1
|
Zaib S, Rana N, Ali HS, Ur Rehman M, Awwad NS, Ibrahium HA, Khan I. Identification of potential inhibitors targeting yellow fever virus helicase through ligand and structure-based computational studies. J Biomol Struct Dyn 2025; 43:3031-3048. [PMID: 38109183 DOI: 10.1080/07391102.2023.2294839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Yellow fever is a flavivirus having plus-sensed RNA which encodes a single polyprotein. Host proteases cut this polyprotein into seven nonstructural proteins including a vital NS3 protein. The present study aims to identify the most effective inhibitor against the helicase (NS3) using different advanced ligand and structure-based computational studies. A set of 300 ligands was selected against helicase by chemical structural similarity model, which are similar to S-adenosyl-l-cysteine using infiniSee. This tool screens billions of compounds through a similarity search from in-built chemical spaces (CHEMriya, Galaxi, KnowledgeSpace and REALSpace). The pharmacophore was designed from ligands in the library that showed same features. According to the sequence of ligands, six compounds (29, 87, 99, 116, 148, and 208) were taken for pharmacophore designing against helicase protein. Subsequently, compounds from the library which showed the best pharmacophore shared-features were docked using FlexX functionality of SeeSAR and their optibrium properties were analyzed. Afterward, their ADME was improved by replacing the unfavorable fragments, which resulted in the generation of new compounds. The selected best compounds (301, 302, 303 and 304) were docked using SeeSAR and their pharmacokinetics and toxicological properties were evaluated using SwissADME. The optimal inhibitor for yellow fever helicase was 2-amino-N-(4-(dimethylamino)thiazol-2-yl)-4-methyloxazole-5-carboxamide (302), which exhibits promising potential for drug development.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Mujeeb Ur Rehman
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Nasser S Awwad
- Department of Chemistry, King Khalid University, Abha, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Fries K, Luo P, Baldwin R, Goldberg R, Ordonez I, Zheng L, Huleatt J, Devlin L. The development and validation of a microneutralization assay for the detection and quantification of anti-yellow fever virus antibodies in human serum. Microbiol Spectr 2025:e0334824. [PMID: 40035587 DOI: 10.1128/spectrum.03348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
The plaque reduction neutralization test (PRNT) has been used widely for the detection and quantitation of yellow fever (YF) virus-neutralizing antibodies in human serum; however, it is labor-intensive and challenging to adapt to high-throughput clinical testing needed for vaccine licensure. Here, we describe the development and validation of a new Vero cell-based YF microneutralization (MN) assay, with immunostaining readout, for the detection and quantification of YF virus-neutralizing antibodies in human serum. Comparison of neutralizing antibody titers measured with the YF MN assay versus the historical YF PRNT, based on a 50% reduction in plaque counts (PRNT50), demonstrated 100% serostatus agreement at a titer of 10 (1/dil) in participants with a history of YF vaccination. For validation, intra-assay precision (repeatability), intermediate precision, dilutional accuracy, linearity, specificity, upper limit of quantitation (ULOQ), and lower limit of quantitation (LLOQ) were assessed. The YF MN assay demonstrated suitable intra-assay precision (repeatability) and intermediate precision of 36% and 54%, respectively, with an ULOQ of 10,240. At the lower end of detection, repeatability and intermediate precision were 38% and 41%, respectively, with a LLOQ of 10 (1/dil). Suitable dilutional accuracy, linearity, and specificity across orthoflaviviruses (dengue virus, Japanese encephalitis virus, and Zika virus) and serum matrices (hemolytic, lipemic, and icteric) were also demonstrated. Overall, these promising results led the Center for Biologics Evaluation and Research to confirm the suitability of the validated YF MN assay for the detection and quantification of YF virus-neutralizing antibodies. IMPORTANCE With increased globalization and shifting climate patterns, yellow fever (YF) is re-emerging as a global threat. At present, vaccination remains the most effective prevention strategy. This study describes the development and validation of a new YF microneutralization (MN) assay for the detection and quantification of YF virus-neutralizing antibodies in human serum that offers increased throughput compared with the current standard assay. Overall, the YF MN assay demonstrated acceptable intra-assay precision (repeatability), intermediate precision, dilutional accuracy, linearity, and specificity and is suitable for the detection of YF virus-neutralizing antibodies. Further, the Center for Biologics Evaluation and Research (CBER) supports the use of the YF MN assay in the licensure of candidate YF vaccines.
Collapse
Affiliation(s)
- Katherine Fries
- Global Clinical Immunology, Sanofi, Swiftwater, Pennsylvania, USA
| | - Ping Luo
- Global Clinical Immunology, Sanofi, Swiftwater, Pennsylvania, USA
| | - Rebekah Baldwin
- Global Clinical Immunology, Sanofi, Swiftwater, Pennsylvania, USA
| | - Raechel Goldberg
- Global Clinical Immunology, Sanofi, Swiftwater, Pennsylvania, USA
| | - Ivan Ordonez
- Translational and Early Development Biostatistics, Sanofi, Orlando, Florida, USA
| | - Lingyi Zheng
- Translational and Early Development Biostatistics, Sanofi, Swiftwater, Pennsylvania, USA
| | - James Huleatt
- Global Clinical Immunology, Sanofi, Swiftwater, Pennsylvania, USA
| | - Louis Devlin
- Global Clinical Immunology, Sanofi, Swiftwater, Pennsylvania, USA
| |
Collapse
|
3
|
Sindhania A, Baruah K, Katewa A, Sharma YP. Tracing the Trajectory of Aedes aegypti and Aedes albopictus Research: Eight Decades of Bibliometric Retrospect. Vector Borne Zoonotic Dis 2025; 25:155-166. [PMID: 39585388 DOI: 10.1089/vbz.2024.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Background: The global burden of mosquito-borne diseases transmitted by Aedes aegypti and Aedes albopictus mosquitoes has become a pressing public health concern. This study sought to quantify and evaluate about eight decades of publication data on the global epidemiological trend of the diseases transmitted by A. aegypti and A. albopictus. Methods: A comprehensive bibliographic review of literature was performed on A. aegypti and A. albopictus transmitted diseases, focusing on disease transmission, epidemiological trends, vector control strategies, surveillance and monitoring, and international collaborations and initiatives. Extensive data were collected from the Web of Science database and analyzed for citation network analysis (CNA) using VoSviewer software. Data were collected from the Web of Science database encompassing various aspects of Aedes-borne diseases. The bibliographic CNA was performed to quantify and analyze the 77 years of data on A. aegypti and A. albopictus transmitted diseases. Results: The analysis included 4149 publications contributed by 13,416 authors from 149 countries. These articles comprised research articles (91.01%), review articles (6.267%), proceeding papers (1.76%), and book chapters (0.92%). The results revealed a cumulative h-index of 134, indicating the impact of the scientific output in this field. Conclusion: This review contributes to the ongoing efforts to mitigate the impact of Aedes-borne diseases and protect public health worldwide. By synthesizing current knowledge and evidence-based practices, the study provides all information related to publications, citations, co-citations, top journal trends, high-impact publications, and collaborations among authors in one place among the data published in the past eight decades on Aedes-borne diseases.
Collapse
Affiliation(s)
- Ankita Sindhania
- Department of Entomology, Fralin Institute of Life Sciences, Virginia Tech University, Blacksburg, Virginia, USA
| | - Kalpana Baruah
- National Center for Vector Borne Diseases Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, Delhi
| | - Amit Katewa
- National Center for Vector Borne Diseases Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, Delhi
| | - Yash Paul Sharma
- Vector Biology and Control Division, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| |
Collapse
|
4
|
Narreddy HR, Kondapalli RP, Tc V. Optimization of process parameters for specific pathogen-free chicken embryonic fibroblast cultivation for yellow fever vaccine production. Prep Biochem Biotechnol 2025; 55:210-216. [PMID: 39049774 DOI: 10.1080/10826068.2024.2382795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The yellow fever (YF) vaccine is usually produced with egg-based methods, which has limitations, including potential adverse effects and low production yields. Alternatively, producing the vaccine using Vero cells or HEK 293 cells can overcome some of these issues, but these methods are significantly more expensive. In the current study, the YF vaccine candidate 17DD virus was produced in primary chicken embryo fibroblast (CEF) cells. The primary CEF cells isolation from eggs was optimized through a two-step process. In the first step, the important parameters that contribute to the development of the egg embryo, such as egg position, relative humidity (RH), and incubation time are optimized. In second step, primary CEF release parameters namely; trypsin volume and incubation temperature are optimized. Both steps were optimized using statistical methods. Further, the seeding cell density of isolated CEF was also optimized. It was observed that 5 x 104 cells/cm2 gave the highest virus titer of 3.89 million PFU/ml. The 17DD yields achieved in primary CEFs are much higher than egg-based production and it is an economically viable method.
Collapse
Affiliation(s)
- Hareesh Reddy Narreddy
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Guntur, India
| | | | - Venkateswarulu Tc
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Guntur, India
| |
Collapse
|
5
|
Logiudice J, Alberti M, Ciccarone A, Rossi B, Tiecco G, De Francesco MA, Quiros-Roldan E. Introduction of Vector-Borne Infections in Europe: Emerging and Re-Emerging Viral Pathogens with Potential Impact on One Health. Pathogens 2025; 14:63. [PMID: 39861024 PMCID: PMC11768692 DOI: 10.3390/pathogens14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The rise and resurgence of vector-borne diseases (VBDs) in Europe pose an expanding public health challenge, exacerbated by climate change, globalization, and ecological disruptions. Both arthropod-borne viruses (arboviruses) transmitted by ticks such as Crimean-Congo hemorrhagic fever and arboviruses transmitted by mosquitoes like dengue, Chikungunya, Zika, and Japanese encephalitis have broadened their distribution due to rising temperatures, changes in rainfall, and increased human mobility. By emphasizing the importance of interconnected human, animal, and environmental health, integrated One Health strategies are crucial in addressing this complex issue. Europe faces increased risk due to the expanding habitats of disease-carrying organisms, the spread of new species like Aedes albopictus since 2013, and increased movement of infected individuals between countries, leading European countries to implement strategies such as enhanced surveillance systems, public awareness campaigns, and prompt outbreak response strategies. However, the lack of both targeted antiviral therapies and vaccines for many arboviruses, together with undetected or asymptomatic cases, hamper containment efforts. Therefore, it is important to have integrated strategies that combine climate modeling, disease surveillance, and public health interventions to address expected changes in disease patterns due to global changes. This review explores the spread of arboviruses in Europe, highlighting their historical context, current transmission dynamics, and their impact on public health.
Collapse
Affiliation(s)
- Jacopo Logiudice
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (J.L.); (M.A.); (A.C.); (G.T.); (E.Q.-R.)
| | - Maria Alberti
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (J.L.); (M.A.); (A.C.); (G.T.); (E.Q.-R.)
| | - Andrea Ciccarone
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (J.L.); (M.A.); (A.C.); (G.T.); (E.Q.-R.)
| | - Benedetta Rossi
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
- Department of Experimental Medicine and Public Health, School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Giorgio Tiecco
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (J.L.); (M.A.); (A.C.); (G.T.); (E.Q.-R.)
| | - Maria Antonia De Francesco
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (J.L.); (M.A.); (A.C.); (G.T.); (E.Q.-R.)
| |
Collapse
|
6
|
Kakulu RK, Kapinga JV, Rugarabamu S, Kemibala E, Beyanga M, Mbelele PM, Massa K, Kimaro EG, Mpolya EA. Seroprevalence and molecular analysis of yellow fever virus in mosquitoes at Namanga and Mutukula borders in Tanzania. Int J Infect Dis 2025; 150:107270. [PMID: 39426492 DOI: 10.1016/j.ijid.2024.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVES Yellow fever (YF) is a major public health concern, particularly in Africa and South America. This study aimed to detect YF in human and mosquito samples to understand transmission dynamics in the Tanzania-Uganda and Tanzania-Kenya cross-border areas. METHODS Blood samples were collected from individuals aged ≥9 months for serological testing. Mosquitoes were captured and tested for YF virus RNA. Logistic regression models were used to predict seroprevalence and associated risk factors. RESULTS The overall YF seroprevalence was 12.5%, with higher rates among older individuals (7.0%) and female participants (immunoglobulin [Ig] G 4.4%, IgM 6.0%). Notably, YF virus RNA was detected in three out of 46 pools of 192 mosquitoes. The odds of testing positive for YF IgG were lower among those with primary education compared with college education (AOR = 0.27, CI: 0.08-0.88) and increased with those experiencing muscle pain (AOR = 4.5, CI: 1.08-18.78) while the odds of testing positive to YF IgM increased with being female (AOR = 4.7, CI: 1.5-14.7), traveling to YF endemic areas (AOR = 5.2, CI: 1.35-44.75), exposure to Aedes mosquitoes (AOR = 3.7, CI: 1.27-10.84) and exhibiting bruising (AOR = 13.5, CI: 1.23-145.72) CONCLUSIONS: Although Tanzania has not experienced YF outbreaks, evidence of YF exposure at the studied borders highlights the need for strengthening cross-border surveillance, vector control, and vaccination efforts. Further research is needed to evaluate the country's overall YF risks.
Collapse
Affiliation(s)
- Remidius Kamuhabwa Kakulu
- Department of Health and Biomedical Sciences, School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania; Department of Preventive Services, Ministry of Health, Dodoma, Tanzania.
| | | | - Sima Rugarabamu
- Department of Microbiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Elison Kemibala
- Muheza Vector Control Institute, Tanzania Ministry of Health, Muheza, Tanzania
| | - Medard Beyanga
- National Public Health Laboratory, Tanzania Ministry of Health, Dar es Salaam, Tanzania
| | | | - Khalid Massa
- Department of Preventive Services, Ministry of Health, Dodoma, Tanzania
| | - Esther Gwae Kimaro
- Department of Health and Biomedical Sciences, School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Emmanuel Abraham Mpolya
- Department of Health and Biomedical Sciences, School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom; Center for Global Health, Perelman School of Medicine University of Pennsylvania Philadelphia, PA, USA; Institute for Health Metrics and Evaluation, Population Health Building/Hans Rosling Center, Seattle, WA, USA
| |
Collapse
|
7
|
Ali MS, Mekonen EG. Yellow fever vaccine coverage and associated factors among under-five children in Kenya: Data from Kenyan Demographic and Health Survey 2022. Hum Vaccin Immunother 2024; 20:2391596. [PMID: 39165035 PMCID: PMC11340740 DOI: 10.1080/21645515.2024.2391596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
Yellow fever is a vaccine preventable hemorrhagic disease that leads to morbidity and mortality in the affected individuals. The only options for preventing and controlling its spread are through vaccination. Therefore, this study was conducted to estimate yellow fever vaccination coverage and associated factors among under-five children in Kenya. The total weighted samples of 2,844 children aged under-five were included in this study. The data were taken from the Kenyan Demographic and Health Survey 2022. In the multivariable analysis, the adjusted odds ratio with a 95% CI was used to declare significant associations of yellow fever vaccine. The yellow fever vaccine coverage among children aged under-five in Kenya was 18.50%. The significant factors associated with yellow fever vaccine coverage were: the age of the child older than 24 months (AOR = 1.7; 95% CI (1.17-2.58)); higher odds of yellow fever vaccination coverage was observed among older children, place of residence (AOR = 1.76; 95% CI (1.04-2.97)); higher odds was observed among urban residents, maternal education; primary education (AOR = 1.99; 95% CI (1.04-2.97)), secondary education (AOR = 2.85; 95% CI (1.41-5.76)), mothers who attended primary or secondary education have higher odds of yellow fever vaccination coverage, wealth index (AOR = 2.38; 95% CI (1.15-4.91)); higher odds of vaccination coverage was observed among poor households. Yellow fever vaccine coverage among under-five children in Kenya was low and has become an important public health concern. Policymakers and other stakeholders are recommended to focus on vaccination programs to prevent yellow fever disease.
Collapse
Affiliation(s)
- Mohammed Seid Ali
- Department of Pediatrics and Child Health Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Enyew Getaneh Mekonen
- Department of Surgical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
8
|
Modjarrad K, Scott PT, McCauley M, Ober-Shepherd B, Sondergaard E, Amare MF, Parikh AP, Omar B, Minutello AM, Adhikarla H, Wu Y, P AR, Delore V, Mantel N, Morrison MN, Kourbanova KS, Martinez ME, Guzman I, Greenleaf ME, Darden JM, Koren MA, Hamer MJ, Lee CE, Hutter JN, Peel SA, Robb ML, Vangelisti M, Feroldi E. Safety and immunogenicity of a next-generation live-attenuated yellow fever vaccine produced in a Vero cell line in the USA: a phase 1 randomised, observer-blind, active-controlled, dose-ranging clinical trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:1393-1402. [PMID: 39153488 DOI: 10.1016/s1473-3099(24)00406-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Recent outbreaks between 2015-17 and production delays have led to a yellow fever vaccine shortage. Therefore, there is an urgent need for new yellow fever vaccines with improved production scalability. A next-generation live-attenuated yellow fever vaccine candidate (vYF), produced in a Vero cell line has shown similar immunogenicity to licensed yellow fever vaccines in preclinical studies. In this study, we aimed to report the safety and immunogenicity of vYF in human clinical trial participants. METHODS In this first in-human, phase 1 randomised, observer-blind, active-controlled, dose-ranging clinical trial conducted at a single centre in the USA (Walter Reed Army Institute of Research, Silver Spring, MD, USA), 72 healthy adults (aged 18-60 years), without a known history of flavivirus infection or vaccination were randomly assigned (1:1:1:1) using interactive response technology to receive one dose of either vYF at 4, 5 or 6 Log CCID50 or the licensed YF-VAX (18 individuals per group). The primary outcomes were safety, neutralising antibody (NAb) titres through D180 post-vaccination in the per-protocol analysis set (comprised of yellow fever-naive participants who received their intended vaccine and provided a valid post-vaccination blood sample), and occurrence, and level of yellow fever viraemia in each vaccine group through D14 post-vaccination. FINDINGS All vYF doses had a safety and tolerability profile similar to YF-VAX. The most frequently reported solicited injection site reactions (vYF groups vs YF-VAX group) were pain (22% [12 of 54 participants, 95% CI 12-36] vs 28% [five of 18 participants, 10-54]), and erythema (13% [seven of 54 participants, 5-25] vs 39% [seven of 18 participants, 17-64]), with headache (32% [17 of 54 participants, 20-46] vs 44% [eight of 18 participants, 22-69]) and malaise (26% [14 of 54 participants, 15-40] vs 33% [six of 18 participants, 13-59]) as the most frequently reported solicited systemic reactions. One grade 3 solicited reaction (erythema) reported in the YF-VAX group resolved spontaneously. No serious unsolicited adverse events or deaths were reported. Viraemia was transiently detected in 50 participants between D4 and D10 in all groups and was observed in more participants or for a longer time in the vYF 6 Log CCID50 and YF-VAX groups. All yellow fever-naive vaccine recipients across the study groups seroconverted yielding four-fold increase from baseline in yellow fever NAb titres measured by yellow fever microneutralisation assay by D28 and were seroprotected with yellow fever NAb titres of at least 10 [1/dil]). Overall, 100% (18 of 18 participants, 95% CI 82-100), 89% (16 participants, 65-99), 100% (18 participants, 82-100), and 94% (17 participants, 73-100) of participants in the vYF 4 Log, vYF 5 Log, vYF 6 Log CCID50 groups, and YF-VAX group, respectively, remained seroprotected through D180. INTERPRETATION vYF has a similar safety and immunogenicity profile to YF-VAX. In general, the vYF 5 Log CCID50 dose appeared to show optimal viraemia, safety, and immunogenicity, and was chosen for subsequent development. FUNDING Sanofi.
Collapse
Affiliation(s)
- Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul T Scott
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Melanie McCauley
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Brittany Ober-Shepherd
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Erica Sondergaard
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Mihret F Amare
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ajay P Parikh
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Badryah Omar
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | | | | | | | | | - Meshell N Morrison
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Kamila S Kourbanova
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Melissa E Martinez
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Ivelese Guzman
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Melissa E Greenleaf
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Janice M Darden
- Diagnostics and Countermeasures Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michael A Koren
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Melinda J Hamer
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA; Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA; Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Christine E Lee
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Jack N Hutter
- Clinical Trials Center, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Sheila A Peel
- Diagnostics and Countermeasures Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | |
Collapse
|
9
|
Taylor-Robinson AW. Is vector competence testing of Aedes aegypti a valid tool to determine the transmission potential of yellow fever virus? New Microbes New Infect 2024; 62:101550. [PMID: 39719944 PMCID: PMC11667690 DOI: 10.1016/j.nmni.2024.101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024] Open
Affiliation(s)
- Andrew W. Taylor-Robinson
- College of Health Sciences, VinUniversity, Gia Lam District, Hanoi, 100000, Viet Nam
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 1904, USA
| |
Collapse
|
10
|
Zhang Y, Wang M, Huang M, Zhao J. Innovative strategies and challenges mosquito-borne disease control amidst climate change. Front Microbiol 2024; 15:1488106. [PMID: 39564491 PMCID: PMC11573536 DOI: 10.3389/fmicb.2024.1488106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
The revival of the transmission dynamics of mosquito-borne diseases grants striking challenges to public health intensified by climate change worldwide. This inclusive review article examines multidimensional strategies and challenges linked to climate change and the epidemiology of mosquito-borne diseases such as malaria, dengue, Zika, chikungunya, and yellow fever. It delves into how the biology, pathogenic dynamics, and vector distribution of mosquitoes are influenced by continuously rising temperatures, modified rainfall patterns, and extreme climatic conditions. We also highlighted the high likelihood of malaria in Africa, dengue in Southeast Asia, and blowout of Aedes in North America and Europe. Modern predictive tools and developments in surveillance, including molecular gears, Geographic Information Systems (GIS), and remote sensing have boosted our capacity to predict epidemics. Integrated data management techniques and models based on climatic conditions provide a valuable understanding of public health planning. Based on recent data and expert ideas, the objective of this review is to provide a thoughtful understanding of existing landscape and upcoming directions in the control of mosquito-borne diseases regarding changing climate. This review determines emerging challenges and innovative vector control strategies in the changing climatic conditions to ensure public health.
Collapse
Affiliation(s)
- Yuan Zhang
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, China
| | - Minhao Wang
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Mingliu Huang
- Chou Io Insect Museum, Ningbo Yinzhou Cultural Relics Protection and Management Center, Ningbo, China
| | - Jinyi Zhao
- Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Sreepangi S, Baha H, Opoku LA, Jones NX, Konadu M, Alem F, Barrera MD, Narayanan A. Host-Driven Ubiquitination Events in Vector-Transmitted RNA Virus Infections as Options for Broad-Spectrum Therapeutic Intervention Strategies. Viruses 2024; 16:1727. [PMID: 39599842 PMCID: PMC11599102 DOI: 10.3390/v16111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Many vector-borne viruses are re-emerging as public health threats, yet our understanding of the virus-host interactions critical for productive infection remains limited. The ubiquitination of proteins, including host- and pathogen-derived proteins is a highly prominent and consistent post-translational modification that regulates protein function through signaling and degradation. Viral proteins are documented to hijack the host ubiquitination machinery to modulate multiple host processes including antiviral defense mechanisms. The engagement of the host ubiquitination machinery in the post-translational modification of viral proteins to support aspects of the viral life cycle including assembly and egress is also well documented. Exploring the role ubiquitination plays in the life cycle of vector-transmitted viral pathogens will increase the knowledge base pertinent to the impact of host-enabled ubiquitination of viral and host proteins and the consequences on viral pathogenesis. In this review, we explore E3 ligase-regulated ubiquitination pathways functioning as proviral and viral restriction factors in the context of acutely infectious, vector-transmitted viral pathogens and the potential for therapeutically targeting them for countermeasures development.
Collapse
Affiliation(s)
- Sanskruthi Sreepangi
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Haseebullah Baha
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Lorreta Aboagyewa Opoku
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Naomi X. Jones
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Maame Konadu
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Farhang Alem
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA;
| | - Michael D. Barrera
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA; (S.S.); (H.B.); (L.A.O.); (N.X.J.); (M.K.); (M.D.B.)
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
12
|
Guo W, Jiang T, Rao J, Zhang Z, Zhang X, Su J, Yin C, Lu M, Hu X, Shan C. A safer cell-based yellow fever live attenuated vaccine protects mice against YFV infection. iScience 2024; 27:110972. [PMID: 39398246 PMCID: PMC11470684 DOI: 10.1016/j.isci.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/07/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
The live attenuated yellow fever vaccine (YF17D) has caused controversial safety issues in history with low-yield problems, which has led to a large population being unable to be vaccinated and vaccine shortage in facing recent outbreaks. Here, we report a safer live attenuated vaccine candidate, YF17D-Δ77, which contains 77 nucleotides deletion in the 3' untranslated region (3' UTR) of the YF17D genome. YF17D-Δ77 exhibited no neurotropism and decreased viscerotropism and caused significantly lower lethality in mice compared to YF17D. Mechanistically, the deletion enhanced the sensitivity of the virus to type I and type II interferon responses, which hindered viral replication. Encouragingly, YF17D-Δ77 provided comparable immune protection in mice as did YF17D. Even 10 PFU of YF17D-Δ77 completely protected mice against YFV-Asibi challenge. In addition, the Δ77 mutation showed excellent stability after successive passages in Vero cells. Collectively, the data suggest that further development of YF17D-Δ77 as vaccine candidate is warranted.
Collapse
Affiliation(s)
- Weiwei Guo
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Tingting Jiang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Juhong Rao
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zihan Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xuekai Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jiaoling Su
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Chunhong Yin
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mingqing Lu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xue Hu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chao Shan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| |
Collapse
|
13
|
McSteen BW, Ying XH, Lucero C, Jesudian AB. Viral etiologies of acute liver failure. World J Virol 2024; 13:97973. [PMID: 39323454 PMCID: PMC11401000 DOI: 10.5501/wjv.v13.i3.97973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Acute liver failure (ALF) is a rare cause of liver-related mortality worldwide, with an estimated annual global incidence of more than one million cases. While drug-induced liver injury, including acetaminophen toxicity, is the leading cause of ALF in the Western world, viral infections remain a significant cause of ALF and the most common cause in many developing nations. Given the high mortality rates associated with ALF, healthcare providers should be aware of the broad range of viral infections that have been implicated to enable early diagnosis, rapid treatment initiation when possible, and optimal management, which may include liver transplantation. This review aims to provide a summary of viral causes of ALF, diagnostic approaches, treatment options, and expected outcomes.
Collapse
Affiliation(s)
- Brian W McSteen
- Department of Medicine, New York-Presbyterian/Weill Cornell Campus, New York, NY 10021, United States
| | - Xiao-Han Ying
- Department of Medicine, New York-Presbyterian/Weill Cornell Campus, New York, NY 10021, United States
| | - Catherine Lucero
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, United States
| | - Arun B Jesudian
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, United States
| |
Collapse
|
14
|
Handunnetthi L, Ramasamy MN, Turtle L, Hunt DPJ. Identifying and reducing risks of neurological complications associated with vaccination. Nat Rev Neurol 2024; 20:541-554. [PMID: 39112653 DOI: 10.1038/s41582-024-01000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Vaccines protect against many infectious diseases, including some that can directly or indirectly cause nervous system damage. Serious neurological consequences of immunization are typically extremely rare, although they have the potential to jeopardize vaccination programmes, as demonstrated most recently during the COVID-19 pandemic. Neurologists have an important role in identifying safety signals at population and individual patient levels, as well as providing advice on the benefit-risk profile of vaccination in cohorts of patients with diverse neurological conditions. This article reviews the links between vaccination and neurological disease and considers how emerging signals can be evaluated and their mechanistic basis identified. We review examples of neurotropic infections with live attenuated vaccines, as well as neuroimmunological and neurovascular sequelae of other types of vaccines. We emphasize that such risks are typically dwarfed by neurological complications associated with natural infection and discuss how the risks can be further mitigated. The COVID-19 pandemic has highlighted the need to rapidly identify and minimize neurological risks of vaccination, and we review the structures that need to be developed to protect public health against these risks in the future.
Collapse
Affiliation(s)
- Lahiru Handunnetthi
- Nuffield Department of Neurosciences, Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Lance Turtle
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - David P J Hunt
- UK Dementia Research Institute, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
15
|
Zhu F, Sun MX, Zhao SQ, Qin CF, Wang JH, Deng YQ. Immunogenicity and Protective Efficacy of Aerosolized Live-Attenuated Yellow Fever 17D Vaccine in Mice. Vaccines (Basel) 2024; 12:856. [PMID: 39203982 PMCID: PMC11360090 DOI: 10.3390/vaccines12080856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Yellow fever (YF), caused by the yellow fever virus (YFV), continually spreads and causes epidemics worldwide, posing a great threat to human health. The live-attenuated YF 17D vaccine (YF-17D) has been licensed for preventing YFV infection and administrated via the intramuscular (i.m.) route. In this study, we sought to determine the immunogenicity and protective efficacy of aerosolized YF-17D via the intratracheal (i.t.) route in mice. YF-17D stocks in liquids were successfully aerosolized into particles of 6 μm. Further in vitro phenotype results showed the aerosolization process did not abolish the infectivity of YF-17D. Meanwhile, a single i.t. immunization with aerosolized YF-17D induced robust humoral and cellular immune responses in A129 mice, which is comparable to that received i.p. immunization. Notably, the aerosolized YF-17D also triggered specific secretory IgA (SIgA) production in bronchoalveolar lavage. Additionally, all immunized animals survived a lethal dose of YFV challenge in mice. In conclusion, our results support further development of aerosolized YF-17D in the future.
Collapse
Affiliation(s)
- Feng Zhu
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China;
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| | - Meng-Xu Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| | - Suo-Qun Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| | - Jin-Hua Wang
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China;
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| |
Collapse
|
16
|
Mensah EA, Gyasi SO, Nsubuga F, Alali WQ. A proposed One Health approach to control yellow fever outbreaks in Uganda. ONE HEALTH OUTLOOK 2024; 6:9. [PMID: 38783349 PMCID: PMC11119388 DOI: 10.1186/s42522-024-00103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Yellow Fever (YF) is an acute viral hemorrhagic disease. Uganda is located within the Africa YF belt. Between 2019 and 2022, the Ugandan Health Authorities reported at least one outbreak of YF annually with an estimated 892 suspected cases, on average per year. The persistent recurrence of this disease raises significant concerns about the efficacy of current response strategies and prevention approaches. YF has been recognized as a One Health issue due to its interrelatedness with the animal and environmental domains. Monkeys have been recognized as the virus primary reservoir. The YF virus is transmitted through bites of infected Aedes or Haemagogus species mosquitoes between monkeys and humans. Human activities, monkey health, and environmental health issues (e.g., climate change and land use) impact YF incidence in Uganda. Additionally, disease control programs for other tropical diseases, such as mosquitoes control programs for malaria, impact YF incidence.This review adopts the One Health approach to highlight the limitations in the existing segmented YF control and prevention strategies in Uganda, including the limited health sector surveillance, the geographically localized outbreak response efforts, the lack of a comprehensive vaccination program, the limited collaboration and communication among relevant national and international agencies, and the inadequate vector control practices. Through a One Health approach, we propose establishing a YF elimination taskforce. This taskforce would oversee coordination of YF elimination initiatives, including implementing a comprehensive surveillance system, conducting mass YF vaccination campaigns, integrating mosquito management strategies, and enhancing risk communication. It is anticipated that adopting the One Health approach will reduce the risk of YF incidence and outbreaks.
Collapse
Affiliation(s)
- Emmanuel Angmorteh Mensah
- Department of Biostatistics & Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Samuel Ofori Gyasi
- Department of Immunization, Vaccines and Biologicals, World Health Organization Country Office, Kampala, Uganda
| | - Fred Nsubuga
- Division of Immunization and Vaccines, Ministry of Health, Kampala, Uganda
| | - Walid Q Alali
- Department of Biostatistics & Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
17
|
Fernandes NCCDA, Cunha MS, Suarez PEN, Machado EF, Garcia JM, De Carvalho ACSR, Figueiredo KB, Ressio RA, Matsumoto PSS, Saad LDC, de Jesus IP, de Carvalho J, Ferreira CSDS, Spínola RMF, Maeda AY, Guerra JM. Phylogenetic analysis reveals a new introduction of Yellow Fever virus in São Paulo State, Brazil, 2023. Acta Trop 2024; 251:107110. [PMID: 38163515 DOI: 10.1016/j.actatropica.2023.107110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Yellow Fever (YF) is a viral arbovirosis of Public Health importance. In Brazil, surveillance is focused mainly on detecting epizootic events of Platyrrhini. Herein, we compared the detection and phylogenetic analysis of YF virus in two neotropical primates (NTP), a Callithrix detected in the previous epidemic period (2016-2020), and a Callicebus nigrifons, showing a new introduction of YF in 2023. This paper illustrates the importance of joint actions of laboratory and field teams to ensure quick response to Public Health emergencies, such as the intensification of vaccination of susceptible human populations.
Collapse
Affiliation(s)
| | | | | | - Eduardo Ferreira Machado
- Centro de Patologia, Instituto Adolfo Lutz, São Paulo, São Paulo, SP, Brazil; Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Julia de Carvalho
- Centro de Patologia, Instituto Adolfo Lutz, São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Juliana Mariotti Guerra
- Centro de Patologia, Instituto Adolfo Lutz, São Paulo, São Paulo, SP, Brazil; Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Coelho Ferraz A, Bueno da Silva Menegatto M, Lameira Souza Lima R, Samuel Ola-Olub O, Caldeira Costa D, Carlos de Magalhães J, Maurício Rezende I, Desiree LaBeaud A, P Monath T, Augusto Alves P, Teixeira de Carvalho A, Assis Martins-Filho O, P Drumond B, Magalhães CLDB. Yellow fever virus infection in human hepatocyte cells triggers an imbalance in redox homeostasis with increased reactive oxygen species production, oxidative stress, and decreased antioxidant enzymes. Free Radic Biol Med 2024; 213:266-273. [PMID: 38278309 PMCID: PMC10911966 DOI: 10.1016/j.freeradbiomed.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/28/2024]
Abstract
Yellow fever (YF) presents a wide spectrum of severity, with clinical manifestations in humans ranging from febrile and self-limited to fatal cases. Although YF is an old disease for which an effective and safe vaccine exists, little is known about the viral- and host-specific mechanisms that contribute to liver pathology. Several studies have demonstrated that oxidative stress triggered by viral infections contributes to pathogenesis. We evaluated whether yellow fever virus (YFV), when infecting human hepatocytes cells, could trigger an imbalance in redox homeostasis, culminating in oxidative stress. YFV infection resulted in a significant increase in reactive oxygen species (ROS) levels from 2 to 4 days post infection (dpi). When measuring oxidative parameters at 4 dpi, YFV infection caused oxidative damage to lipids, proteins, and DNA, evidenced by an increase in lipid peroxidation/8-isoprostane, carbonyl protein, and 8-hydroxy-2'-deoxyguanosine, respectively. Furthermore, there was a significant reduction in the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), in addition to a reduction in the ratio of reduced to oxidized glutathione (GSH/GSSG), indicating a pro-oxidant environment. However, no changes were observed in the enzymatic activity of the enzyme catalase (CAT) or in the gene expression of SOD isoforms (1/2/3), CAT, or GPx. Therefore, our results show that YFV infection generates an imbalance in redox homeostasis, with the overproduction of ROS and depletion of antioxidant enzymes, which induces oxidative damage to cellular constituents. Moreover, as it has been demonstrated that oxidative stress is a conspicuous event in YFV infection, therapeutic strategies based on antioxidant biopharmaceuticals may be new targets for the treatment of YF.
Collapse
Affiliation(s)
- Ariane Coelho Ferraz
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Marília Bueno da Silva Menegatto
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Rafaela Lameira Souza Lima
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Oluwashola Samuel Ola-Olub
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - José Carlos de Magalhães
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del-Rei, Ouro Branco, Minas Gerais, Brazil
| | - Izabela Maurício Rezende
- Pandemic Preparedenss Hub, Divison of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Angelle Desiree LaBeaud
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, California, United States
| | | | - Pedro Augusto Alves
- Imunologia de Doenças Virais, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira de Carvalho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Betânia P Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Mukhopadhyay K, Sengupta M, Misra SC, Majee K. Trends in emerging vector-borne viral infections and their outcome in children over two decades. Pediatr Res 2024; 95:464-479. [PMID: 37880334 DOI: 10.1038/s41390-023-02866-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
This review utilizes quatitative methods and bibliometric data to analyse the trends of emerging and re-emerging vector-borne diseases, with a focus on their impact on pediatric population. To conduct this analysis, a systematic search of PubMed articles from the past two decades was performed, specifically looking at 26 different vector-borne viruses listed in WHO and CDC list of vector-borne viruses. The review found that diseases like Dengue, Zika, West Nile, and Chikungunya were frequently discussed in the literature. On the other hand, diseases such as Tick-borne encephalitis, Rift Valley fever, Venezuelan equine encephalitis, Sindbis fever, Venezuelan equine encephalitis, Ross River virus, and Eastern equine encephalitis showed an upward trend in publications, indicating potential resurgence. In addition to discussing trends and patterns, the review delves into the clinical manifestations and long-term effects of the top 10 viruses in children. It highlights various factors including deforestation, urbanization, global travel, and immunosuppression that contribute to disease emergence and resurgence. To effectively combat these vector-borne diseases, continuous surveillance is crucial. The review also emphasizes the importance of increased vaccination efforts and targeted research to address the health challenges they pose. IMPACT: This review employs quantitative analysis of publications to elucidate trends in emerging pediatric vector-borne viral diseases over two decades. Dengue, the most prevalent of these diseases, has spread to new regions. New strains of Japanese Encephalitis have caused outbreaks. Resurgence of Tick-borne Encephalitis, West Nile, and Yellow Fever due to vaccine hesitancy has also transpired. Continuous global surveillance, increased vaccination, and research into novel therapeutics are imperative to combat the substantial morbidity and mortality burden these diseases pose for children worldwide.
Collapse
Affiliation(s)
| | - Mallika Sengupta
- Microbiology, AIIMS Kalyani, Basantapur, Saguna, West Bengal, India
| | | | - Kiranmay Majee
- Student, AIIMS Kalyani, Basantapur, Saguna, West Bengal, India
| |
Collapse
|
20
|
Renard A, Pérez Lombardini F, Pacheco Zapata M, Porphyre T, Bento A, Suzán G, Roiz D, Roche B, Arnal A. Interaction of Human Behavioral Factors Shapes the Transmission of Arboviruses by Aedes and Culex Mosquitoes. Pathogens 2023; 12:1421. [PMID: 38133304 PMCID: PMC10746986 DOI: 10.3390/pathogens12121421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Arboviruses, i.e., viruses transmitted by blood-sucking arthropods, trigger significant global epidemics. Over the past 20 years, the frequency of the (re-)emergence of these pathogens, particularly those transmitted by Aedes and Culex mosquitoes, has dramatically increased. Therefore, understanding how human behavior is modulating population exposure to these viruses is of particular importance. This synthesis explores human behavioral factors driving human exposure to arboviruses, focusing on household surroundings, socio-economic status, human activities, and demographic factors. Household surroundings, such as the lack of water access, greatly influence the risk of arbovirus exposure by promoting mosquito breeding in stagnant water bodies. Socio-economic status, such as low income or low education, is correlated to an increased incidence of arboviral infections and exposure. Human activities, particularly those practiced outdoors, as well as geographical proximity to livestock rearing or crop cultivation, inadvertently provide favorable breeding environments for mosquito species, escalating the risk of virus exposure. However, the effects of demographic factors like age and gender can vary widely through space and time. While climate and environmental factors crucially impact vector development and viral replication, household surroundings, socio-economic status, human activities, and demographic factors are key drivers of arbovirus exposure. This article highlights that human behavior creates a complex interplay of factors influencing the risk of mosquito-borne virus exposure, operating at different temporal and spatial scales. To increase awareness among human populations, we must improve our understanding of these complex factors.
Collapse
Affiliation(s)
- Aubane Renard
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche Pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34394 Montpellier, France; (A.R.); (D.R.); (B.R.)
| | - Fernanda Pérez Lombardini
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - Mitsuri Pacheco Zapata
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie Évolutive, VetAgro Sup, Campus Vétérinaire de Lyon, 69280 Marcy-l’Etoile, France;
| | - Ana Bento
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Gerardo Suzán
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - David Roiz
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche Pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34394 Montpellier, France; (A.R.); (D.R.); (B.R.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - Benjamin Roche
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche Pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34394 Montpellier, France; (A.R.); (D.R.); (B.R.)
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| | - Audrey Arnal
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche Pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34394 Montpellier, France; (A.R.); (D.R.); (B.R.)
- Fauna Silvestre y Animales de Laboratorio, Departamento de Etología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (F.P.L.); (M.P.Z.); (G.S.)
- International Joint Laboratory IRD/UNAM ELDORADO (Ecosystem, Biological Diversity, Habitat Modifications, and Risk of Emerging Pathogens and Diseases in Mexico), Merida 97205, Mexico
| |
Collapse
|
21
|
Zhang Y, Yang R, Yuan G, Li W, Cui Z, Xiao Z, Dong X, Yang H, Liu X, Zhang L, Hou Y, Liu M, Liu S, Hao Y, Zhang Y, Zheng X. Enhancing Inactivated Yellow Fever 17D Vaccine-Induced Immune Responses in Balb/C Mice Using Alum/CpG. Vaccines (Basel) 2023; 11:1744. [PMID: 38140149 PMCID: PMC10747526 DOI: 10.3390/vaccines11121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
There are some concerns about the safety of live attenuated yellow fever vaccines (YF-live), particularly viscerotropic adverse events, which have a high mortality rate. The cellular production of the vaccine will not cause these adverse effects and has the potential to extend applicability to those who have allergic reactions, immunosuppression, and age. In this study, inactivated yellow fever (YF) was prepared and adsorbed with Alum/CpG. The cellular and humoral immunities were investigated in a mouse model. The results showed that Alum/CpG (20 μg/mL) could significantly increase the binding and neutralizing activities of the antibodies against YF. Moreover, the antibody level at day 28 after one dose was similar to that of the attenuated vaccine, but significantly higher after two doses. At the same time, Alum/CpG significantly increased the levels of IFN-γ and IL-4 cytokines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing 100170, China; (Y.Z.); (R.Y.); (G.Y.); (W.L.); (Z.C.); (Z.X.); (X.D.); (H.Y.); (X.L.); (L.Z.); (Y.H.); (M.L.); (S.L.); (Y.H.)
| | - Xiaotong Zheng
- Beijing Institute of Biological Products Company Limited, Beijing 100170, China; (Y.Z.); (R.Y.); (G.Y.); (W.L.); (Z.C.); (Z.X.); (X.D.); (H.Y.); (X.L.); (L.Z.); (Y.H.); (M.L.); (S.L.); (Y.H.)
| |
Collapse
|
22
|
Piauilino ICR, Souza RKDS, Lima MT, Rodrigues YKB, da Silva LFA, Gouveia AS, Neto AVDS, Chaves BA, Alecrim MDGC, de Menezes CHAB, Castilho MDC, Baia-da-Silva DC, Espinosa FEM. Does the Presence or a High Titer of Yellow Fever Virus Antibodies Interfere with Pregnancy Outcomes in Women with Zika Virus Infection? Viruses 2023; 15:2244. [PMID: 38005922 PMCID: PMC10675107 DOI: 10.3390/v15112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Zika virus (ZIKV) and yellow fever virus (YFV) originated in Africa and expanded to the Americas, where both are co-circulated. It is hypothesized that in areas of high circulation and vaccination coverage against YFV, children of pregnant women have a lower risk of microcephaly. We evaluated the presence and titers of antibodies and outcomes in women who had ZIKV infection during pregnancy. Pregnancy outcomes were classified as severe, moderate, and without any important outcome. An outcome was defined as severe if miscarriage, stillbirth, or microcephaly occurred, and moderate if low birth weight and/or preterm delivery occurred. If none of these events were identified, the pregnancy was defined as having no adverse effects. A sample of 172 pregnant women with an acute ZIKV infection confirmed during pregnancy were collected throughout 2016. About 89% (150 of 169) of them presented immunity against YFV, including 100% (09 of 09) of those who had severe outcomes, 84% (16 of 19) of those who had moderate outcomes, and 89% (125 of 141) of those who had non-outcomes. There was no difference between groups regarding the presence of anti-YFV antibodies (p = 0.65) and YFV titers (p = 0.6). We were unable to demonstrate a protective association between the presence or titers of YFV antibodies and protection against serious adverse outcomes from exposure to ZIKV in utero.
Collapse
Affiliation(s)
- Isa Cristina Ribeiro Piauilino
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus 6904-000, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 6904-000, Brazil
| | | | | | - Yanka Karolinna Batista Rodrigues
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus 6904-000, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 6904-000, Brazil
| | - Luís Felipe Alho da Silva
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus 6904-000, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 6904-000, Brazil
| | - Ayrton Sena Gouveia
- Programa de Pós-graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Alexandre Vilhena da Silva Neto
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus 6904-000, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 6904-000, Brazil
| | | | - Maria das Graças Costa Alecrim
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus 6904-000, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 6904-000, Brazil
- Coordenação do Curso de Medicina da Faculdade Metropolitana de Manaus/FAMETRO, Manaus 69050-000, Brazil
| | - Camila Helena Aguiar Bôtto de Menezes
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus 6904-000, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 6904-000, Brazil
| | | | - Djane Clarys Baia-da-Silva
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus 6904-000, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 6904-000, Brazil
- Faculdade de Farmácia, Universidade Nilton Lins, Manaus 69058-030, Brazil
- Instituto Leônidas & Maria Deane,-ILMD/FIOCRUZ Amazônia, Manaus 69057-070, Brazil
| | - Flor Ernestina Martinez Espinosa
- Programa de Pós-Graduação em Medicina Tropical (PPGMT), Universidade do Estado do Amazonas (UEA), Manaus 6904-000, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 6904-000, Brazil
- Instituto Leônidas & Maria Deane,-ILMD/FIOCRUZ Amazônia, Manaus 69057-070, Brazil
| |
Collapse
|
23
|
de Almeida PR, Weber MN, Sonne L, Spilki FR. Aedes-borne orthoflavivirus infections in neotropical primates - Ecology, susceptibility, and pathogenesis. Exp Biol Med (Maywood) 2023; 248:2030-2038. [PMID: 38230520 PMCID: PMC10800122 DOI: 10.1177/15353702231220659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Arboviral diseases comprise a group of important infectious diseases imposing a heavy burden to public health in many locations of the world. Orthoflaviviruses are viruses belonging to the genus Orthoflavivirus; this genus includes some of the most relevant arboviruses to human health. Orthoflaviviruses can infect several different hosts, with some species being transmitted in cycles involving birds and anthropophilic mosquitoes and others transmitted between mammals and mostly Aedes sp. mosquitoes. Some of the most important sylvatic reservoirs of orthoflaviviruses are non-human primates (NHPs). Many flaviviruses that infect NHPs in nature have the potential to cause epidemics in humans, as has been observed in the cases of Orthoflavivirus denguei (dengue virus - DENV), Orthoflavivirus flavi (yellow fever virus - YFV), and Orthoflavivirus zikaense (Zika virus - ZIKV). In this minireview, we discuss important aspects regarding history, ecology involving NHP, distribution, disease outcome, and pathogenesis of these three major orthoflaviviruses that affect humans and NHP and relate this information to the potential of using NHP as experimental models. In addition, we suggest some orthoflaviviruses that could be better investigated, both in nature and in experimental studies, in light of the recent revolution in molecular biology.
Collapse
Affiliation(s)
- Paula Rodrigues de Almeida
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo, RS 93352-000, Brazil
| | - Matheus Nunes Weber
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo, RS 93352-000, Brazil
| | - Luciana Sonne
- Veterinary Pathology Sector, Veterinary Clinical Pathology Department, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS 91540-000, Brazil
| | - Fernando Rosado Spilki
- Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo, RS 93352-000, Brazil
| |
Collapse
|
24
|
Lim AY, Jafari Y, Caldwell JM, Clapham HE, Gaythorpe KAM, Hussain-Alkhateeb L, Johansson MA, Kraemer MUG, Maude RJ, McCormack CP, Messina JP, Mordecai EA, Rabe IB, Reiner RC, Ryan SJ, Salje H, Semenza JC, Rojas DP, Brady OJ. A systematic review of the data, methods and environmental covariates used to map Aedes-borne arbovirus transmission risk. BMC Infect Dis 2023; 23:708. [PMID: 37864153 PMCID: PMC10588093 DOI: 10.1186/s12879-023-08717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for different Aedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used. METHODS We searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit their model to real-world epidemiological data and make predictions to new spatial locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.). RESULTS We found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral diseases, with a total of 176 papers published 2002-2022 with the largest increases shortly following major epidemics. Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess impacts of future global change, (ii) regional models used to predict the spread of major epidemics between countries and (iii) national and sub-national models that use local datasets to better understand transmission dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance via out-of-sample validation procedures. CONCLUSIONS Here we show that approaches to map risk for different arboviruses have diversified in response to changing use cases, epidemiology and data availability. We identify key differences in mapping approaches between different arboviral diseases, discuss future research needs and outline specific recommendations for future arbovirus mapping.
Collapse
Affiliation(s)
- Ah-Young Lim
- Department of Infectious Disease Epidemiology and Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
- Centre for Mathematical Modelling of Infectious Diseases, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
| | - Yalda Jafari
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jamie M Caldwell
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Hannah E Clapham
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Katy A M Gaythorpe
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Laith Hussain-Alkhateeb
- School of Public Health and Community Medicine, Sahlgrenska Academy, Institute of Medicine, Global Health, University of Gothenburg, Gothenburg, Sweden
- Population Health Research Section, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Michael A Johansson
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, USA
| | | | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Clare P McCormack
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Jane P Messina
- School of Geography and the Environment, University of Oxford, Oxford, UK
- Oxford School of Global and Area Studies, University of Oxford, Oxford, UK
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ingrid B Rabe
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Robert C Reiner
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Sadie J Ryan
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Jan C Semenza
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Diana P Rojas
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Oliver J Brady
- Department of Infectious Disease Epidemiology and Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
25
|
Bhat EA, Ali T, Sajjad N, Kumar R, Bron P. Insights into the structure, functional perspective, and pathogenesis of ZIKV: an updated review. Biomed Pharmacother 2023; 165:115175. [PMID: 37473686 DOI: 10.1016/j.biopha.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Zika virus (ZIKV) poses a serious threat to the entire world. The rapid spread of ZIKV and recent outbreaks since 2007 have caused worldwide concern about the virus. Diagnosis is complicated because of the cross-reactivity of the virus with other viral antibodies. Currently, the virus is diagnosed by molecular techniques such as RT-PCR and IgM-linked enzyme immunoassays (MAC-ELISA). Recently, outbreaks and epidemics have been caused by ZIKV, and severe clinical symptoms and congenital malformations have also been associated with the virus. Although most ZIKV infections present with a subclinical or moderate flu-like course of illness, severe symptoms such as Guillain-Barre syndrome in adults and microcephaly in children of infected mothers have also been reported. Because there is no reliable cure for ZIKV and no vaccine is available, the public health response has focused primarily on preventing infection, particularly in pregnant women. A comprehensive approach is urgently needed to combat this infection and stop its spread and imminent threat. In view of this, this review aims to present the current structural and functional viewpoints, structure, etiology, clinical prognosis, and measures to prevent this transmission based on the literature and current knowledge. Moreover, we provide thorough description of the current understanding about ZIKV interaction with receptors, and a comparative examination of its similarities and differences with other viruses.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| | - Tufail Ali
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir 190006, India
| | - Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
26
|
Lippi CA, Mundis SJ, Sippy R, Flenniken JM, Chaudhary A, Hecht G, Carlson CJ, Ryan SJ. Trends in mosquito species distribution modeling: insights for vector surveillance and disease control. Parasit Vectors 2023; 16:302. [PMID: 37641089 PMCID: PMC10463544 DOI: 10.1186/s13071-023-05912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Species distribution modeling (SDM) has become an increasingly common approach to explore questions about ecology, geography, outbreak risk, and global change as they relate to infectious disease vectors. Here, we conducted a systematic review of the scientific literature, screening 563 abstracts and identifying 204 studies that used SDMs to produce distribution estimates for mosquito species. While the number of studies employing SDM methods has increased markedly over the past decade, the overwhelming majority used a single method (maximum entropy modeling; MaxEnt) and focused on human infectious disease vectors or their close relatives. The majority of regional models were developed for areas in Africa and Asia, while more localized modeling efforts were most common for North America and Europe. Findings from this study highlight gaps in taxonomic, geographic, and methodological foci of current SDM literature for mosquitoes that can guide future efforts to study the geography of mosquito-borne disease risk.
Collapse
Affiliation(s)
- Catherine A Lippi
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.
| | - Stephanie J Mundis
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Rachel Sippy
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, UK
| | - J Matthew Flenniken
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Anusha Chaudhary
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Gavriella Hecht
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
27
|
Ajorio ACFB, Rhodes VP, Rodrigues AP, Diniz VA, Conceição GMSD, Forsythe SJ, da Silva IB, Brandão MLL. Establishment of certified reference material for the potency assay in yellow fever vaccine quality control, in accordance with International Standards Organization guidance. J Pharm Biomed Anal 2023; 230:115395. [PMID: 37079931 DOI: 10.1016/j.jpba.2023.115395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
The attenuated yellow fever vaccine (YFV) is offered free of charge to the Brazilian population through the National Immunization Program (NIP). One of the specifications for quality control analyses of the vaccine is the potency determination. This test determines the number of plaque forming units (PFU) in Vero cells. In order to validate the results, the reference material (RM) is analysed in parallel with an established reference vaccine. The aim of this study was to establish certified RM for use as an internal control in the potency assay for the production chain of YFV. The candidate RM homogeneity and stability were determined, and characterized by a collaborative study for further certification. The RM was considered sufficiently homogeneous with average 4.68 log10 IU/HD and stable at (-20 ± 10) ºC and (22.5 ± 2.5) ºC for 715 and 183 days, respectively. When reconstituted and stored in aliquots of 0.6 mL, it was stable at (-20 ± 10) ºC for eight days. But it was not stable at (5 ± 3) ºC for three days. In a collaborative study, two independents' laboratories gave an averaged value of 4.56 ± 0.030 log10 IU/HD. After determining the expanded uncertainty of homogeneity, stability, and characterization, the certified RM lot: 195VFA020Z presented a property value of 4.56 ± 0.22 log10 IU/HD. It was concluded that the new certified RM can be used in routine analysis of a YFV producer, since it has its property value established and it is stable. The possibility of using it in aliquots after reconstitution will also allow the RM to have a much longer shelf life.
Collapse
Affiliation(s)
| | - Vinicius Pessanha Rhodes
- Laboratory of Microbiology Control, Department of Quality Control, Bio-Manguinhos, Fiocruz, Brazil
| | | | - Vanessa Alvaro Diniz
- Laboratory of Microbiology Control, Department of Quality Control, Bio-Manguinhos, Fiocruz, Brazil
| | | | | | - Igor Barbosa da Silva
- Laboratory of Microbiology Control, Department of Quality Control, Bio-Manguinhos, Fiocruz, Brazil
| | | |
Collapse
|
28
|
de Andrade Gandolfi F, Estofolete CF, Wakai MC, Negri AF, Barcelos MD, Vasilakis N, Nogueira ML. Yellow Fever Vaccine-Related Neurotropic Disease in Brazil Following Immunization with 17DD. Vaccines (Basel) 2023; 11:445. [PMID: 36851322 PMCID: PMC9962731 DOI: 10.3390/vaccines11020445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The disease burden of yellow fever virus infection (YFV) is quite high in the tropics where vaccination coverage is low. To date, vaccination is the most effective control strategy to mitigate and eliminate the burden of YF disease. The licensed YF vaccines are safe and effective and serious adverse events are rare. Herein, we report three cases of neurological syndrome, compatible with meningoencephalitis following 17DD vaccination. In all cases, YFV-specific IgM antibodies were detected in the cerebrospinal fluid. Our observations confirm the development of YF vaccine-associated neurotropic disease, a rare serious adverse event, from which all three patients have fully recovered without any long-term sequelae. This report reinforces the need for awareness among health professionals to recognize and effectively manage such events in a timely manner.
Collapse
Affiliation(s)
- Flora de Andrade Gandolfi
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
- Hospital da Criança e Maternidade de São José do Rio Preto, São José do Rio Preto 15091-240, SP, Brazil
| | - Cassia Fernanda Estofolete
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
- Hospital de Base de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Marcia Catelan Wakai
- Hospital da Criança e Maternidade de São José do Rio Preto, São José do Rio Preto 15091-240, SP, Brazil
- Municipal Health Departament, São José do Rio Preto 15084-010, SP, Brazil
| | | | - Michela Dias Barcelos
- Hospital de Base de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Nikos Vasilakis
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Preventive Medicine and Population Health, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mauricio Lacerda Nogueira
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
- Hospital de Base de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
29
|
Malik S, pandey I, Kishore S, Sundarrajan T, Nargund SL, Ghosh A, Bin Emran T, Chaicumpa W, Dhama K. Yellow fever virus, a mosquito-borne flavivirus posing high public health concerns and imminent threats to travellers - an update. Int J Surg 2023; 109:134-137. [PMID: 36799827 PMCID: PMC10389439 DOI: 10.1097/js9.0000000000000086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 02/18/2023]
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand
| | - Ishan pandey
- Department of Biotechnology, AKS University, Satna, Madhya Pradesh
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand
| | - T. Sundarrajan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Tamil Nadu
| | - Shachindra L. Nargund
- Department of Pharmaceutical Chemistry, Nargund College of Pharmacy, Bengaluru, Karnataka
| | - Arbinda Ghosh
- Department of Botany, Microbiology Division, Gauhati University, Guwahati, Assam
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
30
|
Bellone R, Mousson L, Bohers C, Mantel N, Failloux AB. Absence of transmission of vYF next generation Yellow Fever vaccine in mosquitoes. PLoS Negl Trop Dis 2022; 16:e0010930. [PMID: 36516120 PMCID: PMC9749985 DOI: 10.1371/journal.pntd.0010930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
One of the most effective vaccines against an arbovirus is the YFV-17D live-attenuated vaccine developed in 1937 against Yellow Fever (YF). This vaccine replicates poorly in mosquitoes and consequently, is not transmitted by vectors. Vaccine shortages, mainly due to constrained productions based on pathogen-free embryonated eggs, led Sanofi to move towards alternative methods based on a state-of-the-art process using continuous cell line cultures in bioreactor. vYF-247 is a next-generation live-attenuated vaccine candidate based on 17D adapted to grow in serum-free Vero cells. For the development of a new vaccine, WHO recommends to document infectivity and replication in mosquitoes. Here we infected Aedes aegypti and Aedes albopictus mosquitoes with vYF-247 vaccine compared first to the YF-17D-204 reference Sanofi vaccines (Stamaril and YF-VAX) and a clinical human isolate S-79, provided in a blood meal at a titer of 6.5 Log ffu/mL and secondly, to the clinical isolate only at an increased titer of 7.5 Log ffu/mL. At different days post-infection, virus replication, dissemination and transmission were evaluated by quantifying viral particles in mosquito abdomen, head and thorax or saliva, respectively. Although comparison of vYF-247 to reference vaccines could not be completed to yield significant results, we showed that vYF-247 was not transmitted by both Aedes species, either laboratory strains or field-collected populations, compared to clinical strain S-79 at the highest inoculation dose. Combined with the undetectable to low level viremia detected in vaccinees, transmission of the vYF-247 vaccine by mosquitoes is highly unlikely.
Collapse
Affiliation(s)
- Rachel Bellone
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Laurence Mousson
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Chloé Bohers
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Nathalie Mantel
- Sanofi—Vaccine Research and Development, Marcy L’Etoile, France
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France,* E-mail:
| |
Collapse
|
31
|
Gupta NK, Jayakumar S, Huang WC, Leyssen P, Neyts J, Bachurin SO, Hwu JR, Tsay SC. Bis(Benzofuran-1,3- N, N-heterocycle)s as Symmetric and Synthetic Drug Leads against Yellow Fever Virus. Int J Mol Sci 2022; 23:ijms232012675. [PMID: 36293531 PMCID: PMC9604066 DOI: 10.3390/ijms232012675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
The yellow fever virus (YFV) is an emerging RNA virus and has caused large outbreaks in Africa and Central and South America. The virus is often transmitted through infected mosquitoes and spreads from area to area because of international travel. Being an acute viral hemorrhagic disease, yellow fever can be prevented by an effective, safe, and reliable vaccine, but not be eliminated. Currently, there is no antiviral drug available for its cure. Thus, two series of novel bis(benzofuran−1,3-imidazolidin-4-one)s and bis(benzofuran−1,3-benzimidazole)s were designed and synthesized for the development of anti-YFV lead candidates. Among 23 new bis-conjugated compounds, 4 of them inhibited YFV strain 17D (Stamaril) on Huh-7 cells in the cytopathic effect reduction assays. These conjugates exhibited the most compelling efficacy and selectivity with an EC50 of <3.54 μM and SI of >15.3. The results are valuable for the development of novel antiviral drug leads against emerging diseases.
Collapse
Affiliation(s)
- Nitesh K. Gupta
- Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Srinivasan Jayakumar
- Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Chieh Huang
- Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Pieter Leyssen
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Sergey O. Bachurin
- The Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Jih Ru Hwu
- Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Chemistry, National Central University, Jhongli City 320317, Taiwan
- Correspondence: (J.R.H.); (S.-C.T.)
| | - Shwu-Chen Tsay
- Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Chemistry, National Central University, Jhongli City 320317, Taiwan
- Correspondence: (J.R.H.); (S.-C.T.)
| |
Collapse
|
32
|
Nebbak A, Almeras L, Parola P, Bitam I. Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. INSECTS 2022; 13:962. [PMID: 36292910 PMCID: PMC9604161 DOI: 10.3390/insects13100962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world's most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases' (MBDs) geographic expansion to new areas, such as North African countries, where some of these MBDs were unusual or even unknown. In this review, we summarize the latest data on mosquito vector species distribution and MBDs affecting both human and animals in North Africa, in order to better understand the risks associated with the introduction of new invasive mosquito species such as Aedes albopictus. Currently, 26 mosquito species confirmed as pathogen vectors occur in North Africa, including Aedes (five species), Culex (eight species), Culiseta (one species) and Anopheles (12 species). These 26 species are involved in the circulation of seven MBDs in North Africa, including two parasitic infections (malaria and filariasis) and five viral infections (WNV, RVF, DENV, SINV and USUV). No bacterial diseases have been reported so far in this area. This review may guide research studies to fill the data gaps, as well as helping with developing effective vector surveillance and controlling strategies by concerned institutions in different involved countries, leading to cooperative and coordinate vector control measures.
Collapse
Affiliation(s)
- Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail 42004, Algeria
| | - Lionel Almeras
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Idir Bitam
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- École Supérieure en Sciences de l’Aliment et des Industries Agroalimentaire d’Alger, Oued Smar 16059, Algeria
| |
Collapse
|
33
|
Tuells J, Henao-Martínez AF, Franco-Paredes C. The Perennial Threat of Yellow Fever. Arch Med Res 2022; 53:649-657. [DOI: 10.1016/j.arcmed.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022]
|