1
|
Dos Santos TCF, Silva EN, Frezarim GB, Salatta BM, Baldi F, Fonseca LFS, Albuquerque LGD, Muniz MMM, Silva DBDS. Identification of cis-sQTL demonstrates genetic associations and functional implications of inflammatory processes in Nelore cattle muscle tissue. Mamm Genome 2025; 36:106-117. [PMID: 39825903 DOI: 10.1007/s00335-024-10100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/22/2024] [Indexed: 01/20/2025]
Abstract
This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package. A permutation analysis then assessed the significance of the best SNPs for each spliced transcript. Functional enrichment analysis was performed on the sGenes to investigate their roles in the immune system. In total, 3,187 variants were linked to 3,202 spliced transcripts, with 83 sGenes involved in immune system processes. Of these, 31 sGenes were enriched for five transcription factors. Most cis-sQTL effects were found in intronic regions, with 27 sQTL variants associated with disease susceptibility and resistance in cattle. Key sGenes identified, such as GSDMA, NLRP6, CASP6, GZMA, CASP4, CASP1, TREM2, NLRP1, and NAIP, were related to inflammasome formation and pyroptosis. Additionally, genes like PIDD1, OPTN, NFKBIB, STAT1, TNIP3, and TREM2 were involved in regulating the NF-kB pathway. These findings lay the groundwork for breeding disease-resistant cattle and enhance our understanding of genetic mechanisms in immune responses.
Collapse
Affiliation(s)
- Thaís Cristina Ferreira Dos Santos
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
- Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brasil.
| | - Evandro Neves Silva
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil
- Universidade Federal de Alfenas (UNIFAL), Alfenas, MG, Brasil
| | | | - Bruna Maria Salatta
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
| | - Fernando Baldi
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
| | | | - Lucia Galvão De Albuquerque
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, DF, Brasil
| | - Maria Malane Magalhães Muniz
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
- University of Guelph, UOGELPH, Guelph, Canada
| | - Danielly Beraldo Dos Santos Silva
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil.
| |
Collapse
|
2
|
Ki MS, Shin JH, Sung MD, Chang S, Leem AY, Lee SH, Park MS, Kim YS, Chung KS. Association Between Plasma Granzyme B Levels, Organ Failure, and 28-Day Mortality Prediction in Patients with Sepsis. J Clin Med 2025; 14:1461. [PMID: 40094854 PMCID: PMC11900419 DOI: 10.3390/jcm14051461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Sepsis is basically an inflammatory disease that involves the host's immune response. Granzyme B, a cytotoxic protease, has garnered attention for its involvement in modulating immune responses. This study aimed to elucidate the clinical implications of granzyme B in critically ill patients with sepsis, focusing on plasma granzyme B levels as a potential prognostic marker. Methods: We conducted a retrospective analysis of sequentially collected blood samples from 57 sepsis patients admitted to the medical intensive care unit at Severance Hospital, a tertiary hospital in Seoul, South Korea. Clinical and laboratory data were comparatively analyzed between 28-day survivors and nonsurvivors. Results: The number of patients in the survivor and nonsurvivor groups was 32 (56.1%) and 25 (43.9%), respectively. Compared to survivors, nonsurvivors had higher APACHE II (23.5 vs. 34, p = 0.007) and SOFA (10 vs. 15, p = 0.001) scores, as well as increased levels of serum lactate (1.8 vs. 9.2 mmol/L, p < 0.001) and plasma granzyme B (28.2 vs. 71 pg/mL, p < 0.001). Granzyme B exhibited a robust area under the receiving operating characteristic (AUROC) for predicting 28-day mortality (AUROC = 0.794), comparable to lactate (0.804), SOFA (0.764), and APACHE II (0.709). The combined index of lactate and granzyme B demonstrated the highest AUROC (0.838) among all investigated predictors. Significant positive correlations were observed between log granzyme B and various inflammatory cytokines, including log IFN-γ (r = 0.780), IL-4 (r = 0.540), IL-10 (r = 0.534), and IL-6 (r = 0.520). Conclusions: Plasma granzyme B demonstrated fair short-term mortality prediction among patients admitted to the ICU, suggesting its potential utility for risk stratification and managing patients with sepsis.
Collapse
Affiliation(s)
- Min Seo Ki
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
- Division of Pulmonology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea
| | - Ju Hye Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Min Dong Sung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Shihwan Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Ah Young Leem
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Su Hwan Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Young Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Kyung Soo Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| |
Collapse
|
3
|
Valério-Bolas A, Meunier M, Rodrigues A, Palma-Marques J, Ferreira R, Cardoso I, Lobo L, Monteiro M, Nunes T, Armada A, Antunes WT, Alexandre-Pires G, da Fonseca IP, Santos-Gomes G. Unveiling the Interplay Between Dendritic Cells and Natural Killer Cells as Key Players in Leishmania Infection. J Immunol Res 2025; 2025:3176927. [PMID: 39963187 PMCID: PMC11832263 DOI: 10.1155/jimr/3176927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025] Open
Abstract
Leishmaniasis is a group of parasitic diseases whose etiological agent is the protozoa Leishmania. These diseases afflict impoverished populations in tropical and subtropical regions and affect wild and domestic animals. Canine leishmaniasis is a global disease mostly caused by L. infantum. Dogs are recognized as a good reservoir since harbor the infection long before developing the disease, facilitating parasite transmission. Furthermore, there is growing evidence that dogs may also be the reservoir of the American Leishmania spp. as L. amazonensis. The innate immune response is the first defense line against pathogens, which includes natural killer (NK) and dendritic cells (DCs). By recognizing and ultimately destroying infected cells, and by secreting immune mediators that favor inflammatory microenvironments, NK cells take the lead in the infectious process. When interacting with Leishmania parasites, DCs become activated and play a key role in driving the host immune response. While activated DCs can modulate NK cell activity, Leishmania parasites can directly activate NK cells by interacting with innate immune receptors. Once activated, NK cells can engage in a bidirectional interplay with DCs. However, the complexity of these interactions during Leishmania infection makes it challenging to fully understand the underlying processes. To further explore this, the present study investigated the dynamic interplay established between monocyte-derived DCs (moDCs) and putative NK (pNK) cells of dogs during Leishmania infection. Findings indicate that the crosstalk between moDCs exposed to L. infantum or L. amazonensis and pNK cells enhances chemokine upregulation, potentially attracting other leukocytes to the site of infection. pNK cells activated by L. infantum infected DCs upregulate IL-10, which can lead to a regulatory immune response while moDCs exposed to L. amazonensis induced pNK cells to overexpress IFN-γ and IL-13, favoring a mix of pro- and anti-inflammatory response. In addition, parasite-derived extracellular vesicles (EVs) can modulate the host immune response by stimulating the upregulation of anti-inflammatory cytokines and perforin release, which may impact infection outcomes. Thus, Leishmania and parasitic EVs can influence the bidirectional interplay between canine NK cells and DCs.
Collapse
Affiliation(s)
- Ana Valério-Bolas
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| | - Mafalda Meunier
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| | - Armanda Rodrigues
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| | - Joana Palma-Marques
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| | - Rui Ferreira
- BSA, Banco de Sangue Animal, Porto 4100-462, Portugal
| | - Inês Cardoso
- BSA, Banco de Sangue Animal, Porto 4100-462, Portugal
| | - Lis Lobo
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| | - Marta Monteiro
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health, CIISA, University of Lisbon, Av. Universidade Técnica, Lisbon 1300-477, Portugal
| | - Telmo Nunes
- Microscopy Center, Faculty of Sciences of the University of Lisbon-FCUL—BioISI Ce3CE, Lisboa, Portugal
| | - Ana Armada
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| | - Wilson T. Antunes
- Instituto Universitário Militar (IUM), Centro de Investigação, Desenvolvimento e Inovação da Academia Militar (CINAMIL), Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Lisboa 1849-012, Portugal
| | - Graça Alexandre-Pires
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health, CIISA, University of Lisbon, Av. Universidade Técnica, Lisbon 1300-477, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health, CIISA, University of Lisbon, Av. Universidade Técnica, Lisbon 1300-477, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| |
Collapse
|
4
|
Fraser DD, Roy S, Kuruc M, Quintero M, Van Nynatten LR, Cepinskas G, Zheng H, Soherwardy A, Roy D. Functional mass spectrometry indicates anti-protease and complement activity increase with COVID-19 severity. Exp Biol Med (Maywood) 2025; 250:10308. [PMID: 39949890 PMCID: PMC11813650 DOI: 10.3389/ebm.2025.10308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Investigations on some innate immunity proteins can yield misleading information, as investigators often rely on static measurements and assume a direct correlation to function. As protein function is often not directly proportional to protein abundance, and mechanistic pathways are interconnected and under constant feedback regulatory control, functional analysis is required. In this study, we used functional mass spectrometry to measure anti-protease and complement activity in plasma obtained from coronavirus disease 2019 (COVID-19) patients. Our data suggests that within 48 h of hospital admission, COVID-19 patients undergo a protease storm with significantly elevated neutrophil elastase (p < 0.001) and lymphocyte granzyme B (p < 0.01), while, anti-protease activity is significantly increased, including alpha-1 antitrypsin (AAT; p < 0.001) and alpha-1-antichymotrypsin (ACT; p < 0.001). Concurrently, the ratio of C3a to C3beta activity significantly decreased with increasing COVID-19 severity, suggesting more complement activation (Mild COVID-19 p < 0.05; Severe COVID-19 p < 0.001). Activity levels of AAT, ACT and C3a/C3beta remained unchanged over 10 hospital days. Our data suggests that COVID-19 is associated with both a protease storm and complement activation, with the former somewhat balanced with increased anti-protease activity. Evaluation of the AAT/ACT ratio and C3a/C3beta ratio indicated that COVID-19 severity is associated with both neutrophil elastase neutralization and complement activation.
Collapse
Affiliation(s)
- Douglas D. Fraser
- London Health Sciences Centre Research Institute, London, ON, Canada
- Pediatrics, Western University, London, ON, Canada
| | - Swapan Roy
- Biotech Support Group LLC, Monmouth Junction, NJ, United States
| | - Matt Kuruc
- Biotech Support Group LLC, Monmouth Junction, NJ, United States
| | | | | | - Gediminas Cepinskas
- London Health Sciences Centre Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
| | - Haiyan Zheng
- Rutgers Center for Integrative Proteomics, Rutgers University, Piscataway, NJ, United States
| | - Amenah Soherwardy
- Rutgers Center for Integrative Proteomics, Rutgers University, Piscataway, NJ, United States
| | - Devjit Roy
- Nathan Littauer Hospital, Gloversville, NY, United States
| |
Collapse
|
5
|
Mohamedali KA, Aguirre B, Lu CH, Chandla A, Kejriwal N, Liu L, Chan AM, Cheung LH, Kok S, Duarte S, Alvarez de Cienfuegos A, Casero D, Rosenblum MG, Wadehra M. GrB-Fc-KS49, an anti-EMP2 granzyme B fusion protein therapeutic alters immune cell infiltration and suppresses breast cancer growth. J Immunother Cancer 2024; 12:e008891. [PMID: 39794935 PMCID: PMC11667298 DOI: 10.1136/jitc-2024-008891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/25/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Granzyme B (GrB) is a key effector molecule, delivered by cytotoxic T lymphocytes and natural killer cells during immune surveillance to induce cell death. Fusion proteins and immunoconjugates represent an innovative therapeutic approach to specifically deliver a deadly payload to target cells. Epithelial membrane protein-2 (EMP2) is highly expressed in invasive breast cancer (BC), including triple-negative BC (TNBC), and represents an attractive therapeutic target. METHODS We designed a novel fusion protein (GrB-Fc-KS49) composed of an active GrB fused to an anti-EMP2 single-chain antibody tethered through the immunoglobulin G heavy chain (Fc) domain. We assessed the construct's GrB enzymatic activity, anti-EMP2 binding affinity, and cytotoxicity against a panel of BC cells. The construct's pharmacokinetics (PK), toxicity profile, and in vivo efficacy were also evaluated. RESULTS GrB-Fc-KS49 exhibited comparable GrB enzymatic activity to commercial GrB, as well as high affinity to an EMP2 peptide, with the dissociation constant in the picomolar range. The fusion protein rapidly internalized into EMP2+cancer cells and showed in vitro cytotoxicity to cell lines expressing surface EMP2, with half-maximal cytotoxicity (IC50) values below 100 nM for most positive lines. Ex vivo stability at 37°C indicated a half-life exceeding 96 hours while in vivo PK indicated a biexponential plasma clearance, with a moderate initial clearance (t1/2α=18.4 hours) and a much slower terminal clearance rate (t1/2β=73.1 hours). No toxicity was measured in a Chem16 panel between the control and the GrB-Fc-KS49. In vivo, the GrB-Fc-KS49 showed efficacy against a TNBC syngeneic (4T1/FLuc) mouse model, reducing tumor volume and cell proliferation and increasing cell death compared with controls. Treatment using an EMT6 mouse model confirmed these results. In addition to a significant impact on cell proliferation, GrB-Fc-KS49 treatment also resulted in a dramatic increase of tumor-infiltrating CD45+ cells and redistribution of tumor-associated macrophages. Transcriptomic analysis of tumors post-treatment confirmed the remodeling of the immune tumor microenvironment by the GrB-Fc-KS49 immunotoxin. CONCLUSIONS GrB-Fc-KS49 showed high specificity and cytotoxicity towards EMP2-positive cells. In vivo, it reduced tumor burden and increased the recruitment of immune cells into the tumor, suggesting that GrB-Fc-KS49 is a promising therapeutic candidate against BC.
Collapse
Affiliation(s)
- Khalid A Mohamedali
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Brian Aguirre
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Cheng-Hsiang Lu
- Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anubhav Chandla
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Nidhi Kejriwal
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Lucia Liu
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ann M Chan
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Lawrence H Cheung
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - SuYin Kok
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Sergio Duarte
- Department of Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Ana Alvarez de Cienfuegos
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - David Casero
- Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael G Rosenblum
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Zhang C, Huang R, Ren L, Martincuks A, Song J, Kortylewski M, Swiderski P, Forman SJ, Yu H. Local CpG- Stat3 siRNA treatment improves antitumor effects of immune checkpoint inhibitors. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102357. [PMID: 39618825 PMCID: PMC11605413 DOI: 10.1016/j.omtn.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/04/2024] [Indexed: 12/11/2024]
Abstract
Immune checkpoint blockade (ICB) therapy has significantly benefited patients with several types of solid tumors and some lymphomas. However, many of the treated patients do not have a durable clinical response. It has been demonstrated that rescuing exhausted CD8+ T cells is required for ICB-mediated antitumor effects. We recently developed an immunostimulatory strategy based on silencing STAT3 while stimulating immune responses by CpG, a ligand for Toll-like receptor 9 (TLR9). The CpG-small interfering RNA (siRNA) conjugates efficiently enter immune cells, silencing STAT3 and activating innate immunity to enhance T cell-mediated antitumor immune responses. In the present study, we demonstrate that blocking STAT3 through locally delivered CpG-Stat3 siRNA enhances the efficacies of the systemic PD-1 and CTLA4 blockade against mouse A20 B cell lymphoma. In addition, locally delivered CpG-Stat3 siRNA combined with systemic administration of PD-1 antibody significantly augmented both local and systemic antitumor effects against mouse B16 melanoma tumors, with enhanced tumor-associated T cell activation. Furthermore, locally delivered CpG-Stat3 siRNA enhanced CD8+ T cell tumor infiltration and antitumor activity in a xenograft tumor model. Overall, our studies in both B cell lymphoma and melanoma mouse models demonstrate the potential of combinatory immunotherapy with CpG-Stat3 siRNA and checkpoint inhibitors as a therapeutic strategy for B cell lymphoma and melanoma.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Rui Huang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Lyuzhi Ren
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - JiEun Song
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Piotr Swiderski
- DNA/RNA Synthesis Core Facility, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Stephen J. Forman
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Quinn JP, Fisher K, Corbett N, Warwood S, Knight D, Kellett KA, Hooper NM. Proteolysis of tau by granzyme A in tauopathies generates fragments that are aggregation prone. Biochem J 2024; 481:1255-1274. [PMID: 39248243 PMCID: PMC11555691 DOI: 10.1042/bcj20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Tauopathies, including Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy, are characterised by the aggregation of tau into insoluble neurofibrillary tangles in the brain. Tau is subject to a range of post-translational modifications, including proteolysis, that can promote its aggregation. Neuroinflammation is a hallmark of tauopathies and evidence is growing for a role of CD8+ T cells in disease pathogenesis. CD8+ T cells release granzyme proteases but what role these proteases play in neuronal dysfunction is currently lacking. Here, we identified that granzyme A (GzmA) is present in brain tissue and proteolytically cleaves tau. Mass spectrometric analysis of tau fragments produced on digestion of tau with GzmA identified three cleavage sites at R194-S195, R209-S210 and K240-S241. Mutation of the critical Arg or Lys residues at the cleavage sites in tau or chemical inhibition of GzmA blocked the proteolysis of tau by GzmA. Development of a semi-targeted mass spectrometry approach identified peptides in tauopathy brain tissue corresponding to proteolysis by GzmA at R209-S210 and K240-S241 in tau. When expressed in cells the GzmA-cleaved C-terminal fragments of tau were highly phosphorylated and aggregated upon incubation of the cells with tauopathy brain seed. The C-terminal fragment tau195-441 was able to transfer between cells and promote aggregation of tau in acceptor cells, indicating the propensity for such tau fragments to propagate between cells. Collectively, these results raise the possibility that GzmA, released from infiltrating cytotoxic CD8+ T cells, proteolytically cleaves tau into fragments that may contribute to its pathological properties in tauopathies.
Collapse
Affiliation(s)
- James P. Quinn
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Kate Fisher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nicola Corbett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Stacey Warwood
- Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - David Knight
- Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Katherine A.B. Kellett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, U.K
| |
Collapse
|
8
|
de Matos Rodrigues J, Lokhande L, Olsson LM, Hassan M, Johansson A, Janská A, Kumar D, Schmidt L, Nikkarinen A, Hollander P, Glimelius I, Porwit A, Gerdtsson AS, Jerkeman M, Ek S. CD163+ macrophages in mantle cell lymphoma induce activation of prosurvival pathways and immune suppression. Blood Adv 2024; 8:4370-4385. [PMID: 38959399 PMCID: PMC11375268 DOI: 10.1182/bloodadvances.2023012039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is dependent on a supportive tumor immune microenvironment (TIME) in which infiltration of CD163+ macrophages has a negative prognostic impact. This study explores how abundance and spatial localization of CD163+ cells are associated with the biology of MCL, using spatial multiomic investigations of tumor and infiltrating CD163+ and CD3+ cells. A total of 63 proteins were measured using GeoMx digital spatial profiling in tissue microarrays from 100 diagnostic MCL tissues. Regions of interest were selected in tumor-rich and tumor-sparse tissue regions. Molecular profiling of CD163+ macrophages, CD20+ MCL cells, and CD3+ T-cells was performed. To validate protein profiles, 1811 messenger RNAs were measured in CD20+ cells and 2 subsets of T cells. Image analysis was used to extract the phenotype and position of each targeted cell, thereby allowing the exploration of cell frequencies and cellular neighborhoods. Proteomic investigations revealed that CD163+ cells modulate their immune profile depending on their localization and that the immune inhibitory molecules, V-domain immunoglobulin suppressor of T-cell activation and B7 homolog 3, have higher expression in tumor-sparse than in tumor-rich tissue regions and that targeting should be explored. We showed that MCL tissues with more abundant infiltration of CD163+ cells have a higher proteomic and transcriptional expression of key components of the MAPK pathway. Thus, the MAPK pathway may be a feasible therapeutic target in patients with MCL with CD163+ cell infiltration. We further showed the independent and combined prognostic values of CD11c and CD163 beyond established risk factors.
Collapse
Affiliation(s)
| | | | - Lina M. Olsson
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - May Hassan
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | - Anna Janská
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | - Lina Schmidt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Anna Nikkarinen
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | - Peter Hollander
- Department of Immunology, Genetics and Pathology, Clinical and Experimental Pathology, Uppsala University, Uppsala, Sweden
| | - Ingrid Glimelius
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | - Anna Porwit
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Mats Jerkeman
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Feng L, Yuan J, Li L, Tang J. Identification of Pyroptosis-Related Molecular Subtypes and Diagnostic Model development in Major Depressive Disorder. Mol Biotechnol 2024:10.1007/s12033-024-01252-0. [PMID: 39177862 DOI: 10.1007/s12033-024-01252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychological disorder associated with inflammation, with complex pathological mechanisms. Pyroptosis has been suggested to contribute to inflammation in central nervous system diseases. Little research, however, has examined what role pyroptosis played in MDD. In the present study, the differential expression pyroptosis-related genes (DE-PRGs) in MDD were identified from the GEO database (GSE98793 and GSE19738). Then, consensus clustering analysis was used to evaluate differences in MDD molecular subtypes characteristics based on PRGs. The characteristic diagnostic biomarkers for MDD were identified by Weighted Correlation Network Analysis (WGCNA) and multiple machine learning algorithms. Three intersection genes (GZMA, AKR1C3, and CD52) were obtained, which are expected to become potential biomarkers for MDD with excellent reliability and accuracy. Subsequently, the immune infiltration characteristics result indicated that the development of MDD is mediated by immune-related function, where three DE-PRGs were strongly related to the immune infiltration landscape of MDD. The biological experiments in vitro further proved that three unique PRGs are emerging as important players in MDD diagnosis. Our research aimed to provide novel ideas and biomarkers targeting MDD.
Collapse
Affiliation(s)
- Lin Feng
- Harbin Sport University, Harbin, Heilongjiang, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiabo Yuan
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Li Li
- Harbin Sport University, Harbin, Heilongjiang, China.
| | - Junze Tang
- Harbin Sport University, Harbin, Heilongjiang, China.
| |
Collapse
|
10
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
11
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
12
|
Silveira-Freitas JEP, Campagnolo ML, dos Santos Cortez M, de Melo FF, Zarpelon-Schutz AC, Teixeira KN. Long chikungunya? An overview to immunopathology of persistent arthralgia. World J Virol 2024; 13:89985. [PMID: 38984075 PMCID: PMC11229846 DOI: 10.5501/wjv.v13.i2.89985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 06/24/2024] Open
Abstract
Chikungunya fever (CF) is caused by an arbovirus whose manifestations are extremely diverse, and it has evolved with significant severity in recent years. The clinical signs triggered by the Chikungunya virus are similar to those of other arboviruses. Generally, fever starts abruptly and reaches high levels, followed by severe polyarthralgia and myalgia, as well as an erythematous or petechial maculopapular rash, varying in severity and extent. Around 40% to 60% of affected individuals report persistent arthralgia, which can last from months to years. The symptoms of CF mainly represent the tissue tropism of the virus rather than the immunopathogenesis triggered by the host's immune system. The main mechanisms associated with arthralgia have been linked to an increase in T helper type 17 cells and a consequent increase in receptor activator of nuclear factor kappa-Β ligand and bone resorption. This review suggests that persistent arthralgia results from the presence of viral antigens post-infection and the constant activation of signaling lymphocytic activation molecule family member 7 in synovial macrophages, leading to local infiltration of CD4+ T cells, which sustains the inflammatory process in the joints through the secretion of pro-inflammatory cytokines. The term "long chikungunya" was used in this review to refer to persistent arthralgia since, due to its manifestation over long periods after the end of the viral infection, this clinical condition seems to be characterized more as a sequel than as a symptom, given that there is no active infection involved.
Collapse
Affiliation(s)
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Ana Carla Zarpelon-Schutz
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa de Pós-graduação em Biotecnologia, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| |
Collapse
|
13
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
14
|
Ben-Eltriki M, Ahmadi AR, Nakao Y, Golla K, Lakschevitz F, Häkkinen L, Granville DJ, Kim H. Granzyme B promotes matrix metalloproteinase-1 (MMP-1) release from gingival fibroblasts in a PAR1- and Erk1/2-dependent manner: A novel role in periodontal inflammation. J Periodontal Res 2024; 59:94-103. [PMID: 37873693 DOI: 10.1111/jre.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE To gain insights into how proteases signal to connective tissues cells in the periodontium. BACKGROUND The connective tissue degradation observed in periodontitis is largely due to matrix metalloproteinase (MMP) release by gingival fibroblasts. Granzyme B (GzmB) is a serine protease whose role in periodontitis is undefined. METHODS Human gingival crevicular fluid (GCF) samples were obtained from sites with periodontal disease and healthy control sites. GzmB was quantified in the GCF ([GzmB]GCF ) by ELISA. Gingival fibroblasts (GF) were cultured in the presence or absence of recombinant GzmB. Culture supernatants were analyzed by ELISA to quantify GzmB-induced release of interstitial collagenase (MMP-1). In some experiments, cells were pre-treated with the inhibitor PD98059 to block MEK/ERK signaling. The protease-activated receptor-1 (PAR-1) was blocked with ATAP-2 neutralizing antibody prior to GzmB stimulation. Systemic MMP-1 levels were measured in plasma from wild-type (WT) and granzyme-B-knockout (GzmB-/- ) mice. RESULTS The [GzmB]GCF in human samples was ~4-5 fold higher at sites of periodontal disease (gingivitis/periodontitis) compared to healthy control sites, suggesting an association between GzmB and localized matrix degradation. GzmB induced a ~4-5-fold increase in MMP-1 secretion by cultured fibroblasts. GzmB induced phosphorylation of Erk1/2, which was abrogated by PD98059. GzmB-induced upregulation of MMP-1 secretion was also reduced by PD98059. Blockade of PAR-1 function by ATAP-2 abrogated the increase in MMP-1 secretion by GF. Circulating MMP-1 was similar in WT and GzmB-/- mice, suggesting that GzmB's effects on MMP-1 release are not reflected systemically. CONCLUSION These data point to a novel GzmB-driven signaling pathway in fibroblasts in which MMP-1 secretion is upregulated in a PAR1- and Erk1/2-dependent manner.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amir Reza Ahmadi
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuya Nakao
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kalyan Golla
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Flavia Lakschevitz
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Kumagai J, Kiuchi M, Kokubo K, Yagyu H, Nemoto M, Tsuji K, Nagahata K, Sasaki A, Hishiya T, Onoue M, Shinmi R, Sonobe Y, Iinuma T, Yonekura S, Shinga J, Hanazawa T, Koseki H, Nakayama T, Yokote K, Hirahara K. The USP7-STAT3-granzyme-Par-1 axis regulates allergic inflammation by promoting differentiation of IL-5-producing Th2 cells. Proc Natl Acad Sci U S A 2023; 120:e2302903120. [PMID: 38015852 PMCID: PMC10710068 DOI: 10.1073/pnas.2302903120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/11/2023] [Indexed: 11/30/2023] Open
Abstract
Uncontrolled type 2 immunity by type 2 helper T (Th2) cells causes intractable allergic diseases; however, whether the interaction of CD4+ T cells shapes the pathophysiology of allergic diseases remains unclear. We identified a subset of Th2 cells that produced the serine proteases granzyme A and B early in differentiation. Granzymes cleave protease-activated receptor (Par)-1 and induce phosphorylation of p38 mitogen-activated protein kinase (MAPK), resulting in the enhanced production of IL-5 and IL-13 in both mouse and human Th2 cells. Ubiquitin-specific protease 7 (USP7) regulates IL-4-induced phosphorylation of STAT3, resulting in granzyme production during Th2 cell differentiation. Genetic deletion of Usp7 or Gzma and pharmacological blockade of granzyme B ameliorated allergic airway inflammation. Furthermore, PAR-1+ and granzyme+ Th2 cells were colocalized in nasal polyps from patients with eosinophilic chronic rhinosinusitis. Thus, the USP7-STAT3-granzymes-Par-1 pathway is a potential therapeutic target for intractable allergic diseases.
Collapse
Grants
- JP19H05650 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H03685 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 17K08876 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18K07164 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K16683 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H05121 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K23858 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K15485 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05120 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20ek0410060 Japan Agency for Medical Research and Development (AMED)
- JP22ek0410092 Japan Agency for Medical Research and Development (AMED)
- JP20gm1210003 Japan Agency for Medical Research and Development (AMED)
- JPMJFR200R JST FORREST program
Collapse
Affiliation(s)
- Jin Kumagai
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Hiroyuki Yagyu
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Masahiro Nemoto
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Kaori Tsuji
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Ken Nagahata
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
- Department of Rheumatology, Sapporo Medical University, Sapporo060-8556, Japan
| | - Atsushi Sasaki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Takahisa Hishiya
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Miki Onoue
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Rie Shinmi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Yuri Sonobe
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Tomohisa Iinuma
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Syuji Yonekura
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Jun Shinga
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa230-0045, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Haruhiko Koseki
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba260-8670, Japan
| |
Collapse
|
16
|
Quinn KM, Vicencio DM, La Gruta NL. The paradox of aging: Aging-related shifts in T cell function and metabolism. Semin Immunol 2023; 70:101834. [PMID: 37659169 DOI: 10.1016/j.smim.2023.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniela M Vicencio
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
17
|
Zhang C, Huang R, Ren L, Song J, Kortylewski M, Swiderski P, Forman S, Yu H. Local CpG- Stat3 siRNA treatment improves antitumor effects of immune checkpoint inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553571. [PMID: 37645787 PMCID: PMC10462083 DOI: 10.1101/2023.08.17.553571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has significantly benefited patients with several types of solid tumors and some lymphomas. However, many of the treated patients do not have durable clinical response. It has been demonstrated that rescuing exhausted CD8 + T cells is required for ICB-mediated antitumor effects. We recently developed an immunostimulatory strategy based on silencing STAT3 while stimulating immune responses by CpG, ligand for Toll-like receptor 9 (TLR9). The CpG-small interfering RNA (siRNA) conjugates efficiently enter immune cells, silencing STAT3 and activating innate immunity to enhance T-cell mediated antitumor immune responses. In the present study, we demonstrate that blocking STAT3 through locally delivered CpG- Stat3 siRNA enhances the efficacies of the systemic PD-1 and CTLA4 blockade against mouse A20 B cell lymphoma. In addition, locally delivered CpG- Stat3 siRNA combined with systemic administration of PD-1 antibody significantly augmented both local and systemic antitumor effects against mouse B16 melanoma tumors, with enhanced tumor-associated T cell activation. Overall, our studies in both B cell lymphoma and melanoma mouse models demonstrate the potential of combinatory immunotherapy with CpG- Stat3 siRNA and checkpoint inhibitors as a therapeutic strategy for B cell lymphoma and melanoma.
Collapse
|
18
|
Parthasarathy S, Shen Z, Carrillo-Salinas FJ, Iyer V, Vogell A, Illanes D, Wira CR, Rodriguez-Garcia M. Aging modifies endometrial dendritic cell function and unconventional double negative T cells in the human genital mucosa. Immun Ageing 2023; 20:34. [PMID: 37452337 PMCID: PMC10347869 DOI: 10.1186/s12979-023-00360-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Immune function in the genital mucosa balances reproduction with protection against pathogens. As women age, genital infections, and gynecological cancer risk increase, however, the mechanisms that regulate cell-mediated immune protection in the female genital tract and how they change with aging remain poorly understood. Unconventional double negative (DN) T cells (TCRαβ + CD4-CD8-) are thought to play important roles in reproduction in mice but have yet to be characterized in the human female genital tract. Using genital tissues from women (27-77 years old), here we investigated the impact of aging on the induction, distribution, and function of DN T cells throughout the female genital tract. RESULTS We discovered a novel site-specific regulation of dendritic cells (DCs) and unconventional DN T cells in the genital tract that changes with age. Human genital DCs, particularly CD1a + DCs, induced proliferation of DN T cells in a TFGβ dependent manner. Importantly, induction of DN T cell proliferation, as well as specific changes in cytokine production, was enhanced in DCs from older women, indicating subset-specific regulation of DC function with increasing age. In human genital tissues, DN T cells represented a discrete T cell subset with distinct phenotypical and transcriptional profiles compared to CD4 + and CD8 + T cells. Single-cell RNA and oligo-tag antibody sequencing studies revealed that DN T cells represented a heterogeneous population with unique homeostatic, regulatory, cytotoxic, and antiviral functions. DN T cells showed relative to CD4 + and CD8 + T cells, enhanced expression of inhibitory checkpoint molecules and genes related to immune regulatory as well as innate-like anti-viral pathways. Flow cytometry analysis demonstrated that DN T cells express tissue residency markers and intracellular content of cytotoxic molecules. Interestingly, we demonstrate age-dependent and site-dependent redistribution and functional changes of genital DN T cells, with increased cytotoxic potential of endometrial DN T cells, but decreased cytotoxicity in the ectocervix as women age, with implications for reproductive failure and enhanced susceptibility to infections respectively. CONCLUSIONS Our deep characterization of DN T cell induction and function in the female genital tract provides novel mechanistic avenues to improve reproductive outcomes, protection against infections and gynecological cancers as women age.
Collapse
Affiliation(s)
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Vidya Iyer
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, USA
| | - Alison Vogell
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, USA
| | - Diego Illanes
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
19
|
Duong HG, Choi EJ, Hsu P, Chiang NR, Patel SA, Olvera JG, Liu YC, Lin YH, Yao P, Wong WH, Indralingam CS, Tsai MS, Boland BS, Wang W, Chang JT. Identification of CD8 + T-Cell-Immune Cell Communications in Ileal Crohn's Disease. Clin Transl Gastroenterol 2023; 14:e00576. [PMID: 36854061 PMCID: PMC10208704 DOI: 10.14309/ctg.0000000000000576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
INTRODUCTION Crohn's disease (CD) is a major subtype of inflammatory bowel disease (IBD), a spectrum of chronic intestinal disorders caused by dysregulated immune responses to gut microbiota. Although transcriptional and functional changes in a number of immune cell types have been implicated in the pathogenesis of IBD, the cellular interactions and signals that drive these changes have been less well-studied. METHODS We performed Cellular Indexing of Transcriptomes and Epitopes by sequencing on peripheral blood, colon, and ileal immune cells derived from healthy subjects and patients with CD. We applied a previously published computational approach, NicheNet, to predict immune cell types interacting with CD8 + T-cell subsets, revealing putative ligand-receptor pairs and key transcriptional changes downstream of these cell-cell communications. RESULTS As a number of recent studies have revealed a potential role for CD8 + T-cell subsets in the pathogenesis of IBD, we focused our analyses on identifying the interactions of CD8 + T-cell subsets with other immune cells in the intestinal tissue microenvironment. We identified ligands and signaling pathways that have implicated in IBD, such as interleukin-1β, supporting the validity of the approach, along with unexpected ligands, such as granzyme B, which may play previously unappreciated roles in IBD. DISCUSSION Overall, these findings suggest that future efforts focused on elucidating cell-cell communications among immune and nonimmune cell types may further our understanding of IBD pathogenesis.
Collapse
Affiliation(s)
- Han G. Duong
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Eunice J. Choi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA;
| | - Paul Hsu
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Natalie R. Chiang
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Shefali A. Patel
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Jocelyn G. Olvera
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Yi Chia Liu
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Yun Hsuan Lin
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Priscilla Yao
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - William H. Wong
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | | | - Matthew S. Tsai
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
- Department of Medicine, Jennifer Moreno Department of Veteran Affairs Medical Center, San Diego, California, USA
| | - Brigid S. Boland
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA;
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA.
| | - John T. Chang
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
- Department of Medicine, Jennifer Moreno Department of Veteran Affairs Medical Center, San Diego, California, USA
| |
Collapse
|
20
|
Kolossváry M, deFilippi C, McCallum S, Fitch KV, Diggs MR, Fulda ES, Ribaudo HJ, Fichtenbaum CJ, Aberg JA, Malvestutto CD, Currier JS, Casado JL, Gutiérrez F, Sereti I, Douglas PS, Zanni MV, Grinspoon SK. Identification of pre-infection markers and differential plasma protein expression following SARS-CoV-2 infection in people living with HIV. EBioMedicine 2023; 90:104538. [PMID: 36966617 PMCID: PMC10037041 DOI: 10.1016/j.ebiom.2023.104538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Mechanisms contributing to COVID-19 severity in people with HIV (PWH) are poorly understood. We evaluated temporal changes in plasma proteins following SARS-CoV-2 infection and identified pre-infection proteomic markers associated with future COVID-19. METHODS We leveraged data from the global Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE). Antiretroviral therapy (ART)-treated PWH with clinical, antibody-confirmed COVID-19 as of September 2021 were matched on geographic region, age, and sample timing to antibody negative controls. For cases and controls, pre COVID-19 pandemic specimens were obtained prior to January 2020 to assess change over time and relationship to COVID-19 severity, using false-discovery adjusted mixed effects modeling. FINDINGS We compared 257 unique plasma proteins in 94 COVID-19 antibody-confirmed clinical cases and 113 matched antibody-negative controls, excluding COVID-19 vaccinated participants (age 50 years, 73% male). 40% of cases were characterized as mild; 60% moderate to severe. Median time from COVID-19 infection to follow-up sampling was 4 months. Temporal patterns of protein changes differed based on COVID-19 disease severity. Among those experiencing moderate to severe disease vs. controls, NOS3 increased whereas ANG, CASP-8, CD5, GZMH, GZMB, ITGB2, and KLRD1 decreased. Higher pre-pandemic levels of granzymes A, B and H (GZMA, GZMB and GZMH) were associated with the future development of moderate-severe COVID-19 and were related to immune function. INTERPRETATION We identified temporal changes in proteins closely linked to inflammatory, immune, and fibrotic pathways which may relate to COVID-19-related morbidity among ART-treated PWH. Further we identified key granzyme proteins associated with future COVID-19 in PWH. FUNDING This study is supported through NIH grants U01HL123336, U01HL123336-06 and 3U01HL12336-06S3, to the clinical coordinating center, and U01HL123339, to the data coordinating center as well as funding from Kowa Pharmaceuticals, Gilead Sciences, and a grant award through ViiV Healthcare. The NIAID supported this study through grants UM1 AI068636, which supports the AIDS Clinical Trials Group (ACTG) Leadership and Operations Center, and UM1 AI106701, which supports the ACTG Laboratory Center. This work was also supported by NIAID through grant K24AI157882 to MZ. The work of IS was supported by the intramural research program of NIAID/NIH.
Collapse
Affiliation(s)
- Márton Kolossváry
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA; Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chris deFilippi
- Inova Heart and Vascular Institute, Falls Church, VA, 22042, USA
| | - Sara McCallum
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kathleen V Fitch
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Marissa R Diggs
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Evelynne S Fulda
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Heather J Ribaudo
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carl J Fichtenbaum
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Judith A Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos D Malvestutto
- Division of Infectious Diseases, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Judith S Currier
- Division of Infectious Diseases, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jose L Casado
- Division of Infectious Diseases, Ramon y Cajal Health Research Institute (IRyCIS), University Hospital Ramon y Cajal, Madrid, Spain
| | - Félix Gutiérrez
- Division of Infectious Diseases, Hospital General Universitario de Elche and University Miguel Hernández, Alicante, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela S Douglas
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Markella V Zanni
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
21
|
Zhang M, Chong KK, Chen ZY, Guo H, Liu YF, Kang YY, Li YJ, Shi TT, Lai KK, He MQ, Ye K, Kahaly GJ, Shi BY, Wang Y. Rapamycin improves Graves' orbitopathy by suppressing CD4+ cytotoxic T lymphocytes. JCI Insight 2023; 8:160377. [PMID: 36580373 PMCID: PMC9977423 DOI: 10.1172/jci.insight.160377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
CD4+ cytotoxic T lymphocytes (CTLs) were recently implicated in immune-mediated inflammation and fibrosis progression of Graves' orbitopathy (GO). However, little is known about therapeutic targeting of CD4+ CTLs. Herein, we studied the effect of rapamycin, an approved mTOR complex 1 (mTORC1) inhibitor, in a GO mouse model, in vitro, and in patients with refractory GO. In the adenovirus-induced model, rapamycin significantly decreased the incidence of GO. This was accompanied by the reduction of both CD4+ CTLs and the reduction of orbital inflammation, adipogenesis, and fibrosis. CD4+ CTLs from patients with active GO showed upregulation of the mTOR pathway, while rapamycin decreased their proportions and cytotoxic function. Low-dose rapamycin treatment substantially improved diplopia and the clinical activity score in steroid-refractory patients with GO. Single-cell RNA-Seq revealed that eye motility improvement was closely related to suppression of inflammation and chemotaxis in CD4+ CTLs. In conclusion, rapamycin is a promising treatment for CD4+ CTL-mediated inflammation and fibrosis in GO.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kelvin K.L. Chong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Science, The Prince of Wales Hospital, Hong Kong, China
| | - Zi-yi Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hui Guo
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu-feng Liu
- Biobank of The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yong-yong Kang
- Genome Institute and,Center for Mathematical Medical, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang-jun Li
- Department of Ophthalmology, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Ting-ting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kenneth K.H. Lai
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong, China
| | - Ming-qian He
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kai Ye
- Genome Institute and,MOE Key Laboratory for Intelligent Networks & Network Security and,School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China.,School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China.,Faculty of Science, Leiden University, Leiden, Netherlands
| | - George J. Kahaly
- Molecular Thyroid Lab, Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Bing-yin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China.,Genome Institute and,MOE Key Laboratory for Intelligent Networks & Network Security and
| |
Collapse
|
22
|
Zheng Y, Zhao J, Shan Y, Guo S, Schrodi SJ, He D. Role of the granzyme family in rheumatoid arthritis: Current Insights and future perspectives. Front Immunol 2023; 14:1137918. [PMID: 36875082 PMCID: PMC9977805 DOI: 10.3389/fimmu.2023.1137918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation that affects synovial tissues of multiple joints. Granzymes (Gzms) are serine proteases that are released into the immune synapse between cytotoxic lymphocytes and target cells. They enter target cells with the help of perforin to induce programmed cell death in inflammatory and tumor cells. Gzms may have a connection with RA. First, increased levels of Gzms have been found in the serum (GzmB), plasma (GzmA, GzmB), synovial fluid (GzmB, GzmM), and synovial tissue (GzmK) of patients with RA. Moreover, Gzms may contribute to inflammation by degrading the extracellular matrix and promoting cytokine release. They are thought to be involved in RA pathogenesis and have the potential to be used as biomarkers for RA diagnosis, although their exact role is yet to be fully elucidated. The purpose of this review was to summarize the current knowledge regarding the possible role of the granzyme family in RA, with the aim of providing a reference for future research on the mechanisms of RA and the development of new therapies.
Collapse
Affiliation(s)
- Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J Schrodi
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
23
|
Llibre A, Smith N, Rouilly V, Musvosvi M, Nemes E, Posseme C, Mabwe S, Charbit B, Mbandi SK, Filander E, Africa H, Saint-André V, Bondet V, Bost P, Mulenga H, Bilek N, Albert ML, Scriba TJ, Duffy D. Tuberculosis alters immune-metabolic pathways resulting in perturbed IL-1 responses. Front Immunol 2022; 13:897193. [PMID: 36591308 PMCID: PMC9795069 DOI: 10.3389/fimmu.2022.897193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains a major public health problem and we lack a comprehensive understanding of how Mycobacterium tuberculosis (M. tb) infection impacts host immune responses. We compared the induced immune response to TB antigen, BCG and IL-1β stimulation between latently M. tb infected individuals (LTBI) and active TB patients. This revealed distinct responses between TB/LTBI at transcriptomic, proteomic and metabolomic levels. At baseline, we identified a novel immune-metabolic association between pregnane steroids, the PPARγ pathway and elevated plasma IL-1ra in TB. We observed dysregulated IL-1 responses after BCG stimulation in TB patients, with elevated IL-1ra responses being explained by upstream TNF differences. Additionally, distinct secretion of IL-1α/IL-1β in LTBI/TB after BCG stimulation was associated with downstream differences in granzyme mediated cleavage. Finally, IL-1β driven signalling was dramatically perturbed in TB disease but was completely restored after successful treatment. This study improves our knowledge of how immune responses are altered during TB disease, and may support the design of improved preventive and therapeutic tools, including host-directed strategies.
Collapse
Affiliation(s)
- Alba Llibre
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nikaïa Smith
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Céline Posseme
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Simbarashe Mabwe
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Elizabeth Filander
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Hadn Africa
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Violaine Saint-André
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France,Bioinformatics and Biostatistics HUB, Computational Biology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Pierre Bost
- Sorbonne Université, Complexité du vivant, Paris, France,Systems Biology Group, Computational Biology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Humphrey Mulenga
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France,Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université Paris Cité, Paris, France,*Correspondence: Darragh Duffy,
| |
Collapse
|
24
|
Matson J, Lange P, Honore PM, Chung KK. Adverse outcomes with extracorporeal adsorbent blood treatments in toxic systemic inflammation: a perspective on possible mechanisms. Ann Intensive Care 2022; 12:105. [PMCID: PMC9652582 DOI: 10.1186/s13613-022-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Extracorporeal blood purification (EBP) treatments may be used in patients with sepsis and related conditions to mitigate toxic systemic inflammation, prevent or reverse vital organ injury, and improve outcome. These treatments lack demonstrable efficacy, but are generally considered safe. However, since late 2020, four clinical studies of EBP treatment using adsorbent devices in inflammatory disease reported significantly increased patient mortality associated with the adsorbent treatments. Criticisms of study design and execution were published, but revealed no decisive flaws. None of these critiques considered possible toxic effects of the adsorbent treatments per se.
Perspective and conclusion
In adsorbent EBP treatment of systemic inflammatory disease the adsorbent media are deployed in patient blood or plasma flow for the purpose of broad spectrum, non-specific adsorptive removal of inflammatory mediators. Adsorption and sequestration of inflammatory mediators by adsorbent media is intended to reduce mediator concentrations in circulating blood and neutralize their activity. However, in the past two decades developments in both biomedical engineering and the science of cytokine molecular dynamics suggest that immobilization of inflammatory proteins on solid scaffolds or molecular carriers may stabilize protein structure and preserve or amplify protein function. It is unknown if these mechanisms are operative in EBP adsorbent treatments. If these mechanisms are operative, then the adsorbent medium could become reactive, promoting inflammatory activity which could result in negative outcomes. Considering the recent reports of harm with adsorbent treatments in diverse inflammatory conditions, caution urges investigation of these potentially harmful mechanisms in these devices. Candidate mechanisms for possible inquiry are discussed.
Collapse
|
25
|
GZMK high CD8 + T effector memory cells are associated with CD15 high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome. Nat Commun 2022; 13:6752. [PMID: 36347862 PMCID: PMC9643357 DOI: 10.1038/s41467-022-34467-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
CD8+ T cells are a major prognostic determinant in solid tumors, including colorectal cancer (CRC). However, understanding how the interplay between different immune cells impacts on clinical outcome is still in its infancy. Here, we describe that the interaction of tumor infiltrating neutrophils expressing high levels of CD15 with CD8+ T effector memory cells (TEM) correlates with tumor progression. Mechanistically, stromal cell-derived factor-1 (CXCL12/SDF-1) promotes the retention of neutrophils within tumors, increasing the crosstalk with CD8+ T cells. As a consequence of the contact-mediated interaction with neutrophils, CD8+ T cells are skewed to produce high levels of GZMK, which in turn decreases E-cadherin on the intestinal epithelium and favors tumor progression. Overall, our results highlight the emergence of GZMKhigh CD8+ TEM in non-metastatic CRC tumors as a hallmark driven by the interaction with neutrophils, which could implement current patient stratification and be targeted by novel therapeutics.
Collapse
|
26
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Garcinuño S, Gil-Etayo FJ, Mancebo E, López-Nevado M, Lalueza A, Díaz-Simón R, Pleguezuelo DE, Serrano M, Cabrera-Marante O, Allende LM, Paz-Artal E, Serrano A. Effective Natural Killer Cell Degranulation Is an Essential Key in COVID-19 Evolution. Int J Mol Sci 2022; 23:ijms23126577. [PMID: 35743021 PMCID: PMC9224310 DOI: 10.3390/ijms23126577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
NK degranulation plays an important role in the cytotoxic activity of innate immunity in the clearance of intracellular infections and is an important factor in the outcome of the disease. This work has studied NK degranulation and innate immunological profiles and functionalities in COVID-19 patients and its association with the severity of the disease. A prospective observational study with 99 COVID-19 patients was conducted. Patients were grouped according to hospital requirements and severity. Innate immune cell subpopulations and functionalities were analyzed. The profile and functionality of innate immune cells differ between healthy controls and severe patients; CD56dim NK cells increased and MAIT cells and NK degranulation rates decreased in the COVID-19 subjects. Higher degranulation rates were observed in the non-severe patients and in the healthy controls compared to the severe patients. Benign forms of the disease had a higher granzymeA/granzymeB ratio than complex forms. In a multivariate analysis, the degranulation capacity resulted in a protective factor against severe forms of the disease (OR: 0.86), whereas the permanent expression of NKG2D in NKT cells was an independent risk factor (OR: 3.81; AUC: 0.84). In conclusion, a prompt and efficient degranulation functionality in the early stages of infection could be used as a tool to identify patients who will have a better evolution.
Collapse
Affiliation(s)
- Sara Garcinuño
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
| | - Francisco Javier Gil-Etayo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Esther Mancebo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Marta López-Nevado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
| | - Antonio Lalueza
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Raquel Díaz-Simón
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Daniel Enrique Pleguezuelo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Manuel Serrano
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Oscar Cabrera-Marante
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Luis M. Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Antonio Serrano
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-652-085-293
| |
Collapse
|
28
|
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol 2022; 13:896228. [PMID: 35651603 PMCID: PMC9149431 DOI: 10.3389/fimmu.2022.896228] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.
Collapse
Affiliation(s)
- Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Adanays Calvo-Pérez
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Carmen Oñate
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Alejandro Andrés-Tovar
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Maykel A Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Eva M Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, Fundación Agencia Aragonesa para la Investigación y el Desarrollo ARAID Foundation, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
29
|
Deb B, O’Brien DR, Chunawala ZS, Bharucha AE. Duodenal Mucosal Expression of COVID-19-Related Genes in Health, Diabetic Gastroenteropathy, and Functional Dyspepsia. J Clin Endocrinol Metab 2022; 107:e2600-e2609. [PMID: 35090021 PMCID: PMC8807322 DOI: 10.1210/clinem/dgac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT SARS-CoV-2 infects the gastrointestinal tract and may be associated with symptoms that resemble diabetic gastroparesis. Why patients with diabetes who contract COVID-19 are more likely to have severe disease is unknown. OBJECTIVE We aimed to compare the duodenal mucosal expression of SARS-CoV-2 and inflammation-related genes in diabetes gastroenteropathy (DGE), functional dyspepsia (FD), and healthy controls. METHODS Gastrointestinal transit, and duodenal mucosal mRNA expression of selected genes were compared in 21 controls, 39 DGE patients, and 37 FD patients from a tertiary referral center. Pathway analyses were performed. RESULTS Patients had normal, delayed (5 FD [13%] and 13 DGE patients [33%]; P = 0.03 vs controls), or rapid (5 FD [12%] and 5 DGE [12%]) gastric emptying (GE). Compared with control participants, 100 SARS-CoV-2-related genes were increased in DGE (FDR < 0.05) vs 13 genes in FD; 71 of these 100 genes were differentially expressed in DGE vs FD but only 3 between DGE patients with normal vs delayed GE. Upregulated genes in DGE include the SARS-CoV2 viral entry genes CTSL (|Fold change [FC]|=1.16; FDR < 0.05) and CTSB (|FC|=1.24; FDR < 0.05) and selected genes involved in viral replication (eg, EIF2 pathways) and inflammation (CCR2, CXCL2, and LCN2, but not other inflammation-related pathways eg, IL-2 and IL-6 signaling). CONCLUSION Several SARS-CoV-2-related genes were differentially expressed between DGE vs healthy controls and vs FD but not between DGE patients with normal vs delayed GE, suggesting that the differential expression is related to diabetes per se. The upregulation of CTSL and CTSB and replication genes may predispose to SARS-CoV2 infection of the gastrointestinal tract in diabetes.
Collapse
Affiliation(s)
- Brototo Deb
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel R O’Brien
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Zainali S Chunawala
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
30
|
Dillon SM, Mickens KL, Thompson TA, Cooper EH, Nesladek S, Christians AJ, Castleman M, Guo K, Wood C, Frank DN, Kechris K, Santiago ML, Wilson CC. Granzyme B + CD4 T cells accumulate in the colon during chronic HIV-1 infection. Gut Microbes 2022; 14:2045852. [PMID: 35258402 PMCID: PMC8920224 DOI: 10.1080/19490976.2022.2045852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chronic HIV-1 infection results in the sustained disruption of gut homeostasis culminating in alterations in microbial communities (dysbiosis) and increased microbial translocation. Major questions remain on how interactions between translocating microbes and gut immune cells impact HIV-1-associated gut pathogenesis. We previously reported that in vitro exposure of human gut cells to enteric commensal bacteria upregulated the serine protease and cytotoxic marker Granzyme B (GZB) in CD4 T cells, and GZB expression was further increased in HIV-1-infected CD4 T cells. To determine if these in vitro findings extend in vivo, we evaluated the frequencies of GZB+ CD4 T cells in colon biopsies and peripheral blood of untreated, chronically infected people with HIV-1 (PWH). Colon and blood GZB+ CD4 T cells were found at significantly higher frequencies in PWH. Colon, but not blood, GZB+ CD4 T cell frequencies were associated with gut and systemic T cell activation and Prevotella species abundance. In vitro, commensal bacteria upregulated GZB more readily in gut versus blood or tonsil-derived CD4 T cells, particularly in inflammatory T helper 17 cells. Bacteria-induced GZB expression in gut CD4 T cells required the presence of accessory cells, the IL-2 pathway and in part, MHC Class II. Overall, we demonstrate that GZB+ CD4 T cells are prevalent in the colon during chronic HIV-1 infection and may emerge following interactions with translocated bacteria in an IL-2 and MHC Class II-dependent manner. Associations between GZB+ CD4 T cells, dysbiosis and T cell activation suggest that GZB+ CD4 T cells may contribute to gut HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Stephanie M. Dillon
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kaylee L. Mickens
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tezha A. Thompson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Emily H. Cooper
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Sabrina Nesladek
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Moriah Castleman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Daniel N. Frank
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Mario L. Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cara C. Wilson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA,contact Cara C. Wilson Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
31
|
Pączek S, Łukaszewicz-Zając M, Mroczko B. Granzymes-Their Role in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23095277. [PMID: 35563668 PMCID: PMC9104098 DOI: 10.3390/ijms23095277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the most common malignancies worldwide. CRC is considered a heterogeneous disease due to various clinical symptoms, biological behaviours, and a variety of mutations. A number of studies demonstrate that as many as 50% of CRC patients have distant metastases at the time of diagnosis. However, despite the fact that social and medical awareness of CRC has increased in recent years and screening programmes have expanded, there is still an urgent need to find new diagnostic tools for early detection of CRC. The effectiveness of the currently used classical tumour markers in CRC diagnostics is very limited. Therefore, new proteins that play an important role in the formation and progression of CRC are being sought. A number of recent studies show the potential significance of granzymes (GZMs) in carcinogenesis. These proteins are released by cytotoxic lymphocytes, which protect the body against viral infection as well specific signalling pathways that ultimately lead to cell death. Some studies suggest a link between GZMs, particularly the expression of Granzyme A, and inflammation. This paper summarises the role of GZMs in CRC pathogenesis through their involvement in the inflammatory process. Therefore, it seems that GZMs could become the focus of research into new CRC biomarkers.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Correspondence: ; Tel.: +48-85-831-8587
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
32
|
Hou L, Yuki K. CCR6 and CXCR6 Identify the Th17 Cells With Cytotoxicity in Experimental Autoimmune Encephalomyelitis. Front Immunol 2022; 13:819224. [PMID: 35178050 PMCID: PMC8844514 DOI: 10.3389/fimmu.2022.819224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Due to the plasticity of IL-17-producing CD4 T cells (Th17 cells), a long-standing challenge in studying Th17-driven autoimmune is the lack of specific surface marker to identify the pathogenic Th17 cells in vivo. Recently, we discovered that pathogenic CD4 T cells were CXCR6 positive in experimental autoimmune encephalomyelitis (EAE), a commonly used Th17-driven autoimmune model. Herein, we further revealed that peripheral CXCR6+CD4 T cells contain a functionally distinct subpopulation, which is CCR6 positive and enriched for conventional Th17 molecules (IL-23R and RORγt) and cytotoxic signatures. Additionally, spinal cord-infiltrating CD4 T cells were highly cytotoxic by expressing Granzyme(s) along with IFNγ and GM-CSF. Collectively, this study suggested that peripheral CCR6+CXCR6+CD4 T cells were Th17 cells with cytotoxic property in EAE model, and highlighted the cytotoxic granzymes for EAE pathology.
Collapse
Affiliation(s)
- Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia and Department of Immunology, Harvard Medical School., Boston, MA, United States
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia and Department of Immunology, Harvard Medical School., Boston, MA, United States
| |
Collapse
|
33
|
Martynova E, Rizvanov A, Urbanowicz RA, Khaiboullina S. Inflammasome Contribution to the Activation of Th1, Th2, and Th17 Immune Responses. Front Microbiol 2022; 13:851835. [PMID: 35369454 PMCID: PMC8969514 DOI: 10.3389/fmicb.2022.851835] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are cytosolic polyprotein complexes formed in response to various external and internal stimuli, including viral and bacterial antigens. The main product of the inflammasome is active caspase 1 which proteolytically cleaves, releasing functional interleukin-1 beta (IL-1β) and interleukin-18 (IL-18). These cytokines play a central role in shaping immune response to pathogens. In this review, we will focus on the mechanisms of inflammasome activation, as well as their role in development of Th1, Th2, and Th17 lymphocytes. The contribution of cytokines IL-1β, IL-18, and IL-33, products of activated inflammasomes, are summarized. Additionally, the role of cytokines released from tissue cells in promoting differentiation of lymphocyte populations is discussed.
Collapse
Affiliation(s)
| | | | - Richard A. Urbanowicz
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
34
|
Sherrill-Mix S, Yang M, Aldrovandi GM, Brenchley JM, Bushman FD, Collman RG, Dandekar S, Klatt NR, Lagenaur LA, Landay AL, Paredes R, Tachedjian G, Turpin JA, Serrano-Villar S, Lozupone CA, Ghosh M. A Summary of the Sixth International Workshop on Microbiome in HIV Pathogenesis, Prevention, and Treatment. AIDS Res Hum Retroviruses 2022; 38:173-180. [PMID: 34969255 PMCID: PMC9009592 DOI: 10.1089/aid.2021.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In October of 2020, researchers from around the world met online for the sixth annual International Workshop on Microbiome in HIV Pathogenesis, Prevention, and Treatment. New research was presented on the roles of the microbiome on immune response and HIV transmission and pathogenesis and the potential for alterations in the microbiome to decrease transmission and affect comorbidities. This article presents a summary of the findings reported.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Address correspondence to: Scott Sherrill-Mix, Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 424 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Michelle Yang
- Department of Epidemiology, The George Washington University, Washington, District of Columbia, USA
| | - Grace M. Aldrovandi
- Department of Pediatrics, University of California, Los Angeles, California, USA
| | | | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Nichole R. Klatt
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Alan L. Landay
- Division of Gerontology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Roger Paredes
- Institut de Recerca de la SIDA IrsiCaixa i Unitat VIH, Universitat Autònoma de Barcelona, Universitat de Vic, Catalonia, Spain
| | | | - Jim A. Turpin
- Divison of AIDS, NIAID, NIH, Bethesda, Maryland, USA
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | - Mimi Ghosh
- Department of Epidemiology, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
35
|
Rawle DJ, Le TT, Dumenil T, Bishop C, Yan K, Nakayama E, Bird PI, Suhrbier A. Widespread discrepancy in Nnt genotypes and genetic backgrounds complicates granzyme A and other knockout mouse studies. eLife 2022; 11:e70207. [PMID: 35119362 PMCID: PMC8816380 DOI: 10.7554/elife.70207] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Thuy T Le
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Troy Dumenil
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Cameron Bishop
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kexin Yan
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Eri Nakayama
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Department of Virology I, National Institute of Infectious DiseasesTokyoJapan
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Australian Infectious Disease Research Centre, GVN Center of ExcellenceBrisbaneAustralia
| |
Collapse
|
36
|
Verschoor CP, Pawelec G, Haynes L, Loeb M, Andrew MK, Kuchel GA, McElhaney JE. Granzyme B: a double-edged sword in the response to influenza infection in vaccinated older adults. FRONTIERS IN AGING 2021; 2:753767. [PMID: 35441156 PMCID: PMC9015675 DOI: 10.3389/fragi.2021.753767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Background Influenza-specific cytolytic T lymphocytes (CTL) have a critical role in clearing the virus from the lungs, but are poorly stimulated by current inactivated influenza vaccines. Our previous work suggests that granzyme B (GrB) activity predicts protection against laboratory-confirmed influenza infection (LCII) in older adults. However, basal GrB (bGrB) activity increases with age and the frequency of GrB+ CTL that do not co-express perforin increases following influenza infection, thereby acting as a potential contributor to immune pathology. Objectives Using data from a 4-year randomized trial of standard- versus high-dose influenza vaccination, we sought to determine whether measurements of GrB activity alone indicate a protective vs. pathologic response to influenza infection. We compared LCII to No-LCII subsets according to: pre-vaccination bGrB activity; and induced GrB activity in ex vivo influenza-challenged peripheral blood mononuclear cells (PBMC) at 4- and 20-weeks post-vaccination. Results Over four influenza seasons (2014-2018), 27 of 608 adult participants aged 65 years and older developed influenza A/H3N2-LCII (n=18) or B-LCII (n=9). Pre-vaccination, there was a significant correlation between bGrB and ex vivo GrB activity in each of the H3N2-LCII, B-LCII, and No-LCII subsets. Although pre-vaccination ex vivo GrB activity was significantly higher in B-LCII vs. No-LCII with a trend for H3N2-LCII vs. No-LCII, there was no difference in the response to vaccination. In contrast, there was a trend toward increased pre-vaccination bGrB activity and LCII: Odds Ratio (OR) (95% confidence intervals) OR = 1.46 (0.94, 2.33). By 20-weeks post-vaccination, there were significant fold-increases in ex vivo GrB activity specific for the infecting subtype in H3N2-LCII: OR = 1.63 (1.35, 2.00) and B-LCII: OR = 1.73 (1.34, 2.23). Conclusions Our results suggest that the poor GrB responses to influenza vaccination that led to development of LCII can be attributed to inactivated formulations rather than the aging immune system since LCII cases generated robust ex vivo GrB responses following natural infection. Further, we identified bGrB as a biomarker of those who remain at risk for LCII following vaccination. Future studies will focus on understanding the mechanisms responsible for the shift in GrB-mediated protection vs. potential immune pathology caused by GrB release.
Collapse
Affiliation(s)
- Chris P. Verschoor
- Health Sciences North Research Institute, Sudbury, ON, Canada
- Northern Ontario School of Medicine University, Sudbury, ON, Canada
| | - Graham Pawelec
- Health Sciences North Research Institute, Sudbury, ON, Canada
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Laura Haynes
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Mark Loeb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | - George A. Kuchel
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Janet E. McElhaney
- Health Sciences North Research Institute, Sudbury, ON, Canada
- Northern Ontario School of Medicine University, Sudbury, ON, Canada
| |
Collapse
|
37
|
de Jong LC, Crnko S, ten Broeke T, Bovenschen N. Noncytotoxic functions of killer cell granzymes in viral infections. PLoS Pathog 2021; 17:e1009818. [PMID: 34529743 PMCID: PMC8445437 DOI: 10.1371/journal.ppat.1009818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytotoxic lymphocytes produce granules armed with a set of 5 serine proteases (granzymes (Gzms)), which, together with the pore-forming protein (perforin), serve as a major defense against viral infections in humans. This granule-exocytosis pathway subsumes a well-established mechanism in which target cell death is induced upon perforin-mediated entry of Gzms and subsequent activation of various (apoptosis) pathways. In the past decade, however, a growing body of evidence demonstrated that Gzms also inhibit viral replication and potential reactivation in cell death–independent manners. For example, Gzms can induce proteolysis of viral or host cell proteins necessary for the viral entry, release, or intracellular trafficking, as well as augment pro-inflammatory antiviral cytokine response. In this review, we summarize current evidence for the noncytotoxic mechanisms and roles by which killer cells can use Gzms to combat viral infections, and we discuss the potential thereof for the development of novel therapies.
Collapse
Affiliation(s)
- Lisanne C. de Jong
- Radboud University, Nijmegen, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Toine ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
38
|
Granzyme B prevents aberrant IL-17 production and intestinal pathogenicity in CD4 + T cells. Mucosal Immunol 2021; 14:1088-1099. [PMID: 34183776 PMCID: PMC8380717 DOI: 10.1038/s41385-021-00427-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
CD4+ T cell activation and differentiation are important events that set the stage for proper immune responses. Many factors are involved in the activation and differentiation of T cells, and these events are tightly controlled to prevent unwanted and/or exacerbated immune responses that may harm the host. It has been well-documented that granzyme B, a potent serine protease involved in cell-mediated cytotoxicity, is readily expressed by certain CD4+ T cells, such as regulatory T cells and CD4+CD8αα+ intestinal intraepithelial lymphocytes, both of which display cytotoxicity associated with granzyme B. However, because not all CD4+ T cells expressing granzyme B are cytotoxic, additional roles for this protease in CD4+ T cell biology remain unknown. Here, using a combination of in vivo and in vitro approaches, we report that granzyme B-deficient CD4+ T cells display increased IL-17 production. In the adoptive transfer model of intestinal inflammation, granzyme B-deficient CD4+ T cells triggered a more rapid disease onset than their WT counterparts, and presented a differential transcription profile. Similar results were also observed in granzyme B-deficient mice infected with Citrobacter rodentium. Our results suggest that granzyme B modulates CD4+ T cell differentiation, providing a new perspective into the biology of this enzyme.
Collapse
|
39
|
Perišić Nanut M, Pawelec G, Kos J. Human CD4+ T-Cell Clone Expansion Leads to the Expression of the Cysteine Peptidase Inhibitor Cystatin F. Int J Mol Sci 2021; 22:8408. [PMID: 34445118 PMCID: PMC8395124 DOI: 10.3390/ijms22168408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/12/2023] Open
Abstract
The existence of CD4+ cytotoxic T cells (CTLs) at relatively high levels under different pathological conditions in vivo suggests their role in protective and/or pathogenic immune functions. CD4+ CTLs utilize the fundamental cytotoxic effector mechanisms also utilized by CD8+ CTLs and natural killer cells. During long-term cultivation, CD4+ T cells were also shown to acquire cytotoxic functions. In this study, CD4+ human T-cell clones derived from activated peripheral blood lymphocytes of healthy young adults were examined for the expression of cytotoxic machinery components. Cystatin F is a protein inhibitor of cysteine cathepsins, synthesized by CD8+ CTLs and natural killer cells. Cystatin F affects the cytotoxic efficacy of these cells by inhibiting the major progranzyme convertases cathepsins C and H as well as cathepsin L, which is involved in perforin activation. Here, we show that human CD4+ T-cell clones express the cysteine cathepsins that are involved in the activation of granzymes and perforin. CD4+ T-cell clones contained both the inactive, dimeric form as well as the active, monomeric form of cystatin F. As in CD8+ CTLs, cysteine cathepsins C and H were the major targets of cystatin F in CD4+ T-cell clones. Furthermore, CD4+ T-cell clones expressed the active forms of perforin and granzymes A and B. The levels of the cystatin F decreased with time in culture concomitantly with an increase in the activities of granzymes A and B. Therefore, our results suggest that cystatin F plays a role in regulating CD4+ T cell cytotoxicity. Since cystatin F can be secreted and taken up by bystander cells, our results suggest that CD4+ CTLs may also be involved in regulating immune responses through cystatin F secretion.
Collapse
Affiliation(s)
- Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| | - Graham Pawelec
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15/3.008, 72076 Tübingen, Germany;
- Health Sciences North Research Institute, 56 Walford Rd, Sudbury, ON P3E 2H2, Canada
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
40
|
Gao Y, Dunlap G, Elahee M, Rao DA. Patterns of T-Cell Phenotypes in Rheumatic Diseases From Single-Cell Studies of Tissue. ACR Open Rheumatol 2021; 3:601-613. [PMID: 34255929 PMCID: PMC8449042 DOI: 10.1002/acr2.11296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
High-dimensional analyses of tissue samples from patients with rheumatic diseases are providing increasingly detailed descriptions of the immune cell populations that infiltrate tissues in different rheumatic diseases. Here we review key observations emerging from high-dimensional analyses of T cells within tissues in different rheumatic diseases, highlighting common themes across diseases as well as distinguishing features. Single-cell RNA sequencing analyses capture several dimensions of T-cell states, yet surprisingly, these analyses generally have not demonstrated distinct clusters of paradigmatic T-cell effector subsets, such as T helper (Th) 1, Th2, and Th17 cells. Rather, global transcriptomics robustly identify both proliferating T cells and regulatory T cells and have also helped to reveal new effector subsets in inflamed tissues, including T peripheral helper cells and granzyme K+ T cells. Further characterization of the T-cell populations that accumulate within target tissues should enable more precise targeting of biologic therapies and accelerate development of more specific biomarkers to track activity of relevant immune pathways in patients with rheumatic diseases.
Collapse
Affiliation(s)
- Yidan Gao
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Garrett Dunlap
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mehreen Elahee
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Deepak A Rao
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
41
|
Li T, Yang C, Jing J, Sun L, Yuan Y. Granzyme K - A novel marker to identify the presence and rupture of abdominal aortic aneurysm. Int J Cardiol 2021; 338:242-247. [PMID: 34139229 DOI: 10.1016/j.ijcard.2021.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND Immune inflammatory dysfunction is a hallmark of abdominal aortic aneurysm (AAA). Granzyme K (GZMK) is involved in the regulation of inflammation. However, the correlation between GZMK expression and AAA risk remains unknown. METHODS This case-control study included 112 AAA patients and 112 controls. Serum GZMK levels were determined by enzyme-linked immunosorbent assay and immunohistochemistry was utilized to determine GZMK expression in aortic tissues. RESULTS Compared with controls, AAA patients had higher levels of serum GZMK, and GZMK expression in AAA tissues was increased and positively associated with its serum levels (r = 0.688, P = 0.019). A positive association of serum GZMK levels with CRP or AAA diameter was confirmed, while there was a relationship between tissue GZMK expression and AAA diameter. The AUC of serum GZMK for AAA diagnosis was 0.78 with the sensitivity and specificity of 62.5% and 81.2%, whereas AUC for rupture detection was 0.76 with a sensitivity of 90.0% and specificity of 51.3%. A combination of clinically used inflammatory parameters with serum GZMK could enhance the accuracy of WBC or CRP alone in detecting AAA or rupture type. Multiple logistic analyses revealed an association of per unit increase of serum GZMK with AAA presence (OR = 1.046, P < 0.001) and its rupture risk (OR = 1.015, P = 0.048) after adjusting for confounding factors. CONCLUSIONS Our study provides proof that elevated GZMK expression both in serum and tissues is correlated with the presence of AAA, and serum GZMK may be a useful non-invasive marker that helps to identify AAA and its rupture risk in clinical practice.
Collapse
Affiliation(s)
- Tan Li
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang 110001, China; Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China
| | - Chao Yang
- Trauma Center and Department of Burns, the First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
42
|
Castleman MJ, Dillon SM, Thompson TA, Santiago ML, McCarter MD, Barker E, Wilson CC. Gut Bacteria Induce Granzyme B Expression in Human Colonic ILC3s In Vitro in an IL-15-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2021; 206:3043-3052. [PMID: 34117105 DOI: 10.4049/jimmunol.2000239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) in the gut mucosa have long been thought to be noncytotoxic lymphocytes that are critical for homeostasis of intestinal epithelial cells through secretion of IL-22. Recent work using human tonsillar cells demonstrated that ILC3s exposed to exogenous inflammatory cytokines for a long period of time acquired expression of granzyme B, suggesting that under pathological conditions ILC3s may become cytotoxic. We hypothesized that inflammation associated with bacterial exposure might trigger granzyme B expression in gut ILC3s. To test this, we exposed human colon lamina propria mononuclear cells to a panel of enteric bacteria. We found that the Gram-negative commensal and pathogenic bacteria induced granzyme B expression in a subset of ILC3s that were distinct from IL-22-producing ILC3s. A fraction of granzyme B+ ILC3s coexpressed the cytolytic protein perforin. Granzyme B expression was mediated, in part, by IL-15 produced upon exposure to bacteria. ILC3s coexpressing all three IL-15R subunits (IL15Rα/β/γ) increased following bacterial stimulation, potentially allowing for cis presentation of IL-15 during bacterial exposure. Additionally, a large frequency of colonic myeloid dendritic cells expressed IL-15Rα, implicating myeloid dendritic cells in trans presentation of IL-15 to ILC3s. Tonsillar ILC3s minimally expressed granzyme B when exposed to the same bacteria or to rIL-15. Overall, these data establish the novel, to our knowledge, finding that human colonic ILC3s can express granzyme B in response to a subset of enteric bacteria through a process mediated by IL-15. These observations raise new questions about the multifunctional role of human gut ILC3s.
Collapse
Affiliation(s)
- Moriah J Castleman
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Stephanie M Dillon
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tezha A Thompson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mario L Santiago
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL
| | - Cara C Wilson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO;
| |
Collapse
|
43
|
Li S, van Dijk CGM, Meeldijk J, Kok HM, Blommestein I, Verbakel ALF, Kotte M, Broekhuizen R, Laclé MM, Goldschmeding R, Cheng C, Bovenschen N. Extracellular Granzyme K Modulates Angiogenesis by Regulating Soluble VEGFR1 Release From Endothelial Cells. Front Oncol 2021; 11:681967. [PMID: 34178673 PMCID: PMC8220216 DOI: 10.3389/fonc.2021.681967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/19/2021] [Indexed: 01/02/2023] Open
Abstract
Angiogenesis is crucial for normal development and homeostasis, but also plays a role in many diseases including cardiovascular diseases, autoimmune diseases, and cancer. Granzymes are serine proteases stored in the granules of cytotoxic cells, and have predominantly been studied for their pro-apoptotic role upon delivery in target cells. A growing body of evidence is emerging that granzymes also display extracellular functions, which largely remain unknown. In the present study, we show that extracellular granzyme K (GrK) inhibits angiogenesis and triggers endothelial cells to release soluble VEGFR1 (sVEGFR1), a decoy receptor that inhibits angiogenesis by sequestering VEGF-A. GrK does not cleave off membrane-bound VEGFR1 from the cell surface, does not release potential sVEGFR1 storage pools from endothelial cells, and does not trigger sVEGFR1 release via protease activating receptor-1 (PAR-1) activation. GrK induces de novo sVEGFR1 mRNA and protein expression and subsequent release of sVEGFR1 from endothelial cells. GrK protein is detectable in human colorectal tumor tissue and its levels positively correlate with sVEGFR1 protein levels and negatively correlate with T4 intratumoral angiogenesis and tumor size. In conclusion, extracellular GrK can inhibit angiogenesis via secretion of sVEGFR1 from endothelial cells, thereby sequestering VEGF-A and impairing VEGFR signaling. Our observation that GrK positively correlates with sVEGFR1 and negatively correlates with angiogenesis in colorectal cancer, suggest that the GrK-sVEGFR1-angiogenesis axis may be a valid target for development of novel anti-angiogenic therapies in cancer.
Collapse
Affiliation(s)
- Shuang Li
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jan Meeldijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Helena M Kok
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Isabelle Blommestein
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annick L F Verbakel
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marit Kotte
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Miangela M Laclé
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
44
|
García-Laorden MI, Hoogendijk AJ, Wiewel MA, van Vught LA, Schultz MJ, Bovenschen N, de Vos AF, van der Poll T. Intracellular expression of granzymes A, B, K and M in blood lymphocyte subsets of critically ill patients with or without sepsis. Clin Exp Immunol 2021; 205:222-231. [PMID: 33866542 PMCID: PMC8274148 DOI: 10.1111/cei.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a complex syndrome related to an infection-induced exaggerated inflammatory response, which is associated with a high mortality. Granzymes (Gzm) are proteases mainly found in cytotoxic lymphocytes that not only have a role in target cell death, but also as mediators of infection and inflammation. In this study we sought to analyse the intracellular expression of GzmA, B, M and K by flow cytometry in diverse blood lymphocyte populations from 22 sepsis patients, 12 non-infected intensive care unit (ICU) patients and 32 healthy controls. Additionally, we measured GzmA and B plasma levels. Both groups of patients presented decreased percentage of natural killer (NK) cells expressing GzmA, B and M relative to healthy controls, while sepsis patients showed an increased proportion of CD8+ T cells expressing GzmB compared to controls. Expression of GzmK remained relatively unaltered between groups. Extracellular levels of GzmB were increased in non-infected ICU patients relative to sepsis patients and healthy controls. Our results show differential alterations in intracellular expression of Gzm in sepsis patients and non-infected critically ill patients compared to healthy individuals depending on the lymphocyte population and on the Gzm.
Collapse
Affiliation(s)
- M Isabel García-Laorden
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Arie J Hoogendijk
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryse A Wiewel
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Lonneke A van Vught
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcus J Schultz
- Department of Intensive Care Medicine, and Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Niels Bovenschen
- Department of Pathology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
45
|
Bouwman AC, van Daalen KR, Crnko S, Ten Broeke T, Bovenschen N. Intracellular and Extracellular Roles of Granzyme K. Front Immunol 2021; 12:677707. [PMID: 34017346 PMCID: PMC8129556 DOI: 10.3389/fimmu.2021.677707] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
Granzymes are a family of serine proteases stored in granules inside cytotoxic cells of the immune system. Granzyme K (GrK) has been only limitedly characterized and knowledge on its molecular functions is emerging. Traditionally GrK is described as a granule-secreted, pro-apoptotic serine protease. However, accumulating evidence is redefining the functions of GrK by the discovery of novel intracellular (e.g. cytotoxicity, inhibition of viral replication) and extracellular roles (e.g. endothelial activation and modulation of a pro-inflammatory immune cytokine response). Moreover, elevated GrK levels are associated with disease, including viral and bacterial infections, airway inflammation and thermal injury. This review aims to summarize and discuss the current knowledge of i) intracellular and extracellular GrK activity, ii) cytotoxic and non-cytotoxic GrK functioning, iii) the role of GrK in disease, and iv) GrK as a potential therapeutic target.
Collapse
Affiliation(s)
- Annemieke C Bouwman
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kim R van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Toine Ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
46
|
Rodriguez‐Garcia M, Patel MV, Shen Z, Wira CR. The impact of aging on innate and adaptive immunity in the human female genital tract. Aging Cell 2021; 20:e13361. [PMID: 33951269 PMCID: PMC8135005 DOI: 10.1111/acel.13361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
Mucosal tissues in the human female reproductive tract (FRT) are primary sites for both gynecological cancers and infections by a spectrum of sexually transmitted pathogens, including human immunodeficiency virus (HIV), that compromise women's health. While the regulation of innate and adaptive immune protection in the FRT by hormonal cyclic changes across the menstrual cycle and pregnancy are being intensely studied, little to nothing is known about the alterations in mucosal immune protection that occur throughout the FRT as women age following menopause. The immune system in the FRT has two key functions: defense against pathogens and reproduction. After menopause, natural reproductive function ends, and therefore, two overlapping processes contribute to alterations in immune protection in aging women: menopause and immunosenescence. The goal of this review is to summarize the multiple immune changes that occur in the FRT with aging, including the impact on the function of epithelial cells, immune cells, and stromal fibroblasts. These studies indicate that major aspects of innate and adaptive immunity in the FRT are compromised in a site‐specific manner in the FRT as women age. Further, at some FRT sites, immunological compensation occurs. Overall, alterations in mucosal immune protection contribute to the increased risk of sexually transmitted infections (STI), urogenital infections, and gynecological cancers. Further studies are essential to provide a foundation for the development of novel therapeutic interventions to restore immune protection and reverse conditions that threaten women's lives as they age.
Collapse
Affiliation(s)
| | - Mickey V. Patel
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Zheng Shen
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Charles R. Wira
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| |
Collapse
|
47
|
Santiago L, Castro M, Sanz-Pamplona R, Garzón M, Ramirez-Labrada A, Tapia E, Moreno V, Layunta E, Gil-Gómez G, Garrido M, Peña R, Lanuza PM, Comas L, Jaime-Sanchez P, Uranga-Murillo I, Del Campo R, Pelegrín P, Camerer E, Martínez-Lostao L, Muñoz G, Uranga JA, Alcalde A, Galvez EM, Ferrandez A, Bird PI, Metkar S, Arias MA, Pardo J. Extracellular Granzyme A Promotes Colorectal Cancer Development by Enhancing Gut Inflammation. Cell Rep 2021; 32:107847. [PMID: 32640217 DOI: 10.1016/j.celrep.2020.107847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/11/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
If not properly regulated, the inflammatory immune response can promote carcinogenesis, as evident in colorectal cancer (CRC). Aiming to gain mechanistic insight into the link between inflammation and CRC, we perform transcriptomics analysis of human CRC, identifying a strong correlation between expression of the serine protease granzyme A (GzmA) and inflammation. In a dextran sodium sulfate and azoxymethane (DSS/AOM) mouse model, deficiency and pharmacological inhibition of extracellular GzmA both attenuate gut inflammation and prevent CRC development, including the initial steps of cell transformation and epithelial-to-mesenchymal transition. Mechanistically, extracellular GzmA induces NF-κB-dependent IL-6 production in macrophages, which in turn promotes STAT3 activation in cultured CRC cells. Accordingly, colon tissues from DSS/AOM-treated, GzmA-deficient animals present reduced levels of pSTAT3. By identifying GzmA as a proinflammatory protease that promotes CRC development, these findings provide information on mechanisms that link immune cell infiltration to cancer progression and present GzmA as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Marta Castro
- Department of Pharmacology and Physiology, Faculty of Health and Sports Sciences, University of Zaragoza, 22002 Huesca, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marcela Garzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Elena Tapia
- Animal Unit, University of Zaragoza, 50009 Zaragoza, Spain
| | - Víctor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Elena Layunta
- Department of Pharmacology and Physiology, Faculty of Veterinary, University of Zaragoza, 50013 Zaragoza, Spain
| | - Gabriel Gil-Gómez
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona
| | - Marta Garrido
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona
| | - Raúl Peña
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona
| | - Pilar M Lanuza
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Laura Comas
- Instituto de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
| | - Paula Jaime-Sanchez
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Rosa Del Campo
- Department of Microbiology, University Hospital Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Pablo Pelegrín
- Unidad de Inflamación Molecular y Cirugía Experimental, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Eric Camerer
- Université de Paris, Paris Cardiovascular Research Center, INSERM U970, 75015 Paris, France
| | - Luis Martínez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Immunology, University Clinic Hospital Lozano Blesa, 50009, Zaragoza, Spain and Department of Pathology, University Clinic Hospital Lozano Blesa, University of Zaragoza, IIS Aragón, CIBEREHD, 50009 Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; Department Biochemistry and Molecular and Cell Biology and Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
| | - Guillermo Muñoz
- Department of Immunology, University Clinic Hospital Lozano Blesa, 50009, Zaragoza, Spain and Department of Pathology, University Clinic Hospital Lozano Blesa, University of Zaragoza, IIS Aragón, CIBEREHD, 50009 Zaragoza, Spain
| | - José A Uranga
- Department of Basis Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| | - Anabel Alcalde
- Department of Pharmacology and Physiology, Faculty of Veterinary, University of Zaragoza, 50013 Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
| | - Angel Ferrandez
- Service of Digestive Diseases, University Clinic Hospital Lozano Blesa, University of Zaragoza, IIS Aragón, CIBEREHD, Zaragoza, Spain
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University 3800 Melbourne, Australia
| | | | - Maykel A Arias
- Instituto de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain.
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Aragon I+D Foundation (ARAID), Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; Department Biochemistry and Molecular and Cell Biology and Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; CIBER-BBN, Madrid, Spain.
| |
Collapse
|
48
|
Aasebø E, Brenner AK, Birkeland E, Tvedt THA, Selheim F, Berven FS, Bruserud Ø. The Constitutive Extracellular Protein Release by Acute Myeloid Leukemia Cells-A Proteomic Study of Patient Heterogeneity and Its Modulation by Mesenchymal Stromal Cells. Cancers (Basel) 2021; 13:cancers13071509. [PMID: 33806032 PMCID: PMC8037744 DOI: 10.3390/cancers13071509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The formation of normal blood cells in the bone marrow is supported by a network of non-hematopoietic cells including connective tissue cells, blood vessel cells and bone-forming cells. These cell types support and regulate the growth of acute myeloid leukemia (AML) cells and communicate with leukemic cells through the release of proteins to their common extracellular microenvironment. One of the AML-supporting normal cell types is a subset of connective tissue cells called mesenchymal stem cells. In the present study, we observed that AML cells release a wide range of diverse proteins into their microenvironment, but patients differ both with regard to the number and amount of released proteins. Inhibition of this bidirectional communication through protein release between AML cells and leukemia-supporting normal cells may become a new strategy for cancer treatment. Abstract Extracellular protein release is important both for the formation of extracellular matrix and for communication between cells. We investigated the extracellular protein release by in vitro cultured normal mesenchymal stem cells (MSCs) and by primary human acute myeloid leukemia (AML) cells derived from 40 consecutive patients. We observed quantifiable levels of 3082 proteins in our study; for the MSCs, we detected 1446 proteins, whereas the number of released proteins for the AML cells showed wide variation between patients (average number 1699, range 557–2380). The proteins were derived from various cellular compartments (e.g., cell membrane, nucleus, and cytoplasms), several organelles (e.g., cytoskeleton, endoplasmatic reticulum, Golgi apparatus, and mitochondria) and had various functions (e.g., extracellular matrix and exosomal proteins, cytokines, soluble adhesion molecules, protein synthesis, post-transcriptional modulation, RNA binding, and ribonuclear proteins). Thus, AML patients were very heterogeneous both regarding the number of proteins and the nature of their extracellularly released proteins. The protein release profiles of MSCs and primary AML cells show a considerable overlap, but a minority of the proteins are released only or mainly by the MSC, including several extracellular matrix molecules. Taken together, our observations suggest that the protein profile of the extracellular bone marrow microenvironment differs between AML patients, these differences are mainly caused by the protein release by the leukemic cells but this leukemia-associated heterogeneity of the overall extracellular protein profile is modulated by the constitutive protein release by normal MSCs.
Collapse
Affiliation(s)
- Elise Aasebø
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (A.K.B.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | - Annette K. Brenner
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (A.K.B.)
| | - Even Birkeland
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | | | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
| | - Øystein Bruserud
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (E.B.); (F.S.); (F.S.B.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Correspondence: or
| |
Collapse
|
49
|
Maleki KT, Tauriainen J, García M, Kerkman PF, Christ W, Dias J, Wigren Byström J, Leeansyah E, Forsell MN, Ljunggren HG, Ahlm C, Björkström NK, Sandberg JK, Klingström J. MAIT cell activation is associated with disease severity markers in acute hantavirus infection. CELL REPORTS MEDICINE 2021; 2:100220. [PMID: 33763658 PMCID: PMC7974553 DOI: 10.1016/j.xcrm.2021.100220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Hantaviruses are zoonotic RNA viruses that cause severe acute disease in humans. Infected individuals have strong inflammatory responses that likely cause immunopathology. Here, we studied the response of mucosal-associated invariant T (MAIT) cells in peripheral blood of individuals with hemorrhagic fever with renal syndrome (HFRS) caused by Puumala orthohantavirus, a hantavirus endemic in Europe. We show that MAIT cell levels decrease in the blood during HFRS and that residual MAIT cells are highly activated. This activation correlates with HFRS severity markers. In vitro activation of MAIT cells by hantavirus-exposed antigen-presenting cells is dependent on type I interferons (IFNs) and independent of interleukin-18 (IL-18). These findings highlight the role of type I IFNs in virus-driven MAIT cell activation and suggest a potential role of MAIT cells in the disease pathogenesis of viral infections.
MAIT cells are activated in individuals with hemorrhagic fever with renal syndrome (HFRS) MAIT cell activation correlates with HFRS severity markers during hantavirus infection MAIT cell blood levels decline during acute HFRS Hantavirus-mediated MAIT cell activation is type I IFN dependent
Collapse
Affiliation(s)
- Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Tauriainen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Priscilla F Kerkman
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Wigren Byström
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.,Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Mattias N Forsell
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
50
|
Wang Y, Chen Z, Wang T, Guo H, Liu Y, Dang N, Hu S, Wu L, Zhang C, Ye K, Shi B. A novel CD4+ CTL subtype characterized by chemotaxis and inflammation is involved in the pathogenesis of Graves' orbitopathy. Cell Mol Immunol 2021; 18:735-745. [PMID: 33514849 PMCID: PMC8027210 DOI: 10.1038/s41423-020-00615-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Graves' orbitopathy (GO), the most severe manifestation of Graves' hyperthyroidism (GH), is an autoimmune-mediated inflammatory disorder, and treatments often exhibit a low efficacy. CD4+ T cells have been reported to play vital roles in GO progression. To explore the pathogenic CD4+ T cell types that drive GO progression, we applied single-cell RNA sequencing (scRNA-Seq), T cell receptor sequencing (TCR-Seq), flow cytometry, immunofluorescence and mixed lymphocyte reaction (MLR) assays to evaluate CD4+ T cells from GO and GH patients. scRNA-Seq revealed the novel GO-specific cell type CD4+ cytotoxic T lymphocytes (CTLs), which are characterized by chemotactic and inflammatory features. The clonal expansion of this CD4+ CTL population, as demonstrated by TCR-Seq, along with their strong cytotoxic response to autoantigens, localization in orbital sites, and potential relationship with disease relapse provide strong evidence for the pathogenic roles of GZMB and IFN-γ-secreting CD4+ CTLs in GO. Therefore, cytotoxic pathways may become potential therapeutic targets for GO.
Collapse
Affiliation(s)
- Yue Wang
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China ,grid.452438.cGenome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.452438.cPrecision Medicine Center, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ziyi Chen
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tingjie Wang
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Hui Guo
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yufeng Liu
- grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China ,grid.452438.cGenome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.452438.cBioBank, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ningxin Dang
- grid.452438.cGenome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shiqian Hu
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liping Wu
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chengsheng Zhang
- grid.452438.cPrecision Medicine Center, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kai Ye
- grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China ,grid.452438.cGenome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.43169.390000 0001 0599 1243The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Bingyin Shi
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|