Letter to the Editor Open Access
Copyright ©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Virol. Jan 25, 2022; 11(1): 85-89
Published online Jan 25, 2022. doi: 10.5501/wjv.v11.i1.85
Role of vitamin D deficiency and comorbidities in COVID-19
Gabriela Gama Freire Alberca, Department of Microbiology, Institute of Biomedical Sciences-University of São Paulo, São Paulo 04307-100, Brazil
Ricardo Wesley Alberca, Laboratorio de Dermatologia e Imunodeficiencias (LIM-56), Departamento de Dermatologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 04307-100, Brazil
ORCID number: Gabriela Gama Freire Alberca (0000-0002-3467-5562); Ricardo Wesley Alberca (0000-0002-3602-3306).
Author contributions: Alberca GGF and Alberca RW contributed equally to this work; Alberca GGF and Alberca RW designed, analyzed the data and wrote the study; all authors have read and approve the final manuscript.
Supported by RWA holds a fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), No. 19/02679-7.
Conflict-of-interest statement: The authors declare that there is no conflict of interest.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Ricardo Wesley Alberca, PhD, Academic Research, Research Fellow, Laboratorio de Dermatologia e Imunodeficiencias (LIM-56), Departamento de Dermatologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, 455-Cerqueira César, São Paulo 04307-100, Brazil. ricardowesley@gmail.com
Received: May 26, 2021
Peer-review started: May 26, 2021
First decision: July 31, 2021
Revised: August 1, 2021
Accepted: November 14, 2021
Article in press: November 24, 2021
Published online: January 25, 2022
Processing time: 233 Days and 17.4 Hours

Abstract

Recent manuscripts described the incidence of vitamin D hypovitaminosis in coronavirus disease 2019 (COVID-19) patients. Vitamin D deficiency is also common in patients with comorbidities that are associated with a poor COVID-19 prognosis. In this letter, we review the literature regarding the association of comorbidities, vitamin D deficiency, and COVID-19.

Key Words: COVID-19; SARS-CoV-2; Comorbidities; Vitamin D

Core Tip: Vitamin D deficiency is a worldwide problem, and investigations on the benefits of regulating vitamin D levels and the immune response should be performed. Nevertheless, the association between low levels of vitamin D and coronavirus disease 2019 (COVID-19) needs to be further explored, especially investigations on the immune response to COVID-19 and COVID-19 vaccines in patients with and without comorbidities.



TO THE EDITOR

We read with great interest the article entitled “Association between population vitamin D status and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) related serious-critical illness and deaths: An ecological integrative approach” recently published by Papadimitriou et al[1] in the World Journal of Virology[1]. This manuscript raised important questions and the authors performed an extensive analysis on vitamin D levels and COVID-19 incidence and severity in Europe, and the potential benefits of vitamin D supplementation to enhance the immune response to the SARS-CoV-2[1]. In the light of these results, we humbly want to state a few points for consideration.

Severe coronavirus disease 2019 (COVID-19) patients present a systemic inflammatory response with a coagulation disorder, possibly evolving to death[2]. Several comorbidities have been identified as risk factors for poor disease prognosis, such as old age[3], co-infections[4], obesity and diabetes mellitus[5], severe asthma, alcohol drinking[6], chronic obstructive pulmonary disease[7], chronic liver disease[8], and cancer[9].

Vitamin D deficiency is associated with poor response to respiratory infections[10], and few reports have identified vitamin D deficiency in moderate and severe COVID-19 patients with conflicting results[1,11,12].

Vitamin D receptor is expressed in many immune cells, including monocytes, macrophages, dendritic cells, neutrophils, and lymphocytes[13-15]. Vitamin D increases the antimicrobial activity of monocytes and macrophages[16] and has anti-inflammatory effects due to the induction of T regulatory cells and reduction in the T helper-17 immune response and pro-inflammatory cytokine production[15].

Papadimitriou et al[1] performed an important investigation on the association of vitamin D deficiency and COVID-19[1]. Vitamin D levels can be influenced by many factors such as sun exposure, genetics, supplementation, and comorbidities[17-20].

Vitamin D hypovitaminosis is associated with several comorbidities that are also related to poor COVID-19 prognoses such as old age[21], co-infections[18], obesity[22], diabetes mellitus[23], alcohol drinking, and smoking[24-26], uncontrolled asthma, but not controlled asthma, chronic obstructive pulmonary disease[25-28], cancer[29], and solid organ transplant recipient patients[30].

Besides comorbidities, vitamin D hypovitaminosis is associated with poor glycemic control[23], which is also associated with poor COVID-19 outcomes in diabetic and non-diabetic patients[31]. Cancer patients present low circulating levels of vitamin D[29] and experimental models have identified that vitamin D can modulate the disease development by regulating cell cycle and inflammatory response[32].

Vitamin D deficiency is a worldwide problem[33,34], and vitamin D supplementation has the potential to enhance the immune response to microorganisms[1]. Vitamin D supplementation has been investigated for the treatment and prevention of severe COVID-19, indicating a potential reduction in COVID-19 severity[35].

A recent investigation found that prophylactic vitamin D supplementation in elderlies improved the SARS-CoV-2 immune response[36], and another investigation identified that the treatment with vitamin D reduces COVID-19 severity[37]. Nevertheless, another report found no additional benefit in vitamin D supplementation during COVID-19[38].

Low vitamin D levels also modulate the Renin-Angiotensin-System, which could increase the susceptibility to COVID-19[39], since SARS-CoV-2 uses the angiotensin-converting enzyme 2 and Transmembrane Protease Serine 2 (TMPRSS2) to invade the host’s cells[40]. In addition, the lack of vitamin D is a risk factor for the development of autoimmune and neuropsychiatric disorders[41].

Lakkireddy et al[42] identified that increasing the serum levels of vitamin D to 80–100 ng/mL significantly reduced inflammatory biomarkers such as interleukin-6, C-reactive protein, and neutrophil-to-lymphocyte ratio during COVID-19, without side effects[42].

In addition, Papadimitriou et al[1] recommendation for vitamin D supplementation should also be considered in a broader context[1], outside the COVID-19 pandemic situation, due to the high incidence of vitamin D hypovitaminosis worldwide, the vast associations with other diseases, and the proposed doses do not require medical supervision[1].

COVID-19 vaccination is ongoing worldwide[43-45], since vitamin D can modulate the immune response to vaccines[46,47], investigations on the vaccines should consider evaluating vitamin D levels and the effects of supplementation on the immune response to vaccines.

In summary, vitamin D hypovitaminosis is associated with comorbidities that are known to affect COVID-19 severity and outcome. Further investigations should focus on patients with low vitamin D levels with and without comorbidities and supplementation trials to investigate the effects of vitamin D on the immune response to COVID-19 and COVID-19 vaccines.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Virology

Country/Territory of origin: Brazil

Peer-review report’s scientific quality classification

Grade A (Excellent): 0

Grade B (Very good): 0

Grade C (Good): C

Grade D (Fair): 0

Grade E (Poor): 0

P-Reviewer: Papadimitriou DT S-Editor: Fan JR L-Editor: A P-Editor: Fan JR

References
1.  Papadimitriou DT, Vassaras AK, Holick MF. Association between population vitamin D status and SARS-CoV-2 related serious-critical illness and deaths: An ecological integrative approach. World J Virol. 2021;10:111-129.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 14]  [Cited by in F6Publishing: 11]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]
2.  Temgoua MN, Endomba FT, Nkeck JR, Kenfack GU, Tochie JN, Essouma M. Coronavirus Disease 2019 (COVID-19) as a Multi-Systemic Disease and its Impact in Low- and Middle-Income Countries (LMICs). SN Compr Clin Med. 2020;1-11.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 47]  [Cited by in F6Publishing: 23]  [Article Influence: 5.8]  [Reference Citation Analysis (0)]
3.  Perrotta F, Corbi G, Mazzeo G, Boccia M, Aronne L, D'Agnano V, Komici K, Mazzarella G, Parrella R, Bianco A. COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin Exp Res. 2020;32:1599-1608.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 176]  [Cited by in F6Publishing: 223]  [Article Influence: 55.8]  [Reference Citation Analysis (0)]
4.  Alberca RW, Yendo TM, Leuzzi Ramos YÁ, Fernandes IG, Oliveira LM, Teixeira FME, Beserra DR, de Oliveira EA, Gozzi-Silva SC, Andrade MMS, Branco ACCC, Pietrobon AJ, Pereira NZ, de Brito CA, Orfali RL, Aoki V, Duarte AJDS, Benard G, Sato MN. Case Report: COVID-19 and Chagas Disease in Two Coinfected Patients. Am J Trop Med Hyg. 2020;103:2353-2356.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 17]  [Cited by in F6Publishing: 18]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
5.  Holman N, Knighton P, Kar P, O'Keefe J, Curley M, Weaver A, Barron E, Bakhai C, Khunti K, Wareham NJ, Sattar N, Young B, Valabhji J. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2020;8:823-833.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 620]  [Cited by in F6Publishing: 583]  [Article Influence: 145.8]  [Reference Citation Analysis (0)]
6.  Alberca RW, Rigato PO, Ramos YÁL, Teixeira FME, Branco ACC, Fernandes IG, Pietrobon AJ, Duarte AJDS, Aoki V, Orfali RL, Sato MN. Clinical Characteristics and Survival Analysis in Frequent Alcohol Consumers With COVID-19. Front Nutr. 2021;8:689296.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 7]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
7.  Alberca RW, Lima JC, de Oliveira EA, Gozzi-Silva SC, Leuzzi YÁ, Mary De Souza Andrade M, Beserra DR, Oliveira LDM, Castelo Branco ACC, Pietrobon AJ, Pereira NZ, Teixeira FME, Fernandes IG, Benard G, Sato MN. COVID-19 disease course in formers smokers, smokers and COPD patients. Front Physiol. 2020;.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 17]  [Cited by in F6Publishing: 16]  [Article Influence: 5.3]  [Reference Citation Analysis (0)]
8.  Leowattana W. Angiotensin-converting enzyme 2 receptors, chronic liver diseases, common medications, and clinical outcomes in coronavirus disease 2019 patients. World J Virol. 2021;10:86-96.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 4]  [Cited by in F6Publishing: 3]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
9.  Riches JC. Impact of COVID-19 in patients with lymphoid malignancies. World J Virol. 2021;10:97-110.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 10]  [Cited by in F6Publishing: 7]  [Article Influence: 2.3]  [Reference Citation Analysis (1)]
10.  Dancer RC, Parekh D, Lax S, D'Souza V, Zheng S, Bassford CR, Park D, Bartis DG, Mahida R, Turner AM, Sapey E, Wei W, Naidu B, Stewart PM, Fraser WD, Christopher KB, Cooper MS, Gao F, Sansom DM, Martineau AR, Perkins GD, Thickett DR. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015;70:617-624.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 206]  [Cited by in F6Publishing: 202]  [Article Influence: 22.4]  [Reference Citation Analysis (0)]
11.  Radujkovic A, Hippchen T, Tiwari-Heckler S, Dreher S, Boxberger M, Merle U. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients. 2020;12.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 297]  [Cited by in F6Publishing: 209]  [Article Influence: 52.3]  [Reference Citation Analysis (0)]
12.  Brandão CMÁ, Chiamolera MI, Biscolla RPM, Lima JV Junior, De Francischi Ferrer CM, Prieto WH, de Sá Tavares Russo P, de Sá J, Dos Santos Lazari C, Granato CFH, Vieira JGH. No association between vitamin D status and COVID-19 infection in São Paulo, Brazil. Arch Endocrinol Metab. 2021;.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 11]  [Cited by in F6Publishing: 13]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
13.  Takahashi K, Nakayama Y, Horiuchi H, Ohta T, Komoriya K, Ohmori H, Kamimura T. Human neutrophils express messenger RNA of vitamin D receptor and respond to 1alpha,25-dihydroxyvitamin D3. Immunopharmacol Immunotoxicol. 2002;24:335-347.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 89]  [Cited by in F6Publishing: 95]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
14.  Lin R. Crosstalk between Vitamin D Metabolism, VDR Signalling, and Innate Immunity. Biomed Res Int. 2016;2016:1375858.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 32]  [Cited by in F6Publishing: 36]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
15.  Sassi F, Tamone C, D'Amelio P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients. 2018;10.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 312]  [Cited by in F6Publishing: 425]  [Article Influence: 70.8]  [Reference Citation Analysis (0)]
16.  Sly LM, Lopez M, Nauseef WM, Reiner NE. 1alpha,25-Dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase. J Biol Chem. 2001;276:35482-35493.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 182]  [Cited by in F6Publishing: 193]  [Article Influence: 8.4]  [Reference Citation Analysis (0)]
17.  DeLuca HF. Evolution of our understanding of vitamin D [Internet]. In: Nutrition Reviews. Nutr Rev. 2008;.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 166]  [Cited by in F6Publishing: 174]  [Article Influence: 11.6]  [Reference Citation Analysis (0)]
18.  Oliveira Junior LR, Carvalho TB, Santos RMD, Costa ÉAPND, Pereira PCM, Kurokawa CS. Association of vitamin D3, VDR gene polymorphisms, and LL-37 with a clinical form of Chagas Disease. Rev Soc Bras Med Trop. 2019;52:e20190133.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 4]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
19.  Wöbke TK, Sorg BL, Steinhilber D. Vitamin D in inflammatory diseases. Front Physiol. 2014;5:244.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 64]  [Cited by in F6Publishing: 122]  [Article Influence: 12.2]  [Reference Citation Analysis (0)]
20.  Papadimitriou DT. The Big Vitamin D Mistake. J Prev Med Public Health. 2017;50:278-281.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 25]  [Cited by in F6Publishing: 25]  [Article Influence: 3.6]  [Reference Citation Analysis (0)]
21.  Kweder H, Eidi H. Vitamin D deficiency in elderly: Risk factors and drugs impact on vitamin D status. Avicenna J Med. 2018;8:139-146.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 30]  [Cited by in F6Publishing: 42]  [Article Influence: 14.0]  [Reference Citation Analysis (0)]
22.  Macdonald HM, Mavroeidi A, Aucott LA, Diffey BL, Fraser WD, Ormerod AD, Reid DM. Skin color change in Caucasian postmenopausal women predicts summer-winter change in 25-hydroxyvitamin D: findings from the ANSAViD cohort study. J Clin Endocrinol Metab. 2011;96:1677-1686.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 29]  [Cited by in F6Publishing: 28]  [Article Influence: 2.2]  [Reference Citation Analysis (0)]
23.  Kostoglou-Athanassiou I, Athanassiou P, Gkountouvas A, Kaldrymides P. Vitamin D and glycemic control in diabetes mellitus type 2. Ther Adv Endocrinol Metab. 2013;4:122-128.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 68]  [Cited by in F6Publishing: 73]  [Article Influence: 6.6]  [Reference Citation Analysis (0)]
24.  Lieber CS. ALCOHOL: its metabolism and interaction with nutrients. Annu Rev Nutr. 2000;20:395-430.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 202]  [Cited by in F6Publishing: 158]  [Article Influence: 6.9]  [Reference Citation Analysis (0)]
25.  Brot C, Jorgensen NR, Sorensen OH. The influence of smoking on vitamin D status and calcium metabolism. Eur J Clin Nutr. 1999;53:920-926.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 239]  [Cited by in F6Publishing: 245]  [Article Influence: 9.8]  [Reference Citation Analysis (0)]
26.  Janssens W, Bouillon R, Claes B, Carremans C, Lehouck A, Buysschaert I, Coolen J, Mathieu C, Decramer M, Lambrechts D. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax. 2010;65:215-220.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 280]  [Cited by in F6Publishing: 304]  [Article Influence: 20.3]  [Reference Citation Analysis (0)]
27.  Menon B, Nima G, Dogra V, Mittal A, Kaur C, Mittal U. Evaluation of vitamin D in bronchial asthma and the effect of vitamin D supplementation on asthma severity and control: A randomised control trial. Eur Respir J. 2014;44.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 1]  [Article Influence: 0.1]  [Reference Citation Analysis (0)]
28.  Alberca RW, Yendo T, Aoki V, Sato MN. Asthmatic patients and COVID-19: Different disease course? Allergy. 2021;76:963-965.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9]  [Cited by in F6Publishing: 11]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]
29.  Kennel KA, Drake MT. Vitamin D in the cancer patient. Curr Opin Support Palliat Care. 2013;7:272-277.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 21]  [Cited by in F6Publishing: 24]  [Article Influence: 2.4]  [Reference Citation Analysis (0)]
30.  Nacif LS, Zanini LY, Waisberg DR, Pinheiro RS, Galvão F, Andraus W, D'Albuquerque LC. COVID-19 in solid organ transplantation patients: A systematic review. Clinics (Sao Paulo). 2020;75:e1983.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 43]  [Cited by in F6Publishing: 44]  [Article Influence: 11.0]  [Reference Citation Analysis (0)]
31.  Palaiodimos L, Chamorro-Pareja N, Karamanis D, Li W, Zavras PD, Chang KM, Mathias P, Kokkinidis DG. Diabetes is associated with increased risk for in-hospital mortality in patients with COVID-19: a systematic review and meta-analysis comprising 18,506 patients. Hormones (Athens). 2021;20:305-314.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 35]  [Cited by in F6Publishing: 35]  [Article Influence: 11.7]  [Reference Citation Analysis (0)]
32.  Bouillon R, Eelen G, Verlinden L, Mathieu C, Carmeliet G, Verstuyf A. Vitamin D and cancer. J Steroid Biochem Mol Biol. 2006;102:156-162.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 147]  [Cited by in F6Publishing: 135]  [Article Influence: 7.5]  [Reference Citation Analysis (0)]
33.  Lips P, Cashman KD, Lamberg-Allardt C, Bischoff-Ferrari HA, Obermayer-Pietsch B, Bianchi ML, Stepan J, El-Hajj Fuleihan G, Bouillon R. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. Eur J Endocrinol. 2019;180:P23-P54.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 335]  [Cited by in F6Publishing: 380]  [Article Influence: 76.0]  [Reference Citation Analysis (0)]
34.  Roth DE, Abrams SA, Aloia J, Bergeron G, Bourassa MW, Brown KH, Calvo MS, Cashman KD, Combs G, De-Regil LM, Jefferds ME, Jones KS, Kapner H, Martineau AR, Neufeld LM, Schleicher RL, Thacher TD, Whiting SJ. Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low- and middle-income countries. Ann N Y Acad Sci. 2018;1430:44-79.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 338]  [Cited by in F6Publishing: 296]  [Article Influence: 49.3]  [Reference Citation Analysis (0)]
35.  Shah K, Saxena D, Mavalankar D. Vitamin D supplementation, COVID-19 and disease severity: a meta-analysis. QJM. 2021;114:175-181.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 60]  [Cited by in F6Publishing: 59]  [Article Influence: 19.7]  [Reference Citation Analysis (2)]
36.  Annweiler G, Corvaisier M, Gautier J, Dubée V, Legrand E, Sacco G, Annweiler C. Vitamin D Supplementation Associated to Better Survival in Hospitalized Frail Elderly COVID-19 Patients: The GERIA-COVID Quasi-Experimental Study. Nutrients. 2020;12.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 187]  [Cited by in F6Publishing: 167]  [Article Influence: 41.8]  [Reference Citation Analysis (0)]
37.  Entrenas Castillo M, Entrenas Costa LM, Vaquero Barrios JM, Alcalá Díaz JF, López Miranda J, Bouillon R, Quesada Gomez JM. "Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study". J Steroid Biochem Mol Biol. 2020;203:105751.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 424]  [Cited by in F6Publishing: 442]  [Article Influence: 110.5]  [Reference Citation Analysis (0)]
38.  Cereda E, Bogliolo L, Lobascio F, Barichella M, Zecchinelli AL, Pezzoli G, Caccialanza R. Vitamin D supplementation and outcomes in coronavirus disease 2019 (COVID-19) patients from the outbreak area of Lombardy, Italy. Nutrition. 2021;82:111055.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 40]  [Cited by in F6Publishing: 42]  [Article Influence: 10.5]  [Reference Citation Analysis (0)]
39.  Biesalski HK. Vitamin D deficiency and co-morbidities in COVID-19 patients – A fatal relationship? Nfs J. 2020;20:10.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 61]  [Cited by in F6Publishing: 16]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
40.  Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271-280.e8.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 11946]  [Cited by in F6Publishing: 13698]  [Article Influence: 3424.5]  [Reference Citation Analysis (0)]
41.  Wang H, Chen W, Li D, Yin X, Zhang X, Olsen N, Zheng SG. Vitamin D and Chronic Diseases. Aging Dis. 2017;8:346-353.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 165]  [Cited by in F6Publishing: 230]  [Article Influence: 32.9]  [Reference Citation Analysis (0)]
42.  Lakkireddy M, Gadiga SG, Malathi RD, Karra ML, Raju ISSVPM, Ragini, Chinapaka S, Baba KSSS, Kandakatla M. Impact of daily high dose oral vitamin D therapy on the inflammatory markers in patients with COVID 19 disease. Sci Reports. 2021;11:1-8.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 43]  [Cited by in F6Publishing: 55]  [Article Influence: 18.3]  [Reference Citation Analysis (0)]
43.  Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, Baum A, Pascal K, Quandt J, Maurus D, Brachtendorf S, Lörks V, Sikorski J, Hilker R, Becker D, Eller AK, Grützner J, Boesler C, Rosenbaum C, Kühnle MC, Luxemburger U, Kemmer-Brück A, Langer D, Bexon M, Bolte S, Karikó K, Palanche T, Fischer B, Schultz A, Shi PY, Fontes-Garfias C, Perez JL, Swanson KA, Loschko J, Scully IL, Cutler M, Kalina W, Kyratsous CA, Cooper D, Dormitzer PR, Jansen KU, Türeci Ö. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020;586:594-599.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1039]  [Cited by in F6Publishing: 1082]  [Article Influence: 270.5]  [Reference Citation Analysis (0)]
44.  Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, Goepfert PA, Truyers C, Fennema H, Spiessens B, Offergeld K, Scheper G, Taylor KL, Robb ML, Treanor J, Barouch DH, Stoddard J, Ryser MF, Marovich MA, Neuzil KM, Corey L, Cauwenberghs N, Tanner T, Hardt K, Ruiz-Guiñazú J, Le Gars M, Schuitemaker H, Van Hoof J, Struyf F, Douoguih M; ENSEMBLE Study Group. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med. 2021;384:2187-2201.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2024]  [Cited by in F6Publishing: 1711]  [Article Influence: 570.3]  [Reference Citation Analysis (0)]
45.  Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, Han W, Chen Z, Tang R, Yin W, Chen X, Liu X, Jiang C, Li J, Yang M, Song Y, Wang X, Gao Q, Zhu F. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21:181-192.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 743]  [Cited by in F6Publishing: 932]  [Article Influence: 233.0]  [Reference Citation Analysis (0)]
46.  Goncalves-Mendes N, Talvas J, Dualé C, Guttmann A, Corbin V, Marceau G, Sapin V, Brachet P, Evrard B, Laurichesse H, Vasson MP. Impact of Vitamin D Supplementation on Influenza Vaccine Response and Immune Functions in Deficient Elderly Persons: A Randomized Placebo-Controlled Trial. Front Immunol. 2019;10:65.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 74]  [Cited by in F6Publishing: 87]  [Article Influence: 17.4]  [Reference Citation Analysis (0)]
47.  Sadarangani SP, Whitaker JA, Poland GA. "Let there be light": the role of vitamin D in the immune response to vaccines. Expert Rev Vaccines. 2015;14:1427-1440.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 28]  [Cited by in F6Publishing: 33]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]