with this the mRNA and protein levels of LRRC45 were drastically reduced in P1-derived fibroblast cells compared to the controls. P1 fibroblasts showed a significant reduction of primary cilia frequency and length. In silico modeling of the missense variant in P2/P3 suggested a destabilizing effect on LRRC45. Given these findings, we propose that the pathogenic loss-of-function variants in LRRC45 are associated with a novel spectrum of neurological ciliopathy phenotypes.
Collapse
Affiliation(s)
- Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Florian Erger
- Center for Rare Diseases Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Nico Fuhrmann
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Otilia-Maria Geist
- Department of Gynecology and Obstetrics, Klinikum Leverkusen, Leverkusen, Germany
| | - Christian Netzer
- Center for Rare Diseases Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Ibakordor Khyriem
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mamta Muranjan
- Department of Paediatrics, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Vrajesh Udani
- Department of Child Neurology, PD Hinduja National Hospital, Mumbai, India
| | - Mayuri Yeole
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sanket Limaye
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shahyan Siddiqui
- Department of Neuro and Vascular Interventional Radiology, Yashoda Hospitals, Hyderabad, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Peixoto E, Pant K, Richard S, Abrahante JE, Czaja W, Gradilone SA. Cholangiocytes' Primary Cilia Regulate DNA Damage Response and Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635267. [PMID: 39975310 PMCID: PMC11838267 DOI: 10.1101/2025.01.28.635267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Primary cilia have been considered tumor-suppressing organelles in cholangiocarcinoma (CCA), though the mechanisms behind their protective role are not fully understood. This study investigates how the loss of primary cilia affects DNA damage response (DDR) and DNA repair processes in CCA. Human cholangiocyte cell lines were used to examine the colocalization of DNA repair proteins at the cilia and assess the impact of experimental deciliation on DNA repair pathways. Deciliation was induced using shRNA knockdown or CRISPR knockout of IFT20, IFT88, or KIF3A, followed by exposure to the genotoxic agents cisplatin, methyl methanesulfonate (MMS), or irradiation. Cell survival, cell cycle progression, and apoptosis rates were evaluated, and DNA damage was assessed using comet assays and γH2AX quantification. An in vivo liver-specific IFT88 knockout model was generated using Cre/Lox recombination. Results showed that RAD51 localized at the cilia base, while ATR, PARP1, CHK1 and CHK2 were found within the cilia. Deciliated cells displayed dysregulation in critical DNA repair. These cells also showed reduced survival and increased S-phase arrest after genotoxic challenges as compared to ciliated cells. Enhanced DNA damage was observed via increased γH2AX signals and comet assay results. An increase in γH2AX expression was also observed in our in vivo model, indicating elevated DNA damage. Additionally, key DDR proteins, such as ATM, p53, and p21, were downregulated in deciliated cells after irradiation. This study underscores the crucial role of primary cilia in regulating DNA repair and suggests that targeting cilia-related mechanisms could present a novel therapeutic approach for CCA. New and Noteworthy: Our findings reveal a novel connection between primary cilia and DNA repair in cholangiocytes. We showed that DDR and DNA repair proteins localize to cilia, and that deciliation leads to impaired cell survival and S-phase arrest under genotoxic stress. Deciliated cells exhibit heightened DNA damage, evidenced by increased γH2AX signals and comet assay results, a phenotype mirrored in in vivo IFT88 knockout mice. Furthermore, key DDR regulators, including ATM, p53, and p21, are downregulated in deciliated cells following irradiation, highlighting a crucial role for primary cilia in maintaining genome stability.
Collapse
|
3
|
Sentell ZT, Mougharbel L, Nurcombe ZW, Babayeva S, Henein M, Chu LL, Akpa MM, Chung CF, Rivière JB, Pupavac M, Li R, Rosenblatt DS, Majewski J, Goodyer PR, Torban E, Kitzler TM. Use of patient-derived cell models for characterization of compound heterozygous hypomorphic C2CD3 variants in a patient with isolated nephronophthisis. Hum Mol Genet 2025; 34:368-380. [PMID: 39690811 PMCID: PMC11811416 DOI: 10.1093/hmg/ddae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Primary ciliopathies are a heterogeneous group of rare disorders predominantly caused by autosomal-recessive genetic variants that disrupt non-motile ciliary function. They often manifest as a syndromic phenotype, frequently involving the kidney. Biallelic pathogenic variants in C2CD3 disrupt ciliogenesis and Sonic Hedgehog (SHH) signaling, resulting in a severe ciliopathy (Orofaciodigital syndrome XIV, OMIM 615948). We present compound heterozygous missense variants in C2CD3 that partially disrupt ciliary function in a patient with isolated renal disease. METHODS Exome sequencing identified biallelic C2CD3 missense variants (p.Pro168Leu; p.Thr2079Met). Patient-derived fibroblasts and urinary renal epithelial cells (URECs), and human RPE-1 C2CD3 knockout (KO) cell-lines were used for in vitro studies. RESULTS Cilia length was significantly shorter in patient-derived fibroblasts compared to an unaffected sibling (2.309 vs. 2.850 μm, P < 0.0001), while URECs showed significantly shortened cilia (2.068 vs. 2.807 μm, P < 0.0001) and a 40.8% reduction in ciliation (P < 0.001). The latter was not observed in fibroblasts, suggesting a kidney-specific effect. SHH signaling was dysregulated in patient cells as expression of GLI3 activator protein and GLI1 mRNA was significantly reduced. C2CD3 localization to the basal body was significantly reduced in patient URECs. Finally, rescue experiments in C2CD3 KO RPE-1 cells corroborated these findings by demonstrating a reduced capacity to restore ciliogenesis for each variant. CONCLUSION Biallelic hypomorphic missense variants in C2CD3 may contribute to an isolated nephronophthisis phenotype with impaired ciliogenesis and SHH signaling. Our findings underscore the importance of functional testing to characterize candidate gene-disease relationships in patients with nephropathy of unknown etiology.
Collapse
Affiliation(s)
- Zachary T Sentell
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Lina Mougharbel
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Zachary W Nurcombe
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Marc Henein
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Lee Lee Chu
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Murielle M Akpa
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Jean-Baptiste Rivière
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Mihaela Pupavac
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Rui Li
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - David S Rosenblatt
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Departments of Human Genetics, Medicine, Pediatrics and Biology, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Divisions of Medical Genetics and Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
| | - Paul R Goodyer
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Department of Pediatrics, Division of Nephrology, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Elena Torban
- Department of Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Thomas M Kitzler
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada
- Child Health and Human Development, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
4
|
Yamaguchi H, Kitami M, Li M, Swaminathan S, Darabi R, Takemaru KI, Komatsu Y. Disruption of distal appendage protein CEP164 causes skeletal malformation in mice. Biochem Biophys Res Commun 2024; 741:151063. [PMID: 39612644 DOI: 10.1016/j.bbrc.2024.151063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
The primary cilium is a cellular antenna to orchestrate cell growth and differentiation. Deficient or dysfunctional cilia are frequently linked to skeletal abnormalities. Previous research demonstrated that ciliary proteins regulating axoneme elongation are essential for skeletogenesis. However, the role of the ciliary proteins responsible for initiating cilium assembly in skeletal development remains unknown. Here, we investigate the function of centrosomal protein of 164 kDa (CEP164), a key ciliogenesis regulator that localizes at the distal appendages of the mother centriole, during skeletal development in mice. Interestingly, the mesodermal cell-specific Cep164 deletion resulted in severe bone defects and osteoblast-specific deletion of Cep164 affected bone development. In contrast, chondrocyte-specific Cep164 deletion did not cause overt skeletal abnormalities, indicating that CEP164 functions in a cell type-specific manner within skeletal tissues. Importantly, Cep164-mutant osteoblasts not only displayed a lack of cilia but also showed an increased number of γH2AX-positive cells, indicating the involvement of defective DNA damage response in the etiology of skeletal lesions of Cep164-mutant mice. These results demonstrate that CEP164 has both ciliary and non-ciliary functions to control osteoblast growth and survival. Our study therefore reveals a novel understanding of the pathogenesis of skeletal ciliopathies associated with CEP164 dysfunction.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Megumi Kitami
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Margaret Li
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Kinesiology, Rice University Wiess School of Natural Science, Houston, TX, USA
| | - Sowmya Swaminathan
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Radbod Darabi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA; Institute of Muscle Biology and Cachexia, University of Houston, Houston, TX, USA
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
5
|
Ewerling A, May-Simera HL. Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. Microbiol Mol Biol Rev 2024; 88:e0000624. [PMID: 38995044 PMCID: PMC11426024 DOI: 10.1128/mmbr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.
Collapse
Affiliation(s)
- Alexander Ewerling
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
6
|
Pyatla G, Kabra M, Mandal AK, Zhang W, Mishra A, Bera S, Rathi S, Patnaik S, Anthony AA, Dixit R, Banerjee S, Shekhar K, Marmamula S, Kaur I, Khanna RC, Chakrabarti S. Potential Involvements of Cilia-Centrosomal Genes in Primary Congenital Glaucoma. Int J Mol Sci 2024; 25:10028. [PMID: 39337513 PMCID: PMC11431959 DOI: 10.3390/ijms251810028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Primary congenital glaucoma (PCG) occurs in children due to developmental abnormalities in the trabecular meshwork and anterior chamber angle. Previous studies have implicated rare variants in CYP1B1, LTBP2, and TEK and their interactions with MYOC, FOXC1, and PRSS56 in the genetic complexity and clinical heterogeneity of PCG. Given that some of the gene-encoded proteins are localized in the centrosomes (MYOC) and perform ciliary functions (TEK), we explored the involvement of a core centrosomal protein, CEP164, which is responsible for ocular development and regulation of intraocular pressure. Deep sequencing of CEP164 in a PCG cohort devoid of homozygous mutations in candidate genes (n = 298) and controls (n = 1757) revealed CEP164 rare pathogenic variants in 16 cases (5.36%). Co-occurrences of heterozygous alleles of CEP164 with other genes were seen in four cases (1.34%), and a physical interaction was noted for CEP164 and CYP1B1 in HEK293 cells. Cases of co-harboring alleles of the CEP164 and other genes had a poor prognosis compared with those with a single copy of the CEP164 allele. We also screened INPP5E, which synergistically interacts with CEP164, and observed a lower frequency of pathogenic variants (0.67%). Our data suggest the potential involvements of CEP164 and INPP5E and the yet unexplored cilia-centrosomal functions in PCG pathogenesis.
Collapse
Affiliation(s)
- Goutham Pyatla
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meha Kabra
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Anil K. Mandal
- Jasti V Ramanamma Children’s Eye Care Centre, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India;
| | - Wei Zhang
- Department of Ophthalmology, UMASS Medical School, Worcester, MA 01605, USA;
| | - Ashish Mishra
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Samir Bera
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sonika Rathi
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Satish Patnaik
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Alice A. Anthony
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Ritu Dixit
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Seema Banerjee
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (S.B.); (K.S.); (S.M.); (R.C.K.)
| | - Konegari Shekhar
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (S.B.); (K.S.); (S.M.); (R.C.K.)
| | - Srinivas Marmamula
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (S.B.); (K.S.); (S.M.); (R.C.K.)
| | - Inderjeet Kaur
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Rohit C. Khanna
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (S.B.); (K.S.); (S.M.); (R.C.K.)
| | - Subhabrata Chakrabarti
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| |
Collapse
|
7
|
Robichaud JH, Zhang Y, Chen C, He K, Huang Y, Zhang X, Sun X, Ma X, Hardiman G, Morrison CG, Dong Z, LeBrasseur NK, Ling K, Hu J. Transiently formed nucleus-to-cilium microtubule arrays mediate senescence initiation in a KIFC3-dependent manner. Nat Commun 2024; 15:7977. [PMID: 39266565 PMCID: PMC11393428 DOI: 10.1038/s41467-024-52363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Despite the importance of cellular senescence in human health, how damaged cells undergo senescence remains elusive. We have previously shown that promyelocytic leukemia nuclear body (PML-NBs) translocation of the ciliary FBF1 is essential for senescence induction in stressed cells. Here we discover that an early cellular event occurring in stressed cells is the transient assembly of stress-induced nucleus-to-cilium microtubule arrays (sinc-MTs). The sinc-MTs are distinguished by unusual polyglutamylation and unique polarity, with minus-ends nucleating near the nuclear envelope and plus-ends near the ciliary base. KIFC3, a minus-end-directed kinesin, is recruited to plus-ends of sinc-MTs and interacts with the centrosomal protein CENEXIN1. In damaged cells, CENEXIN1 co-translocates with FBF1 to PML-NBs. Deficiency of KIFC3 abolishes PML-NB translocation of FBF1 and CENEXIN1, as well as senescence initiation in damaged cells. Our study reveals that KIFC3-mediated nuclear transport of FBF1 along polyglutamylated sinc-MTs is a prerequisite for senescence induction in mammalian cells.
Collapse
Affiliation(s)
- Jielu Hao Robichaud
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xu Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Xiaobo Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xiaoyu Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Ireland
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Nathan K LeBrasseur
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA.
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Malka S, Biswas P, Berry AM, Sangermano R, Ullah M, Lin S, D'Antonio M, Jestin A, Jiao X, Quinodoz M, Sullivan L, Gardner JC, Place EM, Michaelides M, Kaminska K, Mahroo OA, Schiff E, Wright G, Cancellieri F, Vaclavik V, Santos C, Rehman AU, Mehrotra S, Azhar Baig HM, Iqbal M, Ansar M, Santos LC, Sousa AB, Tran VH, Matsui H, Bhatia A, Naeem MA, Akram SJ, Akram J, Riazuddin S, Ayuso C, Pierce EA, Hardcastle AJ, Riazuddin SA, Frazer KA, Hejtmancik JF, Rivolta C, Bujakowska KM, Arno G, Webster AR, Ayyagari R. Substitution of a single non-coding nucleotide upstream of TMEM216 causes non-syndromic retinitis pigmentosa and is associated with reduced TMEM216 expression. Am J Hum Genet 2024; 111:2012-2030. [PMID: 39191256 PMCID: PMC11393691 DOI: 10.1016/j.ajhg.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Genome analysis of individuals affected by retinitis pigmentosa (RP) identified two rare nucleotide substitutions at the same genomic location on chromosome 11 (g.61392563 [GRCh38]), 69 base pairs upstream of the start codon of the ciliopathy gene TMEM216 (c.-69G>A, c.-69G>T [GenBank: NM_001173991.3]), in individuals of South Asian and African ancestry, respectively. Genotypes included 71 homozygotes and 3 mixed heterozygotes in trans with a predicted loss-of-function allele. Haplotype analysis showed single-nucleotide variants (SNVs) common across families, suggesting ancestral alleles within the two distinct ethnic populations. Clinical phenotype analysis of 62 available individuals from 49 families indicated a similar clinical presentation with night blindness in the first decade and progressive peripheral field loss thereafter. No evident systemic ciliopathy features were noted. Functional characterization of these variants by luciferase reporter gene assay showed reduced promotor activity. Nanopore sequencing confirmed the lower transcription of the TMEM216 c.-69G>T allele in blood-derived RNA from a heterozygous carrier, and reduced expression was further recapitulated by qPCR, using both leukocytes-derived RNA of c.-69G>T homozygotes and total RNA from genome-edited hTERT-RPE1 cells carrying homozygous TMEM216 c.-69G>A. In conclusion, these variants explain a significant proportion of unsolved cases, specifically in individuals of African ancestry, suggesting that reduced TMEM216 expression might lead to abnormal ciliogenesis and photoreceptor degeneration.
Collapse
Affiliation(s)
- Samantha Malka
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Pooja Biswas
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Anne-Marie Berry
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Riccardo Sangermano
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Mukhtar Ullah
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Siying Lin
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Matteo D'Antonio
- Department of Medicine, Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA
| | - Aleksandr Jestin
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Lori Sullivan
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, USA
| | - Jessica C Gardner
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Emily M Place
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Omar A Mahroo
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK; Department of Ophthalmology, St Thomas' Hospital, London, UK; Section of Ophthalmology, King's College London, St Thomas' Hospital Campus, London, UK
| | - Elena Schiff
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Genevieve Wright
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Francesca Cancellieri
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | | | - Cristina Santos
- Instituto de Oftalmologia Dr. Gama Pinto (IOGP), Lisboa, Portugal; Faculdade de Ciências Médicas, NMS, FCM, NOVA Medical School, Universidade NOVA de Lisboa, 7 iNOVA4Health, Lisboa, Portugal
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Hafiz Muhammad Azhar Baig
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Muhammad Iqbal
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ansar
- Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland; Advanced Molecular Genetics and Genomics Disease Research and Treatment Centre, Dow University of Health Sciences, Karachi 74200, Pakistan
| | | | - Ana Berta Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Lisboa Norte (CHULN), Lisboa, Portugal; Serviço de Genética Médica, Departamento de Pediatria, Hospital de Santa Maria, Lisboa, Portugal
| | - Viet H Tran
- Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland; Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Hiroko Matsui
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Anjana Bhatia
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Javed Akram
- Allama Iqbal Medical Research Center, Lahore, Pakistan; Jinnah Burn and Reconstructive Surgery Center, Jinnah Hospital, Lahore, Pakistan
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Center, Jinnah Hospital, Lahore, Pakistan; Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly A Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Gavin Arno
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK; Greenwood Genetic Center, Greenwood, SC, USA
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Trust, London, UK; UCL Institute of Ophthalmology, University College London, London, UK.
| | - Radha Ayyagari
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
9
|
Alhaddad ME, Mohammad A, Dashti KM, John SE, Bahbahani Y, Abu-Farha M, Abubaker J, Thanaraj TA, Bastaki L, Al-Mulla F, Al-Ali M, Ali H. Genetic landscape and clinical outcomes of autosomal recessive polycystic kidney disease in Kuwait. Heliyon 2024; 10:e33898. [PMID: 39071699 PMCID: PMC11282974 DOI: 10.1016/j.heliyon.2024.e33898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Background Autosomal recessive polycystic kidney disease (ARPKD), a rare genetic disorder characterized by kidney cysts, shows complex clinical and genetic heterogeneity. This study aimed to explore the genetic landscape of ARPKD in Kuwait and examine the intricate relationship between its genes and clinical presentation to enhance our understanding and contribute towards more efficient management strategies for ARPKD. Methods This study recruited 60 individuals with suspected ARPKD from 44 different families in Kuwait. The participants were of different ethnicities and aged 0-70 years. Additionally, 33 were male, 15 were female, and 12 had indeterminant sex due to congenital anomalies. Comprehensive clinical data were collected. Mutations were identified by next-generation whole exome sequencing and confirmed using Sanger sequencing. Results Of the 60 suspected ARPKD cases, 20 (33.3 %) died within hours of birth or by the end of the first month of life and one (1.7 %) within 12 months of birth. The remaining 39 (65.0 %) cases were alive, at the time of the study, and exhibited diverse clinical features related to ARPKD, including systematic hypertension (5.0 %), pulmonary hypoplasia (11.7 %), dysmorphic features (40.0 %), cardiac problems (8.3 %), cystic liver (5.0 %), Potter syndrome (13.3 %), developmental delay (8.3 %), and enlarged cystic kidneys (100 %). Twelve mutations, including novel truncating mutations, were identified in 31/60 cases (51.7 %) from 17/44 families (38.6 %). Additionally, 8/12 (66.7 %) mutations were in the PKHD1 gene, with the remaining four in different genes: NPHP3, VPS13P, CC2D2A, and ZNF423. Conclusions This study highlights the spectrum of clinical features and genetic mutations of patients with ARPKD in Kuwait. It highlights the necessity for personalized approaches to improve ARPKD diagnosis and treatment, offering crucial insights into managing ARPKD.
Collapse
Affiliation(s)
- Mariam E. Alhaddad
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya, Kuwait
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Khadija M. Dashti
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya, Kuwait
| | - Sumi Elsa John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Yousif Bahbahani
- Division of Nephrology, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, Kuwait
| | - Mohamed Abu-Farha
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | - Jehad Abubaker
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | | | - Laila Bastaki
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Mohammad Al-Ali
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat, Kuwait
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| |
Collapse
|
10
|
Wolf MTF, Bonsib SM, Larsen CP, Hildebrandt F. Nephronophthisis: a pathological and genetic perspective. Pediatr Nephrol 2024; 39:1977-2000. [PMID: 37930417 DOI: 10.1007/s00467-023-06174-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 11/07/2023]
Abstract
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most frequent genetic causes for kidney failure (KF) in children and adolescents. Over 20 genes cause NPHP and over 90 genes contribute to renal ciliopathies often involving multiple organs. About 15-20% of NPHP patients have additional extrarenal symptoms affecting other organs than the kidneys. The involvement of additional organ systems in syndromic forms of NPHP is explained by shared expression of most NPHP gene products in centrosomes and primary cilia, a sensory organelle present in most mammalian cells. This finding resulted in the classification of NPHP as a ciliopathy. If extrarenal symptoms are present in addition to NPHP, these disorders are defined as NPHP-related ciliopathies (NPHP-RC) and can involve the retina (e.g., with Senior-Løken syndrome), CNS (central nervous system) (e.g., with Joubert syndrome), liver (e.g., Boichis and Arima syndromes), or bone (e.g., Mainzer-Saldino and Sensenbrenner syndromes). This review focuses on the pathological findings and the recent genetic advances in NPHP and NPHP-RC. Different mechanisms and signaling pathways are involved in NPHP ranging from planar cell polarity, sonic hedgehog signaling (Shh), DNA damage response pathway, Hippo, mTOR, and cAMP signaling. A number of therapeutic interventions appear to be promising, ranging from vasopressin receptor 2 antagonists such as tolvaptan, cyclin-dependent kinase inhibitors such as roscovitine, Hh agonists such as purmorphamine, and mTOR inhibitors such as rapamycin.
Collapse
Affiliation(s)
- Matthias T F Wolf
- Division of Pediatric Nephrology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Division of Pediatric Nephrology, C.S. Mott Children's Hospital, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | | | | | | |
Collapse
|
11
|
Kempis-Calanis LA, Rodríguez-Jorge O, Gutiérrez-Reyna DY, Ventura-Martínez CJ, Spicuglia S, Medina-Rivera A, Thieffry D, González A, Santana MA. Neonatal CD4+ T cells have a characteristic transcriptome and epigenome and respond to TCR stimulation with proliferation and yet a limited immune response. J Leukoc Biol 2024; 116:64-76. [PMID: 38146769 DOI: 10.1093/jleuko/qiad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
The adaptive immune response is coordinated by CD4+ T cells, which determine the type and strength of the immune response and the effector cells involved. It has been reported that CD4+ T cells are less responsive in neonates, leading to low activation of the cellular response and poor antibody production by B cells. This low response is essential for the tolerant window that favors birth transition from the sterile environment in the womb to the outside world but leaves neonates vulnerable to infection, which is still an important health issue. Neonates have a high morbidity and mortality rate due to infections, and the molecular reasons are still understudied. We asked whether the neonatal naive CD4+ T cells have a genomic program that predisposes them to a low response. Therefore, we evaluated the transcriptome and epigenome of human neonatal and adult naive CD4+ T cells. Our results point to a gene expression profile forming a distinct regulatory network in neonatal cells, which favors proliferation and a low T-cell response. Such expression profile is supported by a characteristic epigenetic landscape of neonatal CD4+ T cells, which correlates with the characteristic transcriptome of the neonatal cells. These results were confirmed by experiments showing a low response to activation signals, higher proliferation, and lower expression of cytokines of neonatal CD4+ T cells as compared to adult cells. Understanding this network could lead to novel vaccine formulations and better deal with life-threatening diseases during this highly vulnerable period of our lives.
Collapse
Affiliation(s)
- Linda Aimara Kempis-Calanis
- Laboratorio de Inmunología Celular y de Sistemas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Chamilpa 62209 Cuernavaca, México
| | - Otoniel Rodríguez-Jorge
- Laboratorio de Inmunología Celular y de Sistemas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Chamilpa 62209 Cuernavaca, México
| | - Darely Yarazeth Gutiérrez-Reyna
- Laboratorio de Inmunología Celular y de Sistemas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Chamilpa 62209 Cuernavaca, México
| | - Carlos Jesús Ventura-Martínez
- Laboratorio de Inmunología Celular y de Sistemas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Chamilpa 62209 Cuernavaca, México
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Equipe Labélisée LIGUE contre le Cancer, 163 Avenue de Luminy, 13288 Marseille, France
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus UNAM 3002, Blvd. 3001, 76230 Juriquilla, Querétaro, México
| | - Denis Thieffry
- Département de Biologie de l'Ecole Normale Supérieure, PSL University, 46 rue d'Ulm, 75005 Paris, France
| | - Aitor González
- Aix-Marseille University, Inserm, TAGC, UMR1090, Equipe Labélisée LIGUE contre le Cancer, 163 Avenue de Luminy, 13288 Marseille, France
| | - María Angélica Santana
- Laboratorio de Inmunología Celular y de Sistemas, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Chamilpa 62209 Cuernavaca, México
| |
Collapse
|
12
|
Arai Y, Ito H, Shimizu T, Shimoda Y, Song D, Matsuo-Takasaki M, Hayata T, Hayashi Y. Patient-derived and gene-edited pluripotent stem cells lacking NPHP1 recapitulate juvenile nephronophthisis in abnormalities of primary cilia and renal cyst formation. Front Cell Dev Biol 2024; 12:1370723. [PMID: 38989059 PMCID: PMC11233770 DOI: 10.3389/fcell.2024.1370723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
Juvenile nephronophthisis is an inherited renal ciliopathy with cystic kidney disease, renal fibrosis, and end-stage renal failure in children and young adults. Mutations in the NPHP1 gene encoding nephrocystin-1 protein have been identified as the most frequently responsible gene and cause the formation of cysts in the renal medulla. The molecular pathogenesis of juvenile nephronophthisis remains elusive, and no effective medicines to prevent end-stage renal failure exist even today. No human cellular models have been available yet. Here, we report a first disease model of juvenile nephronophthisis using patient-derived and gene-edited human induced pluripotent stem cells (hiPSCs) and kidney organoids derived from these hiPSCs. We established NPHP1-overexpressing hiPSCs from patient-derived hiPSCs and NPHP1-deficient hiPSCs from healthy donor hiPSCs. Comparing these series of hiPSCs, we found abnormalities in primary cilia associated with NPHP1 deficiency in hiPSCs. Kidney organoids generated from the hiPSCs lacking NPHP1 formed renal cysts frequently in suspension culture with constant rotation. This cyst formation in patient-derived kidney organoids was rescued by overexpression of NPHP1. Transcriptome analysis on these kidney organoids revealed that loss of NPHP1 caused lower expression of genes related to primary cilia in epithelial cells and higher expression of genes related to the cell cycle. These findings suggested the relationship between abnormality in primary cilia induced by NPHP1 loss and abnormal proliferative characteristics in the formation of renal cysts. These findings demonstrated that hiPSC-based systematic disease modeling of juvenile nephronophthisis contributed to elucidating the molecular pathogenesis and developing new therapies.
Collapse
Affiliation(s)
- Yutaka Arai
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hidenori Ito
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Tomoya Shimizu
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuzuno Shimoda
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Dan Song
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Ahmed M, Wheeler R, Týč J, Shafiq S, Sunter J, Vaughan S. Identification of 30 transition fibre proteins in Trypanosoma brucei reveals a complex and dynamic structure. J Cell Sci 2024; 137:jcs261692. [PMID: 38572631 PMCID: PMC11190437 DOI: 10.1242/jcs.261692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Transition fibres and distal appendages surround the distal end of mature basal bodies and are essential for ciliogenesis, but only a few of the proteins involved have been identified and functionally characterised. Here, through genome-wide analysis, we have identified 30 transition fibre proteins (TFPs) and mapped their arrangement in the flagellated eukaryote Trypanosoma brucei. We discovered that TFPs are recruited to the mature basal body before and after basal body duplication, with differential expression of five TFPs observed at the assembling new flagellum compared to the existing fixed-length old flagellum. RNAi-mediated depletion of 17 TFPs revealed six TFPs that are necessary for ciliogenesis and a further three TFPs that are necessary for normal flagellum length. We identified nine TFPs that had a detectable orthologue in at least one basal body-forming eukaryotic organism outside of the kinetoplastid parasites. Our work has tripled the number of known transition fibre components, demonstrating that transition fibres are complex and dynamic in their composition throughout the cell cycle, which relates to their essential roles in ciliogenesis and flagellum length regulation.
Collapse
Affiliation(s)
- Manu Ahmed
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Richard Wheeler
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Jiří Týč
- Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Shahaan Shafiq
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Jack Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| |
Collapse
|
14
|
Zuo FW, Liu ZY, Wang MW, Du JY, Ding PZ, Zhang HR, Tang W, Sun Y, Wang XJ, Zhang Y, Xie YS, Wu JC, Liu M, Wang ZY, Yi F. CCDC92 promotes podocyte injury by regulating PA28α/ABCA1/cholesterol efflux axis in type 2 diabetic mice. Acta Pharmacol Sin 2024; 45:1019-1031. [PMID: 38228909 PMCID: PMC11053164 DOI: 10.1038/s41401-023-01213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024] Open
Abstract
Podocyte lipotoxicity mediated by impaired cellular cholesterol efflux plays a crucial role in the development of diabetic kidney disease (DKD), and the identification of potential therapeutic targets that regulate podocyte cholesterol homeostasis has clinical significance. Coiled-coil domain containing 92 (CCDC92) is a novel molecule related to metabolic disorders and insulin resistance. However, whether the expression level of CCDC92 is changed in kidney parenchymal cells and the role of CCDC92 in podocytes remain unclear. In this study, we found that Ccdc92 was significantly induced in glomeruli from type 2 diabetic mice, especially in podocytes. Importantly, upregulation of Ccdc92 in glomeruli was positively correlated with an increased urine albumin-to-creatinine ratio (UACR) and podocyte loss. Functionally, podocyte-specific deletion of Ccdc92 attenuated proteinuria, glomerular expansion and podocyte injury in mice with DKD. We further demonstrated that Ccdc92 contributed to lipid accumulation by inhibiting cholesterol efflux, finally promoting podocyte injury. Mechanistically, Ccdc92 promoted the degradation of ABCA1 by regulating PA28α-mediated proteasome activity and then reduced cholesterol efflux. Thus, our studies indicate that Ccdc92 contributes to podocyte injury by regulating the PA28α/ABCA1/cholesterol efflux axis in DKD.
Collapse
Affiliation(s)
- Fu-Wen Zuo
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Zhi-Yong Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Jun-Yao Du
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Peng-Zhong Ding
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hao-Ran Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yu Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xiao-Jie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yu-Sheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Ji-Chao Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Zi-Ying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
15
|
Hong J, Kwon KY, Jang DG, Kwon T, Yoon H, Park TJ. Mebendazole preferentially inhibits cilia formation and exerts anticancer activity by synergistically augmenting DNA damage. Biomed Pharmacother 2024; 174:116434. [PMID: 38513592 DOI: 10.1016/j.biopha.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
The cilium is a microtubule-based organelle that plays a pivotal role in embryonic development and maintenance of physiological functions in the human body. In addition to their function as sensors that transduce diverse extracellular signals, including growth factors, fluid flow, and physical forces, cilia are intricately involved in cell cycle regulation and preservation of DNA integrity, as their formation and resorption dynamics are tightly linked to cell cycle progression. Recently, several studies have linked defects in specific ciliary proteins to the DNA damage response. However, it remains unclear whether and how primary cilia contribute to cancer development. Mebendazole (MBZ) is an anthelmintic drug with anticancer properties in some cancer cells. MBZ is continuously being tested for clinical studies, but the precise mechanism of its anticancer activities remains unknown. Here, using Xenopus laevis embryos as a model system, we discovered that MBZ significantly hinders cilia formation and induces DNA damage. Remarkably, primary cilium-bearing cancer cells exhibited heightened vulnerability to combined treatment with MBZ and conventional anticancer drugs. Our findings shed light on the specific influence of MBZ on cilia, rather than cytosolic microtubules, in triggering DNA damage, elucidating a previously unidentified mechanism underlying potential MBZ-mediated cancer therapy.
Collapse
Affiliation(s)
- Juyeon Hong
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Keun Yeong Kwon
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Dong Gil Jang
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Taejoon Kwon
- Department of Biological Medical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Haejin Yoon
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.
| |
Collapse
|
16
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
17
|
Felício D, Santos M. Spinocerebellar ataxia type 11 (SCA11): TTBK2 variants, functions and associated disease mechanisms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:678-687. [PMID: 36892783 PMCID: PMC10951003 DOI: 10.1007/s12311-023-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
Spinocerebellar ataxia type 11 (SCA11) is a rare type of autosomal dominant cerebellar ataxia, mainly characterized by progressive cerebellar ataxia, abnormal eye signs and dysarthria. SCA11 is caused by variants in TTBK2, which encodes tau tubulin kinase 2 (TTBK2) protein. Only a few families with SCA11 were described to date, all harbouring small deletions or insertions that result in frameshifts and truncated TTBK2 proteins. In addition, TTBK2 missense variants were also reported but they were either benign or still needed functional validation to ascertain their pathogenic potential in SCA11. The mechanisms behind cerebellar neurodegeneration mediated by TTBK2 pathogenic alleles are not clearly established. There is only one neuropathological report and a few functional studies in cell or animal models published to date. Moreover, it is still unclear whether the disease is caused by TTBK2 haploinsufficiency of by a dominant negative effect of TTBK2 truncated forms on the normal allele. Some studies point to a lack of kinase activity and mislocalization of mutated TTBK2, while others reported a disruption of normal TTBK2 function caused by SCA11 alleles, particularly during ciliogenesis. Although TTBK2 has a proven function in cilia formation, the phenotype caused by heterozygous TTBK2 truncating variants are not clearly typical of ciliopathies. Thus, other cellular mechanisms may explain the phenotype seen in SCA11. Neurotoxicity caused by impaired TTBK2 kinase activity against known neuronal targets, such as tau, TDP-43, neurotransmitter receptors or transporters, may contribute to neurodegeneration in SCA11.
Collapse
Affiliation(s)
- Daniela Felício
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Mariana Santos
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
18
|
Xie S, Naslavsky N, Caplan S. Emerging insights into CP110 removal during early steps of ciliogenesis. J Cell Sci 2024; 137:jcs261579. [PMID: 38415788 PMCID: PMC10941660 DOI: 10.1242/jcs.261579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
The primary cilium is an antenna-like projection from the plasma membrane that serves as a sensor of the extracellular environment and a crucial signaling hub. Primary cilia are generated in most mammalian cells, and their physiological significance is highlighted by the large number of severe developmental disorders or ciliopathies that occur when primary ciliogenesis is impaired. Primary ciliogenesis is a tightly regulated process, and a central early regulatory step is the removal of a key mother centriole capping protein, CP110 (also known as CCP110). This uncapping allows vesicles docked on the distal appendages of the mother centriole to fuse to form a ciliary vesicle, which is bent into a ciliary sheath as the microtubule-based axoneme grows and extends from the mother centriole. When the mother centriole migrates toward the plasma membrane, the ciliary sheath fuses with the plasma membrane to form the primary cilium. In this Review, we outline key early steps of primary ciliogenesis, focusing on several novel mechanisms for removal of CP110. We also highlight examples of ciliopathies caused by genetic variants that encode key proteins involved in the early steps of ciliogenesis.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
19
|
Munir A, Afsar S, Rehman AU. A systematic review of inherited retinal dystrophies in Pakistan: updates from 1999 to April 2023. BMC Ophthalmol 2024; 24:55. [PMID: 38317096 PMCID: PMC10840256 DOI: 10.1186/s12886-024-03319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Inherited retinal degenerations (IRDs) are a group of rare genetic conditions affecting retina of the eye that range in prevalence from 1 in 2000 to 1 in 4000 people globally. This review is based on a retrospective analysis of research articles reporting IRDs associated genetic findings in Pakistani families between 1999 and April 2023. METHODS Articles were retrieved through survey of online sources, notably, PubMed, Google Scholar, and Web of Science. Following a stringent selection criterion, a total of 126 research articles and conference abstracts were considered. All reported variants were cross-checked and validated for their correct genomic nomenclature using different online resources/databases, and their pathogenicity scores were explained as per ACMG guidelines. RESULTS A total of 277 unique sequence variants in 87 distinct genes, previously known to cause IRDs, were uncovered. In around 70% cases, parents of the index patient were consanguineously married, and approximately 88.81% of the detected variants were found in a homozygous state. Overall, more than 95% of the IRDs cases were recessively inherited. Missense variants were predominant (41.88%), followed by Indels/frameshift (26.35%), nonsense (19.13%), splice site (12.27%) and synonymous change (0.36%). Non-syndromic IRDs were significantly higher than syndromic IRDs (77.32% vs. 22.68%). Retinitis pigmentosa (RP) was the most frequently observed IRD followed by Leber's congenital amaurosis (LCA). Altogether, mutations in PDE6A gene was the leading cause of IRDs in Pakistani families followed by mutations in TULP1 gene. CONCLUSION In summary, Pakistani families are notable in expressing recessively inherited monogenic disorders including IRDs likely due to the highest prevalence of consanguinity in the country that leads to expression of rare pathogenic variants in homozygous state.
Collapse
Affiliation(s)
- Asad Munir
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Salma Afsar
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, 21300, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
20
|
Grudzinska Pechhacker MK, Molnar A, Pekkola Pacheco N, Thonberg H, Querat L, Birkeldh U, Nordgren A, Lindstrand A. Reduced cone photoreceptor function and subtle systemic manifestations in two siblings with loss of SCLT1. Ophthalmic Genet 2024; 45:95-102. [PMID: 37246745 DOI: 10.1080/13816810.2023.2215332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The sodium channel and clathrin linker 1 gene (SCLT1) has been involved in the pathogenesis of various ciliopathy disorders such as Bardet-Biedl syndrome, orofaciodigital syndrome type IX, and Senior-Løken syndrome. Detailed exams are warranted to outline all clinical features. Here, we present a family with a milder phenotype of SCLT1-related disease. MATERIAL AND METHODS Comprehensive eye examination including fundus images, OCT, color vision, visual fields and electroretinography were performed. Affected individuals were assessed by a pediatrician and a medical geneticist for systemic features of ciliopathy. Investigations included echocardiography, abdominal ultrasonography, blood work-up for diabetes, liver and kidney function. Genetic testing included NGS retinal dystrophy panel, segregation analysis and transcriptome sequencing. RESULTS Two male children, age 10 and 8 years, were affected with attention deficit hyperactivity disorder (ADHD), obesity and mild photophobia. The ophthalmic exam revealed reduced best-corrected visual acuity (BCVA), strabismus, hyperopia, astigmatism and moderate red-green defects. Milder changes suggesting photoreceptors disease were found on retinal imaging. Electroretinogram confirmed cone photoreceptors dysfunction. Genetic testing revealed a homozygous likely pathogenic, splice-site variant in SCLT1 gene NM_144643.3: c.1439 + 1del in the proband and in the affected brother. The unaffected parents were heterozygous for the SCLT1 variant. Transcriptome sequencing showed retention of intron 16 in the proband. CONCLUSIONS In this report, we highlight the importance of further extensive diagnostics in patients with unexplained reduced vision, strabismus, refractive errors and ADHD spectrum disorders. SCLT1-related retinal degeneration is very rare and isolated reduced function of cone photoreceptors has not previously been observed.
Collapse
Affiliation(s)
- Monika K Grudzinska Pechhacker
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Ophthalmology, Strabismus and Electrophysiology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Anna Molnar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Ophthalmology, Strabismus and Electrophysiology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Nadja Pekkola Pacheco
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Thonberg
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Laurence Querat
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Ophthalmology, Strabismus and Electrophysiology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Ulrika Birkeldh
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Ophthalmology, Strabismus and Electrophysiology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lindstrand
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Kalot R, Sentell Z, Kitzler TM, Torban E. Primary cilia and actin regulatory pathways in renal ciliopathies. FRONTIERS IN NEPHROLOGY 2024; 3:1331847. [PMID: 38292052 PMCID: PMC10824913 DOI: 10.3389/fneph.2023.1331847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Ciliopathies are a group of rare genetic disorders caused by defects to the structure or function of the primary cilium. They often affect multiple organs, leading to brain malformations, congenital heart defects, and anomalies of the retina or skeletal system. Kidney abnormalities are among the most frequent ciliopathic phenotypes manifesting as smaller, dysplastic, and cystic kidneys that are often accompanied by renal fibrosis. Many renal ciliopathies cause chronic kidney disease and often progress to end-stage renal disease, necessitating replacing therapies. There are more than 35 known ciliopathies; each is a rare hereditary condition, yet collectively they account for a significant proportion of chronic kidney disease worldwide. The primary cilium is a tiny microtubule-based organelle at the apex of almost all vertebrate cells. It serves as a "cellular antenna" surveying environment outside the cell and transducing this information inside the cell to trigger multiple signaling responses crucial for tissue morphogenesis and homeostasis. Hundreds of proteins and unique cellular mechanisms are involved in cilia formation. Recent evidence suggests that actin remodeling and regulation at the base of the primary cilium strongly impacts ciliogenesis. In this review, we provide an overview of the structure and function of the primary cilium, focusing on the role of actin cytoskeleton and its regulators in ciliogenesis. We then describe the key clinical, genetic, and molecular aspects of renal ciliopathies. We highlight what is known about actin regulation in the pathogenesis of these diseases with the aim to consider these recent molecular findings as potential therapeutic targets for renal ciliopathies.
Collapse
Affiliation(s)
- Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Zachary Sentell
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M. Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Health Center, Montreal, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
22
|
Martínez-Rubio D, Hinarejos I, Argente-Escrig H, Marco-Marín C, Lozano MA, Gorría-Redondo N, Lupo V, Martí-Carrera I, Miranda C, Vázquez-López M, García-Pérez A, Marco-Hernández AV, Tomás-Vila M, Aguilera-Albesa S, Espinós C. Genetic Heterogeneity Underlying Phenotypes with Early-Onset Cerebellar Atrophy. Int J Mol Sci 2023; 24:16400. [PMID: 38003592 PMCID: PMC10671053 DOI: 10.3390/ijms242216400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebellar atrophy (CA) is a frequent neuroimaging finding in paediatric neurology, usually associated with cerebellar ataxia. The list of genes involved in hereditary forms of CA is continuously growing and reveals its genetic complexity. We investigated ten cases with early-onset cerebellar involvement with and without ataxia by exome sequencing or by a targeted panel with 363 genes involved in ataxia or spastic paraplegia. Novel variants were investigated by in silico or experimental approaches. Seven probands carry causative variants in well-known genes associated with CA or cerebellar hypoplasia: SETX, CACNA1G, CACNA1A, CLN6, CPLANE1, and TBCD. The remaining three cases deserve special attention; they harbour variants in MAST1, PI4KA and CLK2 genes. MAST1 is responsible for an ultrarare condition characterised by global developmental delay and cognitive decline; our index case added ataxia to the list of concomitant associated symptoms. PIK4A is mainly related to hypomyelinating leukodystrophy; our proband presented with pure spastic paraplegia and normal intellectual capacity. Finally, in a patient who suffers from mild ataxia with oculomotor apraxia, the de novo novel CLK2 c.1120T>C variant was found. The protein expression of the mutated protein was reduced, which may indicate instability that would affect its kinase activity.
Collapse
Affiliation(s)
- Dolores Martínez-Rubio
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
| | - Isabel Hinarejos
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
| | | | - Clara Marco-Marín
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), 46022 València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - María Ana Lozano
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
| | - Nerea Gorría-Redondo
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Vincenzo Lupo
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
| | - Itxaso Martí-Carrera
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario Donostia, 20014 Donostia, Spain
| | - Concepción Miranda
- Paediatric Neurology Unit, Department of Paediatrics, Hospital General Universitario Gregorio Marañón, 28027 Madrid, Spain
| | - María Vázquez-López
- Paediatric Neurology Unit, Department of Paediatrics, Hospital General Universitario Gregorio Marañón, 28027 Madrid, Spain
| | - Asunción García-Pérez
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - Ana Victoria Marco-Hernández
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitari Doctor, Peset, 46017 València, Spain
| | - Miguel Tomás-Vila
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitari i Politècnic La Fe, 46026 València, Spain
| | - Sergio Aguilera-Albesa
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Biotechnology Department, Universitat Politècnica de València, 46022 València, Spain
| |
Collapse
|
23
|
Carden S, Vitiello E, Rosa E Silva I, Holder J, Quarantotti V, Kishore K, Roamio Franklin VN, D'Santos C, Ochi T, van Breugel M, Gergely F. Proteomic profiling of centrosomes across multiple mammalian cell and tissue types by an affinity capture method. Dev Cell 2023; 58:2393-2410.e9. [PMID: 37852252 DOI: 10.1016/j.devcel.2023.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Centrosomes are the major microtubule-organizing centers in animals and play fundamental roles in many cellular processes. Understanding how their composition varies across diverse cell types and how it is altered in disease are major unresolved questions, yet currently available centrosome isolation protocols are cumbersome and time-consuming, and they lack scalability. Here, we report the development of centrosome affinity capture (CAPture)-mass spectrometry (MS), a powerful one-step purification method to obtain high-resolution centrosome proteomes from mammalian cells. Utilizing a synthetic peptide derived from CCDC61 protein, CAPture specifically isolates intact centrosomes. Importantly, as a bead-based affinity method, it enables rapid sample processing and multiplexing unlike conventional approaches. Our study demonstrates the power of CAPture-MS to elucidate cell-type-dependent heterogeneity in centrosome composition, dissect hierarchical interactions, and identify previously unknown centrosome components. Overall, CAPture-MS represents a transformative tool to unveil temporal, regulatory, cell-type- and tissue-specific changes in centrosome proteomes in health and disease.
Collapse
Affiliation(s)
- Sarah Carden
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Elisa Vitiello
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - James Holder
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Valentina Quarantotti
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Kamal Kishore
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Clive D'Santos
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Takashi Ochi
- MRC Laboratory of Molecular Biology, Cambridge, UK; The Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
| | - Mark van Breugel
- MRC Laboratory of Molecular Biology, Cambridge, UK; School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK.
| | - Fanni Gergely
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Claus LR, Chen C, Stallworth J, Turner JL, Slaats GG, Hawks AL, Mabillard H, Senum SR, Srikanth S, Flanagan-Steet H, Louie RJ, Silver J, Lerner-Ellis J, Morel C, Mighton C, Sleutels F, van Slegtenhorst M, van Ham T, Brooks AS, Dorresteijn EM, Barakat TS, Dahan K, Demoulin N, Goffin EJ, Olinger E, Larsen M, Hertz JM, Lilien MR, Obeidová L, Seeman T, Stone HK, Kerecuk L, Gurgu M, Yousef Yengej FA, Ammerlaan CME, Rookmaaker MB, Hanna C, Rogers RC, Duran K, Peters E, Sayer JA, van Haaften G, Harris PC, Ling K, Mason JM, van Eerde AM, Steet R. Certain heterozygous variants in the kinase domain of the serine/threonine kinase NEK8 can cause an autosomal dominant form of polycystic kidney disease. Kidney Int 2023; 104:995-1007. [PMID: 37598857 PMCID: PMC10592035 DOI: 10.1016/j.kint.2023.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.
Collapse
Affiliation(s)
- Laura R Claus
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Joshua L Turner
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Gisela G Slaats
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexandra L Hawks
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Holly Mabillard
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sujata Srikanth
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | - Raymond J Louie
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Josh Silver
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Lerner-Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Chantal Morel
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chloe Mighton
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Frank Sleutels
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tjakko van Ham
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eiske M Dorresteijn
- Department of Pediatric Nephrology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karin Dahan
- Institute Pathology and Genetic, Center of Human Genetics, Charleroi, Belgium
| | - Nathalie Demoulin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Eric Jean Goffin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Eric Olinger
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Martin Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marc R Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Lena Obeidová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Pediatrics, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Hillarey K Stone
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Larissa Kerecuk
- Birmingham Women's and Children's National Health Services (NHS) Foundation Trust, National Institute for Health Care and Research (NIHR) Clinical Research Network (CRN) West Midlands, Birmingham, UK
| | - Mihai Gurgu
- Fundeni Clinical Institute, Bucharest, Romania
| | - Fjodor A Yousef Yengej
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, the Netherlands; Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, Utrecht, the Netherlands
| | - Carola M E Ammerlaan
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, the Netherlands; Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, Utrecht, the Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Christian Hanna
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - R Curtis Rogers
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Karen Duran
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edith Peters
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John A Sayer
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK; National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Newcastle, UK
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.
| | - Jennifer M Mason
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA.
| | - Albertien M van Eerde
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Richard Steet
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA.
| |
Collapse
|
25
|
Moreno RY, Juetten KJ, Panina SB, Butalewicz JP, Floyd BM, Venkat Ramani MK, Marcotte EM, Brodbelt JS, Zhang YJ. Distinctive interactomes of RNA polymerase II phosphorylation during different stages of transcription. iScience 2023; 26:107581. [PMID: 37664589 PMCID: PMC10470302 DOI: 10.1016/j.isci.2023.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
During eukaryotic transcription, RNA polymerase II undergoes dynamic post-translational modifications on the C-terminal domain (CTD) of the largest subunit, generating an information-rich PTM landscape that transcriptional regulators bind. The phosphorylation of Ser5 and Ser2 of CTD heptad occurs spatiotemporally with the transcriptional stages, recruiting different transcriptional regulators to Pol II. To delineate the protein interactomes at different transcriptional stages, we reconstructed phosphorylation patterns of the CTD at Ser5 and Ser2 in vitro. Our results showed that distinct protein interactomes are recruited to RNA polymerase II at different stages of transcription by the phosphorylation of Ser2 and Ser5 of the CTD heptads. In particular, we characterized calcium homeostasis endoplasmic reticulum protein (CHERP) as a regulator bound by phospho-Ser2 heptad. Pol II association with CHERP recruits an accessory splicing complex whose loss results in broad changes in alternative splicing events. Our results shed light on the PTM-coded recruitment process that coordinates transcription.
Collapse
Affiliation(s)
| | - Kyle J. Juetten
- Department of Chemistry, University of Texas, Austin, TX, USA
| | - Svetlana B. Panina
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Brendan M. Floyd
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| |
Collapse
|
26
|
Tong L, Rao J, Yang C, Xu J, Lu Y, Zhang Y, Cang X, Xie S, Mao J, Jiang P. Mutational burden of XPNPEP3 leads to defects in mitochondrial complex I and cilia in NPHPL1. iScience 2023; 26:107446. [PMID: 37599822 PMCID: PMC10432713 DOI: 10.1016/j.isci.2023.107446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Nephronophthisis-like nephropathy-1 (NPHPL1) is a rare ciliopathy, caused by mutations of XPNPEP3. Despite a well-described monogenic etiology, the pathogenesis of XPNPEP3 associated with mitochondrial and ciliary function remains elusive. Here, we identified novel compound heterozygous mutations in NPHPL1 patients with renal lesion only or with extra bone cysts together. Patient-derived lymphoblasts carrying c.634G>A and c.761G>T together exhibit elevated mitochondrial XPNPEP3 levels via the reduction of mRNA degradation, leading to mitochondrial dysfunction in both urine tubular epithelial cells and lymphoblasts from patient. Mitochondrial XPNPEP3 was co-immunoprecipitated with respiratory chain complex I and was required for the stability and activity of complex I. Deletion of Xpnpep3 in mice resulted in lower activity of complex I, elongated primary cilium, and predisposition to tubular dilation and fibrosis under stress. Our findings provide valuable insights into the mitochondrial functions involved in the pathogenesis of NPHP.
Collapse
Affiliation(s)
- Lingxiao Tong
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jia Rao
- Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China
| | - Chenxi Yang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Xu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yijun Lu
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuchen Zhang
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohui Cang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Xie
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Zhejiang Key Laboratory for Neonatal Diseases, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pingping Jiang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Leggatt GP, Seaby EG, Veighey K, Gast C, Gilbert RD, Ennis S. A Role for Genetic Modifiers in Tubulointerstitial Kidney Diseases. Genes (Basel) 2023; 14:1582. [PMID: 37628633 PMCID: PMC10454709 DOI: 10.3390/genes14081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increased availability of genomic sequencing technologies, the molecular bases for kidney diseases such as nephronophthisis and mitochondrially inherited and autosomal-dominant tubulointerstitial kidney diseases (ADTKD) has become increasingly apparent. These tubulointerstitial kidney diseases (TKD) are monogenic diseases of the tubulointerstitium and result in interstitial fibrosis and tubular atrophy (IF/TA). However, monogenic inheritance alone does not adequately explain the highly variable onset of kidney failure and extra-renal manifestations. Phenotypes vary considerably between individuals harbouring the same pathogenic variant in the same putative monogenic gene, even within families sharing common environmental factors. While the extreme end of the disease spectrum may have dramatic syndromic manifestations typically diagnosed in childhood, many patients present a more subtle phenotype with little to differentiate them from many other common forms of non-proteinuric chronic kidney disease (CKD). This review summarises the expanding repertoire of genes underpinning TKD and their known phenotypic manifestations. Furthermore, we collate the growing evidence for a role of modifier genes and discuss the extent to which these data bridge the historical gap between apparently rare monogenic TKD and polygenic non-proteinuric CKD (excluding polycystic kidney disease).
Collapse
Affiliation(s)
- Gary P. Leggatt
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Eleanor G. Seaby
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| | - Kristin Veighey
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Christine Gast
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
| | - Rodney D. Gilbert
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Department of Paediatric Nephrology, Southampton Children’s Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Sarah Ennis
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| |
Collapse
|
28
|
Strong A, Qu H, Cullina S, McManus M, Zackai EH, Glessner J, Kenny EE, Hakonarson H. TOPORS as a novel causal gene for Joubert syndrome. Am J Med Genet A 2023; 191:2156-2163. [PMID: 37227088 PMCID: PMC10449431 DOI: 10.1002/ajmg.a.63303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Joubert syndrome (JBTS) is a Mendelian disorder of the primary cilium defined by the clinical triad of hypotonia, developmental delay, and a distinct cerebellar malformation called the molar tooth sign. JBTS is inherited in an autosomal recessive, autosomal dominant, or X-linked recessive manner. Though over 40 genes have been identified as causal for JBTS, molecular diagnosis is not made in 30%-40% of individuals who meet clinical criteria. TOPORS encodes topoisomerase I-binding arginine/serine-rich protein, and homozygosity for a TOPORS missense variant (c.29C > A; p.(Pro10Gln)) was identified in individuals with the ciliopathy oral-facial-digital syndrome in two families of Dominican descent. Here, we report an additional proband of Dominican ancestry with JBTS found by exome sequencing to be homozygous for the identical p.(Pro10Gln) TOPORS missense variant. Query of the Mount Sinai BioMe biobank, which includes 1880 individuals of Dominican ancestry, supports a high carrier frequency of the TOPORS p.(Pro10Gln) variant in individuals of Dominican descent. Our data nominates TOPORS as a novel causal gene for JBTS and suggests that TOPORS variants should be considered in the differential of ciliopathy-spectrum disease in individuals of Dominican ancestry.
Collapse
Affiliation(s)
- Alanna Strong
- The Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Huiqi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sinéad Cullina
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Morgan McManus
- The Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine H. Zackai
- The Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph Glessner
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hakon Hakonarson
- The Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Guan YT, Zhang C, Zhang HY, Wei WL, Yue W, Zhao W, Zhang DH. Primary cilia: Structure, dynamics, and roles in cancer cells and tumor microenvironment. J Cell Physiol 2023; 238:1788-1807. [PMID: 37565630 DOI: 10.1002/jcp.31092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
Despite the initiation of tumor arises from tumorigenic transformation signaling in cancer cells, cancer cell survival, invasion, and metastasis also require a dynamic and reciprocal association with extracellular signaling from tumor microenvironment (TME). Primary cilia are the antenna-like structure that mediate signaling sensation and transduction in different tissues and cells. Recent studies have started to uncover that the heterogeneous ciliation in cancer cells and cells from the TME in tumor growth impels asymmetric paracellular signaling in the TME, indicating the essential functions of primary cilia in homeostasis maintenance of both cancer cells and the TME. In this review, we discussed recent advances in the structure and assembly of primary cilia, and the role of primary cilia in tumor and TME formation, as well as the therapeutic potentials that target ciliary dynamics and signaling from the cells in different tumors and the TME.
Collapse
Affiliation(s)
- Yi-Ting Guan
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Chong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Hong-Yong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Wen-Lu Wei
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
- Department of Posthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Dong-Hui Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| |
Collapse
|
30
|
Wang J, Li S, Jiang Y, Wang Y, Ouyang J, Yi Z, Sun W, Jia X, Xiao X, Wang P, Zhang Q. Pathogenic Variants in CEP290 or IQCB1 Cause Earlier-Onset Retinopathy in Senior-Loken Syndrome Compared to Those in INVS, NPHP3, or NPHP4. Am J Ophthalmol 2023; 252:188-204. [PMID: 36990420 DOI: 10.1016/j.ajo.2023.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Senior-Loken syndrome (SLSN) is an autosomal recessive disorder characterized by retinopathy and nephronophthisis. This study aimed to evaluate whether different phenotypes are associated with different variants or subsets of 10 SLSN-associated genes based on an in-house data set and a literature review. DESIGN Retrospective case series. METHODS Patients with biallelic variants in SLSN-associated genes, including NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, SDCCAG8, WDR19, CEP164, and TRAF3IP1, were recruited. Ocular phenotypes and nephrology medical records were collected for comprehensive analysis. RESULTS Variants in 5 genes were identified in 74 patients from 70 unrelated families, including CEP290 (61.4%), IQCB1 (28.6%), NPHP1 (4.2%), NPHP4 (2.9%), and WDR19 (2.9%). The median age at the onset of retinopathy was approximately 1 month (since birth). Nystagmus was the most common initial sign in patients with CEP290 (28 of 44, 63.6%) or IQCB1 (19 of 22, 86.4%) variants. Cone and rod responses were extinguished in 53 of 55 patients (96.4%). Characteristic fundus changes were observed in CEP290- and IQCB1-associated patients. During follow-up, 70 of the 74 patients were referred to nephrology, among whom nephronophthisis was not detected in 62 patients (88.6%) at a median age of 6 years but presented in 8 patients (11.4%) aged approximately 9 years. CONCLUSIONS Patients with pathogenic variants in CEP290 or IQCB1 presented early with retinopathy, whereas other patients with INVS, NPHP3, or NPHP4 variants first developed nephropathy. Therefore, awareness of the genetic and clinical features may facilitate the clinical management of SLSN, especially early intervention of kidney problems for patients with eyes affected first.
Collapse
Affiliation(s)
- Junwen Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiqiang Li
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yi Jiang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yingwei Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiamin Ouyang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhen Yi
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenmin Sun
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoyun Jia
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xueshan Xiao
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Panfeng Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
31
|
Liu L, Zhou Y, Liu Y, Ding J, Xie Y, Li N. A novel pathogenic variant of CEP164 in an infant with Senior-Loken syndrome. Pediatr Investig 2023; 7:140-143. [PMID: 37324592 PMCID: PMC10262869 DOI: 10.1002/ped4.12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
- Lili Liu
- Department of OphthalmologyBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Yunyu Zhou
- Department of OphthalmologyBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Yue Liu
- Department of RadiologyBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Jiaojiao Ding
- Department of Abdominal UltrasoundFirst Affiliated Hospital of Xinjiang Medical UniversityXinjiangChina
| | - Yan Xie
- Department of OphthalmologyBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Ningdong Li
- Department of OphthalmologyBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineNational Clinical Research Center for Eye DiseasesShanghaiChina
| |
Collapse
|
32
|
Koslow M, Zhu P, McCabe C, Xu X, Lin X. Kidney transcriptome and cystic kidney disease genes in zebrafish. Front Physiol 2023; 14:1184025. [PMID: 37256068 PMCID: PMC10226271 DOI: 10.3389/fphys.2023.1184025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Polycystic kidney disease (PKD) is a condition where fluid filled cysts form on the kidney which leads to overall renal failure. Zebrafish has been recently adapted to study polycystic kidney disease, because of its powerful embryology and genetics. However, there are concerns on the conservation of this lower vertebrate in modeling polycystic kidney disease. Methods: Here, we aim to assess the molecular conservation of zebrafish by searching homologues polycystic kidney disease genes and carrying transcriptome studies in this animal. Results and Discussion: We found that out of 82 human cystic kidney disease genes, 81 have corresponding zebrafish homologs. While 75 of the genes have a single homologue, only 6 of these genes have two homologs. Comparison of the expression level of the transcripts enabled us to identify one homolog over the other homolog with >70% predominance, which would be prioritized for future experimental studies. Prompted by sexual dimorphism in human and rodent kidneys, we studied transcriptome between different sexes and noted significant differences in male vs. female zebrafish, indicating that sex dimorphism also occurs in zebrafish. Comparison between zebrafish and mouse identified 10% shared genes and 38% shared signaling pathways. String analysis revealed a cluster of genes differentially expressed in male vs. female zebrafish kidneys. In summary, this report demonstrated remarkable molecular conservation, supporting zebrafish as a useful animal model for cystic kidney disease.
Collapse
Affiliation(s)
- Matthew Koslow
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Chantal McCabe
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
33
|
Streubel JMS, Pereira G. Control of centrosome distal appendages assembly and disassembly. Cells Dev 2023; 174:203839. [PMID: 37062431 DOI: 10.1016/j.cdev.2023.203839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Centrosomes are microtubule organizing centers involved in chromosome segregation, spindle orientation, cell motility and cilia formation. In recent years, they have also emerged as key modulators of asymmetric cell division. Centrosomes are composed of two centrioles that initiate duplication in S phase. The conservative nature of centriole duplication means that the two centrioles of a G1 cell are of different ages. They are also structurally different as only the older centriole carry appendages, an assembly of a subset of proteins primarily required for cilia formation. In a growing tissue, the non-motile, primary cilium acts as a mechano- and sensory organelle that influences cell behavior via modulation of signaling pathways. Here, we discuss the most recent findings about distal appendage composition and function, as well as cell cycle-specific regulation and their implications in various diseases.
Collapse
Affiliation(s)
- Johanna M S Streubel
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany; German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany; German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
34
|
Pant P, Chitme H, Sircar R, Prasad R, Prasad HO. Genome-wide association study for single nucleotide polymorphism associated with mural and cumulus granulosa cells of PCOS (polycystic ovary syndrome) and non-PCOS patients. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Abstract
Background
The genetic make-up of local granulosa cells and their function in the pathophysiology of polycystic ovary syndrome (PCOS) is crucial to a full comprehension of the disorder. The major purpose of this study was to compare the Single Nucleotide Polymorphism (SNP) of cumulus granulosa cells (CGCs) and mural granulosa cells (MGCs) between healthy individuals and women with PCOS using genome-wide association analysis (GWA). A case–control study was conducted in a total of 24 women diagnosed with PCOS and 24 healthy non-PCOS women of reproductive age aggregated into 4 samples of 6 patients each. GWA studies entail several processes, such as cell separation, cellular DNA extraction, library preparation followed by interpretation using bioinformatics databases. SNP locations were identified by reference gene also involves the use of Matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry (MS) (MALDI-TOF-MS) for the first sorting. Hybridization with the gene chip was followed by reading the SNP genotypes according to the publications in the literature. TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) program and methods were used for GWA studies.
Results
An aggregate of 21,039 SNP calls were obtained from our samples. Genes of autoimmune illnesses, obesity, inflammatory illnesses, nervous system diseases such as retinitis pigmentosa, autism, neural tube defects, and Alzheimer's disease; and various malignancies such as lung cancer, colorectal cancer, breast cancer were also identified in these cells. Gene ranking score reveals that granulosa cells carry key genes of neurological system and reproductive systems especially in brain and testis, respectively.
Conclusions
Mural and Cumulus Granulosa cells were shown to have the PCOS directly and indirectly related genes MMP9, PRKAA2, COMT and HP. We found that the expression of ARID4B, MUC5AC, NID2, CREBBP, GNB1, KIF2C, COL18A1, and HNRNPC by these cells may contribute to PCOS.
Graphical abstract
Collapse
|
35
|
Ma X, Zhang Y, Zhang Y, Zhang X, Huang Y, He K, Chen C, Hao J, Zhao D, LeBrasseur NK, Kirkland JL, Chini EN, Wei Q, Ling K, Hu J. A stress-induced cilium-to-PML-NB route drives senescence initiation. Nat Commun 2023; 14:1840. [PMID: 37019904 PMCID: PMC10076330 DOI: 10.1038/s41467-023-37362-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Cellular senescence contributes to tissue homeostasis and age-related pathologies. However, how senescence is initiated in stressed cells remains vague. Here, we discover that exposure to irradiation, oxidative or inflammatory stressors induces transient biogenesis of primary cilia, which are then used by stressed cells to communicate with the promyelocytic leukemia nuclear bodies (PML-NBs) to initiate senescence responses in human cells. Mechanistically, a ciliary ARL13B-ARL3 GTPase cascade negatively regulates the association of transition fiber protein FBF1 and SUMO-conjugating enzyme UBC9. Irreparable stresses downregulate the ciliary ARLs and release UBC9 to SUMOylate FBF1 at the ciliary base. SUMOylated FBF1 then translocates to PML-NBs to promote PML-NB biogenesis and PML-NB-dependent senescence initiation. Remarkably, Fbf1 ablation effectively subdues global senescence burden and prevents associated health decline in irradiation-treated mice. Collectively, our findings assign the primary cilium a key role in senescence induction in mammalian cells and, also, a promising target in future senotherapy strategies.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yuanyuan Zhang
- Department of Clinical Genetics, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Zhang
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jielu Hao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Debiao Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Nathan K LeBrasseur
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Eduardo N Chini
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology, Mayo Clinic, Jacksonville, FL, USA
| | - Qing Wei
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA.
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
36
|
Devlin L, Dhondurao Sudhindar P, Sayer JA. Renal ciliopathies: promising drug targets and prospects for clinical trials. Expert Opin Ther Targets 2023; 27:325-346. [PMID: 37243567 DOI: 10.1080/14728222.2023.2218616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Renal ciliopathies represent a collection of genetic disorders characterized by deficiencies in the biogenesis, maintenance, or functioning of the ciliary complex. These disorders, which encompass autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and nephronophthisis (NPHP), typically result in cystic kidney disease, renal fibrosis, and a gradual deterioration of kidney function, culminating in kidney failure. AREAS COVERED Here we review the advances in basic science and clinical research into renal ciliopathies which have yielded promising small compounds and drug targets, within both preclinical studies and clinical trials. EXPERT OPINION Tolvaptan is currently the sole approved treatment option available for ADPKD patients, while no approved treatment alternatives exist for ARPKD or NPHP patients. Clinical trials are presently underway to evaluate additional medications in ADPKD and ARPKD patients. Based on preclinical models, other potential therapeutic targets for ADPKD, ARPKD, and NPHP look promising. These include molecules targeting fluid transport, cellular metabolism, ciliary signaling and cell-cycle regulation. There is a real and urgent clinical need for translational research to bring novel treatments to clinical use for all forms of renal ciliopathies to reduce kidney disease progression and prevent kidney failure.
Collapse
Affiliation(s)
- Laura Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Praveen Dhondurao Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
| |
Collapse
|
37
|
Garaycoechea JI, Quinlan C, Luijsterburg MS. Pathological consequences of DNA damage in the kidney. Nat Rev Nephrol 2023; 19:229-243. [PMID: 36702905 DOI: 10.1038/s41581-022-00671-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/27/2023]
Abstract
DNA lesions that evade repair can lead to mutations that drive the development of cancer, and cellular responses to DNA damage can trigger senescence and cell death, which are associated with ageing. In the kidney, DNA damage has been implicated in both acute and chronic kidney injury, and in renal cell carcinoma. The susceptibility of the kidney to chemotherapeutic agents that damage DNA is well established, but an unexpected link between kidney ciliopathies and the DNA damage response has also been reported. In addition, human genetic deficiencies in DNA repair have highlighted DNA crosslinks, DNA breaks and transcription-blocking damage as lesions that are particularly toxic to the kidney. Genetic tools in mice, as well as advances in kidney organoid and single-cell RNA sequencing technologies, have provided important insights into how specific kidney cell types respond to DNA damage. The emerging view is that in the kidney, DNA damage affects the local microenvironment by triggering a damage response and cell proliferation to replenish injured cells, as well as inducing systemic responses aimed at reducing exposure to genotoxic stress. The pathological consequences of DNA damage are therefore key to the nephrotoxicity of DNA-damaging agents and the kidney phenotypes observed in human DNA repair-deficiency disorders.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Catherine Quinlan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, Australia
- Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
38
|
Morleo M, Pezzella N, Franco B. Proteome balance in ciliopathies: the OFD1 protein example. Trends Mol Med 2023; 29:201-217. [PMID: 36494254 DOI: 10.1016/j.molmed.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
The balance of protein synthesis and degradation is finely regulated and influences cellular homeostasis and biological processes (e.g., embryonic development and neuronal plasticity). Recent data demonstrated that centrosomal/ciliary proteins enable proteome control in response to spatial or microenvironmental stimuli. Here, we discuss recent discoveries regarding the role in the balance of the proteome of centrosomal/ciliary proteins associated with genetic disorders known as ciliopathies. In particular, OFD1 was the first example of a ciliopathy protein controlling both protein expression and autophagic/proteasomal degradation. Understanding the role of proteome balance in the pathogenesis of the clinical manifestations of ciliopathies may pave the way to the identification of a wide range of putative novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples 'Federico II', Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
39
|
Devlin LA, Coles J, Jackson CL, Barroso-Gil M, Green B, Walker WT, Thomas NS, Thompson J, Rock SA, Neatu R, Powell L, Molinari E, Wilson IJ, Cordell HJ, Olinger E, Miles CG, Sayer JA, Wheway G, Lucas JS. Biallelic variants in CEP164 cause a motile ciliopathy-like syndrome. Clin Genet 2023; 103:330-334. [PMID: 36273371 PMCID: PMC10099168 DOI: 10.1111/cge.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/21/2022] [Accepted: 10/15/2022] [Indexed: 02/04/2023]
Abstract
Ciliopathies may be classed as primary or motile depending on the underlying ciliary defect and are usually considered distinct clinical entities. Primary ciliopathies are associated with multisystem syndromes typically affecting the brain, kidney, and eye, as well as other organ systems such as the liver, skeleton, auditory system, and metabolism. Motile ciliopathies are a heterogenous group of disorders with defects in specialised motile ciliated tissues found within the lung, brain, and reproductive system, and are associated with primary ciliary dyskinesia, bronchiectasis, infertility and rarely hydrocephalus. Primary and motile cilia share defined core ultra-structures with an overlapping proteome, and human disease phenotypes can reflect both primary and motile ciliopathies. CEP164 encodes a centrosomal distal appendage protein vital for primary ciliogenesis. Human CEP164 mutations are typically described in patients with nephronophthisis-related primary ciliopathies but have also been implicated in motile ciliary dysfunction. Here we describe a patient with an atypical motile ciliopathy phenotype and biallelic CEP164 variants. This work provides further evidence that CEP164 mutations can contribute to both primary and motile ciliopathy syndromes, supporting their functional and clinical overlap, and informs the investigation and management of CEP164 ciliopathy patients.
Collapse
Affiliation(s)
- Laura A Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Janice Coles
- Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Claire L Jackson
- Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Miguel Barroso-Gil
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ben Green
- Department of Respiratory Medicine, University Hospitals NHS Trust, Portsmouth, UK
| | - Woolf T Walker
- Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - N Simon Thomas
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury NSF Foundation Trust, Salisbury District Hospital, Salisbury, UK
| | - James Thompson
- Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Simon A Rock
- North East Innovation Lab, The Newcastle upon Tyne Hospitals NHS Foundation Trust, The Biosphere, Newcastle upon Tyne, UK
| | - Ruxandra Neatu
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Powell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Ian J Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eric Olinger
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Colin G Miles
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Renal Services Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
40
|
Zhu T, Zhang Y, Sheng X, Zhang X, Chen Y, Zhu H, Guo Y, Qi Y, Zhao Y, Zhou Q, Chen X, Guo X, Zhao C. Absence of CEP78 causes photoreceptor and sperm flagella impairments in mice and a human individual. eLife 2023; 12:76157. [PMID: 36756949 PMCID: PMC9984195 DOI: 10.7554/elife.76157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Cone-rod dystrophy (CRD) is a genetically inherited retinal disease that can be associated with male infertility, while the specific genetic mechanisms are not well known. Here, we report CEP78 as a causative gene of a particular syndrome including CRD and male infertility with multiple morphological abnormalities of sperm flagella (MMAF) both in human and mouse. Cep78 knockout mice exhibited impaired function and morphology of photoreceptors, typified by reduced ERG amplitudes, disrupted translocation of cone arrestin, attenuated and disorganized photoreceptor outer segments (OS) disks and widen OS bases, as well as interrupted connecting cilia elongation and abnormal structures. Cep78 deletion also caused male infertility and MMAF, with disordered '9+2' structure and triplet microtubules in sperm flagella. Intraflagellar transport (IFT) proteins IFT20 and TTC21A are identified as interacting proteins of CEP78. Furthermore, CEP78 regulated the interaction, stability, and centriolar localization of its interacting protein. Insufficiency of CEP78 or its interacting protein causes abnormal centriole elongation and cilia shortening. Absence of CEP78 protein in human caused similar phenotypes in vision and MMAF as Cep78-/- mice. Collectively, our study supports the important roles of CEP78 defects in centriole and ciliary dysfunctions and molecular pathogenesis of such multi-system syndrome.
Collapse
Affiliation(s)
- Tianyu Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Yuxin Zhang
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Xunlun Sheng
- Gansu Aier Ophthalmiology and Optometry HospitalLanzhouChina
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical UniversityYinchuanChina
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Hongjing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Yichen Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Qi Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Chen Zhao
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
41
|
Ma D, Wang F, Teng J, Huang N, Chen J. Structure and function of distal and subdistal appendages of the mother centriole. J Cell Sci 2023; 136:286880. [PMID: 36727648 DOI: 10.1242/jcs.260560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Centrosomes are composed of centrioles surrounded by pericentriolar material. The two centrioles in G1 phase are distinguished by the localization of their appendages in the distal and subdistal regions; the centriole possessing both types of appendage is older and referred to as the mother centriole, whereas the other centriole lacking appendages is the daughter centriole. Both distal and subdistal appendages in vertebrate cells consist of multiple proteins assembled in a hierarchical manner. Distal appendages function mainly in the initial process of ciliogenesis, and subdistal appendages are involved in microtubule anchoring, mitotic spindle regulation and maintenance of ciliary signaling. Mutations in genes encoding components of both appendage types are implicated in ciliopathies and developmental defects. In this Review, we discuss recent advances in knowledge regarding the composition and assembly of centriolar appendages, as well as their roles in development and disease.
Collapse
Affiliation(s)
- Dandan Ma
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
42
|
Ren L, Du W, Song D, Lu H, Hamblin MH, Wang C, Du C, Fan GC, Becker RC, Fan Y. Genetic ablation of diabetes-associated gene Ccdc92 reduces obesity and insulin resistance in mice. iScience 2023; 26:105769. [PMID: 36594018 PMCID: PMC9804112 DOI: 10.1016/j.isci.2022.105769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple genome-wide association studies (GWAS) have identified specific genetic variants in the coiled-coil domain containing 92 (CCDC92) locus that is associated with obesity and type 2 diabetes in humans. However, the biological function of CCDC92 in obesity and insulin resistance remains to be explored. Utilizing wild-type (WT) and Ccdc92 whole-body knockout (KO) mice, we found that Ccdc92 KO reduced obesity and increased insulin sensitivity under high-fat diet (HFD) conditions. Ccdc92 KO inhibited macrophage infiltration and fibrosis in white adipose tissue (WAT), suggesting Ccdc92 ablation protects against adipose tissue dysfunction. Ccdc92 deletion also increased energy expenditure and further attenuated hepatic steatosis in mice on an HFD. Ccdc92 KO significantly inhibited the inflammatory response and suppressed the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in WAT. Altogether, we demonstrated the critical role of CCDC92 in metabolism, constituting a potential target for treating obesity and insulin resistance.
Collapse
Affiliation(s)
- Lu Ren
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wa Du
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dan Song
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Haocheng Lu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milton H. Hamblin
- Tulane University Health Sciences Center, Tulane University, New Orleans, LA 70112, USA
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Chunying Du
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Richard C. Becker
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
43
|
Sambharia M, Freese ME, Donato F, Bathla G, Abukhiran IMM, Dantuma MI, Mansilla MA, Thomas CP. Suspected Autosomal Recessive Polycystic Kidney Disease but Cerebellar Vermis Hypoplasia, Oligophrenia Ataxia, Coloboma, and Hepatic Fibrosis (COACH) Syndrome in Retrospect, A Delayed Diagnosis Aided by Genotyping and Reverse Phenotyping: A Case Report and A Review of the Literature. Nephron Clin Pract 2023; 148:264-272. [PMID: 36617405 DOI: 10.1159/000527991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023] Open
Abstract
The clinical features of cerebellar vermis hypoplasia, oligophrenia, ataxia, coloboma, and hepatic fibrosis (COACH) characterize the rare autosomal recessive multisystem disorder called COACH syndrome. COACH syndrome belongs to the spectrum of Joubert syndrome and related disorders (JSRDs) and liver involvement distinguishes COACH syndrome from the rest of the JSRD spectrum. Developmental delay and oculomotor apraxia occur early but with time, these can improve and may not be readily apparent or no longer need active medical management. Congenital hepatic fibrosis and renal disease, on the other hand, may develop late, and the temporal incongruity in organ system involvement may delay the recognition of COACH syndrome. We present a case of a young adult presenting late to a Renal Genetics Clinic for evaluation of renal cystic disease with congenital hepatic fibrosis, clinically suspected to have autosomal recessive polycystic kidney disease. Following genetic testing, a reevaluation of his medical records from infancy, together with reverse phenotyping and genetic phasing, led to a diagnosis of COACH syndrome.
Collapse
Affiliation(s)
- Meenakshi Sambharia
- Division of Nephrology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Margaret E Freese
- Division of Nephrology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Francisco Donato
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Girish Bathla
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | | | - Maisie I Dantuma
- The Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
| | - M Adela Mansilla
- The Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Christie P Thomas
- Division of Nephrology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- The Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
44
|
Amorini M, Iapadre G, Mancuso A, Ceravolo I, Farello G, Scardamaglia A, Gramaglia S, Ceravolo A, Salpietro A, Cuppari C. An Overview of Genes Involved in the Pure Joubert Syndrome and in Joubert Syndrome-Related Disorders (JSRD). JOURNAL OF PEDIATRIC NEUROLOGY 2023. [DOI: 10.1055/s-0042-1760242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) is a rare autosomal recessive disease characterized by a peculiar brain malformation, hypotonia, ataxia, developmental delay, abnormal eye movements, and neonatal breathing abnormalities. This picture is often associated with variable multiorgan involvement, mainly of the retina, kidneys and liver, defining a group of conditions termed syndrome and Joubert syndrome-related disorders (JSRD). Currently, more than 30 causative genes have been identified, involved in the development and stability of the primary cilium. Correlations genotype–phenotype are emerging between clinical presentations and mutations in JSRD genes, with implications in terms of molecular diagnosis, prenatal diagnosis, follow-up, and management of mutated patients.
Collapse
Affiliation(s)
- Maria Amorini
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Simone Gramaglia
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
45
|
Elmalik SA. Electrophysiology of ataxia-telangiectasia-like disorder 1. Sudan J Paediatr 2023; 23:153-162. [PMID: 38380400 PMCID: PMC10876264 DOI: 10.24911/sjp.106-1703054783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 12/20/2023] [Indexed: 02/22/2024]
Abstract
Ataxia-telangiectasia-like disorder-1 (ATLD1, OMIM # 604391) is a very rare clinical condition, characterized by slowly progressive ataxia with onset in childhood, associated with oculomotor apraxia and dysarthria. Laboratory findings reveal increased susceptibility to radiation, with a defect in DNA repair. Patients with ATLD1 show no telangiectasia, have no immunodeficiency, and also have preserved cognition. Reflexes might be initially brisk and later becomes reduced associated with axonal sensorimotor neuropathy. Brain magnetic resonance imaging (MRI) detects cerebellar atrophy. The condition is caused by mutations in the meiotic recombination 11 (MRE11A) gene. The present study reports on the neurophysiologic finding in eight Saudi patients, belonging to three Saudi families, who have genetically confirmed ATLD1. All investigated patients had cerebellar atrophy on brain MRI (5/5). Electrophysiologic studies showed normal motor conduction velocity (MCV) of the median (8/8) and tibial (2/2) nerves, while 5/6 (83%) had normal peroneal nerve MCV. The distal motor latency (DML) for median, tibial, and peroneal nerves was within the normal range in all examined patients. The amplitude of compound muscle action potential (CMAP) of median and tibial nerves was also normal, while that of the peroneal nerve was normal in 3/6 (50%). Two of seven (29%) patients had reduced amplitude of median nerve sensory nerve action potential (SNAP) while 3/8 (38%) had a reduction in the amplitude of sural nerve SNAP. These findings favour an axonal type of neuropathy predominately affecting the sensory fibres (axonal sensorimotor neuropathy). The present study constitutes the largest cohort of ATLD1 patients worldwide who had electrophysiologic tests.
Collapse
Affiliation(s)
- Salah A Elmalik
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Shoemark A, Griffin H, Wheway G, Hogg C, Lucas JS, Camps C, Taylor J, Carroll M, Loebinger MR, Chalmers JD, Morris-Rosendahl D, Mitchison HM, De Soyza A, Brown D, Ambrose JC, Arumugam P, Bevers R, Bleda M, Boardman-Pretty F, Boustred CR, Brittain H, Caulfield MJ, Chan GC, Fowler T, Giess A, Hamblin A, Henderson S, Hubbard TJP, Jackson R, Jones LJ, Kasperaviciute D, Kayikci M, Kousathanas A, Lahnstein L, Leigh SEA, Leong IUS, Lopez FJ, Maleady-Crowe F, McEntagart M, Minneci F, Moutsianas L, Mueller M, Murugaesu N, Need AC, O'Donovan P, Odhams CA, Patch C, Perez-Gil D, Pereira MB, Pullinger J, Rahim T, Rendon A, Rogers T, Savage K, Sawant K, Scott RH, Siddiq A, Sieghart A, Smith SC, Sosinsky A, Stuckey A, Tanguy M, Taylor Tavares AL, Thomas ERA, Thompson SR, Tucci A, Welland MJ, Williams E, Witkowska K, Wood SM. Genome sequencing reveals underdiagnosis of primary ciliary dyskinesia in bronchiectasis. Eur Respir J 2022; 60:13993003.00176-2022. [PMID: 35728977 DOI: 10.1183/13993003.00176-2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bronchiectasis can result from infectious, genetic, immunological and allergic causes. 60-80% of cases are idiopathic, but a well-recognised genetic cause is the motile ciliopathy, primary ciliary dyskinesia (PCD). Diagnosis of PCD has management implications including addressing comorbidities, implementing genetic and fertility counselling and future access to PCD-specific treatments. Diagnostic testing can be complex; however, PCD genetic testing is moving rapidly from research into clinical diagnostics and would confirm the cause of bronchiectasis. METHODS This observational study used genetic data from severe bronchiectasis patients recruited to the UK 100,000 Genomes Project and patients referred for gene panel testing within a tertiary respiratory hospital. Patients referred for genetic testing due to clinical suspicion of PCD were excluded from both analyses. Data were accessed from the British Thoracic Society audit, to investigate whether motile ciliopathies are underdiagnosed in people with bronchiectasis in the UK. RESULTS Pathogenic or likely pathogenic variants were identified in motile ciliopathy genes in 17 (12%) out of 142 individuals by whole-genome sequencing. Similarly, in a single centre with access to pathological diagnostic facilities, 5-10% of patients received a PCD diagnosis by gene panel, often linked to normal/inconclusive nasal nitric oxide and cilia functional test results. In 4898 audited patients with bronchiectasis, <2% were tested for PCD and <1% received genetic testing. CONCLUSIONS PCD is underdiagnosed as a cause of bronchiectasis. Increased uptake of genetic testing may help to identify bronchiectasis due to motile ciliopathies and ensure appropriate management.
Collapse
Affiliation(s)
- Amelia Shoemark
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, Dundee, UK
- Royal Brompton Hospital and NHLI, Imperial College London, London, UK
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
| | - Helen Griffin
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Claire Hogg
- Royal Brompton Hospital and NHLI, Imperial College London, London, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Carme Camps
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Clinical Informatics Research Office, John Radcliffe Hospital, Oxford, UK
| | - Jenny Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Clinical Informatics Research Office, John Radcliffe Hospital, Oxford, UK
| | - Mary Carroll
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - James D Chalmers
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, Dundee, UK
| | - Deborah Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust and NHLI, Imperial College London, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
- These authors contributed equally to this manuscript
| | - Anthony De Soyza
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
- These authors contributed equally to this manuscript
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Airik M, Phua YL, Huynh AB, McCourt BT, Rush BM, Tan RJ, Vockley J, Murray SL, Dorman A, Conlon PJ, Airik R. Persistent DNA damage underlies tubular cell polyploidization and progression to chronic kidney disease in kidneys deficient in the DNA repair protein FAN1. Kidney Int 2022; 102:1042-1056. [PMID: 35931300 PMCID: PMC9588672 DOI: 10.1016/j.kint.2022.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022]
Abstract
Defective DNA repair pathways contribute to the development of chronic kidney disease (CKD) in humans. However, the molecular mechanisms underlying DNA damage-induced CKD pathogenesis are not well understood. Here, we investigated the role of tubular cell DNA damage in the pathogenesis of CKD using mice in which the DNA repair protein Fan1 was knocked out. The phenotype of these mice is orthologous to the human DNA damage syndrome, karyomegalic interstitial nephritis (KIN). Inactivation of Fan1 in kidney proximal tubule cells sensitized the kidneys to genotoxic and obstructive injury characterized by replication stress and persistent DNA damage response activity. Accumulation of DNA damage in Fan1 tubular cells induced epithelial dedifferentiation and tubular injury. Characteristic to KIN, cells with chronic DNA damage failed to complete mitosis and underwent polyploidization. In vitro and in vivo studies showed that polyploidization was caused by the overexpression of DNA replication factors CDT1 and CDC6 in FAN1 deficient cells. Mechanistically, inhibiting DNA replication with Roscovitine reduced tubular injury, blocked the development of KIN and mitigated kidney function in these Fan1 knockout mice. Thus, our data delineate a mechanistic pathway by which persistent DNA damage in the kidney tubular cells leads to kidney injury and development of CKD. Furthermore, therapeutic modulation of cell cycle activity may provide an opportunity to mitigate the DNA damage response induced CKD progression.
Collapse
Affiliation(s)
- Merlin Airik
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Leng Phua
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amy B Huynh
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Blake T McCourt
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brittney M Rush
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jerry Vockley
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Susan L Murray
- Department of Nephrology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anthony Dorman
- Department of Nephrology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter J Conlon
- Department of Nephrology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rannar Airik
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
48
|
Wang D, Chen X, Wen Q, Li Z, Chen W, Chen W, Wang X. A single heterozygous nonsense mutation in the TTC21B gene causes adult-onset nephronophthisis 12: A case report and review of literature. Mol Genet Genomic Med 2022; 10:e2076. [PMID: 36263627 PMCID: PMC9747551 DOI: 10.1002/mgg3.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nephronophthisis type 12 (NPHP 12) is a rare cilia-related cystic kidney disease, caused by TTC21B mutation, mainly involving the kidneys, which generally occurs in children. Our study aimed to illustrate its clinical, pathological and genetic characteristics by reporting an adult-onset case of NPHP 12 caused by a single heterozygous nonsense mutation of TTC21B confirmed by renal histology and whole exome sequencing and reviewing related literature with a comparative analysis of the clinical features of each case. It will further increase the recognition of this rare kidney genetic disease, which sometimes can manifest as an adult disease. RESULTS A 33-years-old man showed a chronic disease course, and he exhibited slight renal dysfunction (CKD stage 3, eGFR = 49 ml/[min* 1.73 m2]) with renal tubular proteinuria, without any extrarenal manifestations, congenital malformation history of kidney disease, or family hereditary disease. Renal histological findings showed substantial interstitial fibrosis with some irregular and tortuous tubules with complex branches and segmental thickening and splitting of the tubular basement membrane. The patient was diagnosed with chronic interstitial nephritis for an unknown reason clinically. Further genetic analysis revealed a single heterozygous nonsense mutation in the TTC21B gene and NPHP 12 was diagnosed finally. CONCLUSION A single heterozygous mutation in the TTC21B gene may cause atypical NPHP12, which had a relatively later onset and milder clinical symptoms without developmental abnormalities. Therefore, for unexplained adult-onset chronic interstitial nephritis with unusual changes of renal tubules and interstitial fibrosis, even without a clear history of hereditary kidney disease, genetic testing is still recommended. The correct diagnosis of this rare adult-onset hereditary nephropathy can avoid unnecessary treatment.
Collapse
Affiliation(s)
- Dan Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Xionghui Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Qiong Wen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Zhijian Li
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Wei Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Wenfang Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,Department of PathologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xin Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
49
|
Reed M, Takemaru KI, Ying G, Frederick JM, Baehr W. Deletion of CEP164 in mouse photoreceptors post-ciliogenesis interrupts ciliary intraflagellar transport (IFT). PLoS Genet 2022; 18:e1010154. [PMID: 36074756 PMCID: PMC9488791 DOI: 10.1371/journal.pgen.1010154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/20/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Centrosomal protein of 164 kDa (CEP164) is located at distal appendages of primary cilia and is necessary for basal body (BB) docking to the apical membrane. To investigate the function of photoreceptor CEP164 before and after BB docking, we deleted CEP164 during retina embryonic development (Six3Cre), in postnatal rod photoreceptors (iCre75) and in mature retina using tamoxifen induction (Prom1-ETCre). BBs dock to the cell cortex during postnatal day 6 (P6) to extend a connecting cilium (CC) and an axoneme. P6 retina-specific knockouts (retCep164-/-) are unable to dock BBs, thereby preventing formation of CC or outer segments (OSs). In rod-specific knockouts (rodCep164-/-), Cre expression starts after P7 and CC/OS form. P16 rodCep164-/- rods have nearly normal OS lengths, and maintain OS attachment through P21 despite loss of CEP164. Intraflagellar transport components (IFT88, IFT57 and IFT140) were reduced at P16 rodCep164-/- BBs and CC tips and nearly absent at P21, indicating impaired intraflagellar transport. Nascent OS discs, labeled with a fluorescent dye on P14 and P18 and harvested on P19, showed continued rodCep164-/- disc morphogenesis but absence of P14 discs mid-distally, indicating OS instability. Tamoxifen induction with PROM1ETCre;Cep164F/F (tamCep164-/-) adult mice affected maintenance of both rod and cone OSs. The results suggest that CEP164 is key towards recruitment and stabilization of IFT-B particles at the BB/CC. IFT impairment may be the main driver of ciliary malfunction observed with hypomorphic CEP164 mutations.
Collapse
Affiliation(s)
- Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Ken-Ichi Takemaru
- Stony Brook University, Department of Pharmacological Sciences, Stony Brook, New York, United States of America
| | - Guoxin Ying
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Jeanne M. Frederick
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
50
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|