1
|
Barozi V, Tastan Bishop Ö. Impact of African-Specific ACE2 Polymorphisms on Omicron BA.4/5 RBD Binding and Allosteric Communication Within the ACE2-RBD Protein Complex. Int J Mol Sci 2025; 26:1367. [PMID: 39941135 PMCID: PMC11818624 DOI: 10.3390/ijms26031367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) infection occurs via the attachment of the spike (S) protein's receptor binding domain (RBD) to human ACE2 (hACE2). Natural polymorphisms in hACE2, particularly at the interface, may alter RBD-hACE2 interactions, potentially affecting viral infectivity across populations. This study identified the effects of six naturally occurring hACE2 polymorphisms with high allele frequency in the African population (S19P, K26R, M82I, K341R, N546D and D597Q) on the interaction with the S protein RBD of the BA.4/5 Omicron sub-lineage through post-molecular dynamics (MD), inter-protein interaction and dynamic residue network (DRN) analyses. Inter-protein interaction analysis suggested that the K26R variation, with the highest interactions, aligns with reports of enhanced RBD binding and increased SARS-CoV-2 susceptibility. Conversely, S19P, showing the fewest interactions and largest inter-protein distances, agrees with studies indicating it hinders RBD binding. The hACE2 M82I substitution destabilized RBD-hACE2 interactions, reducing contact frequency from 92 (WT) to 27. The K341R hACE2 variant, located distally, had allosteric effects that increased RBD-hACE2 contacts compared to WThACE2. This polymorphism has been linked to enhanced affinity for Alpha, Beta and Delta lineages. DRN analyses revealed that hACE2 polymorphisms may alter the interaction networks, especially in key residues involved in enzyme activity and RBD binding. Notably, S19P may weaken hACE2-RBD interactions, while M82I showed reduced centrality of zinc and chloride-coordinating residues, hinting at impaired communication pathways. Overall, our findings show that hACE2 polymorphisms affect S BA.4/5 RBD stability and modulate spike RBD-hACE2 interactions, potentially influencing SARS-CoV-2 infectivity-key insights for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa;
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa;
- National Institute for Theoretical and Computational Sciences (NITheCS), Matieland 7602, South Africa
| |
Collapse
|
2
|
Adamopoulos PG, Bartzoka N, Tsiakanikas P, Scorilas A. Characterization of novel ACE2 mRNA transcripts: The potential role of alternative splicing in SARS-CoV-2 infection. Gene 2025; 936:149092. [PMID: 39549777 DOI: 10.1016/j.gene.2024.149092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
The human angiotensin converting enzyme 2 (ACE2) gene encodes a type I transmembrane protein, which is homologous to angiotensin I-converting enzyme (ACE) and belongs to the angiotensin-converting enzyme family of dipeptidyl carboxypeptidases. As highlighted by the COVID-19 pandemic, ACE2 is not only crucial for the renin-angiotensin-aldosterone system (RAAS), but also displays great affinity with the SARS-CoV-2 spike protein, representing the major receptor of the virus. Given the significance of ACE2 in COVID-19, especially among cancer patients, the present study aims to explore the transcriptional landscape of ACE2 in human cancer and non-cancerous cell lines through the design and implementation of a custom targeted long-read sequencing approach. Bioinformatics analysis of the massive parallel sequencing data led to the identification of novel ACE2 mRNA splice variants (ACE2 sv.7-sv.12) that demonstrate previously uncharacterized exon-skipping events as well as 5' and/or 3' alternative splice sites. Demultiplexing of the sequencing data elucidated the differential expression profile of the identified splice variants in multiple human cell types, whereas in silico analysis suggests that some of the novel splice variants could produce truncated ACE2 isoforms with altered functionalities, potentially influencing their interaction with the SARS-CoV-2 spike protein. In summary, our study sheds light on the complex alternative splicing landscape of the ACE2 gene in cancer cell lines, revealing novel splice variants that could have significant implications for SARS-CoV-2 susceptibility in cancer patients. These findings contribute to the increased understanding of ACE2's role in COVID-19 and highlight the importance of considering alternative splicing as a key factor in viral pathogenesis. Undoubtably, further research is needed to explore the functional roles of these variants and their potential as therapeutic targets in the ongoing fight against COVID-19.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Natalia Bartzoka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Kaur M, Sandhu R, Aggarwal A. Recombinant ACE2 - Opportunities and Challenges in COVID-19 Treatment. Infect Disord Drug Targets 2025; 25:e180424229061. [PMID: 38639270 DOI: 10.2174/0118715265298816240321045741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
It was in 2019 that the world experienced the devastation caused by SARS-CoV-2, contributing to a large number of deaths. This contagious virus not only challenged the health care system but has also hit the economy very badly. There has been a lot of research on effective vaccine development, and there has been some success in the same, but no effective antiviral drugs are available in the market. No doubt vaccination can prevent the disease, but it doesn't have the potential to cure an infected person, for which there is a dire need to develop some effective drug. Angiotensin convertase enzyme 2 (ACE2) played a substantial role in SARS-CoV-2 pathogenesis and thus has gained much attention during the pandemic. Moreover, it has opened up new avenues for the cure of COVID-19.
Collapse
Affiliation(s)
- Mandeep Kaur
- Government Medical College, Patiala, Punjab, India
| | - Rahul Sandhu
- Department of General Surgery, Armed Forces Medical College, Pune, Maharashtra, 411040, India
| | - Akriti Aggarwal
- Department of Microbiology, Senior Resident, AIIMS Bathinda, Bathinda, India
| |
Collapse
|
4
|
Borghi-Silva A, Goulart CDL, Silva RN, Back GD, Camargo PF, Trimer R, Teles SN, Sampaio LMM. Impact of COVID-19 on Exercise-Based Pulmonary Rehabilitation: What Lessons Have We Learned? J Cardiopulm Rehabil Prev 2024; 44:409-416. [PMID: 39485894 DOI: 10.1097/hcr.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic had a major global impact on health care, including the delivery, modality, and importance of outcomes in pulmonary rehabilitation (PR). This review discusses the impact of the pandemic on PR and the changes that were required to maintain its delivery. This article reviews the current evidence on PR during the COVID-19 pandemic period, focusing on delivery models, modalities, outcomes, perspectives, and barriers. A search of the MEDLINE, Embase, and SciELO databases and the Cochrane Library on this topic was conducted between December 1, 2019 and August 1, 2023. Studies were reviewed and relevant topics were included in this narrative. Rehabilitation of patients with severe acute COVID-19 and symptoms of long COVID has been challenging. The number of rehabilitation programs worldwide is still low, and community-based programs are still rare. Integrated programs with a multidisciplinary approach and exercise therapy with individualized prescription based on symptoms have been an interesting strategy. Telerehabilitation and outpatient rehabilitation are both effective in the treatment of patients with chronic obstructive pulmonary disease. However, the uptake of PR remains considerably low, and technological barriers for patients and lack of technological resources in low-income countries affect the delivery of these services in much of the world.
Collapse
Affiliation(s)
- Audrey Borghi-Silva
- Author Affiliations: Cardiopulmonary Physiotherapy Laboratory, Federal University of São Carlos, São Carlos, São Paulo, Brazil (Drs Borghi-Silva, Goulart, Silva, Back, Camargo, and Trimer); Postgraduate Program of Health Sciences and Technologies, University of Brasilia (UnB), Distrito Federal, Brazil (Dr Goulart); and Postgraduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil (Ms Teles and Dr Sampaio)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang W, Liu R, Zhong Q, Cao Y, Qi J, Li Y, Yang Q. Single-cell analysis of nasal epithelial cell development in domestic pigs. Vet Res 2024; 55:140. [PMID: 39478588 PMCID: PMC11523856 DOI: 10.1186/s13567-024-01403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/28/2024] [Indexed: 11/03/2024] Open
Abstract
The nasal mucosa forms a critical barrier against the invasion of respiratory pathogens. Composed of a heterogeneous assortment of cell types, the nasal mucosa relies on the unique characteristics and complex intercellular dynamics of these cells to maintain their structural integrity and functional efficacy. In this study, single-cell RNA sequencing (scRNA-seq) of porcine nasal mucosa was performed, and nineteen distinct nasal cell types, including nine epithelial cell types, five stromal cell types, and five immune cell types, were identified. The distribution patterns of three representative types of epithelial cells (basal cells, goblet cells, and ciliated cells) were subsequently detected by immunofluorescence. We conducted a comparative analysis of these data with published human single-cell data, revealing consistent differentiation trajectories among porcine and human nasal epithelial cells. Specifically, basal cells serve as the initial stage in the differentiation process of nasal epithelial cells, which then epithelial cells. This research not only enhances our understanding of the composition and transcriptional signature of porcine nasal mucosal cells but also offers a theoretical foundation for developing alternative models for human respiratory diseases.
Collapse
Affiliation(s)
- Wenqian Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruiling Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiu Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunlei Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaxin Qi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Bader El Din N, Moustafa R, Ghaleb E, El‑Shenawy R, Agwa M, Helmy N, El‑Shiekh M, Yousif A, Mahfouz M, Seif A, Abdelghaffar M, Elsayed H. Association of OAS1 gene polymorphism with the severity of COVID‑19 infection. WORLD ACADEMY OF SCIENCES JOURNAL 2024; 6:72. [DOI: 10.3892/wasj.2024.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Noha Bader El Din
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Rehab Moustafa
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Enaya Ghaleb
- School of Pharmacy, Newgiza University (NGU), Newgiza, Giza 12577, Egypt
| | - Reem El‑Shenawy
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Mona Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Naiera Helmy
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | | | - Ahmed Yousif
- Department of Gastroenterology and Infectious Diseases, Ahmed Maher Teaching Hospital, Cairo 11562, Egypt
| | - Mohammad Mahfouz
- Department of Gastroenterology and Infectious Diseases, Ahmed Maher Teaching Hospital, Cairo 11562, Egypt
| | - Ahmed Seif
- Department of Hepatogastroenterology and Infectious Diseases, Shebin Elkom Teaching Hospital, Cairo 32511, Egypt
| | - Muhammad Abdelghaffar
- General Organization for Teaching Hospitals and Institutes (GOTHI), Cairo 11819, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
7
|
Amtaghri S, Slaoui M, Eddouks M. Phytomedical compounds as promising therapeutic agents for COVID-19 targeting angiotensin-converting enzyme 2: a review. J Pharm Pharmacol 2024; 76:1239-1268. [PMID: 39018169 DOI: 10.1093/jpp/rgae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
AIMS The aim of the present review was to highlight natural product investigations in silico and in vitro to find plants and chemicals that inhibit or stimulate angiotensin-converting enzyme 2 (ACE-2). BACKGROUND The global reduction of incidents and fatalities attributable to infections with SARS-CoV-2 is one of the most public health problems. In the absence of specific therapy for coronavirus disease 2019 (COVID-19), phytocompounds generated from plant extracts may be a promising strategy worth further investigation, motivating researchers to evaluate the safety and anti-SARS-CoV-2 effectiveness of these ingredients. OBJECTIVE To review phytochemicals in silico for anti-SARS-CoV-2 activity and to assess their safety and effectiveness in vitro and in vivo. METHODS The present review was conducted using various scientific databases and studies on anti-SARS-CoV-2 phytochemicals were analyzed and summarized. The results obtained from the in silico screening were subjected to extraction, isolation, and purification. The in vitro studies on anti-SarcoV-2 were also included in this review. In addition, the results of this research were interpreted, analyzed, and documented on the basis of the bibliographic information obtained. RESULTS This review discusses recent research on using natural remedies to cure or prevent COVID-19 infection. The literature analysis shows that the various herbal preparations (extracts) and purified compounds can block the replication or entrance of the virus directly to carry out their anti-SARS-CoV-2 effects. It is interesting to note that certain items can prevent SARS-CoV-2 from infecting human cells by blocking the ACE-2 receptor or the serine protease TMPRRS2. Moreover, natural substances have been demonstrated to block proteins involved in the SARS-CoV-2 life cycle, such as papain- or chymotrypsin-like proteases. CONCLUSION The natural products may have the potential for use singly or in combination as alternative drugs to treat/prevent COVID-19 infection, including blocking or stimulating ACE-2. In addition, their structures may provide indications for the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
- Energy, Materials and Sustainable Development (EMDD) Team-Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Miloudia Slaoui
- Energy, Materials and Sustainable Development (EMDD) Team-Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
| |
Collapse
|
8
|
Momin F, Kevlani V, Rawal S, Patel R, Acharya S, Shah S. Antipsoriatic Effect of Silymarin NLCs Based Gel: In Vitro and In Vivo Activity. AAPS PharmSciTech 2024; 25:195. [PMID: 39168904 DOI: 10.1208/s12249-024-02910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Psoriasis is a chronic inflammatory disorder affecting over 100 million people, requires long-term therapy. Current treatments offer only symptomatic relief. However, phytoconstituents-based therapies like Silymarin (SLM) have shown promising effects. The study aims to develop, optimize, and evaluate a novel stable SLM NLC gel to improve anti-psoriatic activity by enhancing its permeability and retention into the dermal layer. SLM NLC formulation was prepared and optimized using 32 full factorial designs. The formulation was evaluated for the particle size, PDI, zeta potential, and % entrapment efficiency, evaluated by Transmission electron microscopy and thermal analysis. The freeze dried and prepared NLC-loaded gel was evaluated for physicochemical parameters, ex-vivo, and in-vivo studies. SLM-loaded NLC shows 624 nm particle size, 0.41 PDI, 92.95% entrapment efficiency, and -31.6 mV zeta potential. The sphere form of NLCs was confirmed using TEM. Controlled drug release was observed in ex vivo studies, low PASI score compared to disease control. Further, the levels of IL-6, TNF-α, and NF-κB were also reduced. The results are supported by histopathology showing minimal parakeratosis indicated in the SLM NLC-treated group. Prepared NLC-based shows enhance topical penetration and decrease the thickness of psoriatic plaques in the in vivo study.
Collapse
Affiliation(s)
- Faijmahmad Momin
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, LJ Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad, 382 210, India
| | - Vijay Kevlani
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, LJ Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad, 382 210, India
| | - Shruti Rawal
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, LJ Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad, 382 210, India
| | - Riya Patel
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, LJ Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad, 382 210, India
| | - Sheetal Acharya
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, LJ Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad, 382 210, India
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, LJ Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad, 382 210, India.
| |
Collapse
|
9
|
Otazu K, Olivos-Ramirez GE, Fernández-Silva PD, Vilca-Quispe J, Vega-Chozo K, Jimenez-Avalos GM, Chenet-Zuta ME, Sosa-Amay FE, Cárdenas Cárdenas RG, Ropón-Palacios G, Dattani N, Camps I. The Malaria Box molecules: a source for targeting the RBD and NTD cryptic pocket of the spike glycoprotein in SARS-CoV-2. J Mol Model 2024; 30:217. [PMID: 38888748 DOI: 10.1007/s00894-024-06006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
CONTEXT SARS-CoV-2, responsible for COVID-19, has led to over 500 million infections and more than 6 million deaths globally. There have been limited effective treatments available. The study aims to find a drug that can prevent the virus from entering host cells by targeting specific sites on the virus's spike protein. METHOD We examined 13,397 compounds from the Malaria Box library against two specific sites on the spike protein: the receptor-binding domain (RBD) and a predicted cryptic pocket. Using virtual screening, molecular docking, molecular dynamics, and MMPBSA techniques, they evaluated the stability of two compounds. TCMDC-124223 showed high stability and binding energy in the RBD, while TCMDC-133766 had better binding energy in the cryptic pocket. The study also identified that the interacting residues are conserved, which is crucial for addressing various virus variants. The findings provide insights into the potential of small molecules as drugs against the spike protein.
Collapse
Affiliation(s)
- Kewin Otazu
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas-UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Gustavo E Olivos-Ramirez
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas-UNIFAL-MG, Alfenas, Minas Gerais, Brazil
- HPQC Labs, Waterloo, Canada
| | - Pablo D Fernández-Silva
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas-UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Julissa Vilca-Quispe
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas-UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Karolyn Vega-Chozo
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas-UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | | | | | - Frida E Sosa-Amay
- Laboratorio de Farmacología y Toxicología, Facultad de Farmacia y Bioquímica, Universidad Nacional de la Amazonía Peruana, Iquitos, Perú
| | | | - Georcki Ropón-Palacios
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas-UNIFAL-MG, Alfenas, Minas Gerais, Brazil.
- HPQC Labs, Waterloo, Canada.
| | - Nike Dattani
- HPQC College, Waterloo, Canada.
- HPQC Labs, Waterloo, Canada.
| | - Ihosvany Camps
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas-UNIFAL-MG, Alfenas, Minas Gerais, Brazil.
- HPQC Labs, Waterloo, Canada.
| |
Collapse
|
10
|
Liu S, Zhang L, Fu W, Liang Z, Yu Y, Li T, Tong J, Liu F, Nie J, Lu Q, Lu S, Huang W, Wang Y. Optimization and validation of a virus-like particle pseudotyped virus neutralization assay for SARS-CoV-2. MedComm (Beijing) 2024; 5:e615. [PMID: 38881676 PMCID: PMC11176738 DOI: 10.1002/mco2.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Spike-protein-based pseudotyped viruses were used to evaluate vaccines during the COVID-19 pandemic. However, they cannot be used to evaluate the envelope (E), membrane (M), and nucleocapsid (N) proteins. The first generation of virus-like particle (VLP) pseudotyped viruses contains these four structural proteins, but their titers for wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relatively low, even lower for the omicron variant, rendering them unsuitable for neutralizing antibody detection. By optimizing the spike glycoprotein signal peptide, substituting the complexed M and E proteins with SARS-COV-1, optimizing the N protein with specific mutations (P199L, S202R, and R203M), and truncating the packaging signal, PS9, we increased the titer of the wild-type VLP pseudotyped virus over 100-fold, and successfully packaged the omicron VLP pseudotyped virus. The SARS-CoV-2 VLP pseudotyped viruses maintained stable titers, even through 10 freeze-thaw cycles. The key neutralization assay parameters were optimized, including cell type, cell number, and viral inoculum. The assay demonstrated minimal variation in both intra- and interassay results, at 11.5% and 11.1%, respectively. The correlation between the VLP pseudotyped virus and the authentic virus was strong (r = 0.9). Suitable for high-throughput detection of various mutant strains in clinical serum. In summary, we have developed a reliable neutralization assay for SARS-CoV-2 based on VLP pseudotyped virus.
Collapse
Affiliation(s)
- Shuo Liu
- Changping Laboratory Beijing China
- Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Wangjun Fu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Ziteng Liang
- Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | | | - Tao Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Jincheng Tong
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Fan Liu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming Yunnan, China Kunming China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China
| | - Youchun Wang
- Changping Laboratory Beijing China
- Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| |
Collapse
|
11
|
Elemam NM, Bouzid A, Alsafar H, Ahmed SBM, Hafezi S, Venkatachalam T, Eldohaji L, Al Hamidi T, Gerges PH, Halabi N, Hadj-Kacem H, Talaat IM, Taneera J, Sulaiman N, Maghazachi AA, Hamid Q, Hamoudi R, Saber-Ayad M. Association of specific ACE2 and TMPRSS2 variants with circulatory cytokines of COVID-19 Emirati patients. Front Immunol 2024; 15:1348229. [PMID: 38855114 PMCID: PMC11157456 DOI: 10.3389/fimmu.2024.1348229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION The COVID-19 pandemic represented one of the most significant challenges to researchers and healthcare providers. Several factors determine the disease severity, whereas none alone can explain the tremendous variability. The Single nucleotide variants (SNVs) in angiotensin-converting enzyme-2 (ACE2) and transmembrane serine protease type-2 (TMPRSS2) genes affect the virus entry and are considered possible risk factors for COVID-19. METHODS We compiled a panel of gene variants from both genes and used in-silico analysis to predict their significance. We performed biological validation to assess their capacity to alter the ACE2 interaction with the virus spike protein. Subsequently, we conducted a retrospective comparative genome analysis on those variants in the Emirati patients with different disease severity (total of 96) along with 69 healthy control subjects. RESULTS Our results showed that the Emirati population lacks the variants that were previously reported as associated with disease severity, whereas a new variant in ACE2 "Chr X:g.15584534" was associated with disease severity specifically among female patients. In-silico analysis revealed that the new variant can determine the ACE2 gene transcription. Several cytokines (GM-CSF and IL-6) and chemokines (MCP-1/CCL2, IL-8/CXCL8, and IP-10/CXCL10) were markedly increased in COVID-19 patients with a significant correlation with disease severity. The newly reported genetic variant of ACE2 showed a positive correlation with CD40L, IL-1β, IL-2, IL-15, and IL-17A in COVID-19 patients. CONCLUSION Whereas COVID-19 represents now a past pandemic, our study underscores the importance of genetic factors specific to a population, which can influence both the susceptibility to viral infections and the level of severity; subsequently expected required preparedness in different areas of the world.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Amal Bouzid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Emirates Bio-Research Centre, Ministry of Interior, Abu Dhabi, United Arab Emirates
| | - Samrein BM Ahmed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Health, Wellbeing and Life Sciences, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, United Kingdom
| | - Shirin Hafezi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Leen Eldohaji
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Tasneem Al Hamidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Peter Habib Gerges
- School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Nour Halabi
- Al Jalila Genomics Center of Excellence, Al Jalila Children’s Specialty Hospital, Dubai, United Arab Emirates
| | - Hassen Hadj-Kacem
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jalal Taneera
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Nabil Sulaiman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Family Medicine, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Maha Saber-Ayad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Hu Y, Villalan AK, Fan X, Zhang S, Joka FR, Wu X, Wang H, Wang X. Analysis the molecular similarity of least common amino acid sites in ACE2 receptor to predict the potential susceptible species for SARS-CoV-2. PLoS One 2024; 19:e0293441. [PMID: 38696505 PMCID: PMC11065212 DOI: 10.1371/journal.pone.0293441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/24/2024] [Indexed: 05/04/2024] Open
Abstract
SARS-CoV-2 infections in animals have been reported globally. However, the understanding of the complete spectrum of animals susceptible to SARS-CoV-2 remains limited. The virus's dynamic nature and its potential to infect a wide range of animals are crucial considerations for a One Health approach that integrates both human and animal health. This study introduces a bioinformatic approach to predict potential susceptibility to SARS-CoV-2 in both domestic and wild animals. By examining genomic sequencing, we establish phylogenetic relationships between the virus and its potential hosts. We focus on the interaction between the SARS-CoV-2 genome sequence and specific regions of the host species' ACE2 receptor. We analyzed and compared ACE2 receptor sequences from 29 species known to be infected, selecting 10 least common amino acid sites (LCAS) from key binding domains based on similarity patterns. Our analysis included 49 species across primates, carnivores, rodents, and artiodactyls, revealing complete consistency in the LCAS and identifying them as potentially susceptible. We employed the LCAS similarity pattern to predict the likelihood of SARS-CoV-2 infection in unexamined species. This method serves as a valuable screening tool for assessing infection risks in domestic and wild animals, aiding in the prevention of disease outbreaks.
Collapse
Affiliation(s)
- YeZhi Hu
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Arivizhivendhan Kannan Villalan
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Xin Fan
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Shuang Zhang
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | | | - XiaoDong Wu
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - HaoNing Wang
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang Province, China
| | - XiaoLong Wang
- Key Laboratory for Wildlife Diseases and Bio-security Management of Heilongjiang Province, Harbin, Heilongjiang Province, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, China
| |
Collapse
|
13
|
He X, Li Y, Liu J, Yan G, Gao X, Li G, Wei L, Feng G, Li J, Zhou H. The causal relationship between COVID-19 and ten esophageal diseases: a study utilizing Mendelian randomization. Front Med (Lausanne) 2024; 11:1346888. [PMID: 38751976 PMCID: PMC11094223 DOI: 10.3389/fmed.2024.1346888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Background Clinical signs of dysphagia, pancreatic achalasia, and esophagitis have been reported in patients with COVID-19. However, the causal relationship between COVID-19 and esophageal diseases is not clear. Therefore, we utilized Mendelian randomization to explore the potential association between COVID-19 and esophageal diseases. Methods The summary statistics for a Genome-wide association study (GWAS) were obtained from The COVID-19 Host Genetics Initiative, encompassing four types of COVID-19 as exposure: severe COVID-19, hospitalized COVID-19 versus ambulatory COVID-19, hospitalized COVID-19 versus uninfected, and confirmed COVID-19. Additionally, summary statistics for ten esophageal diseases as outcomes were sourced from the GWAS Catalog and FinnGen databases. Univariate Mendelian randomization (MR) analysis was utilized to thoroughly investigate and validate the potential causal association between COVID-19 and various esophageal conditions, including esophageal varices, Barrett's esophagus, esophagitis, esophageal obstruction, esophageal ulcer, esophageal perforation, gastroesophageal reflux, congenital esophageal malformations, benign esophageal tumors, and esophageal adenocarcinoma. Results An inverse variance-weighted (IVW) model was utilized for univariate Mendelian randomization (MR) analysis, which revealed that genetic liability in patients with confirmed COVID-19 was associated with esophageal obstruction (OR [95% CI]: 0.5275458 [0.2822400-0.9860563]; p-value = 0.0450699). Furthermore, a suggestive causal association was found between genetic liability and a reduced risk of benign esophageal tumors (OR [95% CI]: 0.2715453 [0.09368493-0.7870724]; p-value = 0.0163510), but with a suggestively increased risk of congenital esophageal malformations (OR [95% CI]: 6.959561 [1.1955828-40.51204]; p-value = 0.03086835). Additionally, genetic liability in hospitalized COVID-19 patients, compared to non-hospitalized COVID-19 patients, was suggestively associated with an increased risk of esophagitis (OR [95% CI]: 1.443859 [1.0890568-1.914252]; p-value = 0.01068201). The reliability of these causal findings is supported by Cochran's Q statistic and the MR-Egger intercept test. Conclusion The results of this study suggest the existence of a causal relationship between COVID-19 and esophageal diseases, highlighting differing risk effects of COVID-19 on distinct esophageal conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Huafu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Putira Sacuena ER, Lima CNC, Abreu IN, da Silva LMC, Belleza LKG, Lemes RB, de Araújo GS, da Silva HP, Vallinoto ACR, Guerreiro JF. Host genetics and the profile of COVID-19 in indigenous people from the Brazilian Amazon: A pilot study with variants of the ACE1, ACE2 and TMPRSS2 genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105564. [PMID: 38307396 DOI: 10.1016/j.meegid.2024.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
This pilot study aimed to investigate genetic factors that may have contributed to the milder clinical outcomes of COVID-19 in Brazilian indigenous populations. 263 Indigenous from the Araweté, Kararaô, Parakanã, Xikrin do Bacajá, Kayapó and Munduruku peoples were analyzed, 55.2% women, ages ranging from 10 to 95 years (average 49.5 ± 20.7). Variants in genes involved in the entry of SARS-CoV-2 into the host cell (ACE1 rs1799752 I/D, ACE2 rs2285666 C/T, ACE2 rs73635825 A/G and TMPRSS2 rs123297605 C/T), were genotyped in indigenous peoples from the Brazilian Amazon, treated during the SARS-CoV-2 pandemic between 2020 and 2021. The distribution of genotypes did not show any association with the presence or absence of IgG antibodies. Additionally, the influence of genetic variations on the severity of the disease was not examined extensively because a significant number of indigenous individuals experienced the disease with either mild symptoms or no symptoms. It is worth noting that the frequencies of risk alleles were found to be lower in Indigenous populations compared to both continental populations and Brazilians. Indigenous Brazilian Amazon people exhibited an ethnic-specific genetic profile that may be associated with a milder disease, which could explain the unexpected response they demonstrated to COVID-19, being less impacted than Brazilians.
Collapse
Affiliation(s)
- Eliene Rodrigues Putira Sacuena
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Brazil; Laboratory of Bioanthropological Studies in Health and Environment, Institute of Philosophy and Human Sciences, Federal University of Pará, Brazil
| | | | | | | | - Lilian Karen Goes Belleza
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Brazil
| | - Renan Barbosa Lemes
- Laboratory of Human Population Genomics, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Hilton Pereira da Silva
- Laboratory of Bioanthropological Studies in Health and Environment, Institute of Philosophy and Human Sciences, Federal University of Pará, Brazil
| | | | - João Farias Guerreiro
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Brazil.
| |
Collapse
|
15
|
Ullah A, Ullah S, Halim SA, Waqas M, Ali B, Ataya FS, El-Sabbagh NM, Batiha GES, Avula SK, Csuk R, Khan A, Al-Harrasi A. Identification of new pharmacophore against SARS-CoV-2 spike protein by multi-fold computational and biochemical techniques. Sci Rep 2024; 14:3590. [PMID: 38351259 PMCID: PMC10864406 DOI: 10.1038/s41598-024-53911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
COVID-19 appeared as a highly contagious disease after its outbreak in December 2019 by the virus, named SARS-CoV-2. The threat, which originated in Wuhan, China, swiftly became an international emergency. Among different genomic products, spike protein of virus plays a crucial role in the initiation of the infection by binding to the human lung cells, therefore, SARS-CoV-2's spike protein is a promising therapeutic target. Using a combination of a structure-based virtual screening and biochemical assay, this study seeks possible therapeutic candidates that specifically target the viral spike protein. A database of ~ 850 naturally derived compounds was screened against SARS-CoV-2 spike protein to find natural inhibitors. Using virtual screening and inhibitory experiments, we identified acetyl 11-keto-boswellic acid (AKBA) as a promising molecule for spike protein, which encouraged us to scan the rest of AKBA derivatives in our in-house database via 2D-similarity searching. Later 19 compounds with > 85% similarity with AKBA were selected and docked with receptor binding domain (RBD) of spike protein. Those hits declared significant interactions at the RBD interface, best possess and excellent drug-likeness and pharmacokinetics properties with high gastrointestinal absorption (GIA) without toxicity and allergenicity. Our in-silico observations were eventually validated by in vitro bioassay, interestingly, 10 compounds (A3, A4, C3, C6A, C6B, C6C, C6E, C6H, C6I, and C6J) displayed significant inhibitory ability with good percent inhibition (range: > 72-90). The compounds C3 (90.00%), C6E (91.00%), C6C (87.20%), and C6D (86.23%) demonstrated excellent anti-SARS CoV-2 spike protein activities. The docking interaction of high percent inhibition of inhibitor compounds C3 and C6E was confirmed by MD Simulation. In the molecular dynamics simulation, we observed the stable dynamics of spike protein inhibitor complexes and the influence of inhibitor binding on the protein's conformational arrangements. The binding free energy ΔGTOTAL of C3 (-38.0 ± 0.08 kcal/mol) and C6E (-41.98 ± 0.08 kcal/mol) respectively indicate a strong binding affinity to Spike protein active pocket. These findings demonstrate that these molecules particularly inhibit the function of spike protein and, therefore have the potential to be evaluated as drug candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Atta Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Ul-Mouz, P.O Box 33, Postal Code 616, Nizwa, Sultanate of Oman
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Ul-Mouz, P.O Box 33, Postal Code 616, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Ul-Mouz, P.O Box 33, Postal Code 616, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Ul-Mouz, P.O Box 33, Postal Code 616, Nizwa, Sultanate of Oman
| | - Basharat Ali
- Sulaiman Bin Abdullah Aba Al-Khail-Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Nasser M El-Sabbagh
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Ul-Mouz, P.O Box 33, Postal Code 616, Nizwa, Sultanate of Oman
| | - Rene Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120, Halle (Saale), Germany
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Ul-Mouz, P.O Box 33, Postal Code 616, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Ul-Mouz, P.O Box 33, Postal Code 616, Nizwa, Sultanate of Oman.
| |
Collapse
|
16
|
Albai O, Braha A, Timar B, Sima A, Deaconu L, Timar R. Assessment of the Negative Factors for the Clinical Outcome in Patients with SARS-CoV-2 Infection and Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:271-282. [PMID: 38283636 PMCID: PMC10812141 DOI: 10.2147/dmso.s447835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024] Open
Abstract
Purpose Patients with diabetes mellitus (DM) are more susceptible to viral and bacterial infections, facing a more severe prognosis and higher mortality rates. The study's main aim was to evaluate the survival and mortality rates of patients with type 2 diabetes (T2DM) and SARS-CoV-2 virus infection alongside the main factors influencing the prognosis. Patients and Methods The present study included 186 patients with T2DM and SARS-CoV-2 virus infection admitted to the COVID-19 Department of the "Pius Brînzeu" Emergency Clinical County University Hospital between November 2020 and March 2021. Patients had investigations performed upon arrival in the emergency room and during hospitalization. We analyzed the risk of negative prognosis based on clinical data (oxygen saturation (SatO2), respiratory rate (RR), lung damage), glycemic control (HbA1c, glycemia at hospital admission), and the duration of T2DM. Results The mortality rate in the studied group was 36.6%. All deceased patients had previously been diagnosed with hypertension; 95.58% had a body mass index (BMI) greater than 25 kg/m2, and 79.41% presented with cardiovascular disease (CVD). Compared to those who recovered, statistically significant differences were observed in BMI, glycemic levels at admission, glycosylated hemoglobin levels (HbA1c), SatO2, RR, and lung damage. Valid statistically significant predictors for death in T2DM patients with COVID-19 were hyperglycemia at admission > 198mg/dl, HbA1c> 8.6%, and SatO2≤ 87%. Conclusion SatO2, glycemia at hospital admission, and HbA1c had the highest sensitivity and specificity to predict the prognosis of T2DM patients with SARS-CoV-2 infection. Glycemic control is essential in the prognosis of patients with DM and COVID-19 infection. The prognosis was worse if other comorbidities were associated, especially hypertension and CVD.
Collapse
Affiliation(s)
- Oana Albai
- Department of Second Internal Medicine- Diabetes, Nutrition, Metabolic Diseases, and Systemic Rheumatology, ”victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases Clinic, ”Pius Brînzeu” Emergency Clinical County University Hospital, Timisoara, 300723, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease/MOL-NEPHRO-VASC, ”Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Adina Braha
- Department of Second Internal Medicine- Diabetes, Nutrition, Metabolic Diseases, and Systemic Rheumatology, ”victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases Clinic, ”Pius Brînzeu” Emergency Clinical County University Hospital, Timisoara, 300723, Romania
| | - Bogdan Timar
- Department of Second Internal Medicine- Diabetes, Nutrition, Metabolic Diseases, and Systemic Rheumatology, ”victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases Clinic, ”Pius Brînzeu” Emergency Clinical County University Hospital, Timisoara, 300723, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease/MOL-NEPHRO-VASC, ”Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Alexandra Sima
- Department of Second Internal Medicine- Diabetes, Nutrition, Metabolic Diseases, and Systemic Rheumatology, ”victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases Clinic, ”Pius Brînzeu” Emergency Clinical County University Hospital, Timisoara, 300723, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease/MOL-NEPHRO-VASC, ”Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Loredana Deaconu
- Department of Second Internal Medicine- Diabetes, Nutrition, Metabolic Diseases, and Systemic Rheumatology, ”victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Romulus Timar
- Department of Second Internal Medicine- Diabetes, Nutrition, Metabolic Diseases, and Systemic Rheumatology, ”victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases Clinic, ”Pius Brînzeu” Emergency Clinical County University Hospital, Timisoara, 300723, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease/MOL-NEPHRO-VASC, ”Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| |
Collapse
|
17
|
Gressett TE, Hossen ML, Talkington G, Volic M, Perez H, Tiwari PB, Chapagain P, Bix G. Molecular interactions between perlecan LG3 and the SARS-CoV-2 spike protein receptor binding domain. Protein Sci 2024; 33:e4843. [PMID: 37996967 PMCID: PMC10731540 DOI: 10.1002/pro.4843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global health crisis with significant clinical morbidity and mortality. While angiotensin-converting enzyme 2 (ACE2) is the primary receptor for viral entry, other cell surface and extracellular matrix proteins may also bind to the viral receptor binding domain (RBD) within the SARS-CoV-2 spike protein. Recent studies have implicated heparan sulfate proteoglycans, specifically perlecan LG3, in facilitating SARS-CoV-2 binding to ACE2. However, the role of perlecan LG3 in SARS-CoV-2 pathophysiology is not well understood. In this study, we investigated the binding interactions between the SARS-CoV-2 spike protein RBD and perlecan LG3 through molecular modeling simulations and surface plasmon resonance (SPR) experiments. Our results indicate stable binding between LG3 and SARS-CoV-2 spike protein RBD, which may potentially enhance RBD-ACE2 interactions. These findings shed light on the role of perlecan LG3 in SARS-CoV-2 infection and provide insight into SARS-CoV-2 pathophysiology and potential therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
- Timothy E. Gressett
- Department of Neurosurgery, Clinical Neuroscience Research CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
| | - Md Lokman Hossen
- Department of PhysicsFlorida International UniversityMiamiFloridaUSA
- Department of PhysicsUniversity of BarishalKornokathiBangladesh
| | - Grant Talkington
- Department of Neurosurgery, Clinical Neuroscience Research CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
| | - Milla Volic
- Department of Neurosurgery, Clinical Neuroscience Research CenterTulane University School of MedicineNew OrleansLouisianaUSA
| | - Hugo Perez
- Department of PhysicsFlorida International UniversityMiamiFloridaUSA
| | | | - Prem Chapagain
- Department of PhysicsFlorida International UniversityMiamiFloridaUSA
- Biomolecular Sciences InstituteFlorida International UniversityMiamiFloridaUSA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
- Department of NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
- Department of Microbiology and ImmunologyTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
18
|
Loi LK, Yang CC, Lin YC, Su YF, Juan YC, Chen YH, Chang HC. Decoy peptides effectively inhibit the binding of SARS-CoV-2 to ACE2 on oral epithelial cells. Heliyon 2023; 9:e22614. [PMID: 38107325 PMCID: PMC10724569 DOI: 10.1016/j.heliyon.2023.e22614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
The entry of SARS-CoV-2 into host cells involves the interaction between the viral spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor. Given that the spike protein evolves rapidly to evade host immunity, therapeutics that block ACE2 accessibility, such as spike decoys, could serve as an alternative strategy for attenuating viral infection. Here, we constructed a drug screening platform based on oral epithelial cells to rapidly identify peptides or compounds capable of blocking the spike-ACE2 interaction. We engineered short decoy peptides, 8 to 14 amino acids in length, using the spike protein's receptor-binding motif (RBM) and demonstrated that these peptides can effectively inhibit virus attachment to host cells. Additionally, we discovered that diminazene aceturate (DIZE), an ACE2 activator, similarly inhibited virus binding. Our research thus validates the potential of decoy peptides as a new therapeutic strategy against SARS-CoV-2 infections, opening avenues for further development and study.
Collapse
Affiliation(s)
- Lai-Keng Loi
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yee-Fun Su
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Yi-Chen Juan
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Yi-Hsin Chen
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Chuan Chang
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
19
|
Waryah YM, Khidri FF, Nigar R, Devrajani T, Rajput AR, Waryah AM, Ujjan ID. Impact of ACE2 gene variations on COVID-19 pathogenicity in Pakistani patients. Saudi J Biol Sci 2023; 30:103813. [PMID: 37811480 PMCID: PMC10550763 DOI: 10.1016/j.sjbs.2023.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Background COVID-19, caused by the SARS-CoV-2 virus, swiftly disseminated and was declared a pandemic. Variations in the ACE2 gene can impact the virus's ability to bind to ACE2 receptor, potentially influencing an individual's susceptibility and its association with COVID-19 severity across various populations. Methods In total, 200 individuals were sequenced for the ACE2 gene and potential impact of the found variants on the ACE2 protein was assessed using in-silico tools. Results Eight variations in the ACE2 gene were identified in 27 COVID-19 patients, of which four were missense and four were intronic variants. Three variants had a MAF of < 0.01 (c.251C > T, p.Pro86Leu; 15C > G, p.S5S; and c. 91 A > G, p.Lys31Glu). A missense variant, p.Pro86Leu, C > T, TT genotype, was found in 9 out of 200 individuals with an allele frequency of 0.045 and showed a significant association with COVID-19 (P = 0.003). The heterozygous allele of 15C > G, p.S5S, was found with a frequency of 0.02 (8/400) in eight patients, and its CG genotype showed a significant association with COVID-19 (P = 0.0068). The remaining identified variants were not associated with COVID-19 susceptibility. Conclusion The ACE2 gene sequence in Pakistani individuals exhibited a low frequency of identified variants in COVID-19 patients. Overall, only two variants were associated with susceptibility to the disease, possibly contributing to Pakistan's lower COVID-19 mortality and infection rates. However, individuals carrying the mutant variant experienced more severe symptoms.
Collapse
Affiliation(s)
- Yar Muhammad Waryah
- Scientific Ophthalmic and Research Laboratory, Sindh Institute of Ophthalmology and Visual Sciences, Hyderabad 71500, Pakistan
- Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Feriha Fatima Khidri
- Department of Biochemistry, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Roohi Nigar
- Department of Gynecology, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Tarachand Devrajani
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ali Raza Rajput
- Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ali Muhammad Waryah
- Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ikram Din Ujjan
- Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
20
|
Abou Baker DH, Hassan EM, El Gengaihi S. An overview on medicinal plants used for combating coronavirus: Current potentials and challenges. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2023; 13:100632. [PMID: 37251276 PMCID: PMC10198795 DOI: 10.1016/j.jafr.2023.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Worldwide, Severe acute respiratory syndrome Coronavirus (SARS-CoV-2) pandemic crisis, causing many morbidities, mortality, and devastating impact on economies, so the current outbreak of the CoV-2 is a major concern for global health. The infection spread quickly and caused chaos in many countries around the world. The slow discovery of CoV-2 and the limited treatment options are among the main challenges. Therefore, the development of a drug that is safe and effective against CoV-2 is urgently needed. The present overview briefly summarizes CoV-2 drug targets ex: RNA-dependent RNA polymerase (RdRp), papain-like protease (PLpro), 3-chymotrypsin-like protease (3CLpro), transmembrane serine protease enzymes (TMPRSS2), angiotensin-converting enzyme 2 (ACE2), structural protein (N, S, E, and M), and virulence factors (NSP1, ORF7a, and NSP3c) for which drug design perspective can be considered. In addition, summarize all anti-COVID-19 medicinal plants and phytocompounds and their mechanisms of action to be used as a guide for further studies.
Collapse
Affiliation(s)
- Doha H Abou Baker
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Emad M Hassan
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Souad El Gengaihi
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
21
|
Lei M, Ma Y, Chen H, Huang P, Sun J, Wang X, Sun Q, Hu Y, Shi J. Emerging SARS-CoV-2 variants of concern potentially expand host range to chickens: insights from AXL, NRP1 and ACE2 receptors. Virol J 2023; 20:196. [PMID: 37644471 PMCID: PMC10466743 DOI: 10.1186/s12985-023-02123-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The possibilities of cross-species transmission of SARS-CoV-2 variants of concern (VOCs) between humans and poultry species are unknown. The analysis of the structure of receptor was used to investigate the potential of emerging SARS-CoV-2 VOCs to expand species tropism to chickens based on the interaction between Spike (S) protein and tyrosine kinase receptor UFO (AXL), angiotensin-converting enzyme 2 (ACE2), and neuropilin 1 (NRP1) with substantial public health importance. METHODS The structural and genetic alignment and surface potential analysis of the amino acid (aa) in ACE2, AXL, and NRP1 in human, hamster, mouse, mink, ferret, rhesus monkey and chickens were performed by Swiss-Model and pymol software. The critical aa sites that determined the susceptibility of the SARS-CoV-2 to the host were screened by aligning the residues interfacing with the N-terminal domain (NTD) or receptor-binding domain (RBD) of Spike protein. RESULTS The binding modes of chickens AXL and ACE2 to S protein are similar to that of the ferret. The spatial structure and electrostatic surface potential of NRP1 showed that SARS-CoV-2 VOCs could not invade chickens through NRP1 easily. CONCLUSION These results suggested that emerging SARS-CoV-2 VOCs potentially expand the host range to chickens mainly through ACE2 and AXL receptors, while NRP1 receptor may rarely participate in the future epidemic of coronavirus disease 2019 in chickens.
Collapse
Affiliation(s)
- Mengyue Lei
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Ying Ma
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Hongli Chen
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Pu Huang
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Jing Sun
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Xu Wang
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Qiangming Sun
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Yunzhang Hu
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.
| | - Jiandong Shi
- Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| |
Collapse
|
22
|
Machado C, Gutiérrez-Gil J, González-Quevedo A. It is necessary to assess olfactory and gustatory function in post covid-19 patients, due to the omicron variant infection. Int Forum Allergy Rhinol 2023; 13:1564-1566. [PMID: 36965119 DOI: 10.1002/alr.23160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Affiliation(s)
- Calixto Machado
- Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery, Havana, Cuba
| | - Joel Gutiérrez-Gil
- Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery, Havana, Cuba
| | | |
Collapse
|
23
|
Devaux CA, Fantini J. ACE2 receptor polymorphism in humans and animals increases the risk of the emergence of SARS-CoV-2 variants during repeated intra- and inter-species host-switching of the virus. Front Microbiol 2023; 14:1199561. [PMID: 37520374 PMCID: PMC10373931 DOI: 10.3389/fmicb.2023.1199561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Like other coronaviruses, SARS-CoV-2 has ability to spread through human-to-human transmission and to circulate from humans to animals and from animals to humans. A high frequency of SARS-CoV-2 mutations has been observed in the viruses isolated from both humans and animals, suggesting a genetic fitness under positive selection in both ecological niches. The most documented positive selection force driving SARS-CoV-2 mutations is the host-specific immune response. However, after electrostatic interactions with lipid rafts, the first contact between the virus and host proteins is the viral spike-cellular receptor binding. Therefore, it is likely that the first level of selection pressure impacting viral fitness relates to the virus's affinity for its receptor, the angiotensin I converting enzyme 2 (ACE2). Although sufficiently conserved in a huge number of species to support binding of the viral spike with enough affinity to initiate fusion, ACE2 is highly polymorphic both among species and within a species. Here, we provide evidence suggesting that when the viral spike-ACE2 receptor interaction is not optimal, due to host-switching, mutations can be selected to improve the affinity of the spike for the ACE2 expressed by the new host. Notably, SARS-CoV-2 is mutation-prone in the spike receptor binding domain (RBD), allowing a better fit for ACE2 orthologs in animals. It is possibly that this may also be true for rare human alleles of ACE2 when the virus is spreading to billions of people. In this study, we present evidence that human subjects expressing the rare E329G allele of ACE2 with higher allele frequencies in European populations exhibit a improved affinity for the SARS-CoV-2 spike N501Y variant of the virus. This may suggest that this viral N501Y variant emerged in the human population after SARS-CoV-2 had infected a human carrying the rare E329G allele of ACE2. In addition, this viral evolution could impact viral replication as well as the ability of the adaptive humoral response to control infection with RBD-specific neutralizing antibodies. In a shifting landscape, this ACE2-driven genetic drift of SARS-CoV-2 which we have named the 'boomerang effect', could complicate the challenge of preventing COVID with a SARS-CoV-2 spike-derived vaccine.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S1072, Marseille, France, Aix-Marseille Université, Marseille, France
| |
Collapse
|
24
|
Lin X, Sha Z, Trimpert J, Kunec D, Jiang C, Xiong Y, Xu B, Zhu Z, Xue W, Wu H. The NSP4 T492I mutation increases SARS-CoV-2 infectivity by altering non-structural protein cleavage. Cell Host Microbe 2023; 31:1170-1184.e7. [PMID: 37402373 DOI: 10.1016/j.chom.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/13/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023]
Abstract
The historically dominant SARS-CoV-2 Delta variant and the currently dominant Omicron variants carry a T492I substitution within the non-structural protein 4 (NSP4). Based on in silico analyses, we hypothesized that the T492I mutation increases viral transmissibility and adaptability, which we confirmed with competition experiments in hamster and human airway tissue culture models. Furthermore, we showed that the T492I mutation increases the replication capacity and infectiveness of the virus and improves its ability to evade host immune responses. Mechanistically, the T492I mutation increases the cleavage efficiency of the viral main protease NSP5 by enhancing enzyme-substrate binding, which increases production of nearly all non-structural proteins processed by NSP5. Importantly, the T492I mutation suppresses viral-RNA-associated chemokine production in monocytic macrophages, which may contribute to the attenuated pathogenicity of Omicron variants. Our results highlight the importance of NSP4 adaptation in the evolutionary dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China; Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| | - Zhou Sha
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| | - Dusan Kunec
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| | - Chen Jiang
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Binbin Xu
- School of Pharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China.
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, No.55 Daxuecheng South Road, Shapingba, Chongqing 401331, China.
| |
Collapse
|
25
|
Araújo A, Sgorlon G, Aguiar LE, Cidrão MHMC, Teixeira KS, Villalobos Salcedo JM, Passos-Silva AM, Vieira D. Influence of polymorphic variations of IFNL, HLA, and IL-6 genes in severe cases of COVID-19. Exp Biol Med (Maywood) 2023; 248:787-797. [PMID: 37452704 PMCID: PMC10350587 DOI: 10.1177/15353702231181343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The administration of vaccination doses to the global population has led to a decrease in the incidence of COVID-19. However, the clinical picture developed by infected individuals remains extremely concerning due to the great variability in the severity of cases even in vaccinated individuals. The clinical progression of the pathology is characterized by various influential factors such as sex, age group, comorbidities, and the genetics of the individual. The immune response to viral infections can be strongly influenced by the genetics of individuals; nucleotide variations called single-nucleotide polymorphisms (SNPs) in structures involved in the innate and adaptive immune response such as interferon (IFN)-λ, human leukocyte antigen (HLA), and interleukin (IL)-6 are frequently associated with pathological progression. In this study, we conducted a review of the main SNPs of these structures that are associated with severity in COVID-19. Searches were conducted on some platforms of the National Center for Biotechnology and Information (NCBI), and 102 studies were selected for full reading according to the inclusion criteria. IFNs showed a strong association with antiviral function, specifically, IFN-λ3 (IL-28B) demonstrated genetic variants commonly related to clinical progression in various pathologies. For COVID-19, rs12979860 and rs1298275 presented frequently described unfavorable genotypes for pathological conditions of hepatitis C and hepatocellular carcinoma. The high genetic variability of HLA was reported in the studies as a crucial factor relevant to the late immune response, mainly due to its ability to recognize antigens, with the HLA-B*46:01 SNP being associated with susceptibility to COVID-19. For IL-6, rs1554606 showed a strong relationship with the clinical progression of COVID-19. In addition, rs2069837 was identified with possible host protection relationships when linked to this infection.
Collapse
Affiliation(s)
- Adrhyan Araújo
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia (FIOCRUZ/RO), Porto Velho 76812-329, Brazil
- Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho 76812-329, Brazil
| | - Gabriella Sgorlon
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia (FIOCRUZ/RO), Porto Velho 76812-329, Brazil
- Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia (UNIR), Porto Velho 76801-059, Brazil
| | | | | | - Karolaine Santos Teixeira
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia (FIOCRUZ/RO), Porto Velho 76812-329, Brazil
- Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho 76812-329, Brazil
| | - Juan Miguel Villalobos Salcedo
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia (FIOCRUZ/RO), Porto Velho 76812-329, Brazil
- Universidade Federal de Rondônia (UNIR), Porto Velho 76801-059, Brazil
| | - Ana Maísa Passos-Silva
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia (FIOCRUZ/RO), Porto Velho 76812-329, Brazil
- Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia (UNIR), Porto Velho 76801-059, Brazil
| | - Deusilene Vieira
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia (FIOCRUZ/RO), Porto Velho 76812-329, Brazil
- Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia (UNIR), Porto Velho 76801-059, Brazil
| |
Collapse
|
26
|
Jana A, Kundu S, Shaw S, Chakraborty S, Chattopadhyay A. Spatial shifting of COVID-19 clusters and disease association with environmental parameters in India: A time series analysis. ENVIRONMENTAL RESEARCH 2023; 222:115288. [PMID: 36682443 PMCID: PMC9850905 DOI: 10.1016/j.envres.2023.115288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND The viability and virulence of COVID-19 are complex in nature. Although the relationship between environmental parameters and COVID-19 is well studied across the globe, in India, such studies are limited. This research aims to explore long-term exposure to weather conditions and the role of air pollution on the infection spread and mortality due to COVID-19 in India. METHOD District-level COVID-19 data from April 26, 2020 to July 10, 2021 was used for the study. Environmental determinants such as land surface temperature, relative humidity (RH), Sulphur dioxide (SO2), Nitrogen dioxide (NO2), Ozone (O3), and Aerosol Optical Depth (AOD) were considered for analysis. The bivariate spatial association was used to explore the spatial relationship between Case Fatality Rate (CFR) and these environmental factors. Further, the Bayesian multivariate linear regression model was applied to observe the association between environmental factors and the CFR of COVID-19. RESULTS Spatial shifting of COVID-19 cases from Western to Southern and then Eastern parts of India were well observed. The infection rate was highly concentrated in most of the Western and Southern regions of India, while the CFR shows more concentration in Northern India along with Maharashtra. Four main spatial clusters of infection were recognized during the study period. The time-series analysis indicates significantly more CFR with higher AOD, O3, and NO2 in India. CONCLUSIONS COVID-19 is highly associated with environmental parameters and air pollution in India. The study provides evidence to warrant consideration of environmental parameters in health models to mediate potential solutions. Cleaner air is a must to mitigate COVID-19.
Collapse
Affiliation(s)
- Arup Jana
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai, 400088, India.
| | - Sampurna Kundu
- Center of Social Medicine and Community Health, Jawaharlal Nehru University, Delhi, 110067, India.
| | - Subhojit Shaw
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai, 400088, India.
| | - Sukanya Chakraborty
- IMPRS Neuroscience, Max Planck Institute of Multidisciplinary Sciences, University of Goettingen, Germany.
| | - Aparajita Chattopadhyay
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai, 400088, India.
| |
Collapse
|
27
|
Muhammad N, Naeemi H, Azeem A, Sadaqat R, Shehzad U, Siddique K, Hassan U, Raza A, Rashid MU. Genetic analysis of ACE2 peptidase domain in SARS-CoV-2-positive and SARS-CoV-2-negative individuals from Pakistan. Mol Biol Rep 2023; 50:4309-4316. [PMID: 36920597 PMCID: PMC10016156 DOI: 10.1007/s11033-023-08315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND The outbreak of coronavirus disease 2019 (COVID-19) has emerged as a serious public health emergency of global concern. Angiotensin converting enzyme 2 (ACE2) peptidase domain is important for the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Germline variants in ACE2 peptidase domain may influence the susceptibility for SARS-CoV-2 infection and disease severity in the host population. ACE2 genetic analysis among Caucasians showed inconclusive results. This is the first Asian study investigating the contribution of ACE2 germline variants to SARS-CoV-2 infection in Pakistani population. METHODS In total, 442 individuals, including SARS-CoV-2-positive (n = 225) and SARS-CoV-2-negative (n = 217) were screened for germline variants in ACE2 peptidase domain (exons 2, 3, 9, and 10) using high resolution melting and denaturing high-performance liquid chromatography analyses followed by DNA sequencing of variant fragments. The identified variant was analyzed by in silico tools for potential effect on ACE2 protein. RESULTS A missense variant, p.Lys26Arg, was identified in one SARS-CoV-2-positive (1/225; 0.4%) and three SARS-CoV-2-negative (3/217; 1.4%) individuals. No significant difference in the minor allele frequency of this variant was found among SARS-CoV-2-positive and SARS-CoV-2-negative individuals (1/313; 0.3% versus 3/328; 0.9%; P = 0.624), respectively. The SARS-CoV-2-positive patient carrying p.Lys26Arg showed mild COVID-19 disease symptoms. It was predicted as benign variant by in silico tool. No variant was detected in ACE2 residues important for binding of SARS-CoV-2 spike protein. CONCLUSION The p.Lys26Arg variant may have no association with SARS-CoV-2 susceptibility in Pakistani population. Whole ACE2 gene screening is warranted to clarify its role in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Noor Muhammad
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, Pakistan
| | - Humaira Naeemi
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, Pakistan
| | - Ayesha Azeem
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, Pakistan
| | - Rida Sadaqat
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, Pakistan
| | - Umara Shehzad
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, Pakistan
| | | | - Usman Hassan
- Department of Pathology, SKMCH&RC, Lahore, Pakistan
| | - Aun Raza
- Department of Internal Medicine, SKMCH&RC, Lahore, Pakistan
| | - Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, Pakistan.
| |
Collapse
|
28
|
Liang B, Zhu Y, Shi W, Ni C, Tan B, Tang S. SARS-CoV-2 Spike Protein Post-Translational Modification Landscape and Its Impact on Protein Structure and Function via Computational Prediction. RESEARCH (WASHINGTON, D.C.) 2023; 6:0078. [PMID: 36930770 PMCID: PMC10013967 DOI: 10.34133/research.0078] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
To elucidate the role of post-translational modifications (PTMs) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein's structure and virulence, we generated a high-resolution map of 87 PTMs using liquid chromatography with tandem mass spectrometry data on the extracted spike protein from SARS-CoV-2 virions and then reconstituted its structure heterogeneity caused by PTMs. Nonetheless, Alphafold2, a high-accuracy artificial intelligence tool to perform protein structure prediction, relies solely on primary amino acid sequence, whereas the impact of PTM, which often modulates critical protein structure and function, is much ignored. To overcome this challenge, we proposed the mutagenesis approach-an in silico, site-directed amino acid substitution to mimic the influence of PTMs on protein structure due to altered physicochemical properties in the post-translationally modified amino acids-and then reconstituted the spike protein's structure from the substituted sequences by Alphafold2. For the first time, the proposed method revealed predicted protein structures resulting from PTMs, a problem that Alphafold2 has yet to address. As an example, we performed computational analyses of the interaction of the post-translationally modified spike protein with its host factors such as angiotensin-converting enzyme 2 to illuminate binding affinity. Mechanistically, this study suggested the structural analysis of post-translationally modified protein via mutagenesis and deep learning. To summarize, the reconstructed spike protein structures showed that specific PTMs can be used to modulate host factor binding, guide antibody design, and pave the way for new therapeutic targets. The code and Supplementary Materials are freely available at https://github.com/LTZHKUSTGZ/SARS-CoV-2-spike-protein-PTM.
Collapse
Affiliation(s)
- Buwen Liang
- The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Yiying Zhu
- Analysis Center, Chemistry Department, Tsinghua University, Beijing, China
| | - Wenhao Shi
- Analysis Center, Chemistry Department, Tsinghua University, Beijing, China
| | - Can Ni
- The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Bowen Tan
- The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Shaojun Tang
- The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China.,The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
29
|
Qi JH, Chen PY, Cai DY, Wang Y, Wei YL, He SP, Zhou W. Exploring novel targets of sitagliptin for type 2 diabetes mellitus: Network pharmacology, molecular docking, molecular dynamics simulation, and SPR approaches. Front Endocrinol (Lausanne) 2023; 13:1096655. [PMID: 36699034 PMCID: PMC9868454 DOI: 10.3389/fendo.2022.1096655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Diabetes has become a serious global public health problem. With the increasing prevalence of type 2 diabetes mellitus (T2DM), the incidence of complications of T2DM is also on the rise. Sitagliptin, as a targeted drug of DPP4, has good therapeutic effect for T2DM. It is well known that sitagliptin can specifically inhibit the activity of DPP4 to promote insulin secretion, inhibit islet β cell apoptosis and reduce blood glucose levels, while other pharmacological mechanisms are still unclear, such as improving insulin resistance, anti-inflammatory, anti-oxidative stress, and anti-fibrosis. The aim of this study was to explore novel targets and potential signaling pathways of sitagliptin for T2DM. METHODS Firstly, network pharmacology was applied to find the novel target most closely related to DPP4. Semi-flexible molecular docking was performed to confirm the binding ability between sitagliptin and the novel target, and molecular dynamics simulation (MD) was carried to verify the stability of the complex formed by sitagliptin and the novel target. Furthermore, surface-plasmon resonance (SPR) was used to explored the affinity and kinetic characteristics of sitagliptin with the novel target. Finally, the molecular mechanism of sitagliptin for T2DM was predicted by the enrichment analysis of GO function and KEGG pathway. RESULTS In this study, we found the cell surface receptor-angiotensin-converting enzyme 2 (ACE2) most closely related to DPP4. Then, we confirmed that sitagliptin had strong binding ability with ACE2 from a static perspective, and the stability of sitagliptin-ACE2 complex had better stability and longer binding time than BAR708-ACE2 in simulated aqueous solution within 50 ns. Significantly, we have demonstrated a strong affinity between sitagliptin and ACE2 on SPR biosensor, and their kinetic characteristics were "fast binding/fast dissociation". The guiding significance of clinical administration: low dose can reach saturation, but repeated administration was needed. Finally, there was certain relationship between COVID-19 and T2DM, and ACE2/Ang-(1-7)/Mas receptor (MasR) axis may be the important pathway of sitagliptin targeting ACE2 for T2DM. CONCLUSION This study used different methods to prove that ACE2 may be another novel target of sitagliptin for T2DM, which extended the application of ACE2 in improving diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Chakraborti S, Gill J, Goswami R, Kumar S, Chandele A, Sharma A. Structural Profiles of SARS-CoV-2 Variants in India. Curr Microbiol 2023; 80:1. [PMID: 36414797 PMCID: PMC9684916 DOI: 10.1007/s00284-022-03094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022]
Abstract
India was severely affected by several waves of SARS-CoV-2 infection that occurred during April-June 2021 (second wave) and December 2021-January 2022 (third wave) and thereafter, resulting in >10 million new infections and a significant number of deaths. Global Initiative on Sharing Avian Influenza Data database was used to collect the sequence information of ~10,000 SARS-CoV-2 patients from India and our sequence analysis identified three variants B.1.1.7 (alpha, α), B1.617.2 (delta, Δ), B.1.1.529 (Omicron, Oo) and one Omicron sub-variant BA.2.75 as the primary drivers for SARS-CoV-2 waves in India. Structural visualization and analysis of important mutations of alpha, delta, Omicron and its sub-variants of SARS-CoV-2 Receptor-Binding Domain (RBD) was performed and our analysis clearly shows that mutations occur throughout the RBD, including the RBD surface responsible for human angiotensin-converting enzyme 2 (hACE-2) receptor-binding. A comparison between alpha, delta and omicron variants/sub-variants reveals many omicron mutations in the hACE-2 binding site and several other mutations within 5 Å of this binding region. Further, computational analysis highlights the importance of electrostatic interactions in stabilizing RBD-hACE-2-binding, especially in the omicron variant. Our analysis explores the likely role of key alpha, delta and omicron mutations on binding with hACE-2. Taken together, our study provides novel structural insights into the implications of RBD mutations in alpha, delta and omicron and its sub-variants that were responsible for India's SARS-CoV-2 surge.
Collapse
Affiliation(s)
- Soumyananda Chakraborti
- National Institute of Malaria Research, New Delhi, 110077, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| | - Jasmita Gill
- National Institute of Malaria Research, New Delhi, 110077, India.
| | - Ritu Goswami
- National Institute of Malaria Research, New Delhi, 110077, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Amit Sharma
- National Institute of Malaria Research, New Delhi, 110077, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
- Structural Parasitology, Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
31
|
Zhang MQ, Wang CC, Pang XB, Shi JZ, Li HR, Xie XM, Wang Z, Zhang HD, Zhou YF, Chen JW, Han ZY, Zhao LL, He YY. Role of macrophages in pulmonary arterial hypertension. Front Immunol 2023; 14:1152881. [PMID: 37153557 PMCID: PMC10154553 DOI: 10.3389/fimmu.2023.1152881] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular disease characterized by progressive pulmonary artery pressure elevation, increased pulmonary vascular resistance and ultimately right heart failure. Studies have demonstrated the involvement of multiple immune cells in the development of PAH in patients with PAH and in experimental PAH. Among them, macrophages, as the predominant inflammatory cells infiltrating around PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2 phenotypes, they accelerate the process of PAH by secreting various chemokines and growth factors (CX3CR1, PDGF). In this review we summarize the mechanisms of immune cell action in PAH, as well as the key factors that regulate the polarization of macrophages in different directions and their functional changes after polarization. We also summarize the effects of different microenvironments on macrophages in PAH. The insight into the interactions between macrophages and other cells, chemokines and growth factors may provide important clues for the development of new, safe and effective immune-targeted therapies for PAH.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Chen-Chen Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xiao-Bin Pang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hao-Ran Li
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Zhe Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hong-Da Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Feng Zhou
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Ji-Wang Chen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhi-Yan Han
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Lu-Ling Zhao
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| |
Collapse
|
32
|
Chaube U, Patel BD, Bhatt HG. A hypothesis on designing strategy of effective RdRp inhibitors for the treatment of SARS-CoV-2. 3 Biotech 2023; 13:12. [PMID: 36532857 PMCID: PMC9755803 DOI: 10.1007/s13205-022-03430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Vaccines are used as one of the major weapons for the eradication of pandemic. However, the rise of different variants of the SARS-CoV-2 virus is creating doubts regarding the end of the pandemic. Hence, there is an urgent need to develop more drug candidates which can be useful for the treatment of COVID-19. In the present research for the scientific hypothesis, emphasis was given on the direct antiviral therapy available for the treatment of COVID-19. In lieu of this, the available molecular targets which include Severe Acute Respiratory Syndrome Chymotrypsin-like Protease (SARS-3CLpro), Papain-Like Cysteine Protease (PLpro), and RNA-Dependent RNA Polymerase (RdRp) were explored. As per the current scientific reports and literature, among all the available molecular targets, RNA-Dependent RNA Polymerase (RdRp) was found to be a crucial molecular target for the treatment of COVID-19. Most of the inhibitors which are reported against this target consisted of the free amine group and carbonyl group which might be playing an important role in the binding interaction with the RdRp protein. Among all the reported RdRp inhibitors, remdesivir, favipiravir, and molnupiravir were found to be the most promising drugs against COVID-19. Overall, the structural features of this RNA-Dependent RNA Polymerase (RdRp) inhibitors proved the importance of pyrrolo-triazine and pyrimidine scaffolds. Previous computational models of these drug molecules indicated that substitution with the polar functional group, hydrogen bond donor, and electronegative atoms on these scaffolds may increase the activity against the RdRp protein. Hence, in line with the proposed hypothesis, in the present research work for the evaluation of the hypothesis, new molecules were designed from the pyrrolo-triazine and pyrimidine scaffolds. Further, molecular docking and MD simulation studies were performed with these designed molecules. All these designed molecules (DM-1, DM-2, and DM-3) showed the results as per the proposed hypothesis. Among all the designed molecules, DM-1 showed promising results against the RdRp protein of SARS-CoV-2. In the future, these structural features can be used for the development of new RdRp inhibitors with improved activity. Also, in the future lead compound DM-1 can be explored against the RdRp protein for the treatment of COVID-19.
Collapse
Affiliation(s)
- Udit Chaube
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Bhumika D. Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Hardik G. Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| |
Collapse
|
33
|
A Closer Look at ACE2 Signaling Pathway and Processing during COVID-19 Infection: Identifying Possible Targets. Vaccines (Basel) 2022; 11:vaccines11010013. [PMID: 36679858 PMCID: PMC9867515 DOI: 10.3390/vaccines11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Since the identification of its role as the functional receptor for SARS-CoV in 2003 and for SARS-CoV-2 in 2020, ACE2 has been studied in depth to understand COVID-19 susceptibility and severity. ACE2 is a widely expressed protein, and it plays a major regulatory role in the renin-angiotensin-aldosterone System (RAAS). The key to understanding susceptibility and severity may be found in ACE2 variants. Some variants have been shown to affect binding affinity with SARS-CoV-2. In this review, we discuss the role of ACE2 in COVID-19 infection, highlighting the importance of ACE2 isoforms (soluble and membrane-bound) and explore how ACE2 variants may influence an individual's susceptibility to SARS-CoV-2 infection and disease outcome.
Collapse
|
34
|
Rabaan AA, Mutair AA, Aljeldah M, Shammari BRA, Sulaiman T, Alshukairi AN, Alfaresi M, Al-Jishi JM, Al Bati NA, Al-Mozaini MA, Bshabshe AA, Almatouq JA, Abuzaid AA, Alfaraj AH, Al-Adsani W, Alabdullah M, Alwarthan S, Alsalman F, Alwashmi ASS, Alhumaid S. Genetic Variants and Protective Immunity against SARS-CoV-2. Genes (Basel) 2022; 13:2355. [PMID: 36553622 PMCID: PMC9778397 DOI: 10.3390/genes13122355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/16/2022] Open
Abstract
The novel coronavirus-19 (SARS-CoV-2), has infected numerous individuals worldwide, resulting in millions of fatalities. The pandemic spread with high mortality rates in multiple waves, leaving others with moderate to severe symptoms. Co-morbidity variables, including hypertension, diabetes, and immunosuppression, have exacerbated the severity of COVID-19. In addition, numerous efforts have been made to comprehend the pathogenic and host variables that contribute to COVID-19 susceptibility and pathogenesis. One of these endeavours is understanding the host genetic factors predisposing an individual to COVID-19. Genome-Wide Association Studies (GWAS) have demonstrated the host predisposition factors in different populations. These factors are involved in the appropriate immune response, their imbalance influences susceptibility or resistance to viral infection. This review investigated the host genetic components implicated at the various stages of viral pathogenesis, including viral entry, pathophysiological alterations, and immunological responses. In addition, the recent and most updated genetic variations associated with multiple host factors affecting COVID-19 pathogenesis are described in the study.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Abeer N. Alshukairi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Sheikh Khalifa General Hospital, Umm Al Quwain 499, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 35342, Saudi Arabia
| | - Neda A. Al Bati
- Medical and Clinical Affairs, Rural Health Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Maha A. Al-Mozaini
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal, Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Ali Al Bshabshe
- Adult Critical Care Department of Medicine, Division of Adult Critical Care, College of Medicine, King Khalid University, Abha 62561, Saudi Arabia
| | - Jenan A. Almatouq
- Department of Clinical Laboratory Sciences, Mohammed Al-Mana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A. Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Mohammed Alabdullah
- Department of Infectious Diseases, Almoosa Specialist Hospital, Al Mubarraz 36342, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Fatimah Alsalman
- Department of Emergency Medicine, Oyun City Hospital, Al-Ahsa 36312, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
35
|
Sun SW, Qi C, Xiong XZ. Challenges of COPD Patients during the COVID-19 Pandemic. Pathogens 2022; 11:pathogens11121484. [PMID: 36558818 PMCID: PMC9788471 DOI: 10.3390/pathogens11121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a severe systemic infection that is a major threat to healthcare systems worldwide. According to studies, chronic obstructive pulmonary disease (COPD) patients with COVID-19 usually have a high risk of developing severe symptoms and fatality, but limited research has addressed the poor condition of COPD patients during the pandemic. This review focuses on the underlying risk factors including innate immune dysfunction, angiotensin converting enzyme 2 (ACE2) expression, smoking status, precocious differentiation of T lymphocytes and immunosenescence in COPD patients which might account for their poor outcomes during the COVID-19 crisis. Furthermore, we highlight the role of aging of the immune system, which may be the culprit of COVID-19. In brief, we list the challenges of COPD patients in this national pandemic, aiming to provide immune-related considerations to support critical processes in COPD patients during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and inspire immune therapy for these patients.
Collapse
Affiliation(s)
- Sheng-Wen Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Chang Qi
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Correspondence: ; Tel.: +027-85726705
| |
Collapse
|
36
|
Rodriguez JA, Gonzalez J, Arboleda-Bustos CE, Mendoza N, Martinez C, Pinzon A. Computational modeling of the effect of five mutations on the structure of the ACE2 receptor and their correlation with infectivity and virulence of some emerged variants of SARS-CoV-2 suggests mechanisms of binding affinity dysregulation. Chem Biol Interact 2022; 368:110244. [PMID: 36336003 PMCID: PMC9630301 DOI: 10.1016/j.cbi.2022.110244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Interactions between the human angiotensin-converting enzyme 2 (ACE2) and the RBD region of the SARS-CoV-2 Spike protein are critical for virus entry into the host cell. The objective of this work was to identify some of the most relevant SARS-CoV-2 Spike variants that emerged during the pandemic and evaluate their binding affinity with human variants of ACE2 since some ACE2 variants can enhance or reduce the affinity of the interaction between the ACE2 and S proteins. However, no information has been sought to extrapolate to different variants of SARS-CoV-2. Therefore, to understand the impact on the affinity of the interaction between ACE2 protein variants and SARS-CoV-2 protein S variants, molecular docking was used in this study to predict the effects of five mutations of ACE2 when they interact with Alpha, Beta, Delta, Omicron variants and a hypothetical variant, which present mutations in the RBD region of the SARS-CoV-2 Spike protein. Our results suggest that these variants could alter the interaction of the Spike and the human ACE2 protein, losing or creating new inter-protein contacts, enhancing viral fitness by improving binding affinity, and leading to an increase in infectivity, virulence, and transmission. This investigation highlighted that the S19P mutation of ACE2 decreases the binding affinity between the ACE2 and Spike proteins in the presence of the Beta variant and the wild-type variant of SARS-CoV-2 isolated in Wuhan-2019. The R115Q mutation of ACE2 lowers the binding affinity of these two proteins in the presence of the Beta and Delta variants. Similarly, the K26R mutation lowers the affinity of the interaction between the ACE2 and Spike proteins in the presence of the Alpha variant. This decrease in binding affinity is probably due to the lack of interaction between some of the key residues of the interaction complex between the ACE2 protein and the RBD region of the SARS-CoV-2 Spike protein. Therefore, ACE2 mutations appear in the presence of these variants, they could suggest an intrinsic resistance to COVID-19 disease. On the other hand, our results suggested that the K26R, M332L, and K341R mutations of ACE2 expressively showed the affinity between the ACE2 and Spike proteins in the Alpha, Beta, and Delta variants. Consequently, these ACE2 mutations in the presence of the Alpha, Beta, and delta variants of SARS-CoV-2 could be more infectious and virulent in human cells compared to the SARS-CoV-2 isolated in Wuhan-2019 and it could have a negative prognosis of the disease. Finally, the Omicron variant in interaction with ACE2 WT, S19P, R115Q, M332L, and K341R mutations of ACE2 showed a significant decrease in binding affinity. This could be consistent that the Omicron variant causes less severe symptoms than previous variants. On the other hand, our results suggested Omicron in the complex with K26R, the binding affinity is increased between ACE2/RBD, which could indicate a negative prognosis of the disease in people with these allelic conditions.
Collapse
Affiliation(s)
- J A Rodriguez
- Bioinformatics and Systems Biology Laboratory (GIBBS). Instituto de Genética, Universidad Nacional de Colombia, Colombia.
| | - J Gonzalez
- Departamento de Nutrición y Bioquímica. Pontificia Universidad Javeriana Bogotá, Colombia
| | - C E Arboleda-Bustos
- Neurosciences Group. Instituto de Genética, Universidad Nacional de Colombia, Colombia
| | - N Mendoza
- Bioinformatics and Systems Biology Laboratory (GIBBS). Instituto de Genética, Universidad Nacional de Colombia, Colombia
| | - C Martinez
- Neurosciences Group. Instituto de Genética, Universidad Nacional de Colombia, Colombia
| | - A Pinzon
- Bioinformatics and Systems Biology Laboratory (GIBBS). Instituto de Genética, Universidad Nacional de Colombia, Colombia
| |
Collapse
|
37
|
Mahase V, Sobitan A, Rhoades R, Zhang F, Baranova A, Johnson M, Otolorin A, Tang Q, Teng S. Genetic variations affecting ACE2 protein stability in minority populations. Front Med (Lausanne) 2022; 9:1002187. [PMID: 36388927 PMCID: PMC9659633 DOI: 10.3389/fmed.2022.1002187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
While worldwide efforts for improving COVID-19 vaccines are currently considered a top priority, the role of the genetic variants responsible for virus receptor protein stability is less studied. Angiotensin-converting enzyme-2 is the primary target of the SARS-CoV-1/SARS-CoV-2 spike (S) glycoprotein, enabling entry into the human body. Here, we applied computational saturation mutagenesis approaches to determine the folding energy caused by all possible mutations in ACE2 proteins within ACE2 - SARS-CoV-1-S/ACE2 - SARS-CoV-2-S complexes. We observed ACE2 mutations at residue D350 causing the most stabilizing effects on the protein. In addition, we identified ACE2 genetic variations in African Americans (rs73635825, rs766996587, and rs780574871), Latino Americans (rs924799658), and both groups (rs4646116 and rs138390800) affecting stability in the ACE2 - SARS-CoV-2-S complex. The findings in this study may aid in targeting the design of stable neutralizing peptides for treating minority patients.
Collapse
Affiliation(s)
- Vidhyanand Mahase
- Department of Biology, Howard University, Washington, DC, United States
| | - Adebiyi Sobitan
- Department of Biology, Howard University, Washington, DC, United States
| | - Raina Rhoades
- Department of Biology, Howard University, Washington, DC, United States
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, United States,Research Centre for Medical Genetics, Moscow, Russia
| | - Mark Johnson
- Department of Community and Family Medicine, Howard University, Washington, DC, United States
| | - Abiodun Otolorin
- Department of Community and Family Medicine, Howard University, Washington, DC, United States
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, United States,Qiyi Tang,
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, DC, United States,*Correspondence: Shaolei Teng,
| |
Collapse
|
38
|
Cao JF, Yang X, Xiong L, Wu M, Chen S, Xiong C, He P, Zong Y, Zhang L, Fu H, Qi Y, Ying X, Liu D, Hu X, Zhang X. Mechanism of N-0385 blocking SARS-CoV-2 to treat COVID-19 based on molecular docking and molecular dynamics. Front Microbiol 2022; 13:1013911. [PMID: 36329841 PMCID: PMC9622768 DOI: 10.3389/fmicb.2022.1013911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2023] Open
Abstract
PURPOSE 2019 Coronavirus disease (COVID-19) has caused millions of confirmed cases and deaths worldwide. TMPRSS2-mediated hydrolysis and maturation of spike protein is essential for SARS-CoV-2 infection in vivo. The latest research found that a TMPRSS2 inhibitor called N-0385 could effectively prevent the infection of the SARS-CoV-2 and its variants. However, it is not clear about the mechanism of N-0385 treatment COVID-19. Therefore, this study used computer simulations to investigate the mechanism of N-0385 treatment COVID-19 by impeding SARS-CoV-2 infection. METHODS The GeneCards database was used to search disease gene targets, core targets were analyzed by PPI, GO and KEGG. Molecular docking and molecular dynamics were used to validate and analyze the binding stability of small molecule N-0385 to target proteins. The supercomputer platform was used to simulate and analyze the number of hydrogen bonds, binding free energy, stability of protein targets at the residue level, radius of gyration and solvent accessible surface area. RESULTS There were 4,600 COVID-19 gene targets from GeneCards database. PPI, GO and KEGG analysis indicated that signaling pathways of immune response and inflammation played crucial roles in COVID-19. Molecular docking showed that N-0385 could block SARS-CoV-2 infection and treat COVID-19 by acting on ACE2, TMPRSS2 and NLRP3. Molecular dynamics was used to demonstrate that the small molecule N-0385 could form very stable bindings with TMPRSS2 and TLR7. CONCLUSION The mechanism of N-0385 treatment COVID-19 was investigated by molecular docking and molecular dynamics simulation. We speculated that N-0385 may not only inhibit SARS-CoV-2 invasion directly by acting on TMPRSS2, ACE2 and DPP4, but also inhibit the immune recognition process and inflammatory response by regulating TLR7, NLRP3 and IL-10 to prevent SARS-CoV-2 invasion. Therefore, these results suggested that N-0385 may act through multiple targets to reduce SARS-CoV-2 infection and damage caused by inflammatory responses.
Collapse
Affiliation(s)
- Jun-Feng Cao
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xingyu Yang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Li Xiong
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Mei Wu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Shengyan Chen
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chenyang Xiong
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Peiyong He
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | | | - Lixin Zhang
- Yunnan Academy of Forestry Sciences, Kunming, Yunnan, China
| | - Hongjiao Fu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yue Qi
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiran Ying
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Dengxin Liu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiaosong Hu
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| | - Xiao Zhang
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| |
Collapse
|
39
|
Srinivasa Rao ASR, Krantz SG. Mathematical analysis and topology of SARS-CoV-2, bonding with cells and unbonding. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 2022; 514:125664. [PMID: 34538930 PMCID: PMC8438870 DOI: 10.1016/j.jmaa.2021.125664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 06/13/2023]
Abstract
We consider the structure of the novel coronavirus (SARS-Cov-2) in terms of the number of spikes that are critical in bonding with the cells in the host. Bonding formation is considered for selection criteria with and without any treatments. Functional mappings from the discrete space of spikes and cells and their analysis are performed. We found that careful mathematical constructions help in understanding the treatment impacts, and the role of vaccines within a host. Smale's famous 2-D horseshoe examples inspired us to create 3-D visualizations and understand the topological diffusion of spikes from one human organ to another organ. The pharma industry will benefit from such an analysis for designing efficient treatment and vaccine strategies.
Collapse
Affiliation(s)
- Arni S R Srinivasa Rao
- Laboratory for Theory and Mathematical Modeling, Medical College of Georgia, Department of Mathematics, Augusta University, GA, USA
| | - Steven G Krantz
- Department of Mathematics, Washington University in St. Louis, MO, USA
| |
Collapse
|
40
|
Valério M, Borges-Araújo L, Melo MN, Lousa D, Soares CM. SARS-CoV-2 variants impact RBD conformational dynamics and ACE2 accessibility. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:1009451. [PMID: 36277437 PMCID: PMC9581196 DOI: 10.3389/fmedt.2022.1009451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has killed over 6 million people and is having a devastating social and economic impact around the world. The rise of new variants of concern (VOCs) represents a difficult challenge due to the loss of vaccine and natural immunity, as well as increased transmissibility. All VOCs contain mutations in the spike glycoprotein, which mediates fusion between the viral and host cell membranes. The spike glycoprotein binds to angiotensin-converting enzyme 2 (ACE2) via its receptor binding domain (RBD) initiating the infection process. Attempting to understand the effect of RBD mutations in VOCs, a lot of attention has been given to the RBD-ACE2 interaction. However, this type of analysis ignores more indirect effects, such as the conformational dynamics of the RBD itself. Observing that some mutations occur in residues that are not in direct contact with ACE2, we hypothesized that they could affect the RBD conformational dynamics. To test this, we performed long atomistic (AA) molecular dynamics (MD) simulations to investigate the structural dynamics of wt RBD, and that of four VOCs (Alpha, Beta, Delta, and Omicron). Our results show that the wt RBD presents two distinct conformations: an "open" conformation where it is free to bind ACE2; and a "closed" conformation, where the RBM ridge blocks the binding surface. The Alpha and Beta variants shift the open/closed equilibrium towards the open conformation by roughly 20%, likely increasing ACE2 binding affinity. Simulations of the Delta and Omicron variants showed extreme results, with the closed conformation being rarely observed. The Delta variant also differed substantially from the other variants, alternating between the open conformation and an alternative "reversed" one, with a significantly changed orientation of the RBM ridge. This alternate conformation could provide a fitness advantage due to increased availability for ACE2 binding, and by aiding antibody escape through epitope occlusion. These results support the hypothesis that VOCs, and particularly the Omicron and Delta variants, impact RBD conformational dynamics in a direction that promotes efficient binding to ACE2 and, in the case of Delta, may assist antibody escape.
Collapse
Affiliation(s)
- Mariana Valério
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Associated Laboratory LS4FUTURE, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Luís Borges-Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Associated Laboratory LS4FUTURE, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Associated Laboratory LS4FUTURE, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Associated Laboratory LS4FUTURE, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudio M. Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Associated Laboratory LS4FUTURE, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
41
|
Ferreira GM, Claro IM, Grosche VR, Cândido D, José DP, Rocha EC, de Moura Coletti T, Manuli ER, Gaburo N, Faria NR, Sabino EC, de Jesus JG, Jardim ACG. Molecular characterization and sequecing analysis of SARS-CoV-2 genome in Minas Gerais, Brazil. Biologicals 2022; 80:43-52. [PMID: 36175304 PMCID: PMC9436897 DOI: 10.1016/j.biologicals.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/14/2022] [Accepted: 08/21/2022] [Indexed: 11/05/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in Wuhan, China, is the causative agent of the coronavirus disease 2019 (COVID-19). Since its first notification in São Paulo state (SP) on 26th February 2020, more than 22,300,000 cases and 619,000 deaths were reported in Brazil. In early pandemic, SARS-CoV-2 spread locally, however, over time, this virus was disseminated to other regions of the country. Herein, we performed genomic sequencing and phylogenetic analysis of SARS-CoV-2 using 20 clinical samples of COVID-19 confirmed cases from 9 cities of Minas Gerais state (MG), in order to evaluate the molecular properties of circulating viral strains in this locality from March to May 2020. Our analyses demonstrated the circulation of B.1 lineage isolates in the investigated locations and nucleotide substitutions were observed into the genomic regions related to important viral structures. Additionally, sequences generated in this study clustered with isolates from SP, suggesting a dissemination route between these two states. Alternatively, monophyletic groups of sequences from MG and other states or country were observed, indicating independent events of virus introduction. These results reinforce the need of genomic surveillance for understand the ongoing spread of emerging viral pathogens.
Collapse
Affiliation(s)
| | - Ingra Morales Claro
- Institute of Tropical Medicine, University of São Paulo Medical School, São Paulo, Brazil; Department of Infectious and Parasitic Diseases, University of São Paulo Medical School, São Paulo, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil; Institute of Bioscience, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Darlan Cândido
- Institute of Tropical Medicine, University of São Paulo Medical School, São Paulo, Brazil; Department of Zoology, University of Oxford, Oxford, UK
| | | | - Esmenia Coelho Rocha
- Institute of Tropical Medicine, University of São Paulo Medical School, São Paulo, Brazil; Department of Infectious and Parasitic Diseases, University of São Paulo Medical School, São Paulo, Brazil
| | - Thaís de Moura Coletti
- Institute of Tropical Medicine, University of São Paulo Medical School, São Paulo, Brazil; Department of Infectious and Parasitic Diseases, University of São Paulo Medical School, São Paulo, Brazil
| | - Erika Regina Manuli
- Institute of Tropical Medicine, University of São Paulo Medical School, São Paulo, Brazil; Department of Infectious and Parasitic Diseases, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Nuno Rodrigues Faria
- Institute of Tropical Medicine, University of São Paulo Medical School, São Paulo, Brazil; Department of Zoology, University of Oxford, Oxford, UK; MCR Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, UK
| | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, University of São Paulo Medical School, São Paulo, Brazil; Department of Infectious and Parasitic Diseases, University of São Paulo Medical School, São Paulo, Brazil
| | - Jaqueline Goes de Jesus
- Institute of Tropical Medicine, University of São Paulo Medical School, São Paulo, Brazil; Department of Infectious and Parasitic Diseases, University of São Paulo Medical School, São Paulo, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil; Institute of Bioscience, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
42
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Identification and characterization of a novel cell binding and cross-reactive region on spike protein of SARS-CoV-2. Sci Rep 2022; 12:15668. [PMID: 36123381 PMCID: PMC9484712 DOI: 10.1038/s41598-022-19886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Given that COVID-19 continues to wreak havoc around the world, it is imperative to search for a conserved region involved in viral infection so that effective vaccines can be developed to prevent the virus from rapid mutations. We have established a twelve-fragment library of recombinant proteins covering the entire region of spike protein of both SARS-CoV-2 and SARS-CoV from Escherichia coli. IgGs from murine antisera specifically against 6 spike protein fragments of SARS-CoV-2 were produced, purified, and characterized. We found that one specific IgG against the fusion process region, named COVID19-SF5, serologically cross-reacted with all twelve S-protein fragments. COVID19-SF5, with amino acid sequences from 880 to 1084, specifically bound to VERO-E6 and BEAS-2B cells, with Kd values of 449.1 ± 21.41 and 381.9 ± 31.53 nM, and IC50 values of 761.2 ± 28.2 nM and 862.4 ± 32.1 nM, respectively. In addition, COVID19-SF5 greatly enhanced binding of the full-length CHO cell-derived spike protein to the host cells in a concentration-dependent manner. Furthermore, COVID19-SF5 and its IgGs inhibited the infection of the host cells by pseudovirus. The combined data from our studies reveal that COVID19-SF5, a novel cell-binding fragment, may contain a common region(s) for mediating viral binding during infection. Our studies also provide valuable insights into how virus variants may evade host immune recognition. Significantly, the observation that the IgGs against COVID19-SF5 possesses cross reactivity to all other fragments of S protein, suggesting that it is possible to develop universal neutralizing monoclonal antibodies to curb rapid mutations of COVID-19.
Collapse
|
44
|
Ortuso F, Mercatelli D, Guzzi PH, Giorgi FM. Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ACE2 complex. J Biomol Struct Dyn 2022; 40:6545-6555. [PMID: 33583326 PMCID: PMC7885719 DOI: 10.1080/07391102.2021.1886175] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 entry in human cells is mediated by the interaction between the viral Spike protein and the human ACE2 receptor. This mechanism evolved from the ancestor bat coronavirus and is currently one of the main targets for antiviral strategies. However, there currently exist several Spike protein variants in the SARS-CoV-2 population as the result of mutations, and it is unclear if these variants may exert a specific effect on the affinity with ACE2 which, in turn, is also characterized by multiple alleles in the human population. In the current study, the GBPM analysis, originally developed for highlighting host-guest interaction features, has been applied to define the key amino acids responsible for the Spike/ACE2 molecular recognition, using four different crystallographic structures. Then, we intersected these structural results with the current mutational status, based on more than 295,000 sequenced cases, in the SARS-CoV-2 population. We identified several Spike mutations interacting with ACE2 and mutated in at least 20 distinct patients: S477N, N439K, N501Y, Y453F, E484K, K417N, S477I and G476S. Among these, mutation N501Y in particular is one of the events characterizing SARS-CoV-2 lineage B.1.1.7, which has recently risen in frequency in Europe. We also identified five ACE2 rare variants that may affect interaction with Spike and susceptibility to infection: S19P, E37K, M82I, E329G and G352V.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Francesco Ortuso
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Net4Science srl, c/o University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Daniele Mercatelli
- Department of Surgical and Medical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | |
Collapse
|
45
|
Hattori T, Saito T, Okuya K, Takahashi Y, Miyamoto H, Kajihara M, Igarashi M, Takada A. Human ACE2 Genetic Polymorphism Affecting SARS-CoV and SARS-CoV-2 Entry into Cells. Microbiol Spectr 2022; 10:e0087022. [PMID: 35862965 PMCID: PMC9430119 DOI: 10.1128/spectrum.00870-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 have a single envelope glycoprotein (S protein) that binds to human angiotensin-converting enzyme 2 (ACE2) on the host cell membrane. Previous mutational scanning studies have suggested that some substitutions corresponding to single nucleotide variants (SNVs) in human ACE2 affect the binding affinity to the receptor binding domain (RBD) of the SARS-CoV-2 S protein. However, the importance of these substitutions in actual virus infection is still unclear. In this study, we investigated the effects of the reported ACE2 SNV substitutions on the entry of SARS-CoV and SARS-CoV-2 into cells, using vesicular stomatitis Indiana virus (VSIV) pseudotyped with S proteins of these coronaviruses (CoVs). HEK293T cells transfected with plasmids expressing ACE2 having each SNV substitution were infected with the pseudotyped VSIVs and relative infectivities were determined compared to the cells expressing wild-type ACE2. We found that some of the SNV substitutions positively or negatively affected the infectivities of the pseudotyped viruses. Particularly, the H505R substitution significantly enhanced the infection with the pseudotyped VSIVs, including those having the substitutions found in the S protein RBD of SARS-CoV-2 variants of concern. Our findings suggest that human ACE2 SNVs may potentially affect cell susceptibilities to SARS-CoV and SARS-CoV-2. IMPORTANCE SARS-CoV and SARS-CoV-2 are known to cause severe pneumonia in humans. The S protein of these CoVs binds to the ACE2 molecule on the plasma membrane and mediates virus entry into cells. The interaction between the S protein and ACE2 is thought to be important for host susceptibility to these CoVs. Although previous studies suggested that some SNV substitutions in ACE2 might affect the binding to the S protein, it remains elusive whether these SNV substitutions actually alter the efficiency of the entry of SARS CoVs into cells. We analyzed the impact of the ACE2 SNVs on the cellular entry of SARS CoVs using pseudotyped VSIVs having the S protein on the viral surface. We found that some of the SNV substitutions positively or negatively affected the infectivities of the viruses. Our data support the notion that genetic polymorphisms of ACE2 may potentially influence cell susceptibilities to SARS CoVs.
Collapse
Affiliation(s)
- Takanari Hattori
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takeshi Saito
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kosuke Okuya
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuji Takahashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
46
|
Ma Y, Li Q, Chen J, Liu S, Liu S, He X, Ling Y, Zheng J, Corpe C, Lu H, Wang J. Angiotensin-Converting Enzyme 2 SNPs as Common Genetic Loci and Optimal Early Identification Genetic Markers for COVID-19. Pathogens 2022; 11:947. [PMID: 36015068 PMCID: PMC9415427 DOI: 10.3390/pathogens11080947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Angiotensin-converting enzyme 2 (ACE2) is implicated as a host cell receptor that causes infection in the pathogenesis of coronavirus disease 2019 (COVID-19), and its genetic polymorphisms in the ACE2 gene may promote cardiovascular disease and systemic inflammatory injury in COVID-19 patients. Hence, the genetic background may potentially explain the broad interindividual variation in disease susceptibility and/or severity. Methods: Genetic susceptibility to COVID-19 was analyzed by examining single-nucleotide polymorphisms (SNPs) of ACE2 in 246 patients with COVID-19 and 210 normal controls using the TaqMan genotyping assay. Results: We demonstrated that the ACE2 SNPs rs4646142, rs6632677, and rs2074192 were associated with COVID-19 (for all, p < 0.05), and the differences in the ACE2 SNPs rs4646142 and rs6632677 were correlated with COVID-19-related systemic inflammatory injury and cardiovascular risk. Specifically, rs4646142 was associated with high-sensitivity C-reactive protein (hs-CRP), prealbumin (PAB), apolipoprotein A (APOA), high-density lipoprotein (HDL), and acid glycoprotein (AGP) levels. Rs6632677 was also associated with elevated CRP, acid glycoprotein (AGP), and haptoglobin (HPT). Conclusions: Our results suggest that the ACE2 SNPs rs4646142 and rs6632677 may be common genetic loci and optimal early identification genetic markers for COVID-19 with cardiovascular risk.
Collapse
Affiliation(s)
- Yan Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Qiuyue Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jun Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Songmei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shanshan Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaomeng He
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yun Ling
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jianghua Zheng
- Department of Laboratory Medicine, Zhoupu Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Christopher Corpe
- Nutritional Science Department, King’s College London, 150 Stamford Street, Waterloo, London SE1 9NH, UK
| | - Hongzhou Lu
- National Clinical Research Centre for Infectious Diseases, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
47
|
Fazekas Z, Menyhárd DK, Perczel A. Omicron Binding Mode: Contact Analysis and Dynamics of the Omicron Receptor-Binding Domain in Complex with ACE2. J Chem Inf Model 2022; 62:3844-3853. [PMID: 35849759 PMCID: PMC9331008 DOI: 10.1021/acs.jcim.2c00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 12/12/2022]
Abstract
On 26 November 2021, the WHO classified the Omicron variant of the SARS-CoV-2 virus (B.1.1.529 lineage) as a variant of concern (VOC) (COVID-19 Variant Data, Department of Health, 2022). The Omicron variant contains as many as 26 unique mutations of effects not yet determined (Venkatakrishnan, A., Open Science Framework, 2021). Out of its total of 34 Spike protein mutations, 15 are located on the receptor-binding domain (S-RBD) (Stanford Coronavirus Antiviral & Resistance Database, 2022) that directly contacts the angiotensin-converting enzyme 2 (ACE2) host receptor and is also a primary target for antibodies. Here, we studied the binding mode of the S-RBD domain of the Spike protein carrying the Omicron mutations and the globular domain of human ACE2 using molecular dynamics (MD) simulations. We identified new and key Omicron-specific interactions such as R493 (of mutation Q493R), which forms salt bridges both with E35 and D38 of ACE2, Y501 (N501Y), which forms an edge-to-face aromatic interaction with Y41, and Y505 (Y505H), which makes an H-bond with E37 and K353. The glycan chains of ACE2 also bind differently in the WT and Omicron variants in response to different charge distributions on the surface of Spike proteins. However, while the Omicron mutations considerably improve the overall electrostatic fit of the two interfaces, the total number of specific and favorable interactions between the two does not increase. The dynamics of the complexes are highly affected too, making the Omicron S-RBD:ACE2 complex more rigid; the two main interaction sites, Patches I and II, isolated in the WT complex, become connected in the Omicron complex through the alternating interaction of R493 and R498 with E35 and D38.
Collapse
Affiliation(s)
- Zsolt Fazekas
- Laboratory of Structural Chemistry and Biology,
Institute of Chemistry, ELTE Eötvös Loránd
University, Budapest 1117, Hungary
- ELTE Hevesy György PhD School of Chemistry,
ELTE Eötvös Loránd University, Budapest
1117, Hungary
| | - Dóra K. Menyhárd
- Laboratory of Structural Chemistry and Biology,
Institute of Chemistry, ELTE Eötvös Loránd
University, Budapest 1117, Hungary
- MTA-ELTE Protein Modeling Research Group,
Eötvös Loránd Research Network (ELKH), ELTE
Eötvös Loránd University, Budapest 1117,
Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology,
Institute of Chemistry, ELTE Eötvös Loránd
University, Budapest 1117, Hungary
- MTA-ELTE Protein Modeling Research Group,
Eötvös Loránd Research Network (ELKH), ELTE
Eötvös Loránd University, Budapest 1117,
Hungary
| |
Collapse
|
48
|
David S, Dorado G, Duarte EL, David-Bosne S, Trigueiro-Louro J, Rebelo-de-Andrade H. COVID-19: impact on Public Health and hypothesis-driven investigations on genetic susceptibility and severity. Immunogenetics 2022; 74:381-407. [PMID: 35348847 PMCID: PMC8961091 DOI: 10.1007/s00251-022-01261-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
COVID-19 is a new complex multisystem disease caused by the novel coronavirus SARS-CoV-2. In slightly over 2 years, it infected nearly 500 million and killed 6 million human beings worldwide, causing an unprecedented coronavirus pandemic. Currently, the international scientific community is engaged in elucidating the molecular mechanisms of the pathophysiology of SARS-CoV-2 infection as a basis of scientific developments for the future control of COVID-19. Global exome and genome analysis efforts work to define the human genetics of protective immunity to SARS-CoV-2 infection. Here, we review the current knowledge regarding the SARS-CoV-2 infection, the implications of COVID-19 to Public Health and discuss genotype to phenotype association approaches that could be exploited through the selection of candidate genes to identify the genetic determinants of severe COVID-19.
Collapse
Affiliation(s)
- Susana David
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA,IP), Lisboa, Portugal.
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| | - Guillermo Dorado
- Atlántida Centro de Investigación y Desarrollo de Estudios Profesionales (CIDEP), Granada, Spain
| | - Elsa L Duarte
- MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | | | - João Trigueiro-Louro
- Departamento de Doenças Infeciosas, INSA, IP, Lisboa, Portugal
- Host-Pathogen Interaction Unit, Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisboa, Portugal
| | - Helena Rebelo-de-Andrade
- Departamento de Doenças Infeciosas, INSA, IP, Lisboa, Portugal
- Host-Pathogen Interaction Unit, Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
49
|
Inchingolo AD, Malcangi G, Ceci S, Patano A, Corriero A, Vimercati L, Azzollini D, Marinelli G, Coloccia G, Piras F, Barile G, Settanni V, Mancini A, De Leonardis N, Garofoli G, Palmieri G, Isacco CG, Rapone B, Scardapane A, Curatoli L, Quaranta N, Ribezzi M, Massaro M, Jones M, Bordea IR, Tartaglia GM, Scarano A, Lorusso F, Macchia L, Larocca AMV, Aityan SK, Tafuri S, Stefanizzi P, Migliore G, Brienza N, Dipalma G, Favia G, Inchingolo F. Effectiveness of SARS-CoV-2 Vaccines for Short- and Long-Term Immunity: A General Overview for the Pandemic Contrast. Int J Mol Sci 2022; 23:8485. [PMID: 35955621 PMCID: PMC9369331 DOI: 10.3390/ijms23158485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The recent COVID-19 pandemic produced a significant increase in cases and an emergency state was induced worldwide. The current knowledge about the COVID-19 disease concerning diagnoses, patient tracking, the treatment protocol, and vaccines provides a consistent contribution for the primary prevention of the viral infection and decreasing the severity of the SARS-CoV-2 disease. The aim of the present investigation was to produce a general overview about the current findings for the COVID-19 disease, SARS-CoV-2 interaction mechanisms with the host, therapies and vaccines' immunization findings. METHODS A literature overview was produced in order to evaluate the state-of-art in SARS-CoV-2 diagnoses, prognoses, therapies, and prevention. RESULTS Concerning to the interaction mechanisms with the host, the virus binds to target with its Spike proteins on its surface and uses it as an anchor. The Spike protein targets the ACE2 cell receptor and enters into the cells by using a special enzyme (TMPRSS2). Once the virion is quietly accommodated, it releases its RNA. Proteins and RNA are used in the Golgi apparatus to produce more viruses that are released. Concerning the therapies, different protocols have been developed in observance of the disease severity and comorbidity with a consistent reduction in the mortality rate. Currently, different vaccines are currently in phase IV but a remarkable difference in efficiency has been detected concerning the more recent SARS-CoV-2 variants. CONCLUSIONS Among the many questions in this pandemic state, the one that recurs most is knowing why some people become more seriously ill than others who instead contract the infection as if it was a trivial flu. More studies are necessary to investigate the efficiency of the treatment protocols and vaccines for the more recent detected SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Arnaldo Scardapane
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Luigi Curatoli
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Nicola Quaranta
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Mario Ribezzi
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Maria Massaro
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| | - Megan Jones
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Angela Maria Vittoria Larocca
- Hygiene Complex Operating Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Place Giulio Cesare 11 BARI CAP, 70124 Bari, Italy;
| | | | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Pasquale Stefanizzi
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Giovanni Migliore
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Gianfranco Favia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| |
Collapse
|
50
|
Torrens-Mas M, Perelló-Reus CM, Trias-Ferrer N, Ibargüen-González L, Crespí C, Galmes-Panades AM, Navas-Enamorado C, Sanchez-Polo A, Piérola-Lopetegui J, Masmiquel L, Crespi LS, Barcelo C, Gonzalez-Freire M. GDF15 and ACE2 stratify COVID-19 patients according to severity while ACE2 mutations increase infection susceptibility. Front Cell Infect Microbiol 2022; 12:942951. [PMID: 35937703 PMCID: PMC9355674 DOI: 10.3389/fcimb.2022.942951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 19 (COVID-19) is a persistent global pandemic with a very heterogeneous disease presentation ranging from a mild disease to dismal prognosis. Early detection of sensitivity and severity of COVID-19 is essential for the development of new treatments. In the present study, we measured the levels of circulating growth differentiation factor 15 (GDF15) and angiotensin-converting enzyme 2 (ACE2) in plasma of severity-stratified COVID-19 patients and uninfected control patients and characterized the in vitro effects and cohort frequency of ACE2 SNPs. Our results show that while circulating GDF15 and ACE2 stratify COVID-19 patients according to disease severity, ACE2 missense SNPs constitute a risk factor linked to infection susceptibility.
Collapse
Affiliation(s)
- Margalida Torrens-Mas
- Translational Research in Aging and Longevity Group (TRIAL group), Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Catalina M. Perelló-Reus
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Neus Trias-Ferrer
- Translational Research in Aging and Longevity Group (TRIAL group), Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Lesly Ibargüen-González
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Catalina Crespí
- Cell Culture and Flow Cytometry Facility, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Aina Maria Galmes-Panades
- Translational Research in Aging and Longevity Group (TRIAL group), Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
- Physical Activity and Sport Sciences Research Group (GICAFE), Institute for Educational Research and Innovation (IRIE), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Cayetano Navas-Enamorado
- Translational Research in Aging and Longevity Group (TRIAL group), Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Andres Sanchez-Polo
- Translational Research in Aging and Longevity Group (TRIAL group), Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Javier Piérola-Lopetegui
- Microscopy Facility, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Luis Masmiquel
- Vascular and Metabolic Pathologies Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Lorenzo Socias Crespi
- Intensive Care Unit, Health Research Institute of the Balearic Islands (IdISBa), Son Llatzer University Hospital, Palma de Mallorca, Spain
| | - Carles Barcelo
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
- *Correspondence: Marta Gonzalez-Freire, ; Carles Barcelo,
| | - Marta Gonzalez-Freire
- Translational Research in Aging and Longevity Group (TRIAL group), Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
- *Correspondence: Marta Gonzalez-Freire, ; Carles Barcelo,
| |
Collapse
|