1
|
Yuan H, Wang X, Du S, Li M, Zhu E, Zhou J, Dong Y, Wang S, Shan L, Liu Q, Wang B. NELL2, a novel osteoinductive factor, regulates osteoblast differentiation and bone homeostasis through fibronectin 1/integrin-mediated FAK/AKT signaling. Bone Res 2025; 13:46. [PMID: 40210857 PMCID: PMC11986068 DOI: 10.1038/s41413-025-00420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025] Open
Abstract
Neural EGFL-like 2 (NELL2) is a secreted protein known for its regulatory functions in the nervous and reproductive systems, yet its role in bone biology remains unexplored. In this study, we observed that NELL2 was diminished in the bone of aged and ovariectomized (OVX) mice, as well as in the serum of osteopenia and osteoporosis patients. In vitro loss-of-function and gain-of-function studies revealed that NELL2 facilitated osteoblast differentiation and impeded adipocyte differentiation from stromal progenitor cells. In vivo studies further demonstrated that the deletion of NELL2 in preosteoblasts resulted in decreased cancellous bone mass in mice. Mechanistically, NELL2 interacted with the FNI-type domain located at the C-terminus of Fibronectin 1 (Fn1). Moreover, we found that NELL2 activated the focal adhesion kinase (FAK)/AKT signaling pathway through Fn1/integrin β1 (ITGB1), leading to the promotion of osteogenesis and the inhibition of adipogenesis. Notably, administration of NELL2-AAV was found to ameliorate bone loss in OVX mice. These findings underscore the significant role of NELL2 in osteoblast differentiation and bone homeostasis, suggesting its potential as a therapeutic target for managing osteoporosis.
Collapse
Affiliation(s)
- Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Xinyu Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Shuanglin Du
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Mengyue Li
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yuan Dong
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Shuang Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Liying Shan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Qian Liu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
2
|
Liu S, Wu H, Zhang P, Zhou H, Wu D, Jin Y, Yang H, Xing R, Wu Y, Wu G. NELL2 suppresses epithelial-mesenchymal transition and induces ferroptosis via notch signaling pathway in HCC. Sci Rep 2025; 15:10193. [PMID: 40133552 PMCID: PMC11937300 DOI: 10.1038/s41598-025-94669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Although various malignant tumors have been associated with the aberrant expression of Neural Epidermal Growth Factor-Like 2 (NELL2), its involvement in hepatocellular carcinoma (HCC) has not been previously documented. In this study, NELL2, recognized as a crucial tumor-suppressor gene, was found to be infrequently expressed in HCC. In vitro experiments demonstrated that the overexpression of NELL2 significantly inhibited the proliferation, migration, and invasion of liver cancer cells, whereas the suppression of NELL2 markedly enhanced these oncogenic properties. Further investigation revealed that NELL2 impedes epithelial-mesenchymal transition (EMT) via the Notch signaling pathway. Inhibition of the Notch pathway reversed the increased tumor proliferation, migration, and invasion observed following the downregulation of NELL2 expression. Notably, gene enrichment analysis and in vitro studies indicated that NELL2 effectively induced ferroptosis in HCC cells, as evidenced by increased levels of cellular malondialdehyde (MDA), iron, and Reactive Oxygen Species (ROS), alongside decreased glutathione (GSH) levels. The blockade of the Notch signaling pathway substantially diminished NELL2's capacity to induce ferroptosis. In summary, our findings suggest that NELL2 modulates the Notch signaling pathway to inhibit EMT and promote ferroptosis. Consequently, NELL2 may serve as a novel therapeutic target, potentially functioning as a tumor suppressor gene in HCC.
Collapse
Affiliation(s)
- Shiqi Liu
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of General Surgery of Liaoning Province, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Haomin Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of General Surgery of Liaoning Province, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Pengjie Zhang
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning, People's Republic of China
| | - Haonan Zhou
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning, People's Republic of China
| | - Di Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yifan Jin
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of General Surgery of Liaoning Province, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Hongwei Yang
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of General Surgery of Liaoning Province, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Ruilin Xing
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yubo Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning, People's Republic of China
| | - Gang Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of General Surgery of Liaoning Province, First Hospital of China Medical University, No.155, Nanjingbei Street, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
3
|
Culiat C, Soni D, Malkes W, Wienhold M, Zhang LH, Henry E, Dragan M, Kar S, Angeles DM, Eaker S, Biswas R. NELL1 variant protein (NV1) modulates hyper-inflammation, Th-1 mediated immune response, and the HIF-1α hypoxia pathway to promote healing in viral-induced lung injury. Biochem Biophys Res Commun 2025; 744:151198. [PMID: 39706056 DOI: 10.1016/j.bbrc.2024.151198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Research underscores the urgent need for technological innovations to treat lung tissue damage from viral infections and the lasting impact of COVID-19. Our study demonstrates the effectiveness of recombinant human NV1 protein in promoting a pro-healing extracellular matrix that regulates homeostasis in response to excessive tissue reactions caused by infection and injury. NV1 achieves this by calibrating multiple biological mechanisms, including reducing hyperinflammatory cytokine levels (e.g., IFN-γ, TNF-α, IL-10, and IP-10), enhancing the production of proteins involved in viral inactivation and clearance through endocytosis and phagocytosis (e.g., IL-9, IL-1α), regulating pro-clotting and thrombolytic pathways (e.g., downregulates SERPINE 1 and I-TAC during Th1-mediated inflammation), maintaining cell survival under hypoxic conditions via HIF-1α regulation through the M3K5-JNK-AP-1 and TSC2-mTOR pathways, and promoting blood vessel formation. Our findings reveal NV1 as a potential therapeutic candidate for treating severe lung injuries caused by inflammatory and hypoxic conditions from viral infections and related diseases.
Collapse
Affiliation(s)
| | - Dharmendra Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | | | - Mark Wienhold
- NellOne Therapeutics Inc., Knoxville, TN, 37931, USA
| | | | | | | | | | | | - Shannon Eaker
- NellOne Therapeutics Inc., Knoxville, TN, 37931, USA
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
4
|
Sharma Y, Jain A, Gupta P, Tiwari V, Gupta A, Bhargava V, Malik M, Gupta A, Bhalla AK, Rana DS. NELL-1 Associated Membranous Nephropathy - A Case Series from India. Indian J Nephrol 2024; 34:654-656. [PMID: 39649312 PMCID: PMC11618949 DOI: 10.25259/ijn_326_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/07/2023] [Indexed: 12/10/2024] Open
Abstract
Neural epidermal growth factor-like 1 (NELL-1) is responsible for a substantial proportion of cases of PLA2R-negative primary membranous nephropathy (MN). To investigate the occurrence, association, and treatment responses, we carried out this ambispective study. In the study, nine (10%) of all patients with MN at our center were found to be NELL-1 positive. On follow up, all patients recieved immunosuppression (steroids, cyclophosphamide or rituximab). Five patients were in complete remission, while one patient had partial remission, two patients had a progressive decline in kidney function, and one patient was lost to follow-up early. No link was found with malignancies, traditional Indian medicines or infection.
Collapse
Affiliation(s)
- Yogita Sharma
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Akash Jain
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Pallav Gupta
- Department of Pathology, Sir Ganga Ram Hospital, New Delhi, India
| | - Vaibhav Tiwari
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Anurag Gupta
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Vinant Bhargava
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Manish Malik
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Ashwani Gupta
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | | | | |
Collapse
|
5
|
Hu X, Wang G, Cheng H. Specific antigens in malignancy-associated membranous nephropathy. Front Med (Lausanne) 2024; 11:1368457. [PMID: 38686366 PMCID: PMC11056512 DOI: 10.3389/fmed.2024.1368457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Membranous nephropathy (MN) is a glomerular disease mediated by autoimmune complex deposition, with approximately 30% of cases attributed to secondary causes. Among them, malignant tumors are a significant cause of secondary MN. Recent advancements in the identification of MN-specific antigens, such as THSD7A and NELL-1, suggest a potential association with malignant tumors, yet definitive proof of this relationship remains elusive. Therefore, this article aims to review the distribution of MN-specific antigens in patients with MN caused by malignant tumors and the possible role of these antigens in the pathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Hong Cheng
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Andeen NK, Kung VL, Avasare RS. NELL1 membranous nephropathy: clinical associations provide mechanistic clues. FRONTIERS IN NEPHROLOGY 2024; 4:1323432. [PMID: 38596642 PMCID: PMC11002321 DOI: 10.3389/fneph.2024.1323432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Neural epidermal growth factor-like 1 (NELL1) membranous nephropathy (MN) is notable for its segmental deposit distribution, IgG1 dominant deposits, and comparatively high rate of spontaneous remission. It has been associated with a variety of exposures and secondary conditions, specifically use of thiol-containing medications - including lipoic acid, bucillamine, and tiopronin - as well as traditional indigenous medications (TIM) particularly those with high mercury content, and non-steroid anti-inflammatory drugs (NSAIDs). Malignancies, graft vs. host disease (GVHD), infection, and autoimmune conditions have also been associated with NELL1 MN. Herein, we provide a detailed summary of the clinicopathologic features of NELL1 and associations with underlying conditions, with a focus on treatment and outcomes. Rare cases of dual NELL1 and phospholipase A2 receptor (PLA2R) positive MN are reviewed. Genome-wide association study of NELL1, role of NELL1 in other physiologic and pathologic processes, and connection between NELL1 MN and malignancy with relevance of NELL1 tumor staining are examined. Finally, relationships and potential disease mechanisms of thiol- and mercury- associated NELL1 MN are discussed.
Collapse
Affiliation(s)
- Nicole K. Andeen
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Vanderlene L. Kung
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Rupali S. Avasare
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
7
|
Kiyozumi D. Lumicrine signaling: Extracellular regulation of sperm maturation in the male reproductive tract lumen. Genes Cells 2023; 28:757-763. [PMID: 37696504 PMCID: PMC11447831 DOI: 10.1111/gtc.13066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023]
Abstract
The behaviors of cells, tissues, and organs are controlled by the extracellular environment in addition to their autonomous regulatory system. Dysfunction of extracellular regulatory mechanisms affects not only the development and survival of organisms but also successful reproduction. In this review article, a novel extracellular regulatory mechanism regulating the mammalian male reproductive ability will be briefly summarized. In terrestrial vertebrates, spermatozoa generated in the testis are transported through the lumen of the male reproductive tract and become functionally mature during the transport. Recent studies with gene-modified animals are unveiling the luminal extracellular environment of the reproductive tract to function not only as the pathway of sperm transport and the site of sperm maturation but also as the channel for cellular communication to regulate sperm maturation. Of special interest is the molecular mechanism of lumicrine signaling, a transluminal secreted signal transduction in the male reproductive tract lumen as a master regulator of sperm maturation and male reproductive ability. The general significance of such transluminal signaling in the context of cell biology will also be discussed.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Research Institute of Environmental MedicineNagoya UniversityNagoyaJapan
- PRESTOJapan Science and Technology AgencyTokyoJapan
| |
Collapse
|
8
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Kiyozumi D. The molecular mechanisms of mammalian sperm maturation regulated by NELL2-ROS1 lumicrine signaling. J Biochem 2022; 172:341-346. [PMID: 36071564 DOI: 10.1093/jb/mvac071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
In terrestrial vertebrates, spermatozoa generated in the testis are transported through the reproductive tract toward outside the body. In addition to as the pathway of sperm transport, the male reproductive tract also functions as the site of post-testicular sperm maturation and the epididymis, which constitutes the majority of male reproductive tract, plays central roles in such a sperm maturation. Recent studies with gene-modified animals have been unveiling not only the molecular mechanisms of sperm maturation in the epididymis but the regulatory system by which the epididymis acquires and executes sperm maturing functions. In this review, the mechanisms of mammalian sperm maturation will be summarized, based on recent findings including the lumicrine regulation of sperm maturation.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Research Institute for Microbial Diseases, Osaka University, Japan.,Japan Science and Technology Agency (JST), Japan
| |
Collapse
|
10
|
Salvadori M, Tsalouchos A. Update on New Antigens in the Pathogenesis of Membranous Nephropathy. EUROPEAN MEDICAL JOURNAL 2022. [DOI: 10.33590/emj/22-00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previously, membranous nephropathies were divided into primary and secondary categories when the exact mechanism or pathogenetic factor were unknown.
Approximately 70% accounted for primary membranous nephropathies. The
remaining 30% were called secondary because they developed due to well-known
diseases such as autoimmune diseases, tumours, infections, or drug assumptions.
The discoveries of the M-type phospholipase A2 receptor and of thrombospondin
type 1 domain containing 7A as causative antigens in a part of the so-called primary
membranous nephropathies opened new knowledge on the effective causes of
a large part of these diseases. The availability of novel techniques such as laser
micro-dissection and tandem mass spectrometry, as well as immunochemistry with
antibodies directed against novel proteins, allowed the confirmation of new antigens
involved. The use of confocal microscopy and Western blot allowed detection of the
new antigen on glomerular membrane, and the same antigen and relative antibodies
have been detected in serum samples.
Through these techniques, four new antigens were first detected, including neural
epidermal growth factor 1 and semaphorin 3B in the so-called primary membranous
nephropathy, and exostosin 1 and 2 and neural cell adhesion molecule 1 in lupus
membranous nephropathy.
The aim of this study is to describe the characteristics of the new antigens
discovered and their association with other diseases. In addition, new antigens
are on the horizon, and the story of primary membranous nephropathy is still to be
completely written and understood.
Collapse
Affiliation(s)
| | - Aris Tsalouchos
- Division of Nephrology, Santa Maria Annunziata Hospital, Florence, Italy
| |
Collapse
|
11
|
Kohansal M, Ghanbarisad A, Tabrizi R, Daraei A, Kashfi M, Tang H, Song C, Chen Y. tRNA-derived fragments in gastric cancer: Biomarkers and functions. J Cell Mol Med 2022; 26:4768-4780. [PMID: 35957621 PMCID: PMC9465185 DOI: 10.1111/jcmm.17511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
tRNA‐derived fragments (tRFs), non‐coding RNAs that regulate protein expression after transcription, have recently been identified as potential biomarkers. We identified differentially expressed tRFs in gastric cancer (GC) and the biological properties of tRFs in predicting the malignancy status of GCs as possible biomarkers. Until 15 February 2022, two independent reviewers did a thorough search in electronic databases of Scopus, EMBASE and PubMed. The QUADAS scale was used for quality assessment of the included studies. Ten articles investigating the clinical significance of tRFs, including 928 patients, were analysed. In 10 GC studies, seven tRFs were considerably upregulated and five tRFs were significantly downregulated when compared to controls. Risk of bias was rated low for index test, and flow as well as timing domains in relation to the review question. The applicability of the index test, flow and timing and patient selection for 10 studies was deemed low. In this study, we review the advances in the study of tRFs in GC and describe their functions in gene expression regulation, such as suppression of translation, cell differentiation, proliferation and the related signal transduction pathways associated with them. Our findings may offer researchers new ideas for cancer treatment as well as potential biomarkers for further research in GC.
Collapse
Affiliation(s)
- Maryam Kohansal
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.,Department of biology, Payame Noor University, Tehran, Iran
| | - Ali Ghanbarisad
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.,Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojtaba Kashfi
- Departmen of Microbiology, School of Medicine, Shahid Beheshti Univercity of Medical Sciences, Tehran, Iran
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Gastric Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
12
|
Miyaguchi M, Nakanishi Y, Maturana AD, Mizutani K, Niimi T. Conformational Change of the Hairpin-like-structured Robo2 Ectodomain Allows NELL1/2 Binding. J Mol Biol 2022; 434:167777. [DOI: 10.1016/j.jmb.2022.167777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
|
13
|
Salvadori M, Tsalouchos A. New antigens involved in membranous nephropathy beyond phospholipase A2 receptor. World J Nephrol 2022; 11:115-126. [PMID: 36161266 PMCID: PMC9353762 DOI: 10.5527/wjn.v11.i4.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
When the physiopathology of membranous nephropathy was first described, almost 30% of cases were recognized to be secondary to well-known diseases such as autoimmune diseases, tumors or infections. The remaining 70% cases were called primary membranous nephropathy as the exact mechanism or pathogenic factor involved was unknown. The discovery of the M type phospholipase A2 receptor and thrombospondin type 1 domain containing 7A as causative antigens in these "so called" primary membranous nephropathies provided new insights into the effective causes of a large proportion of these cases. Novel techniques such as laser microdissection and tandem mass spectrometry as well as immunochemistry with antibodies directed against novel proteins allowed the confirmation of new involved antigens. Finally, using confocal microscopy to localize these new antigens and immunoglobulin G and Western blot analysis of serum samples, these new antigens were detected on the glomerular membrane, and the related antibodies were detected in serum samples. The same antigens have been recognized in some cases of secondary membranous disease due to autoimmune diseases, tumors and infections. This has allowed examination of the relationship between antigens in primary membranous nephropathy and their presence in some secondary nephropathies. The aim of this study is to describe the characteristics of the new antigens discovered and their association with other diseases.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Tuscany, Italy
| | - Aris Tsalouchos
- Division of Nephrology, Santa Maria Annunziata, Florence 50012, Tuscany, Italy
| |
Collapse
|
14
|
Zhao J, Wei G, Zhu J, Liu D, Qin B. Expression analysis of nel during zebrafish embryonic development. Gene Expr Patterns 2022; 45:119258. [PMID: 35691514 DOI: 10.1016/j.gep.2022.119258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/05/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Nel is a multimeric extracellular glycoprotein which predominantly expressed in the nervous system and play an important role in neural development and functions. There are three nel paralogues included nell2a, nell2b, and nell3 in zebrafish, while systematic expression analysis of the nel family is still lacking. In this study, we performed a phylogenetic analysis on 7 species, in different species the nell2a are highly conserved, as is nell2b. Then, the expression profiles of nell2a, nell2b and nell3 were detected by in situ hybridization in zebrafish embryo, and the result showed that nel genes highly enriched in the central nervous system, but distributed in different regions of the brain. In addition, nell2a is also expressed in the olfactory pit, spinal cord, otic vesicle and retina (ganglion cell layer), nell2b was detected to express in gill arches, olfactory epithelium, olfactory pit, spinal cord, photoreceptor and retina (ganglion cell layer), it should be noted that the expression of nell3 is special, was only detected at 96 hpf in the brain and spinal cord of zebrafish. Overall, our results indicate that nell2a and nell2b genes are expressed in the nervous system and eyes of zebrafish embryo, while nell3 is expressed in different regions in the nervous system. The phylogenetic analysis also shows that nell3 sequences are significantly different from nell2a and nell2b. This study provides new evidence to better understand the role of nel in zebrafish embryo development.
Collapse
Affiliation(s)
- Jinxiang Zhao
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Guanyun Wei
- School of Life Science, Nantong Laboratory of Development and Diseases; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiang Zhu
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Bing Qin
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China; Suqian Clinical College of Xuzhou Medical University, Suqian, China.
| |
Collapse
|
15
|
Shaker MR, Kahtan A, Prasad R, Lee JH, Pietrogrande G, Leeson HC, Sun W, Wolvetang EJ, Slonchak A. Neural Epidermal Growth Factor-Like Like Protein 2 Is Expressed in Human Oligodendroglial Cell Types. Front Cell Dev Biol 2022; 10:803061. [PMID: 35265611 PMCID: PMC8899196 DOI: 10.3389/fcell.2022.803061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/06/2022] [Indexed: 01/14/2023] Open
Abstract
Neural epidermal growth factor-like like 2 (NELL2) is a cytoplasmic and secreted glycosylated protein with six epidermal growth factor-like domains. In animal models, NELL2 is predominantly expressed in neural tissues where it regulates neuronal differentiation, polarization, and axon guidance, but little is known about the role of NELL2 in human brain development. In this study, we show that rostral neural stem cells (rNSC) derived from human-induced pluripotent stem cell (hiPSC) exhibit particularly strong NELL2 expression and that NELL2 protein is enriched at the apical side of neural rosettes in hiPSC-derived brain organoids. Following differentiation of human rostral NSC into neurons, NELL2 remains robustly expressed but changes its subcellular localization from >20 small cytoplasmic foci in NSC to one–five large peri-nuclear puncta per neuron. Unexpectedly, we discovered that in human brain organoids, NELL2 is readily detectable in the oligodendroglia and that the number of NELL2 puncta increases as oligodendrocytes mature. Artificial intelligence-based machine learning further predicts a strong association of NELL2 with multiple human white matter diseases, suggesting that NELL2 may possess yet unexplored roles in regulating oligodendrogenesis and/or myelination during human cortical development and maturation.
Collapse
Affiliation(s)
- Mohammed R Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amna Kahtan
- St Cloud Technical & Community College, St Cloud, MN, United States
| | - Renuka Prasad
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Giovanni Pietrogrande
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Hannah C Leeson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Cheng X, Shi J, Jia Z, Ha P, Soo C, Ting K, James AW, Shi B, Zhang X. NELL-1 in Genome-Wide Association Studies across Human Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:395-405. [PMID: 34890556 PMCID: PMC8895422 DOI: 10.1016/j.ajpath.2021.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023]
Abstract
Neural epidermal growth factor-like (EGFL)-like protein (NELL)-1 is a potent and key osteogenic factor in the development and regeneration of skeletal tissues. Intriguingly, accumulative data from genome-wide association studies (GWASs) have started unveiling potential broader roles of NELL-1 beyond its functions in bone and cartilage. With exploration of the genetic variants of the entire genome in large-scale disease cohorts, GWASs have been used for establishing the connection between specific single-nucleotide polymorphisms of NELL1, in addition to osteoporosis, metabolic diseases, inflammatory conditions, neuropsychiatric diseases, neurodegenerative disorders, and malignant tumors. This review summarizes the findings from GWASs on the manifestation, significance level, implications on function, and correlation of specific NELL1 single-nucleotide polymorphisms in various disorders in humans. By offering a unique and comprehensive correlation between genetic variants and plausible functions of NELL1 in GWASs, this review illustrates the wide range of potential effects of a single gene on the pathogenesis of multiple disorders in humans.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and the Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Jiayu Shi
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and the Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pin Ha
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California-Los Angeles, Los Angeles, California
| | - Kang Ting
- Forsyth Institute, affiliate of the Harvard School of Dental Medicine, Boston, Massachusetts
| | - Aaron W James
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bing Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and the Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California-Los Angeles, Los Angeles, California.
| |
Collapse
|
17
|
Lee BJ, Jeong JK. Positioning-dependent bidirectional NELL2 signaling in the brain. Front Endocrinol (Lausanne) 2022; 13:1049595. [PMID: 36329889 PMCID: PMC9623028 DOI: 10.3389/fendo.2022.1049595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
- *Correspondence: Byung Ju Lee, ; Jin Kwon Jeong,
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States
- *Correspondence: Byung Ju Lee, ; Jin Kwon Jeong,
| |
Collapse
|
18
|
Gao C, Liu H, Zhao Y, Miao X, Zheng H. Is there a relationship between neural EGFL like 1 (NELL1) promoter hypermethylation and prognosis of gastric cancer? Med Hypotheses 2021; 158:110723. [PMID: 34753006 DOI: 10.1016/j.mehy.2021.110723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022]
Abstract
We hypothesized that neural EGFL like 1 (NELL1) promoter hypermethylation might be associated with the prognosis of gastric cancer. Some studies considered NELL1 as a tumor suppressor gene and our research confirmed for the first time the hypermethylation in the promoter region of NELL1 by the application of mass spectrometry. Promoter hypermethylation can cause the silencing of tumor suppressor genes and promote tumor progression. Based on present studies and research results, we proposed that NELL1 promoter hypermethylation might be associated with cancer staging and the survival of gastric cancer patients and had prognostic value. We hoped that NELL1 promoter hypermethylation would be applied not only for early detection but also prognosis prediction of gastric cancer and would become a new prognostic biomarker.
Collapse
Affiliation(s)
- Changlu Gao
- The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, China
| | - Haibin Liu
- The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, China
| | - Yubo Zhao
- The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, China
| | - Xinyu Miao
- The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, China
| | - Hongqun Zheng
- The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, China.
| |
Collapse
|
19
|
Liu W, Huang G, Rui H, Geng J, Hu H, Huang Y, Huo G, Liu B, Xu A. Course monitoring of membranous nephropathy: Both autoantibodies and podocytes require multidimensional attention. Autoimmun Rev 2021; 21:102976. [PMID: 34757091 DOI: 10.1016/j.autrev.2021.102976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 01/15/2023]
Abstract
A variety of podocyte antigens have been identified in human membranous nephropathy (MN), which is divided into various antigen-dominated subtypes, confirming the concept that MN is the common pattern of glomerular injury in multiple autoimmune responses. The detection of autoantibodies has been widely used, which promoted the clinical practice of MN toward personalized precision medicine. However, given the potential risks of immunosuppressive therapy, more autoantibodies and biomarkers need to be identified to predict the prognosis and therapeutic response of MN more accurately. In this review, we attempted to summarize the autoantigens/autoantibodies and autoimmune mechanisms that can predict disease states based on the current understanding of MN pathogenesis, especially the podocyte injury manifestations. In conclusion, both the autoimmune response and podocyte injury require multidimensional attention in the disease course of MN.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jie Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Huo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
20
|
NELL2 modulates cell proliferation and apoptosis via ERK pathway in the development of benign prostatic hyperplasia. Clin Sci (Lond) 2021; 135:1591-1608. [PMID: 34195782 DOI: 10.1042/cs20210476] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a quite common illness but its etiology and mechanism remain unclear. Neural epidermal growth factor-like like 2 (NELL2) plays multifunctional roles in neural cell growth and is strongly linked to the urinary tract disease. Current study aims to determine the expression, functional activities and underlying mechanism of NELL2 in BPH. Human prostate cell lines and tissues from normal human and BPH patients were utilized. Immunohistochemical staining, immunofluorescent staining, RT-polymerase chain reaction (PCR) and Western blotting were performed. We further generated cell models with NELL2 silenced or overexpressed. Subsequently, proliferation, cycle, and apoptosis of prostate cells were determined by cell counting kit-8 (CCK-8) assay and flow cytometry analysis. The epithelial-mesenchymal transition (EMT) and fibrosis process were also analyzed. Our study revealed that NELL2 was up-regulated in BPH samples and localized in the stroma and the epithelium compartments of human prostate tissues. NELL2 deficiency induced a mitochondria-dependent cell apoptosis, and inhibited cell proliferation via phosphorylating extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Additionally, suppression of ERK1/2 with U0126 incubation could significantly reverse NELL2 deficiency triggered cell apoptosis. Consistently, overexpression of NELL2 promoted cell proliferation and inhibited cell apoptosis. However, NELL2 interference was observed no effect on EMT and fibrosis process. Our novel data demonstrated that up-regulation of NELL2 in the enlarged prostate could contribute to the development of BPH through enhancing cell proliferation and inhibited a mitochondria-dependent cell apoptosis via the ERK pathway. The NELL2-ERK system might represent an important target to facilitate the development of future therapeutic approaches in BPH.
Collapse
|
21
|
Li SS, Tang DE, Dai Y. Advances in antigens associated with Idiopathic Membranous Nephropathy. J Formos Med Assoc 2021; 120:1941-1948. [PMID: 34244038 DOI: 10.1016/j.jfma.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/22/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022] Open
Abstract
Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. Idiopathic MN (IMN), one of the forms of MN, usually has an unknown etiology. IMN is described as an autoimmune disease, and its pathogenesis is quite complex. The discovery of the M-type phospholipase A2 receptor (PLA2R) plays an important role in promoting our understanding of IMN, although the exact mechanisms of its occurrence and development are still not completely clear. Other target antigens have been discovered one after another, as considerable progress has been made in the molecular pathomechanisms of IMN. Here, we review the findings about the target antigens associated with IMN in recent years. It is hoped that this article can provide researchers with some scientific issues or innovative ideas for future studies of IMN, which will provide clinicians with more knowledge about further improving their abilities to provide better medical care for IMN patients.
Collapse
Affiliation(s)
- Shan-Shan Li
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Dong-E Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China.
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China.
| |
Collapse
|
22
|
Wang G, Sun L, Dong H, Wang Y, Xu X, Zhao Z, Cheng W, Liu X, Zhao X, Geng Y, Bao S, Chen Y, Cheng H. Neural Epidermal Growth Factor-Like 1 Protein-Positive Membranous Nephropathy in Chinese Patients. Clin J Am Soc Nephrol 2021; 16:727-735. [PMID: 33849930 PMCID: PMC8259482 DOI: 10.2215/cjn.11860720] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 02/15/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES The neural EGF-like 1 (NELL-1) protein is a novel antigen in primary membranous nephropathy. The prevalence and clinical characteristics of NELL-1-positive membranous nephropathy in Chinese individuals with primary membranous nephropathy are unclear. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A total of 832 consecutive patients with biopsy-proven primary membranous nephropathy were enrolled. The glomerular expression of phospholipase A2 receptor (PLA2R) and thrombospondin type 1 domain-containing 7A (THSD7A) was screened. Glomerular immunohistochemistry staining for NELL-1 was performed in 43 patients with PLA2R- and THSD7A-negative membranous nephropathy, 31 patients with PLA2R-positive membranous nephropathy, and two patients with PLA2R and THSD7A double positivity. The NELL-1 antibody was also detected in the sera of patients with NELL-1-positive membranous nephropathy by western blot. Clinical and pathologic features were comparable between patients with isolated NELL-1-positive, isolated PLA2R/THSD7A-positive, and triple antigen-negative membranous nephropathy. RESULTS Among the 832 patients with primary membranous nephropathy, 11 of 54 (20%) patients with PLA2R-negative membranous nephropathy had THSD7A-positive membranous nephropathy. NELL-1-positive membranous nephropathy accounted for 35% (15 of 43) of all patients with PLA2R- and THSD7A-negative membranous nephropathy. One patient was double positive for NELL-1 and PLA2R in glomerular deposits and positive for only the PLA2R antibody in the serum. Most patients with NELL-1-positive membranous nephropathy were women. No tumors were found. There were significant differences in the prevalence of IgG subtypes between patients with different antigen positivity. Among patients with isolated NELL-1-positive membranous nephropathy, although 80% (12 of 15) were IgG4 staining positive, the proportion of IgG4 dominance was only 67% (ten of 15). CONCLUSIONS About one third of patients who were PLA2R and THSD7A negative were NELL-1 positive in Chinese patients with primary membranous nephropathy. NELL-1-positive membranous nephropathy was more common than THSD7A-positive membranous nephropathy in PLA2R-negative membranous nephropathy.
Collapse
Affiliation(s)
- Guoqin Wang
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lijun Sun
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongrui Dong
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yanyan Wang
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoyi Xu
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhirui Zhao
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenrong Cheng
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xuejiao Liu
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoyi Zhao
- Division of Nephrology, Affiliated Hospital of Chifeng University, Neimenggu, China
| | - Yanqiu Geng
- Division of Nephrology, Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Siqin Bao
- Division of Nephrology, People’s Hospital of Xinganmeng, Neimenggu, China
| | - Yipu Chen
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Cheng
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Mechanisms of Primary Membranous Nephropathy. Biomolecules 2021; 11:biom11040513. [PMID: 33808418 PMCID: PMC8065962 DOI: 10.3390/biom11040513] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Membranous nephropathy (MN) is an autoimmune disease of the kidney glomerulus and one of the leading causes of nephrotic syndrome. The disease exhibits heterogenous outcomes with approximately 30% of cases progressing to end-stage renal disease. The clinical management of MN has steadily advanced owing to the identification of autoantibodies to the phospholipase A2 receptor (PLA2R) in 2009 and thrombospondin domain-containing 7A (THSD7A) in 2014 on the podocyte surface. Approximately 50–80% and 3–5% of primary MN (PMN) cases are associated with either anti-PLA2R or anti-THSD7A antibodies, respectively. The presence of these autoantibodies is used for MN diagnosis; antibody levels correlate with disease severity and possess significant biomarker values in monitoring disease progression and treatment response. Importantly, both autoantibodies are causative to MN. Additionally, evidence is emerging that NELL-1 is associated with 5–10% of PMN cases that are PLA2R- and THSD7A-negative, which moves us one step closer to mapping out the full spectrum of PMN antigens. Recent developments suggest exostosin 1 (EXT1), EXT2, NELL-1, and contactin 1 (CNTN1) are associated with MN. Genetic factors and other mechanisms are in place to regulate these factors and may contribute to MN pathogenesis. This review will discuss recent developments over the past 5 years.
Collapse
|
24
|
Nakamura R, Oyama T, Inokuchi M, Ishikawa S, Hirata M, Kawashima H, Ikeda H, Dobashi Y, Ooi A. Neural EGFL like 2 expressed in myoepithelial cells and suppressed breast cancer cell migration. Pathol Int 2021; 71:326-336. [PMID: 33657249 DOI: 10.1111/pin.13087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/13/2021] [Indexed: 11/30/2022]
Abstract
Breast tissue has a branching structure that contains double-layered cells, consisting primarily of luminal epithelial cells inside and myoepithelial cells outside. Ductal carcinoma in situ (DCIS) still has myoepithelial cells surrounding the cancer cells. However, myoepithelial cells disappear in invasive ductal carcinoma. In this study, we detected expression of neural EGFL like (NELL) 2 and one of its receptors, roundabout guidance receptor (ROBO) 3, in myoepithelial and luminal epithelial cells (respectively) in normal breast tissue. NELL2 also was expressed in myoepithelial cells surrounding the non-cancerous intraductal proliferative lesions and DCIS. However, the expression level and proportion of NELL2-positive cells in DCIS were lower than those in normal and non-cancerous intraductal proliferative lesions. ROBO3 expression was decreased in invasive ductal carcinoma compared to that in normal and non-cancerous intraductal proliferative lesions. An evaluation of NELL2's function in breast cancer cell lines demonstrated that full-length NELL2 suppressed cell adhesion and migration in vitro. In contrast, the N-terminal domain of NELL2 increased cell adhesion in the early phase and migration in vitro in some breast cancer cells. These results suggested that full-length NELL2 protein, when expressed in myoepithelial cells, might serve as an inhibitor of breast cancer cell migration.
Collapse
Affiliation(s)
- Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Takeru Oyama
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Masafumi Inokuchi
- Department of Breast Surgery, Kanazawa University Hospital, Ishikawa, Japan.,Department of Breast and Endocrine Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Satoko Ishikawa
- Department of Breast Surgery, Kanazawa University Hospital, Ishikawa, Japan
| | - Miki Hirata
- Department of Breast Surgery, Kanazawa University Hospital, Ishikawa, Japan
| | - Hiroko Kawashima
- Radiology Division, Kanazawa University Hospital, Ishikawa, Japan
| | - Hiroko Ikeda
- Division of Diagnostic Pathology, Kanazawa University Hospital, Ishikawa, Japan
| | - Yoh Dobashi
- Department of Pathology, Saitama Medical Center, Jichi Medical University, Saitama, Japan.,Department of Pathology, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Akishi Ooi
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
25
|
Tong L, Zhang W, Qu B, Zhang F, Wu Z, Shi J, Chen X, Song Y, Wang Z. The tRNA-Derived Fragment-3017A Promotes Metastasis by Inhibiting NELL2 in Human Gastric Cancer. Front Oncol 2021; 10:570916. [PMID: 33665159 PMCID: PMC7921707 DOI: 10.3389/fonc.2020.570916] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
tRNA-derived fragments (tRFs) are a new classification of small non-coding RNAs (sncRNAs) derived from the specific cleavage of precursors and mature tRNAs. Accumulating recent evidence has shown that tRFs are frequently abnormal in several cancers. Nevertheless, the role of tRFs in gastric cancer and its mechanism remain unclear. In this study, we found abnormal expression of tRF-3017A (derived from tRNA-Val-TAC) in gastric cancer tissues and cell lines and confirmed its effect on promoting the invasion and migration of gastric cancer cells through functional experiments in vitro. Analysis of clinicopathologic data showed patients with higher tRF-3017A were associated with significantly higher lymph node metastasis. Mechanistic investigation implies that tRF-3017A regulates the tumor suppressor gene NELL2 through forming the RNA-induced silencing complex (RISC) with Argonaute (AGO) proteins. In this study, we found that higher tRF-3017A were associated with significantly higher lymph node metastasis in gastric cancer patients and the tRF-3017A may play a role in promoting the migration and invasion of gastric cancer cells by silencing tumor suppressor NELL2.
Collapse
Affiliation(s)
- Linhao Tong
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weixu Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinxin Shi
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowan Chen
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Abstract
Membranous nephropathy (MN) occurs due to deposition of immune complexes along the subepithelial region of glomerular basement membrane. Two previously identified target antigens for the immune complexes, PLA2R (identified in 2009) and THSD7A (in 2014), account for approximately 60% of all MN, both primary and secondary. In the remaining MN, target antigens were unknown. Use of laser microdissection and mass spectrometry enabled identification of new "antigens." This approach led to the identification of four novel types of MN: exotosin 1 (EXT1)- and exotosin 2 (EXT2)-associated MN, NELL1-associated MN, Sema3B-associated MN, and PCDH7-associated MN. Each of these represents a distinct disease entity, with different clinical and pathologic findings. In this review, the structure of the proteins and the clinical and pathologic findings of the new types of MN are discussed. The role of mass spectrometry for accurate diagnosis of MN cannot be overemphasized. Finally, any classification of MN should be made on the basis of the antigens that are detected. Further studies are required to understand the pathophysiology, response to treatment, and outcomes of these new MNs.
Collapse
Affiliation(s)
- Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
27
|
Kim S, Shin W, Lee YM, Mun S, Han K. Differential expressions of L1-chimeric transcripts in normal and matched-cancer tissues. Anal Biochem 2020; 600:113769. [PMID: 32430276 DOI: 10.1016/j.ab.2020.113769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 01/20/2023]
Abstract
L1s are a cis-regulatory elements and contain bidirectional internal promoters within the 5' untranslated region (UTR). L1s provide bidirectional promoters that generate alternative transcripts and affect differential expressions in the human genome. In particular, L1 antisense promoters (L1ASPs) could produce aberrant transcripts in cancer tissues compared to normal tissues. In this study, we identified the L1-chimeric transcripts derived from L1ASPs and analyzed relative expression of L1-chimeric transcripts between normal and matched-cancer tissues. First, we collected 425 L1-chimeric transcripts by referring to previous studies. Through the manual inspection, we identified 144 L1-chimeric transcripts derived from 44 L1 antisense promoters, suggesting that the antisense promoter acted as an alternative promoter. We analyzed relative gene expression levels of 16 L1-chimeric transcripts between matched cancer-normal tissue pair (lung, liver, gastric, kidney, thyroid, breast, ovary, uterus, and prostate) using real-time quantitative PCR (RT-qPCR) and investigated putative transcription factor binding motifs to determine activity of L1ASPs. Taken together, we propose that L1ASPs could contribute to the differential gene expression between normal and cancer tissues.
Collapse
Affiliation(s)
- Songmi Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Wonseok Shin
- NGS Clinical Laboratory, Dankook University Hospital, Cheonan, 31116, Republic of Korea
| | - Yong-Moon Lee
- Department of Pathology, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; NGS Clinical Laboratory, Dankook University Hospital, Cheonan, 31116, Republic of Korea; Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
28
|
Chen X, Wang H, Yu M, Kim JK, Qi H, Ha P, Jiang W, Chen E, Luo X, Needle RB, Baik L, Yang C, Shi J, Kwak JH, Ting K, Zhang X, Soo C. Cumulative inactivation of Nell-1 in Wnt1 expressing cell lineages results in craniofacial skeletal hypoplasia and postnatal hydrocephalus. Cell Death Differ 2020; 27:1415-1430. [PMID: 31582804 PMCID: PMC7206096 DOI: 10.1038/s41418-019-0427-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/09/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023] Open
Abstract
Upregulation of Nell-1 has been associated with craniosynostosis (CS) in humans, and validated in a mouse transgenic Nell-1 overexpression model. Global Nell-1 inactivation in mice by N-ethyl-N-nitrosourea (ENU) mutagenesis results in neonatal lethality with skeletal abnormalities including cleidocranial dysplasia (CCD)-like calvarial bone defects. This study further defines the role of Nell-1 in craniofacial skeletogenesis by investigating specific inactivation of Nell-1 in Wnt1 expressing cell lineages due to the importance of cranial neural crest cells (CNCCs) in craniofacial tissue development. Nell-1flox/flox; Wnt1-Cre (Nell-1Wnt1 KO) mice were generated for comprehensive analysis, while the relevant reporter mice were created for CNCC lineage tracing. Nell-1Wnt1 KO mice were born alive, but revealed significant frontonasal and mandibular bone defects with complete penetrance. Immunostaining demonstrated that the affected craniofacial bones exhibited decreased osteogenic and Wnt/β-catenin markers (Osteocalcin and active-β-catenin). Nell-1-deficient CNCCs demonstrated a significant reduction in cell proliferation and osteogenic differentiation. Active-β-catenin levels were significantly low in Nell-1-deficient CNCCs, but were rescued along with osteogenic capacity to a level close to that of wild-type (WT) cells via exogenous Nell-1 protein. Surprisingly, 5.4% of young adult Nell-1Wnt1 KO mice developed hydrocephalus with premature ossification of the intrasphenoidal synchondrosis and widened frontal, sagittal, and coronal sutures. Furthermore, the epithelial cells of the choroid plexus and ependymal cells exhibited degenerative changes with misplaced expression of their respective markers, transthyretin and vimentin, as well as dysregulated Pit-2 expression in hydrocephalic Nell-1Wnt1 KO mice. Nell-1Wnt1 KO embryos at E9.5, 14.5, 17.5, and newborn mice did not exhibit hydrocephalic phenotypes grossly and/or histologically. Collectively, Nell-1 is a pivotal modulator of CNCCs that is essential for normal development and growth of the cranial vault and base, and mandibles partially via activating the Wnt/β-catenin pathway. Nell-1 may also be critically involved in regulating cerebrospinal fluid homeostasis and in the pathogenesis of postnatal hydrocephalus.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Orthodontics, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Huiming Wang
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mengliu Yu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
- Center of Stomatology, China-Japan Friendship Hospital, 2nd Yinghuayuan East Street, Chaoyang District, Beijing, PR China
| | - Jong Kil Kim
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Huichuan Qi
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, PR China
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Wenlu Jiang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Eric Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Xiangyou Luo
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
- Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Ryan Brent Needle
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Lloyd Baik
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Cathryn Yang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Jiejun Shi
- Department of Orthodontics, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jin Hee Kwak
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA.
| | - Chia Soo
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, CA, USA
- UCLA Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Pak JS, DeLoughery ZJ, Wang J, Acharya N, Park Y, Jaworski A, Özkan E. NELL2-Robo3 complex structure reveals mechanisms of receptor activation for axon guidance. Nat Commun 2020; 11:1489. [PMID: 32198364 PMCID: PMC7083938 DOI: 10.1038/s41467-020-15211-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/24/2020] [Indexed: 11/24/2022] Open
Abstract
Axon pathfinding is critical for nervous system development, and it is orchestrated by molecular cues that activate receptors on the axonal growth cone. Robo family receptors bind Slit guidance cues to mediate axon repulsion. In mammals, the divergent family member Robo3 does not bind Slits, but instead signals axon repulsion from its own ligand, NELL2. Conversely, canonical Robos do not mediate NELL2 signaling. Here, we present the structures of NELL-Robo3 complexes, identifying a mode of ligand engagement for Robos that is orthogonal to Slit binding. We elucidate the structural basis for differential binding between NELL and Robo family members and show that NELL2 repulsive activity is a function of its Robo3 affinity and is enhanced by ligand trimerization. Our results reveal a mechanism of oligomerization-induced Robo activation for axon guidance and shed light on Robo family member ligand binding specificity, conformational variability, divergent modes of signaling, and evolution.
Collapse
Affiliation(s)
- Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA
| | - Zachary J DeLoughery
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI, 02912, USA
| | - Jing Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA
| | - Nischal Acharya
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI, 02912, USA
| | - Yeonwoo Park
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Alexander Jaworski
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI, 02912, USA.
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
30
|
Sethi S, Debiec H, Madden B, Charlesworth MC, Morelle J, Gross L, Ravindran A, Buob D, Jadoul M, Fervenza FC, Ronco P. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int 2019; 97:163-174. [PMID: 31901340 DOI: 10.1016/j.kint.2019.09.014] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Membranous nephropathy is characterized by deposition of immune complexes along the glomerular basement membrane. PLA2R and THSD7A are target antigens in 70% and 1-5% of primary membranous nephropathy cases, respectively. In the remaining cases, the target antigen is unknown. Here, laser microdissection of glomeruli followed by mass spectrometry was used to identify novel antigen(s) in PLA2R-negative membranous nephropathy. An initial pilot mass spectrometry study in 35 cases of PLA2R-negative membranous nephropathy showed high spectral counts for neural tissue encoding protein with EGF-like repeats, NELL-1, in six cases. Mass spectrometry failed to detect NELL-1 in 23 PLA2R-associated membranous nephropathy and 88 controls. NELL-1 was localized by immunohistochemistry, which showed bright granular glomerular basement membrane staining for NELL-1 in all six cases. Next, an additional 23 NELL-1 positive cases of membranous nephropathy were identified by immunohistochemistry in a discovery cohort of 91 PLA2R-negative membranous nephropathy cases, 14 were confirmed by mass spectrometry. Thus, 29 of 126 PLA2R-negative cases were positive for NELL-1. PLA2R-associated membranous nephropathy and controls stained negative for NELL-1. We then identified five NELL-1 positive cases of membranous nephropathy out of 84 PLA2R and THSD7A-negative cases in two validation cohorts from France and Belgium. By confocal microscopy, both IgG and NELL-1 co-localized to the glomerular basement membrane. Western blot analysis showed reactivity to NELL-1 in five available sera, but no reactivity in control sera. Clinical and biopsy findings of NELL-1 positive membranous nephropathy showed features of primary membranous nephropathy. Thus, a subset of membranous nephropathy is associated with accumulation and co-localization of NELL-1 and IgG along the glomerular basement membrane, and with anti-NELL-1 antibodies in the serum. Hence, NELL-1 defines a distinct type of primary membranous nephropathy.
Collapse
Affiliation(s)
- Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Hanna Debiec
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, Paris, France
| | - Benjamin Madden
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Johann Morelle
- Division of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - LouAnn Gross
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aishwarya Ravindran
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - David Buob
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, Paris, France; Department of Pathology, Tenon Hospital, Paris, France
| | - Michel Jadoul
- Division of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Fernando C Fervenza
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Pierre Ronco
- Sorbonne Université, Université Pierre et Marie Curie Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, Paris, France; Hôpital de Jour-Nephrology, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
31
|
Nakamoto C, Durward E, Horie M, Nakamoto M. Nell2 regulates the contralateral-versus-ipsilateral visual projection as a domain-specific positional cue. Development 2019; 146:dev.170704. [PMID: 30745429 DOI: 10.1242/dev.170704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023]
Abstract
In mammals with binocular vision, retinal ganglion cell (RGC) axons from each eye project to eye-specific domains in the contralateral and ipsilateral dorsal lateral geniculate nucleus (dLGN), underpinning disparity-based stereopsis. Although domain-specific axon guidance cues that discriminate contralateral and ipsilateral RGC axons have long been postulated as a key mechanism for development of the eye-specific retinogeniculate projection, the molecular nature of such cues has remained elusive. Here, we show that the extracellular glycoprotein Nell2 (neural epidermal growth factor-like-like 2) is expressed in the dorsomedial region of the dLGN, which ipsilateral RGC axons terminate in and contralateral axons avoid. In Nell2 mutant mice, contralateral RGC axons abnormally invaded the ipsilateral domain of the dLGN, and ipsilateral axons terminated in partially fragmented patches, forming a mosaic pattern of contralateral and ipsilateral axon-termination zones. In vitro, Nell2 exerted inhibitory effects on contralateral, but not ipsilateral, RGC axons. These results provide evidence that Nell2 acts as a domain-specific positional label in the dLGN that discriminates contralateral and ipsilateral RGC axons, and that it plays essential roles in the establishment of the eye-specific retinogeniculate projection.
Collapse
Affiliation(s)
- Chizu Nakamoto
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Elaine Durward
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Masato Horie
- Department of CNS Research, Otsuka Pharmaceutical, 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masaru Nakamoto
- Aberdeen Developmental Biology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
32
|
Yamamoto N, Kashiwagi M, Ishihara M, Kojima T, Maturana AD, Kuroda S, Niimi T. Robo2 contains a cryptic binding site for neural EGFL-like (NELL) protein 1/2. J Biol Chem 2019; 294:4693-4703. [PMID: 30700556 DOI: 10.1074/jbc.ra118.005819] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
The signaling pathways that are mediated by Slit ligands and their Roundabout (Robo) family of receptors play multifunctional roles in the development of the nervous system and other organs. A recent study identified neural epidermal growth factor-like (NEL)-like 2 (NELL2) as a novel ligand for Robo3. In this study, we carried out a comprehensive analysis of the interaction between NELL1 and the Robo family of receptors and demonstrated that Robo2 contains a cryptic binding site for both NELL1 and NELL2. NELL1/2 binds to the first fibronectin type III (FNIII) domain of Robo2 but not to intact Robo2. Mutation analysis revealed that several amino acids within the first FNIII domain are critical for NELL1 binding to Robo2 but not to Robo1. The Robo2 deletion mutants without the fourth immunoglobulin domain and single amino acid substitution mutants that can influence the architecture of the ectodomain facilitated binding to NELL1/2. Acidic conditions increased the binding affinity of Robo2 for NELL1. These results suggest that Robo2 functions as a receptor for NELL1/2, particularly under circumstances where Robo2 undergoes proteolytic digestion. If this is not the case, conformational changes of the ectodomain of Robo2 may unmask the binding site for NELL1/2.
Collapse
Affiliation(s)
- Naoka Yamamoto
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan and
| | - Manabu Kashiwagi
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan and
| | - Manami Ishihara
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan and
| | - Takaaki Kojima
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan and
| | - Andrés D Maturana
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan and
| | - Shun'ichi Kuroda
- the Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Tomoaki Niimi
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan and
| |
Collapse
|
33
|
Li C, Zheng Z, Ha P, Chen X, Jiang W, Sun S, Chen F, Asatrian G, Berthiaume EA, Kim JK, Chen EC, Pang S, Zhang X, Ting K, Soo C. Neurexin Superfamily Cell Membrane Receptor Contactin-Associated Protein Like-4 (Cntnap4) Is Involved in Neural EGFL-Like 1 (Nell-1)-Responsive Osteogenesis. J Bone Miner Res 2018; 33:1813-1825. [PMID: 29905970 PMCID: PMC6390490 DOI: 10.1002/jbmr.3524] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 01/28/2023]
Abstract
Contactin-associated protein-like 4 (Cntnap4) is a member of the neurexin superfamily of transmembrane molecules that have critical functions in neuronal cell communication. Cntnap4 knockout mice display decreased presynaptic gamma-aminobutyric acid (GABA) and increased dopamine release that is associated with severe, highly penetrant, repetitive, and perseverative movements commonly found in human autism spectrum disorder patients. However, no known function of Cntnap4 has been revealed besides the nervous system. Meanwhile, secretory protein neural EGFL-like 1 (Nell-1) is known to exert potent osteogenic effects in multiple small and large animal models without the off-target effects commonly found with bone morphogenetic protein 2. In this study, while searching for a Nell-1-specific cell surface receptor during osteogenesis, we identified and validated a ligand/receptor-like interaction between Nell-1 and Cntnap4 by demonstrating: 1) Nell-1 and Cntnap4 colocalization on the surface of osteogenic-committed cells; 2) high-affinity interaction between Nell-1 and Cntnap4; 3) abrogation of Nell-1-responsive Wnt and MAPK signaling transduction, as well as osteogenic effects, via Cntnap4 knockdown; and 4) replication of calvarial cleidocranial dysplasias-like defects observed in Nell-1-deficient mice in Wnt1-Cre-mediated Cntnap4-knockout transgenic mice. In aggregate, these findings indicate that Cntnap4 plays a critical role in Nell-1-responsive osteogenesis. Further, this is the first functional annotation for Cntnap4 in the musculoskeletal system. Intriguingly, Nell-1 and Cntnap4 also colocalize on the surface of human hippocampal interneurons, implicating Nell-1 as a potential novel ligand for Cntnap4 in the nervous system. This unexpected characterization of the ligand/receptor-like interaction between Nell-1 and Cntnap4 indicates a novel biological functional axis for Nell-1 and Cntnap4 in osteogenesis and, potentially, in neural development and function. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chenshuang Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaoyan Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.,The Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Wenlu Jiang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shan Sun
- Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, PR China
| | - Feng Chen
- School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Greg Asatrian
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emily A Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jong Kil Kim
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eric C Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shen Pang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.,Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
34
|
Zhao H, Qin X, Zhang Q, Zhang X, Lin J, Ting K, Chen F. Nell-1-ΔE, a novel transcript of Nell-1, inhibits cell migration by interacting with enolase-1. J Cell Biochem 2018; 119:5725-5733. [PMID: 29388706 DOI: 10.1002/jcb.26756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/25/2018] [Indexed: 11/06/2022]
Abstract
NELL-1 is a secreted protein that was originally found to be upregulated in pathologically fusing and fused sutures in non-syndromic unilateral coronal synostosis patients. Apart from the ability of NELL-1 to promote osteogenesis in long and craniofacial bones, NELL-1 reportedly inhibits the formation of several benign and malignant tumors. We previously identified a novel transcript of Nell-1 that lacked a calcium-binding epidermal growth factor (EGF)-like domain compared with full-length Nell-1; this new transcript was named Nell-1-ΔE. Three obvious structural differences between these two isoforms were revealed by homology modeling. Furthermore, the recombinant Nell-1-ΔE protein, but not the full-length Nell-1 protein, inhibited cell migration in vitro. However, full-length Nell-1 and Nell-1-ΔE proteins were present in similar subcellular locations and displayed similar expression patterns in both the intracellular and extracellular spaces. The results from the co-immunoprecipitation and liquid chromatography/tandem mass spectrometry analyses using two cell lines demonstrated that Nell-1-ΔE but not full-length Nell-1 interacted with enolase-1 in the extracellular spaces of both cell lines. The results of wound healing assays using ENO-1-overexpressing cells treated with full-length Nell-1/Nell-1-ΔE suggested that Nell-1-ΔE inhibited cell migration by interacting with ENO-1. Our study indicated that the novel transcript Nell-1-ΔE, but not full-length Nell-1, might be a candidate tumor suppressor factor for basic research and clinical practice.
Collapse
Affiliation(s)
- Huaxiang Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Xueyan Qin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Xinli Zhang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Kang Ting
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| |
Collapse
|
35
|
Tombolan L, Poli E, Martini P, Zin A, Romualdi C, Bisogno G, Lanfranchi G. NELL1, whose high expression correlates with negative outcomes, has different methylation patterns in alveolar and embryonal rhabdomyosarcoma. Oncotarget 2017; 8:33086-33099. [PMID: 28380437 PMCID: PMC5464852 DOI: 10.18632/oncotarget.16526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
Rhabdomyosarcoma (RMS), which represents the most frequent soft tissue sarcoma in pediatric populations, is classified into two major subtypes: embryonal RMS (ERMS) and alveolar RMS (ARMS). ARMS subtype, which shows greater aggressiveness and proneness to metastasis with respect to ERMS, are characterized, in about 75% of cases, by specific chromosomal translocations that involve PAX and FOXO1 genes. Many findings have demonstrated that PAX/FOXO1-positive ARMS have a worse prognosis than PAX/FOXO1-negative ones and that distinct molecular features characterize RMS with different gene fusion statuses. DNA methylation, which presently represents a challenging research area, is involved in the modulation of gene expression.We performed a genome-wide DNA methylation analysis using reduced-representation bisulfite sequencing (RRBS) in RMS samples and we found that fusion-positive alveolar and embryonal subgroups have different DNA methylation signatures and that ARMS fusion-positive subtypes are characterized by overall hypomethylation levels. While NELL1 was found to be hypomethylated and transcriptionally enhanced in RMS alveolar subtypes, high NELL1 expression levels, which proved to be correlated with negative RMS prognostic factors such as fusion status and histology (P < 0.0001), were found to discriminate between RMS patients with different outcomes (P < 0.05).In conclusion, our results demonstrated that different DNA methylation patterns distinguish between different RMS subgroups and they suggest that epigenetic signatures could be useful for risk stratification of patients.
Collapse
Affiliation(s)
- Lucia Tombolan
- Department of Biology, University of Padova, Padova, Italy
- Department of Women's and Children's Health, Oncology Hematology Division, University of Padova, Padova, Italy
| | - Elena Poli
- Department of Women's and Children's Health, Oncology Hematology Division, University of Padova, Padova, Italy
| | - Paolo Martini
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Gianni Bisogno
- Department of Women's and Children's Health, Oncology Hematology Division, University of Padova, Padova, Italy
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Padova, Italy
- Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative, University of Padova, Padova, Italy
| |
Collapse
|
36
|
Jeong JK, Kim JG, Kim HR, Lee TH, Park JW, Lee BJ. A Role of Central NELL2 in the Regulation of Feeding Behavior in Rats. Mol Cells 2017; 40:186-194. [PMID: 28301916 PMCID: PMC5386956 DOI: 10.14348/molcells.2017.2278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/21/2017] [Accepted: 03/06/2017] [Indexed: 12/02/2022] Open
Abstract
A brain-enriched secreting signal peptide, NELL2, has been suggested to play multiple roles in the development, survival, and activity of neurons in mammal. We investigated here a possible involvement of central NELL2 in regulating feeding behavior and metabolism. In situ hybridization and an im-munohistochemical approach were used to determine expression of NELL2 as well as its colocalization with proopiomelanocortin (POMC) and neuropeptide Y (NPY) in the rat hypothalamus. To investigate the effect of NELL2 on feeding behavior, 2 nmole of antisense NELL2 oligodeoxynucleotide was administered into the lateral ventricle of adult male rat brains for 6 consecutive days, and changes in daily body weight, food, and water intake were monitored. Metabolic state-dependent NELL2 expression in the hypothalamus was tested in vivo using a fasting model. NELL2 was noticeably expressed in the hypothalamic nuclei controlling feeding behavior. Furthermore, all arcuatic POMC and NPY positive neurons produced NELL2. The NELL2 gene expression in the hypothalamus was up-regulated by fasting. However, NELL2 did not affect POMC and NPY gene expression in the hypothalamus. A blockade of NELL2 production in the hypothalamus led to a reduction in daily food intake, followed by a loss in body weight without a change in daily water intake in normal diet condition. NELL2 did not affect short-term hunger dependent appetite behavior. Our data suggests that hypothalamic NELL2 is associated with appetite behavior, and thus central NELL2 could be a new therapeutic target for obesity.
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University,
USA
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012,
Korea
| | - Han Rae Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| |
Collapse
|
37
|
Nelson BR, Matsuhashi S, Lefcort F. Restricted neural epidermal growth factor-like like 2 (NELL2) expression during muscle and neuronal differentiation. Mech Dev 2016; 119 Suppl 1:S11-9. [PMID: 14516654 DOI: 10.1016/s0925-4773(03)00084-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have identified a secreted glycoprotein, neural epidermal growth factor-like like 2 (NELL2), in a screen designed to isolate molecules regulating sensory neuron genesis and differentiation in the dorsal root ganglia (DRG). In investigating NELL2 expression during embryogenesis, we demonstrate here that NELL2 is highly regulated spatially and temporally, being only transiently expressed in discrete regions of the central (CNS) and peripheral nervous systems (PNS) and in a subset of mesoderm derived structures during their peak periods of development. In the CNS and PNS, NELL2 is maximally expressed as motor and sensory neurons differentiate. Interestingly, its expression is restricted to sublineages of the neural crest, being strongly expressed throughout the immature DRG, but excluded from sympathetic ganglia. Similarly during muscle development, NELL2 is specifically expressed by hypaxial muscle precursor cells in the differentiating somite and derivatives in the forelimbs and body wall, but not by epaxial muscle precursors. Furthermore, NELL2 is differentially regulated in the CNS and PNS; in the CNS, NELL2 is only expressed by nascent, post-mitotic neurons as they commence their differentiation, yet in the PNS, NELL2 is expressed by subsets of progenitor cells in addition to nascent neurons. Based on this restricted spatial and temporal expression pattern, functional studies are in progress to determine NELL2's role during neuronal differentiation in both the PNS and CNS.
Collapse
Affiliation(s)
- Branden R Nelson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | | |
Collapse
|
38
|
Jaworski A, Tom I, Tong RK, Gildea HK, Koch AW, Gonzalez LC, Tessier-Lavigne M. Operational redundancy in axon guidance through the multifunctional receptor Robo3 and its ligand NELL2. Science 2015; 350:961-5. [PMID: 26586761 DOI: 10.1126/science.aad2615] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Axon pathfinding is orchestrated by numerous guidance cues, including Slits and their Robo receptors, but it remains unclear how information from multiple cues is integrated or filtered. Robo3, a Robo family member, allows commissural axons to reach and cross the spinal cord midline by antagonizing Robo1/2-mediated repulsion from midline-expressed Slits and potentiating deleted in colorectal cancer (DCC)-mediated midline attraction to Netrin-1, but without binding either Slits or Netrins. We identified a secreted Robo3 ligand, neural epidermal growth factor-like-like 2 (NELL2), which repels mouse commissural axons through Robo3 and helps steer them to the midline. These findings identify NELL2 as an axon guidance cue and establish Robo3 as a multifunctional regulator of pathfinding that simultaneously mediates NELL2 repulsion, inhibits Slit repulsion, and facilitates Netrin attraction to achieve a common guidance purpose.
Collapse
Affiliation(s)
- Alexander Jaworski
- Division of Research, Genentech, South San Francisco, CA 94080, USA. Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY 10065, USA. Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| | - Irene Tom
- Department of Protein Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Raymond K Tong
- Department of Protein Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Holly K Gildea
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Alexander W Koch
- Department of Protein Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Lino C Gonzalez
- Department of Protein Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Marc Tessier-Lavigne
- Division of Research, Genentech, South San Francisco, CA 94080, USA. Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
39
|
Notas G, Pelekanou V, Kampa M, Alexakis K, Sfakianakis S, Laliotis A, Askoxilakis J, Tsentelierou E, Tzardi M, Tsapis A, Castanas E. Tamoxifen induces a pluripotency signature in breast cancer cells and human tumors. Mol Oncol 2015; 9:1744-59. [PMID: 26115764 DOI: 10.1016/j.molonc.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023] Open
Abstract
Tamoxifen is the treatment of choice in estrogen receptor alpha breast cancer patients that are eligible for adjuvant endocrine therapy. However, ∼50% of ERα-positive tumors exhibit intrinsic or rapidly acquire resistance to endocrine treatment. Unfortunately, prediction of de novo resistance to endocrine therapy and/or assessment of relapse likelihood remain difficult. While several mechanisms regulating the acquisition and the maintenance of endocrine resistance have been reported, there are several aspects of this phenomenon that need to be further elucidated. Altered metabolic fate of tamoxifen within patients and emergence of tamoxifen-resistant clones, driven by evolution of the disease phenotype during treatment, appear as the most compelling hypotheses so far. In addition, tamoxifen was reported to induce pluripotency in breast cancer cell lines, in vitro. In this context, we have performed a whole transcriptome analysis of an ERα-positive (T47D) and a triple-negative breast cancer cell line (MDA-MB-231), exposed to tamoxifen for a short time frame (hours), in order to identify how early pluripotency-related effects of tamoxifen may occur. Our ultimate goal was to identify whether the transcriptional actions of tamoxifen related to induction of pluripotency are mediated through specific ER-dependent or independent mechanisms. We report that even as early as 3 hours after the exposure of breast cancer cells to tamoxifen, a subset of ERα-dependent genes associated with developmental processes and pluripotency are induced and this is accompanied by specific phenotypic changes (expression of pluripotency-related proteins). Furthermore we report an association between the increased expression of pluripotency-related genes in ERα-positive breast cancer tissues samples and disease relapse after tamoxifen therapy. Finally we describe that in a small group of ERα-positive breast cancer patients, with disease relapse after surgery and tamoxifen treatment, ALDH1A1 (a marker of pluripotency in epithelial cancers which is absent in normal breast tissue) is increased in relapsing tumors, with a concurrent modification of its intra-cellular localization. Our data could be of value in the discrimination of patients susceptible to develop tamoxifen resistance and in the selection of optimized patient-tailored therapies.
Collapse
Affiliation(s)
- George Notas
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece; Institute of Applied Computational Mathematics, Foundation of Research and Technology (FORTH), Heraklion, Greece.
| | - Vassiliki Pelekanou
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece; Laboratories of Pathology, University of Crete School of Medicine, Heraklion, Greece
| | - Marilena Kampa
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece
| | - Konstantinos Alexakis
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece
| | - Stelios Sfakianakis
- Institute of Computer Science, Foundation of Research and Technology (FORTH), Heraklion, Greece
| | - Aggelos Laliotis
- Department of Surgical Oncology, University Hospital, Heraklion, Greece
| | - John Askoxilakis
- Department of Surgical Oncology, University Hospital, Heraklion, Greece
| | | | - Maria Tzardi
- Laboratories of Pathology, University of Crete School of Medicine, Heraklion, Greece
| | - Andreas Tsapis
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; University Paris Diderot, Paris, France
| | - Elias Castanas
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece.
| |
Collapse
|
40
|
MALDI-TOF Mass Array Analysis of Nell-1 Promoter Methylation Patterns in Human Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:136941. [PMID: 26090379 PMCID: PMC4452250 DOI: 10.1155/2015/136941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/10/2014] [Accepted: 11/06/2014] [Indexed: 12/19/2022]
Abstract
Mass spectrometry (MS) enables rapid and sensitive qualitative and quantitative analyses of biomolecules (proteins, peptides, oligosaccharides, lipids, DNA, and RNA), drugs, and metabolites. MS has become an essential tool in modern biomedical research, including the analysis of DNA methylation. DNA methylation has been reported in many cancers, suggesting that it can be utilized as an early biomarker to improve the early diagnosis rate. Using matrix-assisted laser desorption/ionization time-of-flight MS and MassCLEAVE reagent, we compared Nell-1 hypermethylation levels among tumor tissues, paracarcinoma tissues, and normal tissues from gastric cancer patients. Almost 80% of the CpG sites in the amplicons produced were covered by the analysis. Our results indicate a significant difference in methylation status between gastric cancer tissue (a higher level) and normal tissue. The same trend was identified in gastric cancer tissue versus paracarcinoma tissue. We also detected lower relative expression of Nell-1 by real-time PCR. Furthermore, immunohistochemical analyses revealed that Nell-1 staining was less intense in cancer tissue relative to normal tissue and that the tumor cells had spread to the muscle layer. These findings may serve as a guide for the early diagnosis of gastric cancer.
Collapse
|
41
|
Nakamura R, Oyama T, Tajiri R, Mizokami A, Namiki M, Nakamoto M, Ooi A. Expression and regulatory effects on cancer cell behavior of NELL1 and NELL2 in human renal cell carcinoma. Cancer Sci 2015; 106:656-64. [PMID: 25726761 PMCID: PMC4452169 DOI: 10.1111/cas.12649] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/07/2015] [Accepted: 02/25/2015] [Indexed: 12/27/2022] Open
Abstract
Neural epidermal growth factor-like like (NELL) 1 and 2 constitute a family of multimeric and multimodular extracellular glycoproteins. Although the osteogenic effects of NELL1 and functions of NELL2 in neural development have been reported, their expression and functions in cancer are largely unknown. In this study, we examined expression of NELL1 and NELL2 in renal cell carcinoma (RCC) using clinical specimens and cell lines. We show that, whereas NELL1 and NELL2 proteins are strongly expressed in renal tubules in non-cancerous areas of RCC specimens, their expression is significantly downregulated in cancerous areas. Silencing of NELL1 and NELL2 mRNA expression was also detected in RCC cell lines. Analysis of NELL1/2 promoter methylation status indicated that the CpG islands in the NELL1 and NELL2 genes are hypermethylated in RCC cell lines. NELL1 and NELL2 bind to RCC cells, suggesting that these cells express a receptor for NELL1 and NELL2 that can transduce signals. Furthermore, we found that both NELL1 and NELL2 inhibit RCC cell migration, and NELL1 further inhibits RCC cell adhesion. These results suggest that silencing of NELL gene expression by promoter hypermethylation plays roles in RCC progression by affecting cancer cell behavior.
Collapse
Affiliation(s)
- Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takeru Oyama
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ryosuke Tajiri
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Atsushi Mizokami
- Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Mikio Namiki
- Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masaru Nakamoto
- Aberdeen Developmental Biology Group, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Akishi Ooi
- Department of Molecular and Cellular Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
42
|
Yang Y, Mu J, Chen G, Zhan Y, Zhong J, Wei Y, Cheng K, Qin B, You H, Xie P. iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid reveals NELL2 as a potential diagnostic biomarker of tuberculous meningitis. Int J Mol Med 2015; 35:1323-32. [PMID: 25760060 DOI: 10.3892/ijmm.2015.2131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/17/2015] [Indexed: 11/06/2022] Open
Abstract
Tuberculous meningitis (TBM) is a serious complication of tuberculosis that affects the central nervous system. As TBM may result in permanent sequelae and death, rapid, accurate diagnostic tests using novel biomarkers are required for the early diagnosis and treatment of TBM. A quantitative proteomic study was therefore performed to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n=12) and healthy controls (n=12). CSF samples were labelled with iTRAQ™ and analyzed by LC-MS/MS. Gene ontology and Pathway analysis were conducted using DAVID bioinformatics resources. Neural epidermal growth factor-like like 2 (NELL2) with the largest fold-change value was selected for validation by western blotting. Proteomic phenotyping revealed over-representation in two inflammation-associated processes, complement and coagulation cascades as well as cell adhesion molecules. Western blotting showed a significant decrease in NELL2 levels in TBM subjects compared to healthy controls. The AUC analysis revealed NELL2 was able to distinguish TBM subjects from healthy controls with 83.3% sensitivity and 75% specificity. In conclusion, the results showed that CSF NELL2 is a potential diagnostic biomarker for TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other intracranial infectious diseases is required for clinical translation.
Collapse
Affiliation(s)
- Yongtao Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jun Mu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Guanghui Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, P.R. China
| | - Yuan Zhan
- Institute of Neuroscience, Chongqing Medical University, Chongqing, P.R. China
| | - Jiaju Zhong
- Institute of Neuroscience, Chongqing Medical University, Chongqing, P.R. China
| | - Youdong Wei
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Ke Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Bin Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Hongmin You
- Institute of Neuroscience, Chongqing Medical University, Chongqing, P.R. China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
43
|
Lee DY, Kim E, Lee YS, Ryu H, Park JY, Hwang EM. The cytosolic splicing variant of NELL2 inhibits PKCβ1 in glial cells. Biochem Biophys Res Commun 2014; 454:459-64. [PMID: 25450684 DOI: 10.1016/j.bbrc.2014.10.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
NELL2 is an abundant glycoprotein containing EGF-like domain in the neural tissues where it has multiple physiological functions by interacting with protein kinase C (PKC). There are two different splicing variant forms of NELL2 identified so far. One is secreted NELL2 (sNELL2) which is a neuron-specific variant and the other is cytosolic NELL2 (cNELL2) which is non-secreted splicing variant of NELL2. Although cNELL2 structure was well characterized, the expression pattern or the cellular function of cNELL2 is not fully determined. In this study, we found that cNELL2 specifically interacts with PKCβ isotypes and inhibits PKCβ1 through direct binding to the N-terminal pseudosubstrate domain of PKCβ1. Here, we also demonstrate that cNELL2 is predominantly expressed and has inhibitory effects on the PKC downstream signaling pathways in astrocytes thereby establishing cNELL2 as an endogenous inhibitor of PKCβ1 in glia.
Collapse
Affiliation(s)
- Da Yong Lee
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Eunju Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Young-Sun Lee
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Hwani Ryu
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703, Republic of Korea.
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea; Neuroscience Program, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea.
| |
Collapse
|
44
|
Nakamura Y, Hasebe A, Takahashi K, Iijima M, Yoshimoto N, Maturana AD, Ting K, Kuroda S, Niimi T. Oligomerization-induced conformational change in the C-terminal region of Nel-like molecule 1 (NELL1) protein is necessary for the efficient mediation of murine MC3T3-E1 cell adhesion and spreading. J Biol Chem 2014; 289:9781-94. [PMID: 24563467 DOI: 10.1074/jbc.m113.507020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NELL1 is a large oligomeric secretory glycoprotein that functions as an osteoinductive factor. NELL1 contains several conserved domains, has structural similarities to thrombospondin 1, and supports osteoblastic cell adhesion through integrins. To define the structural requirements for NELL1-mediated cell adhesion, we prepared a series of recombinant NELL1 proteins (intact, deleted, and cysteine-mutant) from a mammalian expression system and tested their activities. A deletion analysis demonstrated that the C-terminal cysteine-rich region of NELL1 is critical for the cell adhesion activity of NELL1. Reducing agent treatment decreased the cell adhesion activity of full-length NELL1 but not of its C-terminal fragments, suggesting that the intramolecular disulfide bonds within this region are not functionally necessary but that other disulfide linkages in the N-terminal region of NELL1 may be involved in cell adhesion activity. By replacing cysteine residues with serines around the coiled-coil domain of NELL1, which is responsible for oligomerization, we created a mutant NELL1 protein that was unable to form homo-oligomers, and this monomeric mutant showed substantially lower cell adhesion activity than intact NELL1. These results suggest that an oligomerization-induced conformational change in the C-terminal region of NELL1 is important for the efficient mediation of cell adhesion and spreading by NELL1.
Collapse
Affiliation(s)
- Yoko Nakamura
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan and
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim DH, Kim HR, Choi EJ, Kim DY, Kim KK, Kim BS, Park JW, Lee BJ. Neural epidermal growth factor-like like protein 2 (NELL2) promotes aggregation of embryonic carcinoma P19 cells by inducing N-cadherin expression. PLoS One 2014; 9:e85898. [PMID: 24465772 PMCID: PMC3897553 DOI: 10.1371/journal.pone.0085898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
NELL2 was first identified as a mammalian homolog of chick NEL (Neural EGF-like) protein. It is almost exclusively expressed in neurons of the rat brain and has been suggested to play a role in neural differentiation. However, there is still no clear evidence for the detailed function of NELL2 in the differentiation of neurons. In this study, we identified NELL2 function during neural differentiation of mouse embryonic carcinoma P19 cells. Endogenous expression of NELL2 in the P19 cells increased in parallel with the neuronal differentiation induced by retinoic acid (RA). We found that the mouse NELL2 promoter contains RA response elements (RAREs) and that treatment with RA increased NELL2 promoter activity. Transfection of P19 cells with NELL2 expression vectors induced a dramatic increase in cell aggregation, resulting in the facilitation of neural differentiation. Moreover, NELL2 significantly increased N-cadherin expression in the P19 cell. These data suggest that NELL2 plays an important role in the regulation of neuronal differentiation via control of N-cadherin expression and cell aggregation.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Han Rae Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Eun Jung Choi
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Dong Yeol Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Byung Sam Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
- * E-mail:
| |
Collapse
|
46
|
Ha CM, Hwang EM, Kim E, Lee DY, Chang S, Lee BJ, Hong SG, Park JY. The molecular mechanism of NELL2 movement and secretion in hippocampal progenitor HiB5 cells. Mol Cells 2013; 36:527-33. [PMID: 24352699 PMCID: PMC3887960 DOI: 10.1007/s10059-013-0216-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 11/26/2022] Open
Abstract
Neural epidermal growth factor-like protein-like 2 (NELL2) is a secreted glycoprotein that is predominantly expressed in the nervous system, but little is known about the intracellular movement and secretion mechanism of this protein. By monitoring the localization and movements of enhanced green fluorescent protein (EGFP)-labeled NELL2 in living cultured hippocampal neuroprogenitor HiB5 cells, we determined the subcellular localization of NELL2 and its intracellular movement and secretion mechanism. Cterminal EGFP-fused NELL2 showed a typical expression pattern of secreted proteins, especially with respect to its localization in the endoplasmic reticulum, Golgi apparatus, and punctate structures. Vesicles containing NELL2 exhibited bidirectional movement in HiB5 cells. The majority of the vesicles (70.1%) moved in an anterograde direction with an average velocity of 0.454 μm/s, whereas some vesicles (28.7%) showed retrograde movement with an average velocity of 0.302 μm/s. The movement patterns of NELL2 vesicles were dependent upon the presence of microtubules in HiB5 cells. Anterograde movement of NELL2 did not lead to a detectable accumulation of NELL2 in the peripheral region of the cell, indicating that it was secreted into the culture medium. We also showed that the N-terminal 29 amino acids of NELL2 were important for secretion of this protein. Taken together, these results strongly suggest that the N-terminal region of NELL2 determines both the pattern of its intracellular expression and transport of NELL2 vesicles by high-velocity movement. Therefore, NELL2 may affect the cellular activity of cells in a paracrine or autocrine manner.
Collapse
Affiliation(s)
- Chang Man Ha
- Department of Physiology, Institute of Health Science, and Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju 660-290,
Korea
- Convergence Brain Research Department, Korea Brain Research Institute (KBRI), Daegu 700-010,
Korea
| | - Eun Mi Hwang
- Department of Physiology, Institute of Health Science, and Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju 660-290,
Korea
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791,
Korea
| | - Eunju Kim
- Department of Physiology, Institute of Health Science, and Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju 660-290,
Korea
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791,
Korea
| | - Da Yong Lee
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791,
Korea
| | - Sunghoe Chang
- Department of Biomedical Sciences, Neuroscience Research Institute, Biomembrane Plasticity Research Center, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749,
Korea
| | - Seong-Geun Hong
- Department of Physiology, Institute of Health Science, and Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju 660-290,
Korea
| | - Jae-Yong Park
- Department of Physiology, Institute of Health Science, and Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju 660-290,
Korea
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791,
Korea
| |
Collapse
|
47
|
Nakamoto C, Kuan SL, Findlay AS, Durward E, Ouyang Z, Zakrzewska ED, Endo T, Nakamoto M. Nel positively regulates the genesis of retinal ganglion cells by promoting their differentiation and survival during development. Mol Biol Cell 2013; 25:234-44. [PMID: 24258025 PMCID: PMC3890344 DOI: 10.1091/mbc.e13-08-0453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
For correct functioning of the nervous system, the appropriate number and complement of neuronal cell types must be produced during development. However, the molecular mechanisms that regulate the production of individual classes of neurons are poorly understood. In this study, we investigate the function of the thrombospondin-1-like glycoprotein, Nel (neural epidermal growth factor [EGF]-like), in the generation of retinal ganglion cells (RGCs) in chicks. During eye development, Nel is strongly expressed in the presumptive retinal pigment epithelium and RGCs. Nel overexpression in the developing retina by in ovo electroporation increases the number of RGCs, whereas the number of displaced amacrine cells decreases. Conversely, knockdown of Nel expression by transposon-mediated introduction of RNA interference constructs results in decrease in RGC number and increase in the number of displaced amacrine cells. Modifications of Nel expression levels do not appear to affect proliferation of retinal progenitor cells, but they significantly alter the progression rate of RGC differentiation from the central retina to the periphery. Furthermore, Nel protects RGCs from apoptosis during retinal development. These results indicate that Nel positively regulates RGC production by promoting their differentiation and survival during development.
Collapse
Affiliation(s)
- Chizu Nakamoto
- Aberdeen Developmental Biology Group, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kim DH, Roh YG, Lee HH, Lee SY, Kim SI, Lee BJ, Leem SH. The E2F1 oncogene transcriptionally regulates NELL2 in cancer cells. DNA Cell Biol 2013; 32:517-23. [PMID: 23829315 DOI: 10.1089/dna.2013.1974] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NELL2 was first identified as a mammalian homolog of the chicken NEL protein. It was expressed in neurons and has been suggested to play a role in cell survival. However, no clear evidence has yet been available for functions of NELL2. In this study, we found two E2F1 binding sites located in the NELL2 promoter region. We examined the expression of NELL2 and E2F1 in human breast cancer cells (MDA-MB231, MCF7) and bladder cancer cells (5637, UC5). In MDA-MB231 and 5637, the expression levels of NELL2 and E2F1 were higher. To examine the interaction between E2F1 and NELL2, the binding activity was checked by a promoter assay and chromatin immunoprecipitation. From the results, we suggest that NELL2 is a novel target gene of E2F1, which is a key regulator of cell proliferation. We reveal that expression of NELL2 is regulated by E2F1, specifically, mRNA and protein levels of NELL2 are elevated upon activation of exogenous E2F1. Moreover, cells overexpressing NELL2 increased their invasive ability and an enhancement of the effect was observed when NELL2 and E2F1 were coexpressed in MDA-MB231 cells. Therefore, we suggest a novel activity for NELL2 in cancer progression through the regulation of E2F1.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of Biological Science, College of Natural Sciences, Dong-A University, Busan, South Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Expression and localization of Nell-1 during murine molar development. J Mol Histol 2012; 44:175-81. [DOI: 10.1007/s10735-012-9472-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/14/2012] [Indexed: 11/25/2022]
|
50
|
Ozair MZ, Kintner C, Brivanlou AH. Neural induction and early patterning in vertebrates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:479-98. [PMID: 24014419 DOI: 10.1002/wdev.90] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vertebrates, the development of the nervous system is triggered by signals from a powerful 'organizing' region of the early embryo during gastrulation. This phenomenon--neural induction--was originally discovered and given conceptual definition by experimental embryologists working with amphibian embryos. Work on the molecular circuitry underlying neural induction, also in the same model system, demonstrated that elimination of ongoing transforming growth factor-β (TGFβ) signaling in the ectoderm is the hallmark of anterior neural-fate acquisition. This observation is the basis of the 'default' model of neural induction. Endogenous neural inducers are secreted proteins that act to inhibit TGFβ ligands in the dorsal ectoderm. In the ventral ectoderm, where the signaling ligands escape the inhibitors, a non-neural fate is induced. Inhibition of the TGFβ pathway has now been demonstrated to be sufficient to directly induce neural fate in mammalian embryos as well as pluripotent mouse and human embryonic stem cells. Hence the molecular process that delineates neural from non-neural ectoderm is conserved across a broad range of organisms in the evolutionary tree. The availability of embryonic stem cells from mouse, primates, and humans will facilitate further understanding of the role of signaling pathways and their downstream mediators in neural induction in vertebrate embryos.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|