1
|
Ebogo‐Belobo JT, Kenmoe S, Abanda NN, Bowo‐Ngandji A, Mbaga DS, Magoudjou‐Pekam JN, Kame‐Ngasse GI, Tchatchouang S, Menkem EZ, Okobalemba EA, Noura EA, Meta‐Djomsi D, Maïdadi‐Foudi M, Kenfack‐Zanguim J, Kenfack‐Momo R, Kengne‐Nde C, Esemu SN, Mbacham WF, Sadeuh‐Mba SA, Ndip L, Njouom R. Contemporary epidemiological data of Rift Valley fever virus in humans, mosquitoes and other animal species in Africa: A systematic review and meta-analysis. Vet Med Sci 2023; 9:2309-2328. [PMID: 37548116 PMCID: PMC10508527 DOI: 10.1002/vms3.1238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/29/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Abstract
Rift Valley fever (RVF) is a severe zoonotic mosquito-borne disease that represents an important threat to human and animal health, with major public health and socioeconomic impacts. This disease is endemic throughout many African countries and the Arabian Peninsula. This systematic review with meta-analysis was conducted to determine the RVF prevalence in humans, mosquitoes and other animal species in Africa. The review also provides contemporary data on RVF case fatality rate (CFR) in humans. In this systematic review with meta-analysis, a comprehensive literature search was conducted on the PubMed, Embase, Web of Science and Global Index Medicus databases from January 2000 to June 2022 to identify relevant studies. Pooled CFR and prevalence estimates were calculated using the random-effects model. Subgroup analysis and sensitivity analysis were performed, and the I2 -statistic was used to investigate a potential source of heterogeneity. A total of 205 articles were included in the final analysis. The overall RVF CFR in humans was found to be 27.5% [95% CI = 8.0-52.5]. The overall pooled prevalence was 7.8% [95% CI = 6.2-9.6] in humans and 9.3% [95% CI = 8.1-10.6] in animals, respectively. The RVF prevalence in individual mosquitoes ranged from 0.0% to 25%. Subgroup analysis showed substantial heterogeneity with respect to geographical regions and human categories. The study shows that there is a correspondingly similar prevalence of RVF in human and animals; however, human CFR is much higher than the observed prevalence. The lack of a surveillance programme and the fact that this virus has subclinical circulation in animals and humans could explain these observations. The implementation of a One Health approach for RVF surveillance and control would be of great interest for human and animal health.
Collapse
Affiliation(s)
- Jean Thierry Ebogo‐Belobo
- Centre for Research on Health and Priority PathologiesInstitute of Medical Research and Medicinal Plants StudiesYaoundeCameroon
- Department of BiochemistryFaculty of SciencesThe University of Yaounde IYaoundéCameroon
| | - Sebastien Kenmoe
- Department of Microbiology and ParasitologyUniversity of BueaBueaCameroon
| | - Ngu Njei Abanda
- Virology DepartmentCentre Pasteur of CameroonYaoundéCameroon
| | - Arnol Bowo‐Ngandji
- Department of MicrobiologyFaculty of SciencesThe University of Yaounde IYaoundéCameroon
| | - Donatien Serge Mbaga
- Department of MicrobiologyFaculty of SciencesThe University of Yaounde IYaoundéCameroon
| | | | - Ginette Irma Kame‐Ngasse
- Centre for Research on Health and Priority PathologiesInstitute of Medical Research and Medicinal Plants StudiesYaoundeCameroon
| | | | | | | | - Efietngab Atembeh Noura
- Centre for Research on Health and Priority PathologiesInstitute of Medical Research and Medicinal Plants StudiesYaoundeCameroon
| | - Dowbiss Meta‐Djomsi
- Research Centre on Emerging and Re‐Emerging DiseasesInstitute of Medical Research and Medicinal Plants StudiesYaoundeCameroon
| | - Martin Maïdadi‐Foudi
- Research Centre on Emerging and Re‐Emerging DiseasesInstitute of Medical Research and Medicinal Plants StudiesYaoundeCameroon
| | | | - Raoul Kenfack‐Momo
- Department of BiochemistryFaculty of SciencesThe University of Yaounde IYaoundéCameroon
| | - Cyprien Kengne‐Nde
- Epidemiological Surveillance, Evaluation and Research UnitNational AIDS Control CommitteeYaoundéCameroon
| | | | - Wilfred Fon Mbacham
- Department of BiochemistryFaculty of SciencesThe University of Yaounde IYaoundéCameroon
| | - Serge Alain Sadeuh‐Mba
- Virology DepartmentCentre Pasteur of CameroonYaoundéCameroon
- Maryland Department of AgricultureSalisbury Animal Health LaboratorySalisburyMarylandUSA
| | - Lucy Ndip
- Department of Microbiology and ParasitologyUniversity of BueaBueaCameroon
| | - Richard Njouom
- Virology DepartmentCentre Pasteur of CameroonYaoundéCameroon
| |
Collapse
|
2
|
Miller LN, Elmselati H, Fogarty AS, Farhat ME, Standley CJ, Abuabaid HM, Zorgani A, Elahmer O, Sorrell EM. Using One Health assessments to leverage endemic disease frameworks for emerging zoonotic disease threats in Libya. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002005. [PMID: 37494334 PMCID: PMC10370693 DOI: 10.1371/journal.pgph.0002005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 07/28/2023]
Abstract
Continued emergence, re-emergence and spread of zoonotic diseases demonstrates the imperative need for multisectoral communication and joint coordination of disease detection and response. While there are existing international frameworks underpinning One Health capacity building for pandemic prevention and response, often guidance does not account for challenges faced by countries undergoing long-term conflict and sociopolitical instability. The purpose of this research was to identify Libya's laboratory and surveillance networks and routes of inter- and multisectoral communication and coordination for priority zoonotic diseases. The One Health Systems Assessment for Priority Zoonoses (OH-SAPZ) tool is an established methodology that was adapted and applied to the Libyan context to support prioritization of zoonotic diseases, development of systems map schematics outlining networks of communication and coordination, and analysis of operations for targeted capacity building efforts. Five zoonotic diseases were selected to undergo assessment: highly pathogenic avian influenza, brucellosis, Rift Valley fever, leishmaniasis and rabies. Through decisive acknowledgement of Libya's unique health setting, we mapped how patient and sample information is both communicated within and between the human, animal and environmental health sectors, spanning from local index case identification to international notification. Through our assessment we found strong communication within the public and animal health sectors, as well as existing multisectoral coordination on zoonotic disease response. However, local-level communication between the sectors is currently lacking. Due to the ongoing conflict, resources (financial and human) and access have been severely impacted, resulting in limited laboratory diagnostic capacity and discontinued disease prevention and control measures. We sought to identify opportunities to leverage existing operations for endemic diseases like brucellosis for emerging zoonotic threats, such as Rift Valley fever. Analysis of these operations and capabilities supports the development of targeted recommendations that address gaps and may be used as an implementation guide for future One Health capacity building efforts.
Collapse
Affiliation(s)
- Lauren N Miller
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, United States of America
| | | | - Alanna S Fogarty
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, United States of America
| | | | - Claire J Standley
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, United States of America
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | | | | | - Omar Elahmer
- National Centre for Disease Control, Tripoli, Libya
| | - Erin M Sorrell
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
3
|
Nebbak A, Almeras L, Parola P, Bitam I. Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. INSECTS 2022; 13:962. [PMID: 36292910 PMCID: PMC9604161 DOI: 10.3390/insects13100962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world's most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases' (MBDs) geographic expansion to new areas, such as North African countries, where some of these MBDs were unusual or even unknown. In this review, we summarize the latest data on mosquito vector species distribution and MBDs affecting both human and animals in North Africa, in order to better understand the risks associated with the introduction of new invasive mosquito species such as Aedes albopictus. Currently, 26 mosquito species confirmed as pathogen vectors occur in North Africa, including Aedes (five species), Culex (eight species), Culiseta (one species) and Anopheles (12 species). These 26 species are involved in the circulation of seven MBDs in North Africa, including two parasitic infections (malaria and filariasis) and five viral infections (WNV, RVF, DENV, SINV and USUV). No bacterial diseases have been reported so far in this area. This review may guide research studies to fill the data gaps, as well as helping with developing effective vector surveillance and controlling strategies by concerned institutions in different involved countries, leading to cooperative and coordinate vector control measures.
Collapse
Affiliation(s)
- Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail 42004, Algeria
| | - Lionel Almeras
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Idir Bitam
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- École Supérieure en Sciences de l’Aliment et des Industries Agroalimentaire d’Alger, Oued Smar 16059, Algeria
| |
Collapse
|
4
|
Mahmoud AS, Sawesi OK, El-Waer OR, Bennour EM. Rift valley fever in Africa with the emerging interest in Libya. INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.237-245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rift valley fever (RVF) is an acute vector-borne viral zoonotic disease of domestic and wild ruminants. The RVF virus (RVFV) belonging to the Phlebovirus genus of the Bunyaviridae family causes this disease. Studies have shown that mosquitoes are the vectors that transmit RVFV. Specifically, Aedes and Culex mosquito species are among the many vectors of this virus, which affects not only sheep, goats, buffalo, cattle, and camels but also human beings. Since the 30s of the last century, RVF struck Africa, and to a lesser extent, Asian continents, with subsequent episodes of epizootic, epidemic, and sporadic outbreaks. These outbreaks, therefore, resulted in the cumulative loss of thousands of human lives, thereby disrupting the livestock market or only those with seropositive cases. After that outbreak episode, RVF was not reported in Libya until January 13, 2020, where it was reported for the 1st time in a flock of sheep and goats in the southern region of the country. Although insufficient evidence to support RVF clinical cases among the confirmed seropositive animals exists, neither human cases nor death were reported in Libya. Yet, the overtime expansion of RVF kinetics in the Libyan neighborhoods, in addition to the instability and security vacuum experienced in the country, lack of outbreak preparedness, and the availability of suitable climatic and disease vector factors, makes this country a possible future scene candidate for RVF expansion. Urgently, strengthening veterinary services (VS) and laboratory diagnostic capacities, including improvement of monitoring and surveillance activity programs, should be implemented in areas at risk (where imported animals crossing borders from Libyan neighborhoods and competent vectors are found) at national, sub-national, and regional levels. The Libyan government should also implement a tripartite framework (one health approach) among the veterinary public health, public health authority, and environmental sanitation sectors to implement RVF surveillance protocols, along with an active partnership with competent international bodies (OIE, FAO, and WHO). Therefore, this review comprises the most updated data regarding the epidemiological situation of RVF infections and its socioeconomic impacts on African and Asian continents, and also emphasize the emerging interest of RVF in Libya.
Collapse
Affiliation(s)
- Abdusalam S. Mahmoud
- Department of Preventive Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Osama K. Sawesi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Osama R. El-Waer
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Emad M. Bennour
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
5
|
Mahmoud AS, Dayhum AS, Rayes AA, Annajar BB, Eldaghayes IM. Exploiting epidemiological data to understand the epidemiology and factors that influence COVID-19 pandemic in Libya. World J Virol 2021; 10:156-167. [PMID: 34367931 PMCID: PMC8316877 DOI: 10.5501/wjv.v10.i4.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/21/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
There were only 75 confirmed cases of coronavirus disease 2019 (COVID-19) reported in Libya by the National Center for Disease Control during the first two months following the first confirmed case on 24 March 2020. However, there was dramatic increase in positive cases from June to now; as of 19 November 2020, approximately 357940 samples have been tested by reverse transcription polymerase chain reaction, and the results have revealed a total number of 76808 confirmed cases, 47587 recovered cases and 1068 deaths. The case fatality ratio was estimated to be 1.40%, and the mortality rate was estimated to be 15.90 in 100000 people. The epidemiological situation markedly changed from mid-July to the beginning of August, and the country proceeded to the cluster phase. COVID-19 has spread in almost all Libyan cities, and this reflects the high transmission rate of the virus at the regional level with the highest positivity rates, at an average of 14.54%. Apparently, there is an underestimation of the actual number of COVID-19 cases due to the low testing capacity. Consequently, the Libyan health authority needs to initiate a large-scale case-screening process and enforce testing capacities and contact testing within the time frame, which is not an easy task. Advisably, the Libyan health authority should improve the public health capacities and conduct strict hygienic measures among the societies and vaccinate as many people against COVID-19 to minimize both the case fatality ratio and socio-economic impacts of the pandemic in Libya.
Collapse
Affiliation(s)
- Abdusalam S Mahmoud
- Department of Preventive Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli 13662, Libya
| | - Abdunaser S Dayhum
- Department of Preventive Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli 13662, Libya
| | - Abdunnabi A Rayes
- Department of Internal Medicine, Faculty of Medicine, University of Tripoli, Tripoli 13662, Libya
| | - Badereddin B Annajar
- Department of Public Health, Faculty of Medical Technology, University of Tripoli, Tripoli 13662, Libya
- National Center for Disease Control, Tripoli 71171, Libya
| | - Ibrahim M Eldaghayes
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli 13662, Libya
| |
Collapse
|
6
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin-Bastuji B, Rojas JLG, Schmidt CG, Michel V, Chueca MÁM, Roberts HC, Sihvonen LH, Stahl K, Calvo AV, Viltrop A, Winckler C, Bett B, Cetre-Sossah C, Chevalier V, Devos C, Gubbins S, Monaco F, Sotiria-Eleni A, Broglia A, Abrahantes JC, Dhollander S, Stede YVD, Zancanaro G. Rift Valley Fever - epidemiological update and risk of introduction into Europe. EFSA J 2020; 18:e06041. [PMID: 33020705 PMCID: PMC7527653 DOI: 10.2903/j.efsa.2020.6041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rift Valley fever (RVF) is a vector-borne disease transmitted by a broad spectrum of mosquito species, especially Aedes and Culex genus, to animals (domestic and wild ruminants and camels) and humans. Rift Valley fever is endemic in sub-Saharan Africa and in the Arabian Peninsula, with periodic epidemics characterised by 5-15 years of inter-epizootic periods. In the last two decades, RVF was notified in new African regions (e.g. Sahel), RVF epidemics occurred more frequently and low-level enzootic virus circulation has been demonstrated in livestock in various areas. Recent outbreaks in a French overseas department and some seropositive cases detected in Turkey, Tunisia and Libya raised the attention of the EU for a possible incursion into neighbouring countries. The movement of live animals is the most important pathway for RVF spread from the African endemic areas to North Africa and the Middle East. The movement of infected animals and infected vectors when shipped by flights, containers or road transport is considered as other plausible pathways of introduction into Europe. The overall risk of introduction of RVF into EU through the movement of infected animals is very low in all the EU regions and in all MSs (less than one epidemic every 500 years), given the strict EU animal import policy. The same level of risk of introduction in all the EU regions was estimated also considering the movement of infected vectors, with the highest level for Belgium, Greece, Malta, the Netherlands (one epidemic every 228-700 years), mainly linked to the number of connections by air and sea transports with African RVF infected countries. Although the EU territory does not seem to be directly exposed to an imminent risk of RVFV introduction, the risk of further spread into countries neighbouring the EU and the risks of possible introduction of infected vectors, suggest that EU authorities need to strengthen their surveillance and response capacities, as well as the collaboration with North African and Middle Eastern countries.
Collapse
|
7
|
Rissmann M, Stoek F, Pickin MJ, Groschup MH. Mechanisms of inter-epidemic maintenance of Rift Valley fever phlebovirus. Antiviral Res 2019; 174:104692. [PMID: 31870761 DOI: 10.1016/j.antiviral.2019.104692] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/26/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
Rift Valley fever phlebovirus (RVFV) is an arthropod-borne virus that has caused substantial epidemics throughout Africa and in the Arabian Peninsula. The virus can cause severe disease in livestock and humans and therefore the control and prevention of viral outbreaks is of utmost importance. The epidemiology of RVFV has some particular characteristics. Unexpected and significant epidemics have been observed in spatially and temporally divergent patterns across the African continent. Sudden epidemics in previously unaffected areas are followed by periods of long-term apparent absence of virus and sudden, unpredictable reoccurrence in disparate regions. Therefore, the elucidation of underlying mechanisms of viral maintenance is one of the largest gaps in the knowledge of RVFV ecology. It remains unknown whether the virus needs to be reintroduced before RVF outbreaks can occur, or if unperceived viral circulation in local vertebrates or mosquitoes is sufficient for maintenance of the virus. To gain insight into these knowledge gaps, we here review existing data that describe potential mechanisms of RVFV maintenance, as well as molecular and serological studies in endemic and non-endemic areas that provide evidence of an inter- or pre-epidemic virus presence. Basic and country-specific mechanisms of RVFV introduction into non-endemic countries are summarized and an overview of studies using mathematical modeling of RVFV persistence is given.
Collapse
Affiliation(s)
- Melanie Rissmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Suedufer 10, 17489, Greifswald-Insel Riems, Germany
| | - Franziska Stoek
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Suedufer 10, 17489, Greifswald-Insel Riems, Germany
| | - Matthew J Pickin
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Suedufer 10, 17489, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Suedufer 10, 17489, Greifswald-Insel Riems, Germany.
| |
Collapse
|