1
|
Hendrix S, Dartigue V, Hall H, Bawaria S, Kingma J, Bajaj B, Zelcer N, Kober DL. SPRING licenses S1P-mediated cleavage of SREBP2 by displacing an inhibitory pro-domain. Nat Commun 2024; 15:5732. [PMID: 38977690 PMCID: PMC11231238 DOI: 10.1038/s41467-024-50068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Site-one protease (S1P) conducts the first of two cleavage events in the Golgi to activate Sterol regulatory element binding proteins (SREBPs) and upregulate lipogenic transcription. S1P is also required for a wide array of additional signaling pathways. A zymogen serine protease, S1P matures through autoproteolysis of two pro-domains, with one cleavage event in the endoplasmic reticulum (ER) and the other in the Golgi. We recently identified the SREBP regulating gene, (SPRING), which enhances S1P maturation and is necessary for SREBP signaling. Here, we report the cryo-EM structures of S1P and S1P-SPRING at sub-2.5 Å resolution. SPRING activates S1P by dislodging its inhibitory pro-domain and stabilizing intra-domain contacts. Functionally, SPRING licenses S1P to cleave its cognate substrate, SREBP2. Our findings reveal an activation mechanism for S1P and provide insights into how spatial control of S1P activity underpins cholesterol homeostasis.
Collapse
Affiliation(s)
- Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Vincent Dartigue
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hailee Hall
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shrankhla Bawaria
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jenina Kingma
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Bilkish Bajaj
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands.
| | - Daniel L Kober
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Singh S, Wright RE, Giri S, Arumugaswami V, Kumar A. Targeting ABCG1 and SREBP-2 mediated cholesterol homeostasis ameliorates Zika virus-induced ocular pathology. iScience 2024; 27:109088. [PMID: 38405605 PMCID: PMC10884761 DOI: 10.1016/j.isci.2024.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Zika virus (ZIKV) infection during pregnancy causes severe neurological and ocular abnormalities in infants, yet no vaccine or antivirals are available. Our transcriptomic analysis of ZIKV-infected retinal pigment epithelial (RPE) cells revealed alterations in the cholesterol pathway. Thus, we investigated the functional roles of ATP binding cassette transporter G1 (ABCG1) and sterol response element binding protein 2 (SREPB-2), two key players in cholesterol metabolism, during ocular ZIKV infection. Our in vitro data showed that increased ABCG1 activity via liver X receptors (LXRs), reduced ZIKV replication, while ABCG1 knockdown increased replication with elevated intracellular cholesterol. Conversely, inhibiting SREBP-2 or its knockdown reduced ZIKV replication by lowering cholesterol levels. In vivo, LXR agonist or SREBP-2 inhibitor treatment mitigated ZIKV-induced chorioretinal lesions in mice, concomitant with decreased expression of inflammatory mediators and increased activation of antiviral response genes. In summary, our study identifies ABCG1's antiviral role and SREBP-2's proviral effects in ocular ZIKV infection, offering cholesterol metabolism as a potential target to develop antiviral therapies.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert E. Wright
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | | | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
3
|
Shi X, Zhang Q, Yang N, Wang Q, Zhang Y, Xu X. PEDV inhibits HNRNPA3 expression by miR-218-5p to enhance cellular lipid accumulation and promote viral replication. mBio 2024; 15:e0319723. [PMID: 38259103 PMCID: PMC10865979 DOI: 10.1128/mbio.03197-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) requires complete dependence on the metabolic system of the host cell to complete its life cycle. There is a strong link between efficient viral replication and cellular lipid synthesis. However, the mechanism by which PEDV interacts with host cells to hijack cellular lipid metabolism to promote its replication remains unclear. In this study, PEDV infection significantly enhanced the expression of lipid synthesis-related genes and increased cellular lipid accumulation. Furthermore, using liquid chromatography-tandem mass spectrometry, we identified heterogeneous nuclear ribonucleoprotein A3 (HNRNPA3) as the interacting molecule of PEDV NSP9. We demonstrated that the expression of HNRNPA3 was downregulated by PEDV-induced miR-218-5p through targeting its 3' untranslated region. Interestingly, knocking down HNRNPA3 facilitated the PEDV replication by promoting cellular lipid synthesis. We next found that the knockdown of HNRNPA3 potentiated the transcriptional activity of sterol regulatory element-binding transcription factor 1 (SREBF1) through zinc finger protein 135 (ZNF135) as well as PI3K/AKT and JNK signaling pathways. In summary, we propose a model in which PEDV downregulates HNRNPA3 expression to promote the expression and activation of SREBF1 and increase cellular lipid accumulation, providing a novel mechanism by which PEDV interacts with the host to utilize cellular lipid metabolism to promote its replication.IMPORTANCEAs the major components and structural basis of the viral replication complexes of positive-stranded RNA viruses, lipids play an essential role in viral replication. However, how PEDV manipulates host cell lipid metabolism to promote viral replication by interacting with cell proteins remains poorly understood. Here, we found that SREBF1 promotes cellular lipid synthesis, which is essential for PEDV replication. Moreover, HNRNPA3 negatively regulates SREBF1 activation and specifically reduces lipid accumulation, ultimately inhibiting PEDV dsRNA synthesis. Our study provides new insight into the mechanisms by which PEDV hijacks cell lipid metabolism to benefit viral replication, which can offer a potential target for therapeutics against PEDV infection.
Collapse
Affiliation(s)
- Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Dias SSG, Cunha-Fernandes T, Soares VC, de Almeida CJG, Bozza PT. Lipid droplets in Zika neuroinfection: Potential targets for intervention? Mem Inst Oswaldo Cruz 2023; 118:e230044. [PMID: 37820117 PMCID: PMC10566564 DOI: 10.1590/0074-02760230044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/18/2023] [Indexed: 10/13/2023] Open
Abstract
Lipid droplets (LD) are evolutionarily conserved lipid-enriched organelles with a diverse array of cell- and stimulus-regulated proteins. Accumulating evidence demonstrates that intracellular pathogens exploit LD as energy sources, replication sites, and part of the mechanisms of immune evasion. Nevertheless, LD can also favor the host as part of the immune and inflammatory response to pathogens. The functions of LD in the central nervous system have gained great interest due to their presence in various cell types in the brain and for their suggested involvement in neurodevelopment and neurodegenerative diseases. Only recently have the roles of LD in neuroinfections begun to be explored. Recent findings reveal that lipid remodelling and increased LD biogenesis play important roles for Zika virus (ZIKV) replication and pathogenesis in neural cells. Moreover, blocking LD formation by targeting DGAT-1 in vivo inhibited virus replication and inflammation in the brain. Therefore, targeting lipid metabolism and LD biogenesis may represent potential strategies for anti-ZIKV treatment development. Here, we review the progress in understanding LD functions in the central nervous system in the context of the host response to Zika infection.
Collapse
Affiliation(s)
- Suelen Silva Gomes Dias
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Rio de Janeiro, RJ, Brasil
| | - Tamires Cunha-Fernandes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Rio de Janeiro, RJ, Brasil
| | - Vinicius Cardoso Soares
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Programa de Imunologia e Inflamação, Rio de Janeiro, RJ, Brasil
| | - Cecília JG de Almeida
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Rio de Janeiro, RJ, Brasil
| | - Patricia T Bozza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
5
|
Qu Y, Wang W, Xiao MZX, Zheng Y, Liang Q. The interplay between lipid droplets and virus infection. J Med Virol 2023; 95:e28967. [PMID: 37496184 DOI: 10.1002/jmv.28967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
As an intracellular parasite, the virus usurps cellular machinery and modulates cellular metabolism pathways to replicate itself in cells. Lipid droplets (LDs) are universally conserved energy storage organelles that not only play vital roles in maintaining lipid homeostasis but are also involved in viral replication. Increasing evidence has demonstrated that viruses take advantage of cellular lipid metabolism by targeting the biogenesis, hydrolysis, and lipophagy of LD during viral infection. In this review, we summarize the current knowledge about the modulation of cellular LD by different viruses, with a special emphasis on the Hepatitis C virus, Dengue virus, and SARS-CoV-2.
Collapse
Affiliation(s)
- Yafei Qu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai University of Traditional Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Medicine, Shanghai, China
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Mousa MG, Vuppaladhadiam L, Kelly MO, Pietka T, Ek S, Shen KC, Meyer GA, Finck BN, Brookheart RT. Site-1 protease inhibits mitochondrial respiration by controlling the TGF-β target gene Mss51. Cell Rep 2023; 42:112336. [PMID: 37002920 PMCID: PMC10544680 DOI: 10.1016/j.celrep.2023.112336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
The mitochondrial response to changes in cellular energy demand is necessary for cellular adaptation and organ function. Many genes are essential in orchestrating this response, including the transforming growth factor (TGF)-β1 target gene Mss51, an inhibitor of skeletal muscle mitochondrial respiration. Although Mss51 is implicated in the pathophysiology of obesity and musculoskeletal disease, how Mss51 is regulated is not entirely understood. Site-1 protease (S1P) is a key activator of several transcription factors required for cellular adaptation. However, the role of S1P in muscle is unknown. Here, we identify S1P as a negative regulator of muscle mass and mitochondrial respiration. S1P disruption in mouse skeletal muscle reduces Mss51 expression and increases muscle mass and mitochondrial respiration. The effects of S1P deficiency on mitochondrial activity are counteracted by overexpressing Mss51, suggesting that one way S1P inhibits respiration is by regulating Mss51. These discoveries expand our understanding of TGF-β signaling and S1P function.
Collapse
Affiliation(s)
- Muhammad G Mousa
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA
| | - Lahari Vuppaladhadiam
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA
| | - Meredith O Kelly
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA
| | - Terri Pietka
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA
| | - Shelby Ek
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA
| | - Karen C Shen
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA; Departments of Orthopaedic Surgery and Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Brian N Finck
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA
| | - Rita T Brookheart
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA.
| |
Collapse
|
7
|
Bost C, Hartlaub J, Pinho Dos Reis V, Strecker T, Seidah NG, Groschup MH, Diederich S, Fischer K. The proprotein convertase SKI-1/S1P is a critical host factor for Nairobi sheep disease virus infectivity. Virus Res 2023; 329:199099. [PMID: 36948228 DOI: 10.1016/j.virusres.2023.199099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Nairobi sheep disease virus (NSDV) belongs to the Orthonairovirus genus in the Bunyavirales order and is genetically related to human-pathogenic Crimean-Congo hemorrhagic fever virus (CCHFV). NSDV is a zoonotic pathogen transmitted by ticks and primarily affects naïve small ruminants in which infection leads to severe and often fatal hemorrhagic gastroenteritis. Despite its veterinary importance and the striking similarities in the clinical picture between NSDV-infected ruminants and CCHFV patients, the molecular pathogenesis of NSDV and its interactions with the host cell are largely unknown. Here, we identify the membrane-bound proprotein convertase site-1 protease (S1P), also known as subtilisin/kexin-isozyme-1 (SKI-1), as a host factor affecting NSDV infectivity. Absence of S1P in SRD-12B cells, a clonal CHO-K1 cell variant with a genetic defect in the S1P gene (MBTPS1), results in significantly decreased NSDV infectivity while transient complementation of SKI-1/S1P rescues NSDV infection. SKI-1/S1P is dispensable for virus uptake but critically required for production of infectious virus progeny. Moreover, we provide evidence that SKI-1/S1P is involved in the posttranslational processing of the NSDV glycoprotein precursor. Our results demonstrate the role of SKI-1/S1P in the virus life cycle of NSDV and suggest that this protease is a common host factor for orthonairoviruses and may thus represent a promising broadly-effective, indirect antiviral target.
Collapse
Affiliation(s)
- Caroline Bost
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Julia Hartlaub
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | | | - Thomas Strecker
- Institute for Virology, Philipps-University Marburg, Germany
| | - Nabil G Seidah
- Montreal Clinical Research Institute (IRCM), affiliated to the University of Montreal, Laboratory of Biochemical Neuroendocrinology, Montreal, Quebec H2W 1R7, Canada
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Kerstin Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
8
|
Li Y, Wu S, Zhao X, Hao S, Li F, Wang Y, Liu B, Zhang D, Wang Y, Zhou H. Key events in cancer: Dysregulation of SREBPs. Front Pharmacol 2023; 14:1130747. [PMID: 36969840 PMCID: PMC10030587 DOI: 10.3389/fphar.2023.1130747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Lipid metabolism reprogramming is an important hallmark of tumor progression. Cancer cells require high levels of lipid synthesis and uptake not only to support their continued replication, invasion, metastasis, and survival but also to participate in the formation of biological membranes and signaling molecules. Sterol regulatory element binding proteins (SREBPs) are core transcription factors that control lipid metabolism and the expression of important genes for lipid synthesis and uptake. A growing number of studies have shown that SREBPs are significantly upregulated in human cancers and serve as intermediaries providing a mechanistic link between lipid metabolism reprogramming and malignancy. Different subcellular localizations, including endoplasmic reticulum, Golgi, and nucleus, play an indispensable role in regulating the cleavage maturation and activity of SREBPs. In this review, we focus on the relationship between aberrant regulation of SREBPs activity in three organelles and tumor progression. Because blocking the regulation of lipid synthesis by SREBPs has gradually become an important part of tumor therapy, this review also summarizes and analyzes several current mainstream strategies.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shiming Hao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Yishu Wang, Honglan Zhou,
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yishu Wang, Honglan Zhou,
| |
Collapse
|
9
|
Dias SSG, Cunha-Fernandes T, Souza-Moreira L, Soares VC, Lima GB, Azevedo-Quintanilha IG, Santos J, Pereira-Dutra F, Freitas C, Reis PA, Rehen SK, Bozza FA, Souza TML, de Almeida CJG, Bozza PT. Metabolic reprogramming and lipid droplets are involved in Zika virus replication in neural cells. J Neuroinflammation 2023; 20:61. [PMID: 36882750 PMCID: PMC9992922 DOI: 10.1186/s12974-023-02736-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Zika virus (ZIKV) infection is a global public health concern linked to adult neurological disorders and congenital diseases in newborns. Host lipid metabolism, including lipid droplet (LD) biogenesis, has been associated with viral replication and pathogenesis of different viruses. However, the mechanisms of LD formation and their roles in ZIKV infection in neural cells are still unclear. Here, we demonstrate that ZIKV regulates the expression of pathways associated with lipid metabolism, including the upregulation and activation of lipogenesis-associated transcription factors and decreased expression of lipolysis-associated proteins, leading to significant LD accumulation in human neuroblastoma SH-SY5Y cells and in neural stem cells (NSCs). Pharmacological inhibition of DGAT-1 decreased LD accumulation and ZIKV replication in vitro in human cells and in an in vivo mouse model of infection. In accordance with the role of LDs in the regulation of inflammation and innate immunity, we show that blocking LD formation has major roles in inflammatory cytokine production in the brain. Moreover, we observed that inhibition of DGAT-1 inhibited the weight loss and mortality induced by ZIKV infection in vivo. Our results reveal that LD biogenesis triggered by ZIKV infection is a crucial step for ZIKV replication and pathogenesis in neural cells. Therefore, targeting lipid metabolism and LD biogenesis may represent potential strategies for anti-ZIKV treatment development.
Collapse
Affiliation(s)
- Suelen Silva Gomes Dias
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tamires Cunha-Fernandes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Luciana Souza-Moreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Programa de Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselle Barbosa Lima
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Julia Santos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Filipe Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Caroline Freitas
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patricia A Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stevens Kastrup Rehen
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil.,Instituto de Biologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando A Bozza
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil.,Instituto Nacional de Infectologia Evandro Chagas (INI), FIOCRUZ, Rio de Janeiro, Brazil
| | - Thiago M Lopes Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Inovação em Doenças de Populações Negligenciadas (INCT/IDPN), Centro de Desenvolvimento Tecnológico em Saúde, (CDTS), FIOCRUZ, Rio de Janeiro, Brazil
| | - Cecilia J G de Almeida
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Proprotein convertases regulate trafficking and maturation of key proteins within the secretory pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:1-54. [PMID: 36707198 DOI: 10.1016/bs.apcsb.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.
Collapse
|
11
|
Pérez-Vargas J, Shapira T, Olmstead AD, Villanueva I, Thompson CAH, Ennis S, Gao G, De Guzman J, Williams DE, Wang M, Chin A, Bautista-Sánchez D, Agafitei O, Levett P, Xie X, Nuzzo G, Freire VF, Quintana-Bulla JI, Bernardi DI, Gubiani JR, Suthiphasilp V, Raksat A, Meesakul P, Polbuppha I, Cheenpracha S, Jaidee W, Kanokmedhakul K, Yenjai C, Chaiyosang B, Teles HL, Manzo E, Fontana A, Leduc R, Boudreault PL, Berlinck RGS, Laphookhieo S, Kanokmedhakul S, Tietjen I, Cherkasov A, Krajden M, Nabi IR, Niikura M, Shi PY, Andersen RJ, Jean F. Discovery of lead natural products for developing pan-SARS-CoV-2 therapeutics. Antiviral Res 2023; 209:105484. [PMID: 36503013 PMCID: PMC9729583 DOI: 10.1016/j.antiviral.2022.105484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health crisis. The reduced efficacy of therapeutic monoclonal antibodies against emerging SARS-CoV-2 variants of concern (VOCs), such as omicron BA.5 subvariants, has underlined the need to explore a novel spectrum of antivirals that are effective against existing and evolving SARS-CoV-2 VOCs. To address the need for novel therapeutic options, we applied cell-based high-content screening to a library of natural products (NPs) obtained from plants, fungi, bacteria, and marine sponges, which represent a considerable diversity of chemical scaffolds. The antiviral effect of 373 NPs was evaluated using the mNeonGreen (mNG) reporter SARS-CoV-2 virus in a lung epithelial cell line (Calu-3). The screening identified 26 NPs with half-maximal effective concentrations (EC50) below 50 μM against mNG-SARS-CoV-2; 16 of these had EC50 values below 10 μM and three NPs (holyrine A, alotaketal C, and bafilomycin D) had EC50 values in the nanomolar range. We demonstrated the pan-SARS-CoV-2 activity of these three lead antivirals against SARS-CoV-2 highly transmissible Omicron subvariants (BA.5, BA.2 and BA.1) and highly pathogenic Delta VOCs in human Calu-3 lung cells. Notably, holyrine A, alotaketal C, and bafilomycin D, are potent nanomolar inhibitors of SARS-CoV-2 Omicron subvariants BA.5 and BA.2. The pan-SARS-CoV-2 activity of alotaketal C [protein kinase C (PKC) activator] and bafilomycin D (V-ATPase inhibitor) suggest that these two NPs are acting as host-directed antivirals (HDAs). Future research should explore whether PKC regulation impacts human susceptibility to and the severity of SARS-CoV-2 infection, and it should confirm the important role of human V-ATPase in the VOC lifecycle. Interestingly, we observed a synergistic action of bafilomycin D and N-0385 (a highly potent inhibitor of human TMPRSS2 protease) against Omicron subvariant BA.2 in human Calu-3 lung cells, which suggests that these two highly potent HDAs are targeting two different mechanisms of SARS-CoV-2 entry. Overall, our study provides insight into the potential of NPs with highly diverse chemical structures as valuable inspirational starting points for developing pan-SARS-CoV-2 therapeutics and for unravelling potential host factors and pathways regulating SARS-CoV-2 VOC infection including emerging omicron BA.5 subvariants.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Tirosh Shapira
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Andrea D Olmstead
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ivan Villanueva
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Connor A H Thompson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Siobhan Ennis
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Guang Gao
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Joshua De Guzman
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Science, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Meng Wang
- Departments of Chemistry and Earth, Ocean & Atmospheric Science, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Aaleigha Chin
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Diana Bautista-Sánchez
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Olga Agafitei
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Paul Levett
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, V5Z 4R4, Canada
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Vitor F Freire
- Instituto de Química de São Carlos, Universidade de São Paulo, CP780, CEP13560-970, São Carlos, SP, Brazil
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP780, CEP13560-970, São Carlos, SP, Brazil
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP780, CEP13560-970, São Carlos, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP780, CEP13560-970, São Carlos, SP, Brazil
| | - Virayu Suthiphasilp
- Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Achara Raksat
- Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Pornphimol Meesakul
- Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Isaraporn Polbuppha
- Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | | | - Wuttichai Jaidee
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Boonyanoot Chaiyosang
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Helder Lopes Teles
- Instituto de Ciências Exatas e Naturais, Universidade Federal de Rondonópolis, CEP 78736-900, Rondonópolis, MT, Brazil
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Italy; Department of Biology, Università di Napoli "Federico II", Via Cupa Nuova Cinthia 21, 80126, Napoli, Italy
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP780, CEP13560-970, São Carlos, SP, Brazil
| | - Surat Laphookhieo
- Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Somdej Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ian Tietjen
- Departments of Chemistry and Earth, Ocean & Atmospheric Science, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, V5Z 4R4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ivan Robert Nabi
- Department of Cellular and Physiological Sciences, School of Biomedical Engineering, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Science, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
12
|
Targeting lipid biosynthesis pathways for hepatitis B virus cure. PLoS One 2022; 17:e0270273. [PMID: 35925919 PMCID: PMC9352027 DOI: 10.1371/journal.pone.0270273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is characterized by the presence of high circulating levels of non-infectious lipoprotein-like HBV surface antigen (HBsAg) particles thought to contribute to chronic immune dysfunction in patients. Lipid and metabolomic analysis of humanized livers from immunodeficient chimeric mice (uPA/SCID) revealed that HBV infection dysregulates several lipid metabolic pathways. Small molecule inhibitors of lipid biosynthetic pathway enzymes acetyl-CoA carboxylase (ACC), fatty acid synthase, and subtilisin kexin isozyme-1/site-1 protease in HBV-infected HepG2-NTCP cells demonstrated potent and selective reduction of extracellular HBsAg. However, a liver-targeted ACC inhibitor did not show antiviral activity in HBV-infected liver chimeric mice, despite evidence of on-target engagement. Our study suggests that while HBsAg production may be dependent on hepatic de novo lipogenesis in vitro, this may be overcome by extrahepatic sources (such as lipolysis or diet) in vivo. Thus, a combination of agents targeting more than one lipid metabolic pathway may be necessary to reduce HBsAg levels in patients with chronic HBV infection.
Collapse
|
13
|
Naveed A, Naveed MA, Akram L, Sharif M, Kang MI, Park SI. Rotavirus exploits SREBP pathway for hyper lipid biogenesis during replication. J Gen Virol 2022; 103. [PMID: 35594141 DOI: 10.1099/jgv.0.001757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species A rotavirus (RVA) is one of the pathogens causing severe acute gastroenteritis in young children and animals worldwide. RVA replicates and assembles its immature particle within electron dense compartments known as viroplasm. Despite the importance of lipid droplet (LD) formation in the RVA viroplasm, the upstream molecules modulating LD formation have remained elusive. Here, we demonstrate that RVA infection reprogrammes sterol regulatory element binding proteins (SREBPs)-dependent lipogenic pathways in virus-infected cells. Interestingly, silencing of SREBPs significantly reduced RVA protein synthesis, genome replication and progeny virus production. Moreover, knockout of SREBP-1c gene conferred resistance to RVA-induced diarrhoea, reduction of RVA replication, and mitigation of small intestinal pathology in mice. This study identifies SREBPs-mediated lipogenic reprogramming in RVA-infected host cells for facilitating virus replication and SREBPs as a potential target for developing therapeutics against RVA infection.
Collapse
Affiliation(s)
- Ahsan Naveed
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Lubna Akram
- District Headquarter Hospital, Pakpattan Sharif 57400, Pakistan
| | - Muhammad Sharif
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mun-Il Kang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
14
|
Shapira T, Monreal IA, Dion SP, Buchholz DW, Imbiakha B, Olmstead AD, Jager M, Désilets A, Gao G, Martins M, Vandal T, Thompson CAH, Chin A, Rees WD, Steiner T, Nabi IR, Marsault E, Sahler J, Diel DG, Van de Walle GR, August A, Whittaker GR, Boudreault PL, Leduc R, Aguilar HC, Jean F. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature 2022; 605:340-348. [PMID: 35344983 PMCID: PMC9095466 DOI: 10.1038/s41586-022-04661-w] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced owing to emerging variants of concern1,2. Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against variants of concern3,4. Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs) such as TMPRSS2; these proteases cleave the viral spike protein to expose the fusion peptide for cell entry, and thus have an essential role in the virus lifecycle5,6. Here we identify and characterize a small-molecule compound, N-0385, which exhibits low nanomolar potency and a selectivity index of higher than 106 in inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids7. In Calu-3 cells it inhibits the entry of the SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Notably, in the K18-human ACE2 transgenic mouse model of severe COVID-19, we found that N-0385 affords a high level of prophylactic and therapeutic benefit after multiple administrations or even after a single administration. Together, our findings show that TTSP-mediated proteolytic maturation of the spike protein is critical for SARS-CoV-2 infection in vivo, and suggest that N-0385 provides an effective early treatment option against COVID-19 and emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Tirosh Shapira
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - I Abrrey Monreal
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Sébastien P Dion
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David W Buchholz
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Andrea D Olmstead
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mason Jager
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guang Gao
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Thierry Vandal
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Connor A H Thompson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaleigha Chin
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - William D Rees
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Theodore Steiner
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ivan Robert Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Gerlinde R Van de Walle
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
15
|
Tylvalosin demonstrates anti-parasitic activity and protects mice from acute toxoplasmosis. Life Sci 2022; 294:120373. [DOI: 10.1016/j.lfs.2022.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
|
16
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
17
|
Development and validation of a novel lipid metabolism-related gene prognostic signature and candidate drugs for patients with bladder cancer. Lipids Health Dis 2021; 20:146. [PMID: 34706720 PMCID: PMC8549165 DOI: 10.1186/s12944-021-01554-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is a common cancer associated with an unfavorable prognosis. Increasing numbers of studies have demonstrated that lipid metabolism affects the progression and treatment of tumors. Therefore, this study aimed to explore the function and prognostic value of lipid metabolism-related genes in patients with bladder cancer. METHODS Lipid metabolism-related genes (LRGs) were acquired from the Molecular Signature Database (MSigDB). LRG mRNA expression and patient clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis was used to construct a signature for predicting overall survival of patients with BLCA. Kaplan-Meier analysis was performed to assess prognosis. The connectivity Map (CMAP) database was used to identify small molecule drugs for treatment. A nomogram was constructed and assessed by combining the signature and other clinical factors. The CIBERSORT, MCPcounter, QUANTISEQ, XCELL, CIBERSORT-ABS, TIMER and EPIC algorithms were used to analyze the immunological characteristics. RESULTS An 11-LRG signature was successfully constructed and validated to predict the prognosis of BLCA patients. Furthermore, we also found that the 11-gene signature was an independent hazardous factor. Functional analysis suggested that the LRGs were closely related to the PPAR signaling pathway, fatty acid metabolism and AMPK signaling pathway. The prognostic model was closely related to immune cell infiltration. Moreover, the expression of key immune checkpoint genes (PD1, CTLA4, PD-L1, LAG3, and HAVCR2) was higher in patients in the high-risk group than in those in the low-risk group. The prognostic signature based on 11-LRGs exhibited better performance in predicting overall survival than conventional clinical characteristics. Five small molecule drugs could be candidate drug treatments for BLCA patients based on the CMAP dataset. CONCLUSIONS In conclusion, the current study identified a reliable signature based on 11-LRGs for predicting the prognosis and response to immunotherapy in patients with BLCA. Five small molecule drugs were identified for the treatments of BLCA patients.
Collapse
|
18
|
Kleandrova VV, Scotti MT, Speck-Planche A. Indirect-Acting Pan-Antivirals vs. Respiratory Viruses: A Fresh Perspective on Computational Multi-Target Drug Discovery. Curr Top Med Chem 2021; 21:2687-2693. [PMID: 34636311 DOI: 10.2174/1568026621666211012110819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022]
Abstract
Respiratory viruses continue to afflict mankind. Among them, pathogens such as coronaviruses [including the current pandemic agent known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] and the one causing influenza A (IAV) are highly contagious and deadly. These can evade the immune system defenses while causing a hyperinflammatory response that can damage different tissues/organs. Simultaneously targeting immunomodulatory proteins is a plausible antiviral strategy since it could lead to the discovery of indirect-acting pan-antiviral (IAPA) agents for the treatment of diseases caused by respiratory viruses. In this context, computational approaches, which are an essential part of the modern drug discovery campaigns, could accelerate the identification of multi-target immunomodulators. This perspective discusses the usefulness of computational multi-target drug discovery for the virtual screening (drug repurposing) of IAPA agents capable of boosting the immune system through the activation of the toll-like receptor 7 (TLR7) and/or the stimulator of interferon genes (STING) while inhibiting key pro-inflammatory proteins, such as caspase-1 and tumor necrosis factor-alpha (TNF-α).
Collapse
Affiliation(s)
- Valeria V Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Volokolamskoe shosse 11, 125080, Moscow. Russian Federation
| | - Marcus T Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900, João Pessoa. Brazil
| | - Alejandro Speck-Planche
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900, João Pessoa. Brazil
| |
Collapse
|
19
|
Seidah NG, Pasquato A, Andréo U. How Do Enveloped Viruses Exploit the Secretory Proprotein Convertases to Regulate Infectivity and Spread? Viruses 2021; 13:v13071229. [PMID: 34202098 PMCID: PMC8310232 DOI: 10.3390/v13071229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the binding of enveloped viruses surface glycoproteins to host cell receptor(s) is a major target of vaccines and constitutes an efficient strategy to block viral entry and infection of various host cells and tissues. Cellular entry usually requires the fusion of the viral envelope with host plasma membranes. Such entry mechanism is often preceded by “priming” and/or “activation” steps requiring limited proteolysis of the viral surface glycoprotein to expose a fusogenic domain for efficient membrane juxtapositions. The 9-membered family of Proprotein Convertases related to Subtilisin/Kexin (PCSK) serine proteases (PC1, PC2, Furin, PC4, PC5, PACE4, PC7, SKI-1/S1P, and PCSK9) participate in post-translational cleavages and/or regulation of multiple secretory proteins. The type-I membrane-bound Furin and SKI-1/S1P are the major convertases responsible for the processing of surface glycoproteins of enveloped viruses. Stefan Kunz has considerably contributed to define the role of SKI-1/S1P in the activation of arenaviruses causing hemorrhagic fever. Furin was recently implicated in the activation of the spike S-protein of SARS-CoV-2 and Furin-inhibitors are being tested as antivirals in COVID-19. Other members of the PCSK-family are also implicated in some viral infections, such as PCSK9 in Dengue. Herein, we summarize the various functions of the PCSKs and present arguments whereby their inhibition could represent a powerful arsenal to limit viral infections causing the present and future pandemics.
Collapse
Affiliation(s)
- Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
- Correspondence: ; Tel.: +1-514-987-5609
| | - Antonella Pasquato
- Antonella Pasquato, Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy;
| | - Ursula Andréo
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
| |
Collapse
|
20
|
Shapira T, Monreal IA, Dion SP, Jager M, Désilets A, Olmstead AD, Vandal T, Buchholz DW, Imbiakha B, Gao G, Chin A, Rees WD, Steiner T, Nabi IR, Marsault E, Sahler J, August A, Van de Walle G, Whittaker GR, Boudreault PL, Aguilar HC, Leduc R, Jean F. A novel highly potent inhibitor of TMPRSS2-like proteases blocks SARS-CoV-2 variants of concern and is broadly protective against infection and mortality in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.03.442520. [PMID: 33972944 PMCID: PMC8109206 DOI: 10.1101/2021.05.03.442520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced against emerging variants of concern (VOCs) 1,2 . Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against VOCs 3,4 . Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs), such as TMPRSS2, whose essential role in the virus lifecycle is responsible for the cleavage and priming of the viral spike protein 5-7 . Here, we identify and characterize a small-molecule compound, N-0385, as the most potent inhibitor of TMPRSS2 reported to date. N-0385 exhibited low nanomolar potency and a selectivity index of >10 6 at inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids 8 . Importantly, N-0385 acted as a broad-spectrum coronavirus inhibitor of two SARS-CoV-2 VOCs, B.1.1.7 and B.1.351. Strikingly, single daily intranasal administration of N-0385 early in infection significantly improved weight loss and clinical outcomes, and yielded 100% survival in the severe K18-human ACE2 transgenic mouse model of SARS-CoV-2 disease. This demonstrates that TTSP-mediated proteolytic maturation of spike is critical for SARS-CoV-2 infection in vivo and suggests that N-0385 provides a novel effective early treatment option against COVID-19 and emerging SARS-CoV-2 VOCs.
Collapse
|
21
|
Cloherty AP, Olmstead AD, Ribeiro CM, Jean F. Hijacking of Lipid Droplets by Hepatitis C, Dengue and Zika Viruses-From Viral Protein Moonlighting to Extracellular Release. Int J Mol Sci 2020; 21:E7901. [PMID: 33114346 PMCID: PMC7662613 DOI: 10.3390/ijms21217901] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Hijacking and manipulation of host cell biosynthetic pathways by human enveloped viruses are essential for the viral lifecycle. Flaviviridae members, including hepatitis C, dengue and Zika viruses, extensively manipulate host lipid metabolism, underlining the importance of lipid droplets (LDs) in viral infection. LDs are dynamic cytoplasmic organelles that can act as sequestration platforms for a unique subset of host and viral proteins. Transient recruitment and mobilization of proteins to LDs during viral infection impacts host-cell biological properties, LD functionality and canonical protein functions. Notably, recent studies identified LDs in the nucleus and also identified that LDs are transported extracellularly via an autophagy-mediated mechanism, indicating a novel role for autophagy in Flaviviridae infections. These developments underline an unsuspected diversity and localization of LDs and potential moonlighting functions of LD-associated proteins during infection. This review summarizes recent breakthroughs concerning the LD hijacking activities of hepatitis C, dengue and Zika viruses and potential roles of cytoplasmic, nuclear and extracellular LD-associated viral proteins during infection.
Collapse
Affiliation(s)
- Alexandra P.M. Cloherty
- Amsterdam UMC, Amsterdam Institute for Infection & Immunity, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.P.M.C.); (C.M.S.R.)
| | - Andrea D. Olmstead
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 3559–2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Carla M.S. Ribeiro
- Amsterdam UMC, Amsterdam Institute for Infection & Immunity, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.P.M.C.); (C.M.S.R.)
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 3559–2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| |
Collapse
|
22
|
Wang J, Ling R, Zhou Y, Gao X, Yang Y, Mao C, Chen D. SREBP1 silencing inhibits the proliferation and motility of human esophageal squamous carcinoma cells via the Wnt/β-catenin signaling pathway. Oncol Lett 2020; 20:2855-2869. [PMID: 32765792 PMCID: PMC7403634 DOI: 10.3892/ol.2020.11853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
Sterol regulatory element-binding protein 1 (SREBP1) is dysregulated in a variety of types of human cancer. However, the functional roles of SREBP1 in esophageal squamous cell carcinoma (ESCC) remain poorly understood. The present study investigated the function of SREBP1 in cell proliferation and motility. Microarray datasets in Oncomine, reverse transcription-quantitative PCR and western blot analysis revealed that SREBP1 was overexpressed in ESCC tumors when compared with normal tissues. In addition, SREBP1 overexpression was significantly associated with tumor differentiation, lymphatic metastasis and Ki67 expression. Results suggested that silencing SREBP1 inhibited the proliferation, migration and invasion of ESCC cells, whereas overexpression of SREBP1 had opposite effects on proliferation and metastasis. In addition, loss of SREBP1 significantly increased E-cadherin and decreased N-cadherin, Vimentin, Snail, matrix metalloproteinase 9 and vascular endothelial growth factor C expression levels, which were restored via SREBP1-overexpression. Mechanistically, loss of SREBP1 suppressed T-cell factor 1/lymphoid enhancer factor 1 (TCF1/LEF1) activity and downregulated TCF1/LEF1 target proteins, including CD44 and cyclin D1. Moreover, knockdown of SREBP1 downregulated the expression levels of stearoyl-CoA desaturase 1 (SCD1), phosphorylated glycogen synthase kinase-3β and nuclear β-catenin. Furthermore, the inhibitors of SREBP1 and/or SCD1 and small interfering RNA-SCD1 efficiently inhibited the activation of the Wnt/β-catenin pathway driven by constitutively active SREBP1. Finally, in vivo results indicated that SREBP1-knockdown suppressed the proliferation and metastasis of ESCC. Taken together, these findings demonstrated that SREBP1 exerts oncogenic effects in ESCC by promoting proliferation and inducing epithelial-mesenchymal transition via the SCD1-induced activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jingzhi Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Rui Ling
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xingyu Gao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yun Yang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chaoming Mao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China.,Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
23
|
Lérias JR, Paraschoudi G, de Sousa E, Martins J, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Castillo-Martin M, Beltrán A, Ligeiro D, Rao M, Zumla A, Maeurer M. Microbes as Master Immunomodulators: Immunopathology, Cancer and Personalized Immunotherapies. Front Cell Dev Biol 2020; 7:362. [PMID: 32039196 PMCID: PMC6989410 DOI: 10.3389/fcell.2019.00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
The intricate interplay between the immune system and microbes is an essential part of the physiological homeostasis in health and disease. Immunological recognition of commensal microbes, such as bacterial species resident in the gut or lung as well as dormant viral species, i.e., cytomegalovirus (CMV) or Epstein-Barr virus (EBV), in combination with a balanced immune regulation, is central to achieve immune-protection. Emerging evidence suggests that immune responses primed to guard against commensal microbes may cause unexpected pathological outcomes, e.g., chronic inflammation and/or malignant transformation. Furthermore, translocation of immune cells from one anatomical compartment to another, i.e., the gut-lung axis via the lymphatics or blood has been identified as an important factor in perpetrating systemic inflammation, tissue destruction, as well as modulating host-protective immune responses. We present in this review immune response patterns to pathogenic as well as non-pathogenic microbes and how these immune-recognition profiles affect local immune responses or malignant transformation. We discuss personalized immunological therapies which, directly or indirectly, target host biological pathways modulated by antimicrobial immune responses.
Collapse
Affiliation(s)
- Joana R. Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | - Antonio Beltrán
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação, Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alimuddin Zumla
- Division of Infection and Immunity, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, University College London, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
24
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
25
|
Zhao Z, Zhong L, He K, Qiu C, Li Z, Zhao L, Gong J. Cholesterol attenuated the progression of DEN-induced hepatocellular carcinoma via inhibiting SCAP mediated fatty acid de novo synthesis. Biochem Biophys Res Commun 2019; 509:855-861. [PMID: 30638930 DOI: 10.1016/j.bbrc.2018.12.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 01/06/2023]
Abstract
Worldwide, hepatocellular carcinoma (HCC) remains a top instigator of cancer mortality. Previous clinical studies have revealed that low serum cholesterol predicts a poor outcome in HCC patients, but the potential role of cholesterol in the progression of HCC remains controversial. In the present study,we tested the influence of cholesterol on the progression of DEN-induced HCC by feeding mice with a high cholesterol diet (HCD) and by depriving cholesterol with atorvastatin, a widely used inhibitor of the mevalonate pathway. We found that HCD induced more and larger liver tumors and an increased occurrence of lung metastasis in DEN-injected mice. These effects could be prevented by cholesterol deprivation with atorvastatin. In vitro, cholesterol loading repressed the proliferation, migration, and the invasion of SK hep1 cells, which was additionally prevented by cholesterol deprivation. Both in vivo and in vitro, cholesterol loading decreased the expression of Sterol regulatory element-binding protein cleavage-activating protein (SCAP), the translocation of sterol regulatory element-binding protein1 (SREBP1) to the nucleolus, and the genetic expression of FAS and ACC-1. Over-expression of SCAP in cholesterol-loaded SK hep1 cells promoted the nuclear translocation of SREBP1 and the expression of FAS and ACC-1, which promoted the proliferation, migration, and the invasion of SK hep1 cells. Knockdown of SCAP also restrained the cholesterol deletion-mediated up-regulation of fatty acid de novo synthesis in SK hep1 cells, inhibiting the atorvastatin-mediated proliferation, migration, and invasion of SK hep1 cells. In conclusion, cholesterol inhibited the progression of HCC through restraining SCAP-mediated fatty acid de novo synthesis.
Collapse
Affiliation(s)
- Zhibo Zhao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital & Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education) of Chongqing Medical University, 40016, Chongqing, China
| | - Li Zhong
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Kun He
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital & Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education) of Chongqing Medical University, 40016, Chongqing, China
| | - Chan Qiu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital & Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education) of Chongqing Medical University, 40016, Chongqing, China
| | - Zhi Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital & Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education) of Chongqing Medical University, 40016, Chongqing, China
| | - Lei Zhao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital & Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education) of Chongqing Medical University, 40016, Chongqing, China.
| | - Jianping Gong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital & Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education) of Chongqing Medical University, 40016, Chongqing, China.
| |
Collapse
|
26
|
Khoshnejad M, Patel A, Wojtak K, Kudchodkar SB, Humeau L, Lyssenko NN, Rader DJ, Muthumani K, Weiner DB. Development of Novel DNA-Encoded PCSK9 Monoclonal Antibodies as Lipid-Lowering Therapeutics. Mol Ther 2019; 27:188-199. [PMID: 30449662 PMCID: PMC6319316 DOI: 10.1016/j.ymthe.2018.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Elevated low-density lipoprotein cholesterol (LDL-C) is one of the major contributors to cardiovascular heart disease (CHD), the leading cause of death worldwide. Due to severe side effects of statins, alternative treatment strategies are required for statin-intolerant patients. Monoclonal antibodies (mAbs) targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) have shown great efficacy in LDL-C reduction. Limitations for this approach include the need for multiple injections as well as increased costs associated with patient management. Here, we engineered a DNA-encoded mAb (DMAb) targeting PCSK9 (daPCSK9), as an alternative approach to protein-based lipid-lowering therapeutics, and we characterized its expression and activity. A single intramuscular administration of mouse daPCSK9 generated expression in vivo for over 42 days that corresponded with a substantial decrease of 28.6% in non-high-density lipoprotein cholesterol (non-HDL-C) and 10.3% in total cholesterol by day 7 in wild-type mice. Repeated administrations of the DMAb plasmid led to increasing expression, with DMAb levels of 7.5 μg/mL at day 62. daPCSK9 therapeutics may provide a novel, simple, less frequent, cost-effective approach to reducing LDL-C, either as a stand-alone therapy or in combination with other LDL-lowering therapeutics for synergistic effect.
Collapse
Affiliation(s)
- Makan Khoshnejad
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Krzysztof Wojtak
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sagar B. Kudchodkar
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - Nicholas N. Lyssenko
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kar Muthumani
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - David B. Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA,Corresponding author: David B. Weiner, Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Moslehi A, Hamidi-zad Z. Role of SREBPs in Liver Diseases: A Mini-review. J Clin Transl Hepatol 2018; 6:332-338. [PMID: 30271747 PMCID: PMC6160306 DOI: 10.14218/jcth.2017.00061] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/10/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022] Open
Abstract
Sterol regulator element binding proteins (SREBPs) are a family of transcription factors involved in the biogenesis of cholesterol, fatty acids and triglycerides. They also regulate physiological functions of many organs, such as thyroid, brain, heart, pancreas and hormone synthesis. Beside the physiological effects, SREBPs participate in some pathological processes, diabetes, endoplasmic reticulum stress, atherosclerosis and chronic kidney disease associated with SREBP expression changes. In the liver, SREBPs are involved in the pathogenesis of nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, hepatitis and hepatic cancer. There are several SREBP inhibitors that have potential for treating obesity, diabetes and cancer. This review assesses the recent findings about the roles of SREBPs in the physiology of organs' function and pathogenesis of liver diseases.
Collapse
Affiliation(s)
- Azam Moslehi
- Department of Physiology, Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Zeinab Hamidi-zad
- Department of Physiology, Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
28
|
Rab5, Rab7, and Rab11 Are Required for Caveola-Dependent Endocytosis of Classical Swine Fever Virus in Porcine Alveolar Macrophages. J Virol 2018; 92:JVI.00797-18. [PMID: 29769350 DOI: 10.1128/jvi.00797-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
The members of Flaviviridae utilize several endocytic pathways to enter a variety of host cells. Our previous work showed that classical swine fever virus (CSFV) enters porcine kidney (PK-15) cells through a clathrin-dependent pathway that requires Rab5 and Rab7. The entry mechanism for CSFV into other cell lines remains unclear, for instance, porcine alveolar macrophages (3D4/21 cells). More importantly, the trafficking of CSFV within endosomes controlled by Rab GTPases is unknown in 3D4/21 cells. In this study, entry and postinternalization of CSFV were analyzed using chemical inhibitors, RNA interference, and dominant-negative (DN) mutants. Our data demonstrated that CSFV entry into 3D4/21 cells depends on caveolae, dynamin, and cholesterol but not clathrin or macropinocytosis. The effects of DN mutants and knockdown of four Rab proteins that regulate endosomal trafficking were examined on CSFV infection, respectively. The results showed that Rab5, Rab7, and Rab11, but not Rab9, regulate CSFV endocytosis. Confocal microscopy showed that virus particles colocalize with Rab5, Rab7, or Rab11 within 30 min after virus entry and further with lysosomes, suggesting that after internalization CSFV moves to early, late, and recycling endosomes and then into lysosomes before the release of the viral genome. Our findings provide insights into the life cycle of pestiviruses in macrophages.IMPORTANCE Classical swine fever, is caused by classical swine fever virus (CSFV). The disease is notifiable to World Organisation for Animal Health (OIE) in most countries and causes significant financial losses to the pig industry globally. Understanding the processes of CSFV endocytosis and postinternalization will advance our knowledge of the disease and provide potential novel drug targets against CSFV. With this objective, we used systematic approaches to dissect these processes in CSFV-infected 3D4/21 cells. The data presented here demonstrate for the first time to our knowledge that CSFV is able to enter cells via caveola-mediated endocytosis that requires Rab5, Rab7 and Rab11, in addition to the previously described classical clathrin-dependent pathway that requires Rab5 and Rab7. The characterization of CSFV entry will further promote our current understanding of Pestivirus cellular entry pathways and provide novel targets for antiviral drug development.
Collapse
|
29
|
Urata S, Uno Y, Kurosaki Y, Yasuda J. The cholesterol, fatty acid and triglyceride synthesis pathways regulated by site 1 protease (S1P) are required for efficient replication of severe fever with thrombocytopenia syndrome virus. Biochem Biophys Res Commun 2018; 503:631-636. [PMID: 29906459 DOI: 10.1016/j.bbrc.2018.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV), which has a high mortality rate. Currently, no licensed vaccines or therapeutic agents have been approved for use against SFTSV infection. Here, we report that the cholesterol, fatty acid, and triglyceride synthesis pathways regulated by S1P is involved in SFTSV replication, using CHO-K1 cell line (SRD-12B) that is deficient in site 1 protease (S1P) enzymatic activity, PF-429242, a small compound targeting S1P enzymatic activity, and Fenofibrate and Lovastatin, which inhibit triglyceride and cholesterol synthesis, respectively. These results enhance our understanding of the SFTSV replication mechanism and may contribute to the development of novel therapies for SFTSV infection.
Collapse
Affiliation(s)
- Shuzo Urata
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Japan; National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Yukiko Uno
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Japan.
| | - Yohei Kurosaki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Japan.
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Japan; National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
30
|
Wu Q, Li Z, Liu Q. An important role of SREBP-1 in HBV and HCV co-replication inhibition by PTEN. Virology 2018; 520:94-102. [PMID: 29803738 DOI: 10.1016/j.virol.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
HBV HCV co-infection leads to more severe liver diseases including liver cancer than mono-infections. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor, inhibits sterol regulatory element binding protein-1 (SREBP-1). In this study, we characterized the effect of the PTEN - SREBP-1 pathway on HBV HCV co-replication in a cellular model. We found that HBV and HCV can co-replicate in Huh-7 cells with no interference. Overexpression of PTEN inhibits, whereas PTEN knockdown enhances, HBV replication as well as HBV and HCV co-replication. Knocking down SREBP-1 decreases HBV replication in an HBx-dependent manner. SREBP-1 knockdown also decreases HCV replication. PTEN knockdown is concomitant with increased nuclear SREBP-1 levels. PTEN and SREBP-1 double knockdown results in intermediate levels of HBV and HCV replication in mono- and co-replication scenarios. Taken together, we demonstrated, for the first time, that the PTEN - SREBP-1 pathway can regulate HBV HCV co-replication.
Collapse
Affiliation(s)
- Qi Wu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; Department of Veterinary Microbiology, University of Saskatchewan, Canada
| | - Zhubing Li
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; School of Public Health Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; Department of Veterinary Microbiology, University of Saskatchewan, Canada; School of Public Health Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
31
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122180 DOI: 10.1007/978-3-319-75474-1_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
32
|
Zhang J, Lan Y, Sanyal S. Modulation of Lipid Droplet Metabolism-A Potential Target for Therapeutic Intervention in Flaviviridae Infections. Front Microbiol 2017; 8:2286. [PMID: 29234310 PMCID: PMC5712332 DOI: 10.3389/fmicb.2017.02286] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Lipid droplets (LDs) are endoplasmic reticulum (ER)-related dynamic organelles that store and regulate fatty acids and neutral lipids. They play a central role in cellular energy storage, lipid metabolism and cellular homeostasis. It has become evident that viruses have co-evolved in order to exploit host lipid metabolic pathways. This is especially characteristic of the Flaviviridae family, including hepatitis C virus (HCV) and several flaviviruses. Devoid of an appropriate lipid biosynthetic machinery of their own, these single-strand positive-sense RNA viruses can induce dramatic changes in host metabolic pathways to establish a favorable environment for viral multiplication and acquire essential components to facilitate their assembly and traffic. Here we have reviewed the current knowledge on the intracellular life cycle of those from the Flaviviridae family, with particular emphasis on HCV and dengue virus (DENV), and their association with the biosynthesis and metabolism of LDs, with the aim to identify potential antiviral targets for development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Jingshu Zhang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yun Lan
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
33
|
Hyrina A, Olmstead AD, Steven P, Krajden M, Tam E, Jean F. Treatment-Induced Viral Cure of Hepatitis C Virus-Infected Patients Involves a Dynamic Interplay among three Important Molecular Players in Lipid Homeostasis: Circulating microRNA (miR)-24, miR-223, and Proprotein Convertase Subtilisin/Kexin Type 9. EBioMedicine 2017; 23:68-78. [PMID: 28864162 PMCID: PMC5605363 DOI: 10.1016/j.ebiom.2017.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022] Open
Abstract
In patients with chronic hepatitis C virus (HCV) infection, viral hijacking of the host-cell biosynthetic pathways is associated with altered lipid metabolism, which contributes to disease progression and may influence antiviral response. We investigated the molecular interplay among four key regulators of lipid homeostasis [microRNA (miR)-122, miR-24, miR-223, and proprotein convertase subtilisin/kexin type 9 (PCSK9)] in HCV-infected patients (n=72) who achieved a treatment-based viral cure after interferon-based therapy with first-generation direct-acting antivirals. Real-time PCR was used to quantify microRNA plasma levels, and ELISA assays were used to determine plasma concentrations of PCSK9. We report that levels of miR-24 and miR-223 significantly increased in patients achieving sustained virologic response (SVR), whereas the levels of miR-122, a liver-specific cofactor for HCV infection, decreased in these patients. PCSK9 concentrations were significantly increased in SVRs, suggesting that PCSK9 may help impede viral infection. The modulatory effect of PCSK9 on HCV infection was also demonstrated in the context of HCV-infected Huh-7.5.1 cells employing recombinant human PCSK9 mutants. Together, these results provide insights into a novel coordinated interplay among three important molecular players in lipid homeostasis - circulating miR-24, miR-223 and PCSK9 - whose regulation is affected by HCV infection and treatment-based viral cure.
Collapse
Affiliation(s)
- Anastasia Hyrina
- Dept. of Microbiology and Immunology, University of British Columbia, Canada.
| | - Andrea D Olmstead
- Dept. of Microbiology and Immunology, University of British Columbia, Canada.
| | | | - Mel Krajden
- BCCDC Public Health Microbiology and Reference Laboratory, Canada.
| | | | - François Jean
- Dept. of Microbiology and Immunology, University of British Columbia, Canada.
| |
Collapse
|
34
|
Pirro M, Bianconi V, Francisci D, Schiaroli E, Bagaglia F, Sahebkar A, Baldelli F. Hepatitis C virus and proprotein convertase subtilisin/kexin type 9: a detrimental interaction to increase viral infectivity and disrupt lipid metabolism. J Cell Mol Med 2017; 21:3150-3161. [PMID: 28722331 PMCID: PMC5706572 DOI: 10.1111/jcmm.13273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022] Open
Abstract
From viral binding to the hepatocyte surface to extracellular virion release, the replication cycle of the hepatitis C virus (HCV) intersects at various levels with lipid metabolism; this leads to a derangement of the lipid profile and to increased viral infectivity. Accumulating evidence supports the crucial regulatory role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in lipoprotein metabolism. Notably, a complex interaction between HCV and PCSK9 has been documented. Indeed, either increased or reduced circulating PCSK9 levels have been observed in HCV patients; this discrepancy might be related to several confounders, including HCV genotype, human immunodeficiency virus (HIV) coinfection and the ambiguous HCV‐mediated influence on PCSK9 transcription factors. On the other hand, PCSK9 may itself influence HCV infectivity, inasmuch as the expression of different hepatocyte surface entry proteins and receptors is regulated by PCSK9. The aim of this review is to summarize the current evidence about the complex interaction between HCV and liver lipoprotein metabolism, with a specific focus on PCSK9. The underlying assumption of this review is that the interconnections between HCV and PCSK9 may be central to explain viral infectivity.
Collapse
Affiliation(s)
- Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Daniela Francisci
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Bagaglia
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Franco Baldelli
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
35
|
Schmitt M, Dehay B, Bezard E, Garcia-Ladona FJ. U18666A, an activator of sterol regulatory element binding protein pathway, modulates presynaptic dopaminergic phenotype of SH-SY5Y neuroblastoma cells. Synapse 2017; 71. [DOI: 10.1002/syn.21980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Mathieu Schmitt
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL; 1420 Braine l'Alleud Belgium
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
| | - F. Javier Garcia-Ladona
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL; 1420 Braine l'Alleud Belgium
| |
Collapse
|
36
|
Raj M, Langley M, McArthur SJ, Jean F. Moonlighting glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is required for efficient hepatitis C virus and dengue virus infections in human Huh-7.5.1 cells. J Gen Virol 2017; 98:977-991. [PMID: 28548037 DOI: 10.1099/jgv.0.000754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hijacking of cellular biosynthetic pathways by human enveloped viruses is a shared molecular event essential for the viral lifecycle. In this study, the accumulating evidence of the importance of human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the host secretory pathway led us to hypothesize that this moonlighting enzyme could play a key role in the lifecycle steps of two important Flaviviridae members, hepatitis C virus (HCV) and dengue virus (DENV). We used short interfering RNA (siRNA)-mediated knockdown of human GAPDH in Huh-7.5.1 cells- both pre- and post-HCV infection- to demonstrate that GAPDH is a host factor for HCV infection. siRNA-induced GAPDH knockdown performed pre-HCV infection inhibits HCV core production in infected cells and leads to a decrease in infectivity of the HCV-infected cell supernatants. siRNA-induced GAPDH knockdown performed post-HCV infection does not have an effect on HCV core abundance in infected cells, but does lead to a decrease in infectivity of the HCV-infected cell supernatants. Exogenous expression of V5-tagged human GAPDH, pre- and post-infection, increases the infectivity of HCV-infected cell supernatants, suggesting a role for GAPDH during HCV post-replication steps. Interestingly, siRNA-induced GAPDH knockdown in HCV replicon-harbouring cells had no effect on viral RNA replication. Importantly, we confirmed the important role of GAPDH in the HCV lifecycle using Huh-7-derived stable GAPDH-knockdown clones. Finally, siRNA-induced GAPDH knockdown inhibits intracellular DENV-2 E glycoprotein production in infected cells. Collectively, our findings suggest that the moonlighting enzyme, GAPDH, is an important host factor for HCV infection, and they support its potential role in the DENV lifecycle.
Collapse
Affiliation(s)
- Meera Raj
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Present address: Canadian Blood Services and the Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Mary Langley
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Present address: School of Medicine, Flinders University, Adelaide, South Australia
| | - Steven J McArthur
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - François Jean
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
37
|
Human Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) regulates cytoplasmic lipid droplet abundance: A potential target for indirect-acting anti-dengue virus agents. PLoS One 2017; 12:e0174483. [PMID: 28339489 PMCID: PMC5365115 DOI: 10.1371/journal.pone.0174483] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/09/2017] [Indexed: 01/12/2023] Open
Abstract
Viral hijacking and manipulation of host-cell biosynthetic pathways by human enveloped viruses are shared molecular events essential for the viral lifecycle. For Flaviviridae members such as hepatitis C virus and dengue virus (DENV), one of the key subsets of cellular pathways that undergo manipulation is the lipid metabolic pathways, underlining the importance of cellular lipids and, in particular, lipid droplets (LDs) in viral infection. Here, we hypothesize that targeting cellular enzymes that act as key regulators of lipid homeostasis and LD formation could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with all DENV serotypes (1–4) circulating around the world. Using PF-429242, an active-site-directed inhibitor of SKI-1/S1P, we demonstrate that inhibition of SKI-1/S1P enzymatic activity in human hepatoma Huh-7.5.1 cells results in a robust reduction of the LD numbers and LD-positive areas and provides a means of effectively inhibiting infection by DENV (1–4). Pre-treatment of Huh-7.5.1 cells with PF-429242 results in a dose-dependent inhibition of DENV infection [median inhibitory dose (EC50) = 1.2 microM; median cytotoxic dose (CC50) = 81 microM; selectivity index (SI) = 68)] and a ~3-log decrease in DENV-2 titer with 20 microM of PF-429242. Post-treatment of DENV-2 infected Huh-7.5.1 cells with PF-429242 does not affect viral RNA abundance, but it does compromise the assembly and/or release of infectious virus particles. PF-429242 antiviral activity is reversed by exogenous oleic acid, which acts as an inducer of LD formation in PF-429242-treated and non-treated control cells. Collectively, our results demonstrate that human SKI-1/S1P is a potential target for indirect-acting pan-serotypic anti-DENV agents and reveal new therapeutic opportunities associated with the use of lipid-modulating drugs for controlling DENV infection.
Collapse
|
38
|
Karkhane M, Marzban A, Lashgarian HE, Zali MR. Genetic Variations in Host Factors and their Critical Role on HCV Medication. RESEARCH IN MOLECULAR MEDICINE 2017. [DOI: 10.29252/rmm.5.1.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
39
|
Rupp JC, Locatelli M, Grieser A, Ramos A, Campbell PJ, Yi H, Steel J, Burkhead JL, Bortz E. Host Cell Copper Transporters CTR1 and ATP7A are important for Influenza A virus replication. Virol J 2017; 14:11. [PMID: 28115001 PMCID: PMC5259989 DOI: 10.1186/s12985-016-0671-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The essential role of copper in eukaryotic cellular physiology is known, but has not been recognized as important in the context of influenza A virus infection. In this study, we investigated the effect of cellular copper on influenza A virus replication. METHODS Influenza A/WSN/33 (H1N1) virus growth and macromolecule syntheses were assessed in cultured human lung cells (A549) where the copper concentration of the growth medium was modified, or expression of host genes involved in copper homeostasis was targeted by RNA interference. RESULTS Exogenously increasing copper concentration, or chelating copper, resulted in moderate defects in viral growth. Nucleoprotein (NP) localization, neuraminidase activity assays and transmission electron microscopy did not reveal significant defects in virion assembly, morphology or release under these conditions. However, RNAi knockdown of the high-affinity copper importer CTR1 resulted in significant viral growth defects (7.3-fold reduced titer at 24 hours post-infection, p = 0.04). Knockdown of CTR1 or the trans-Golgi copper transporter ATP7A significantly reduced polymerase activity in a minigenome assay. Both copper transporters were required for authentic viral RNA synthesis and NP and matrix (M1) protein accumulation in the infected cell. CONCLUSIONS These results demonstrate that intracellular copper regulates the influenza virus life cycle, with potentially distinct mechanisms in specific cellular compartments. These observations provide a new avenue for drug development and studies of influenza virus pathogenesis.
Collapse
Affiliation(s)
- Jonathan C. Rupp
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK USA
| | - Manon Locatelli
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK USA
- Present address: Institute Albert Bonniot – INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Alexis Grieser
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK USA
| | - Andrea Ramos
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK USA
| | - Patricia J. Campbell
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Hong Yi
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia USA
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Jason L. Burkhead
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK USA
| | - Eric Bortz
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK USA
| |
Collapse
|
40
|
Miyamura T, Lemon SM, Walker CM, Wakita T. The HCV Replicase Complex and Viral RNA Synthesis. HEPATITIS C VIRUS I 2016. [PMCID: PMC7122888 DOI: 10.1007/978-4-431-56098-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Replication of hepatitis C virus (HCV) is tightly linked to membrane alterations designated the membranous web, harboring the viral replicase complex. In this chapter we describe the morphology and 3D architecture of the HCV-induced replication organelles, mainly consisting of double membrane vesicles, which are generated by a concerted action of the nonstructural proteins NS3 to NS5B. Recent studies have furthermore identified a number of host cell proteins and lipids contributing to the biogenesis of the membranous web, which are discussed in this chapter. Viral RNA synthesis is tightly associated with these membrane alterations and mainly driven by the viral RNA dependent RNA polymerase NS5B. We summarize our current knowledge of the structure and function of NS5B, the role of cis-acting replication elements at the termini of the genome in regulating RNA synthesis and the contribution of additional viral and host factors to viral RNA synthesis, which is still ill defined.
Collapse
Affiliation(s)
- Tatsuo Miyamura
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| | - Stanley M. Lemon
- Departments of Medicine and Microbiology & Immunology , The University of North Carolina, Chapel Hill, North Carolina USA
| | - Christopher M. Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio USA
| | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| |
Collapse
|
41
|
Abstract
Replication of positive-strand RNA viruses occurs in tight association with reorganized host cell membranes. In a concerted fashion, viral and cellular factors generate distinct organelle-like structures, designated viral replication factories. These virus-induced compartments promote highly efficient genome replication, allow spatiotemporal coordination of the different steps of the viral replication cycle, and protect viral RNA from the hostile cytoplasmic environment. The combined use of ultrastructural and functional studies has greatly increased our understanding of the architecture and biogenesis of viral replication factories. Here, we review common concepts and distinct differences in replication organelle morphology and biogenesis within the Flaviviridae family, exemplified by dengue virus and hepatitis C virus. We discuss recent progress made in our understanding of the complex interplay between viral determinants and subverted cellular membrane homeostasis in biogenesis and maintenance of replication factories of this virus family.
Collapse
Affiliation(s)
- David Paul
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany; ,
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany; , .,Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
42
|
Demir ZC, Bastug A, Bodur H, Ergunay K, Ozkul A. MicroRNA expression profiles in patients with acute Crimean Congo hemorrhagic fever reveal possible adjustments to cellular pathways. J Med Virol 2016; 89:417-422. [PMID: 27551771 DOI: 10.1002/jmv.24667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
Several viral diseases are associated with altered microRNA (miRNA) expression, which can provide vital information about how cellular pathways respond to infection. However, the miRNA profile of Crimean Congo Hemorrhagic Fever (CCHFV) infections are not known. To address this gap, we performed real-time PCR-based miRNA analysis in individuals with acute Crimean Congo Hemorrhagic Fever (CCHFV) infections, with the goal of identifying pathways that might be associated with this disease. Peripheral blood mononuclear cells were analysed in eight individuals with detectable viral RNA and compared to five healthy subjects. A total of 106 differentially expressed miRNAs were identified, of which 19 miRNAs were either fivefold prominently up- or down-regulation. Several miRNAs associated with cytokine expression, some of which were previously associated with Dengue and Hantavirus infections were revealed. Moreover, possible mechanisms related to secretion of adhesion molecules and viral escape from innate immunity were identified. Pathway enrichment analyses further revealed the putative involvement of TNF-alfa, TGF-beta, MAPK, WNT, and neurotrophin signaling pathways in disease pathogenesis. J. Med. Virol. 89:417-422, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Aliye Bastug
- Infectious Diseases Clinic, Numune Training and Research Hospital, Ankara, Turkey
| | - Hurrem Bodur
- Infectious Diseases Clinic, Numune Training and Research Hospital, Ankara, Turkey
| | - Koray Ergunay
- Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Hacettepe University, Ankara, Turkey
| | - Aykut Ozkul
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara, Turkey
| |
Collapse
|
43
|
Oxysterols: An emerging class of broad spectrum antiviral effectors. Mol Aspects Med 2016; 49:23-30. [PMID: 27086126 DOI: 10.1016/j.mam.2016.04.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 01/26/2023]
Abstract
Oxysterols are a family of cholesterol oxidation derivatives that contain an additional hydroxyl, epoxide or ketone group in the sterol nucleus and/or a hydroxyl group in the side chain. The majority of oxysterols in the blood are of endogenous origin, derived from cholesterol via either enzymatic or non-enzymatic mechanisms. A large number of reports demonstrate multiple physiological roles of specific oxysterols. One such role is the inhibition of viral replication. This biochemical/biological property was first characterised against a number of viruses endowed with an external lipid membrane (enveloped viruses), although antiviral activity has since been observed in relation to several non-enveloped viruses. In the present paper, we review the recent findings about the broad antiviral activity of oxysterols against enveloped and non-enveloped human viral pathogens, and provide an overview of their putative antiviral mechnism(s).
Collapse
|
44
|
Grassi G, Di Caprio G, Fimia GM, Ippolito G, Tripodi M, Alonzi T. Hepatitis C virus relies on lipoproteins for its life cycle. World J Gastroenterol 2016; 22:1953-1965. [PMID: 26877603 PMCID: PMC4726671 DOI: 10.3748/wjg.v22.i6.1953] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence and pathogenesis are due to the ability of HCV to deregulate specific host processes, mainly lipid metabolism and innate immunity. In particular, HCV exploits the lipoprotein machineries for almost all steps of its life cycle. The aim of this review is to summarize current knowledge concerning the interplay between HCV and lipoprotein metabolism. We discuss the role played by members of lipoproteins in HCV entry, replication and virion production.
Collapse
|
45
|
Suppressive Effects of the Site 1 Protease (S1P) Inhibitor, PF-429242, on Dengue Virus Propagation. Viruses 2016; 8:v8020046. [PMID: 26875984 PMCID: PMC4776201 DOI: 10.3390/v8020046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 01/08/2023] Open
Abstract
Dengue virus (DENV) infection causes one of the most widespread mosquito-borne diseases in the world. Despite the great need, effective vaccines and practical antiviral therapies are still under development. Intracellular lipid levels are regulated by sterol regulatory elements-binding proteins (SREBPs), which are activated by serine protease, site 1 protease (S1P). Small compound PF-429242 is known as a S1P inhibitor and the antivirus effects have been reported in some viruses. In this study, we examined the anti-DENV effects of PF-429242 using all four serotypes of DENV by several primate-derived cell lines. Moreover, emergence of drug-resistant DENV mutants was assessed by sequential passages with the drug. DENV dependency on intracellular lipids during their infection was also evaluated by adding extracellular lipids. The addition of PF-429242 showed suppression of viral propagation in all DENV serotypes. We showed that drug-resistant DENV mutants are unlikely to emerge after five times sequential passages through treatment with PF-429242. Although the levels of intracellular cholesterol and lipid droplets were reduced by PF-429242, viral propagations were not recovered by addition of exogenous cholesterol or fatty acids, indicating that the reduction of LD and cholesterol caused by PF-429242 treatment is not related to its mechanism of action against DENV propagation. Our results suggest that PF-429242 is a promising candidate for an anti-DENV agent.
Collapse
|
46
|
Chang ML. Metabolic alterations and hepatitis C: From bench to bedside. World J Gastroenterol 2016; 22:1461-1476. [PMID: 26819514 PMCID: PMC4721980 DOI: 10.3748/wjg.v22.i4.1461] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/14/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
In addition to causing cirrhosis and hepatocellular carcinoma, hepatitis C virus (HCV) is thought to cause hypolipidemia, hepatic steatosis, insulin resistance, metabolic syndrome, and diabetes. The viral life cycle of HCV depends on cholesterol metabolism in host cells. HCV core protein and nonstructural protein 5A perturb crucial lipid and glucose pathways, such as the sterol regulatory element-binding protein pathway and the protein kinase B/mammalian target of rapamycin/S6 kinase 1 pathway. Although several lines of transgenic mice expressing core or full HCV proteins exhibit hepatic steatosis and/or dyslipidemia, whether they completely reflect the metabolic alterations in humans with HCV infection remains unknown. Many cross-sectional studies have demonstrated increased prevalences of metabolic alterations and cardiovascular events in patients with chronic hepatitis C (CHC); however, conflicting results exist, primarily due to unavoidable individual variations. Utilizing anti-HCV therapy, most longitudinal cohort studies of CHC patients have demonstrated the favorable effects of viral clearance in attenuating metabolic alterations and cardiovascular risks. To determine the risks of HCV-associated metabolic alterations and associated complications in patients with CHC, it is necessary to adjust for crucial confounders, such as HCV genotype and host baseline glucose metabolism, for a long follow-up period after anti-HCV treatment. Adipose tissue is an important endocrine organ due to its release of adipocytokines, which regulate lipid and glucose metabolism. However, most data on HCV infection and adipocytokine alteration are inconclusive. A comprehensive overview of HCV-associated metabolic and adipocytokine alterations, from bench to bedside, is presented in this topic highlight.
Collapse
|
47
|
Wen AM, Le N, Zhou X, Steinmetz NF, Popkin DL. Tropism of CPMV to Professional Antigen Presenting Cells Enables a Platform to Eliminate Chronic Infections. ACS Biomater Sci Eng 2015; 1:1050-1054. [PMID: 27280157 PMCID: PMC4894745 DOI: 10.1021/acsbiomaterials.5b00344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chronic viral infections (e.g., HIV, HBV, HCV) represent a significant source of morbidity and mortality with over 500 million people infected worldwide. Dendritic cells (DCs) and macrophages are key cell types for productive viral replication and persistent systemic infection. We demonstrate that the plant virus cowpea mosaic virus (CPMV) displays tropism for such antigen presenting cells in both mice and humans, thus making it an ideal candidate for targeted drug delivery toward viral infections. Furthermore, we show inhibition of a key host protein for viral infection, site-1 protease (S1P), using the small molecule PF-429242 in the model pathogen arenavirus lymphocytic choriomeningitis virus (LCMV) limits viral growth. By packaging PF-429242 in CPMV, we are able to control drug release and efficiently deliver the drug. This sets the groundwork for utilizing the natural tropism of CPMV for a therapeutic approach that specifically targets cell types most commonly subverted by chronic viruses.
Collapse
Affiliation(s)
- Amy M. Wen
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
| | - Nga Le
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
| | - Xin Zhou
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
- Department of Radiology, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
- Department of Materials Science and Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
- Department of Macromolecular Science and Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, Ohio 44106, United States
| | - Daniel L. Popkin
- Department of Dermatology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
- Department of Pathology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
- Department of Molecular Biology and Microbiology, Case Western Reserve University Hospitals, Cleveland, Ohio 44106, United States
| |
Collapse
|
48
|
Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection. Viruses 2015; 7:5659-85. [PMID: 26540069 PMCID: PMC4664971 DOI: 10.3390/v7112898] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC) which are leading indications of liver transplantation (LT). To date, there is no vaccine to prevent HCV infection and LT is invariably followed by infection of the liver graft. Within the past years, direct-acting antivirals (DAAs) have had a major impact on the management of chronic hepatitis C, which has become a curable disease in the majority of DAA-treated patients. In contrast to DAAs that target viral proteins, host-targeting agents (HTAs) interfere with cellular factors involved in the viral life cycle. By acting through a complementary mechanism of action and by exhibiting a generally higher barrier to resistance, HTAs offer a prospective option to prevent and treat viral resistance. Indeed, given their complementary mechanism of action, HTAs and DAAs can act in a synergistic manner to reduce viral loads. This review summarizes the different classes of HTAs against HCV infection that are in preclinical or clinical development and highlights their potential to prevent HCV infection, e.g., following LT, and to tailor combination treatments to cure chronic HCV infection.
Collapse
|
49
|
Identification of Cholesterol 25-Hydroxylase as a Novel Host Restriction Factor and a Part of the Primary Innate Immune Responses against Hepatitis C Virus Infection. J Virol 2015; 89:6805-16. [PMID: 25903345 DOI: 10.1128/jvi.00587-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/10/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV), a single-stranded positive-sense RNA virus of the Flaviviridae family, causes chronic liver diseases, including hepatitis, cirrhosis, and cancer. HCV infection is critically dependent on host lipid metabolism, which contributes to all stages of the viral life cycle, including virus entry, replication, assembly, and release. 25-Hydroxycholesterol (25HC) plays a critical role in regulating lipid metabolism, modulating immune responses, and suppressing viral pathogens. In this study, we showed that 25HC and its synthesizing enzyme cholesterol 25-hydroxylase (CH25H) efficiently inhibit HCV infection at a postentry stage. CH25H inhibits HCV infection by suppressing the maturation of SREBPs, critical transcription factors for host lipid biosynthesis. Interestingly, CH25H is upregulated upon poly(I · C) treatment or HCV infection in hepatocytes, which triggers type I and III interferon responses, suggesting that the CH25H induction constitutes a part of host innate immune response. To our surprise, in contrast to studies in mice, CH25H is not induced by interferons in human cells and knockdown of STAT-1 has no effect on the induction of CH25H, suggesting CH25H is not an interferon-stimulated gene in humans but rather represents a primary and direct host response to viral infection. Finally, knockdown of CH25H in human hepatocytes significantly increases HCV infection. In summary, our results demonstrate that CH25H constitutes a primary innate response against HCV infection through regulating host lipid metabolism. Manipulation of CH25H expression and function should provide a new strategy for anti-HCV therapeutics. IMPORTANCE Recent studies have expanded the critical roles of oxysterols in regulating immune response and antagonizing viral pathogens. Here, we showed that one of the oxysterols, 25HC and its synthesizing enzyme CH25H efficiently inhibit HCV infection at a postentry stage via suppressing the maturation of transcription factor SREBPs that regulate lipid biosynthesis. Furthermore, we found that CH25H expression is upregulated upon poly(I·C) stimulation or HCV infection, suggesting CH25H induction constitutes a part of host innate immune response. Interestingly, in contrast to studies in mice showing that ch25h is an interferon-stimulated gene, CH25H cannot be induced by interferons in human cells but rather represents a primary and direct host response to viral infection. Our studies demonstrate that the induction of CH25H represents an important host innate response against virus infection and highlight the role of lipid effectors in host antiviral strategy.
Collapse
|
50
|
Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword. Virus Res 2015; 209:100-17. [PMID: 25836277 DOI: 10.1016/j.virusres.2015.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection affects chronically more than 150 million humans worldwide. Chronic HCV infection causes severe liver disease and hepatocellular carcinoma. While immune response-mediated events are major players in HCV pathogenesis, the impact that viral replication has on cellular homeostasis is increasingly recognized as a necessary contributor to pathological manifestations of HCV infection such as steatosis, insulin-resistance or liver cancer. In this review, we will briefly overview the different cellular stress pathways that are induced by hepatitis C virus infection, the response that the cell promotes to attempt regaining homeostasis or to induce dysfunctional cell death, and how the virus co-opts these response mechanisms to promote both viral replication and survival of the infected cell. We will review the role of unfolded protein and oxidative stress responses as well as the role of auto- and mitophagy in HCV infection. Finally, we will discuss the recent discovery of a cellular chaperone involved in stress responses, the sigma-1 receptor, as a cellular factor required at the onset of HCV infection and the potential molecular events underlying the proviral role of this cellular factor in HCV infection.
Collapse
|