1
|
Lai ZZ, Yen IC, Hung HY, Hong CY, Lai CW, Lee YM. In Vitro Antiviral Activity of Rhodiola crenulata Extract against Zika Virus and Japanese Encephalitis Virus: Viral Binding and Stability. Pharmaceuticals (Basel) 2024; 17:988. [PMID: 39204093 PMCID: PMC11357342 DOI: 10.3390/ph17080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Zika virus (ZIKV) and Japanese encephalitis virus (JEV) can cause permanent neurological damage and death, yet no approved drugs exist for these infections. Rhodiola crenulate, an herb used in traditional Chinese medicine for its antioxidation and antifatigue properties, was studied for its antiviral activity against ZIKV and JEV in vitro. The cytotoxicity of Rhodiola crenulata extract (RCE) was evaluated using the CCK-8 reagent. Antiviral effects of RCE were assessed in ZIKV-infected or JEV-infected Vero cells via quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, fluorescent focus assay (FFA), and immunofluorescence assay (IFA). The cell-free antiviral effects of RCE were evaluated using an inactivation assay. To determine the stage of the viral life cycle affected by RCE, time-of-addition, binding, and entry assays were conducted. Three bioactive constituents of RCE (salidroside, tyrosol, and gallic acid) were tested for antiviral activity. RCE exhibited dose-dependent anti-ZIKV and anti-JEV activities at non-cytotoxic concentrations, which were likely achieved by disrupting viral binding and stability. Gallic acid exhibited antiviral activity against ZIKV and JEV. Our findings indicate that RCE disrupts viral binding and stability, presenting a potential strategy to treat ZIKV and JEV infections.
Collapse
Affiliation(s)
- Zheng-Zong Lai
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan;
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan; (H.-Y.H.); (C.-Y.H.)
| | - I-Chuan Yen
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan; (I.-C.Y.); (C.-W.L.)
| | - Hao-Yuan Hung
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan; (H.-Y.H.); (C.-Y.H.)
| | - Chen-Yang Hong
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan; (H.-Y.H.); (C.-Y.H.)
| | - Chih-Wei Lai
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan; (I.-C.Y.); (C.-W.L.)
| | - Yen-Mei Lee
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan; (H.-Y.H.); (C.-Y.H.)
| |
Collapse
|
2
|
Chan YT, Cheok YY, Cheong HC, Tang TF, Sulaiman S, Hassan J, Looi CY, Tan KK, AbuBakar S, Wong WF. Immune Recognition versus Immune Evasion Systems in Zika Virus Infection. Biomedicines 2023; 11:biomedicines11020642. [PMID: 36831177 PMCID: PMC9952926 DOI: 10.3390/biomedicines11020642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/22/2023] Open
Abstract
The reemergence of the Zika virus (ZIKV) infection in recent years has posed a serious threat to global health. Despite being asymptomatic or mildly symptomatic in a majority of infected individuals, ZIKV infection can result in severe manifestations including neurological complications in adults and congenital abnormalities in newborns. In a human host, ZIKV is primarily recognized by RIG-like receptors and Toll-like receptors that elicit anti-viral immunity through the secretion of type I interferon (IFN) to limit viral survival, replication, and pathogenesis. Intriguingly, ZIKV evades its host immune system through various immune evasion strategies, including suppressing the innate immune receptors and signaling pathways, mutation of viral structural and non-structural proteins, RNA modulation, or alteration of cellular pathways. Here, we present an overview of ZIKV recognition by the host immune system and the evasion strategies employed by ZIKV. Characterization of the host-viral interaction and viral disease mechanism provide a platform for the rational design of novel prophylactic and therapeutic strategies against ZIKV infection.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jamiyah Hassan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Education Center of Excellence (HICoE), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Education Center of Excellence (HICoE), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-(3)-7967-6672
| |
Collapse
|
3
|
Lee JY, Nguyen TTN, Myoung J. Zika Virus-Encoded NS2A and NS4A Strongly Downregulate NF-κB Promoter Activity. J Microbiol Biotechnol 2020; 30:1651-1658. [PMID: 33203823 PMCID: PMC9728285 DOI: 10.4014/jmb.2011.11003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Since Zika virus (ZIKV) was first detected in Uganda in 1947, serious outbreaks have occurred globally in Yap Island, French Polynesia and Brazil. Even though the number of infections and spread of ZIKV have risen sharply, the pathogenesis and replication mechanisms of ZIKV have not been well studied. ZIKV, a recently highlighted Flavivirus, is a mosquito-borne emerging virus causing microcephaly and the Guillain-Barre syndrome in fetuses and adults, respectively. ZIKV polyprotein consists of three structural proteins named C, prM and E and seven nonstructural proteins named NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 in an 11-kb single-stranded positive sense RNA genome. The function of individual ZIKV genes on the host innate immune response has barely been studied. In this study, we investigated the modulations of the NF-κB promoter activity induced by the MDA5/RIG-I signaling pathway. According to our results, two nonstructural proteins, NS2A and NS4A, dramatically suppressed the NF-κB promoter activity by inhibiting signaling factors involved in the MDA5/RIG-I signaling pathway. Interestingly, NS2A suppressed all components of MDA5/RIG-I signaling pathway, but NS4A inhibited most signaling molecules, except IKKε and IRF3-5D. In addition, both NS2A and NS4A downregulated MDA5-induced NF-κB promoter activity in a dosedependent manner. Taken together, our results suggest that NS2A and NS4A signifcantly antagonize MDA5/RIG-I-mediated NF-κB production, and these proteins seem to be controlled by different mechanisms. This study could help understand the mechanisms of how ZIKV controls innate immune responses and may also assist in the development of ZIKV-specific therapeutics.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Thi Thuy Ngan Nguyen
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| |
Collapse
|
4
|
Harringtonine Inhibits Zika Virus Infection through Multiple Mechanisms. Molecules 2020; 25:molecules25184082. [PMID: 32906689 PMCID: PMC7570876 DOI: 10.3390/molecules25184082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mosquito-borne Zika virus (ZIKV) is a Flavivirus that came under intense study from 2014 to 2016 for its well-known ability to cause congenital microcephaly in fetuses and neurological Guillain-Barré disease in adults. Substantial research on screening antiviral agents against ZIKV and preventing ZIKV infection are globally underway, but Food and Drug Administration (FDA)-approved treatments are not available yet. Compounds from Chinese medicinal herbs may offer an opportunity for potential therapies for anti-ZIKV infection. In this study, we evaluated the antiviral efficacy of harringtonine against ZIKV. Harringtonine possessed anti-ZIKV properties against the binding, entry, replication, and release stage through the virus life cycle. In addition, harringtonine have strong virucidal effects in ZIKV and exhibited prophylaxis antiviral ability prior ZIKV infection. The antiviral activity also observed in the treatment against Japanese encephalitis reporter virus (RP9-GFP strain). Overall, this study demonstrated that harringtonine would be a favorable potential candidate for the development of anti-ZIKV infection therapies.
Collapse
|
5
|
Contemporary Zika Virus Isolates Induce More dsRNA and Produce More Negative-Strand Intermediate in Human Astrocytoma Cells. Viruses 2018; 10:v10120728. [PMID: 30572570 PMCID: PMC6316034 DOI: 10.3390/v10120728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
The recent emergence and rapid geographic expansion of Zika virus (ZIKV) poses a significant challenge for public health. Although historically causing only mild febrile illness, recent ZIKV outbreaks have been associated with more severe neurological complications, such as Guillain-Barré syndrome and fetal microcephaly. Here we demonstrate that two contemporary (2015) ZIKV isolates from Puerto Rico and Brazil may have increased replicative fitness in human astrocytoma cells. Over a single infectious cycle, the Brazilian isolate replicates to higher titers and induces more severe cytopathic effects in human astrocytoma cells than the historical African reference strain or an early Asian lineage isolate. In addition, both contemporary isolates induce significantly more double-stranded RNA in infected astrocytoma cells, despite similar numbers of infected cells across isolates. Moreover, when we quantified positive- and negative-strand viral RNA, we found that the Asian lineage isolates displayed substantially more negative-strand replicative intermediates than the African lineage isolate in human astrocytoma cells. However, over multiple rounds of infection, the contemporary ZIKV isolates appear to be impaired in cell spread, infecting a lower proportion of cells at a low MOI despite replicating to similar or higher titers. Taken together, our data suggests that contemporary ZIKV isolates may have evolved mechanisms that allow them to replicate with increased efficiency in certain cell types, thereby highlighting the importance of cell-intrinsic factors in studies of viral replicative fitness.
Collapse
|
6
|
Hassert M, Wolf KJ, Schwetye KE, DiPaolo RJ, Brien JD, Pinto AK. CD4+T cells mediate protection against Zika associated severe disease in a mouse model of infection. PLoS Pathog 2018; 14:e1007237. [PMID: 30212537 PMCID: PMC6136803 DOI: 10.1371/journal.ppat.1007237] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) has gained worldwide attention since it emerged, and a global effort is underway to understand the correlates of protection and develop diagnostics to identify rates of infection. As new therapeutics and vaccine approaches are evaluated in clinical trials, additional effort is focused on identifying the adaptive immune correlates of protection against ZIKV disease. To aid in this endeavor we have begun to dissect the role of CD4+T cells in the protection against neuroinvasive ZIKV disease. We have identified an important role for CD4+T cells in protection, demonstrating that in the absence of CD4+T cells mice have more severe neurological sequela and significant increases in viral titers in the central nervous system (CNS). The transfer of CD4+T cells from ZIKV immune mice protect type I interferon receptor deficient animals from a lethal challenge; showing that the CD4+T cell response is necessary and sufficient for control of ZIKV disease. Using a peptide library spanning the complete ZIKV polyprotein, we identified both ZIKV-encoded CD4+T cell epitopes that initiate immune responses, and ZIKV specific CD4+T cell receptors that recognize these epitopes. Within the ZIKV antigen-specific TCRβ repertoire, we uncovered a high degree of diversity both in response to a single epitope and among different mice responding to a CD4+T cell epitope. Overall this study identifies a novel role for polyfunctional and polyclonal CD4+T cells in providing protection against ZIKV infection and highlights the need for vaccines to develop robust CD4+T cell responses to prevent ZIKV neuroinvasion and limit replication within the CNS.
Collapse
MESH Headings
- Adoptive Transfer
- Amino Acid Sequence
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- CD4-Positive T-Lymphocytes/immunology
- Central Nervous System/immunology
- Central Nervous System/virology
- Disease Models, Animal
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Genes, T-Cell Receptor beta
- Humans
- Immunity, Cellular
- Liver/immunology
- Liver/virology
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Interferon alpha-beta/deficiency
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- Viral Vaccines/immunology
- Virus Replication/immunology
- Zika Virus/genetics
- Zika Virus/immunology
- Zika Virus/pathogenicity
- Zika Virus Infection/genetics
- Zika Virus Infection/immunology
- Zika Virus Infection/prevention & control
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, Missouri, United States of America
| | - Kyle J. Wolf
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, Missouri, United States of America
| | - Katherine E. Schwetye
- Department of Pathology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Richard J. DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, Missouri, United States of America
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, Missouri, United States of America
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, Missouri, United States of America
| |
Collapse
|
7
|
Guerra-Reyes L, Fu TCJ, Williams D, Herbenick D, Dodge B, Reece M, Fortenberry JD. Knowledge of Zika and perception of risk among sexually-active adults in the United States of America: results from a nationally representative sample. Rev Panam Salud Publica 2018; 42:e43. [PMID: 31093071 PMCID: PMC6386031 DOI: 10.26633/rpsp.2018.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/12/2017] [Indexed: 01/05/2023] Open
Abstract
Objective To examine knowledge of Zika transmission and risk perception and to assess variability by condom use in a probability sample of sexually-active adults in the United States. Methods Data for this study came from the 2016 wave of the National Survey of Sexual Health and Behavior, a nationally representative probability sample of adults in the United States. Data were collected in November 2016 via a cross-sectional Internet-based survey administered to members of a Knowledge Panel, an address-based random sample service managed by GfK. A weighted subsample (n = 1 713) of sexually active adults, 18 - 50 years of age, was included in analyses. Results More than 90% of men and women reported low or no perceived risk of Zika. Most participants identified mosquito bite as a route of transmission, while significantly fewer identified sexual intercourse (≈ 40%) and vertical (29% men, 41% women) transmission routes. Conclusion Sexually-active adults in the United States, especially young men, lack awareness of sexual and vertical transmission of Zika Virus. Given the likely endemic nature of Zika, this low-risk perception is an important prevention challenge. Zika prevention messaging should address lesser known transmission routes, emphasize male education, and promote correct and consistent condom use.
Collapse
Affiliation(s)
- Lucia Guerra-Reyes
- Center for Sexual Health Promotion, School of Public Health, Indiana University, Bloomington, Indiana, United States
| | - Tsung-Chieh Jane Fu
- Center for Sexual Health Promotion, School of Public Health, Indiana University, Bloomington, Indiana, United States
| | - Deana Williams
- Department of Applied Health Science, Indiana University, Bloomington, Indiana, United States
| | - Debby Herbenick
- Center for Sexual Health Promotion, School of Public Health, Indiana University, Bloomington, Indiana, United States
| | - Brian Dodge
- Center for Sexual Health Promotion, School of Public Health, Indiana University, Bloomington, Indiana, United States
| | - Michael Reece
- Center for Sexual Health Promotion, School of Public Health, Indiana University, Bloomington, Indiana, United States
| | - J Dennis Fortenberry
- Section of Adolescent Medicine, Indiana University School of Medicine, Bloomington, Indiana, United States
| |
Collapse
|
8
|
Zika Virus Fatally Infects Wild Type Neonatal Mice and Replicates in Central Nervous System. Viruses 2018; 10:v10010049. [PMID: 29361773 PMCID: PMC5795462 DOI: 10.3390/v10010049] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) has been defined as a teratogenic pathogen behind the increased number of cases of microcephaly in French Polynesia, Brazil, Puerto Rico, and other South American countries. Experimental studies using animal models have achieved tremendous insight into understanding the viral pathogenesis, transmission, teratogenic mechanisms, and virus-host interactions. However, the animals used in published investigations are mostly interferon (IFN)-compromised, either genetically or via antibody treatment. Herein, we studied ZIKV infection in IFN-competent mice using African (MR766) and Asian strains (PRVABC59 and SZ-WIV01). After testing four different species of mice, we found that BALB/c neonatal mice were resistant to ZIKV infection, that Kunming, ICR and C57BL/6 neonatal mice were fatally susceptible to ZIKV infection, and that the fatality of C57BL/6 neonates from 1 to 3 days old were in a viral dose-dependent manner. The size and weight of the brain were significantly reduced, and the ZIKV-infected mice showed neuronal symptoms such as hind-limb paralysis, tremor, and poor balance during walking. Pathologic and immunofluorescent experiments revealed that ZIKV infected different areas of the central nervous system (CNS) including gray matter, hippocampus, cerebral cortex, and spinal cord, but not olfactory bulb. Interestingly, ZIKV replicated in multiple organs and resulted in pathogenesis in liver and testis, implying that ZIKV infection may engender a high health risk in neonates by postnatal infection. In summary, we investigated ZIKV pathogenesis using an animal model that is not IFN-compromised.
Collapse
|
9
|
Londono-Renteria B, Troupin A, Cardenas JC, Hall A, Perez OG, Cardenas L, Hartstone-Rose A, Halstead SB, Colpitts TM. A relevant in vitro human model for the study of Zika virus antibody-dependent enhancement. J Gen Virol 2017; 98:1702-1712. [PMID: 28691657 DOI: 10.1099/jgv.0.000833] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that has recently been responsible for a serious outbreak of disease in South and Central America. Infection with ZIKV has been associated with severe neurological symptoms and the development of microcephaly in unborn fetuses. Many of the regions involved in the current outbreak are known to be endemic for another flavivirus, dengue virus (DENV), which indicates that a large percentage of the population may have pre-existing DENV immunity. Thus, it is vital to investigate what impact pre-existing DENV immunity has on ZIKV infection. Here, we use primary human myeloid cells as a model for ZIKV enhancement in the presence of DENV antibodies. We show that sera containing DENV antibodies from individuals living in a DENV-endemic area are able to enhance ZIKV infection in a human macrophage-derived cell line and primary human macrophages. We also demonstrate altered pro-inflammatory cytokine production in macrophages with enhanced ZIKV infection. Our study indicates an important role for pre-existing DENV immunity on ZIKV infection in primary human immune cells and establishes a relevant in vitro model to study ZIKV antibody-dependent enhancement.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.,Present address: Entomology, Kansas State University, Manhattan, USA
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jenny C Cardenas
- Clinical Laboratory, Hospital Los Patios, Los Patios, Colombia, South America
| | - Alex Hall
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Omar G Perez
- Grupo de Investigacion en Enfermedades Parasitarias (GIEPATI), Universidad de Pamplona, Colombia, South America
| | - Lucio Cardenas
- Grupo de Investigacion en Enfermedades Parasitarias (GIEPATI), Universidad de Pamplona, Colombia, South America
| | - Adam Hartstone-Rose
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Scott B Halstead
- Department of Preventative Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.,Tropical Medicine, Tulane School of Public Health and Tropical Medicine, New Orleans, USA.,Present address: Microbiology, Boston University School of Medicine, Boston, USA
| |
Collapse
|
10
|
Armstrong N, Hou W, Tang Q. Biological and historical overview of Zika virus. World J Virol 2017; 6:1-8. [PMID: 28239566 PMCID: PMC5303855 DOI: 10.5501/wjv.v6.i1.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/21/2016] [Accepted: 08/15/2016] [Indexed: 02/05/2023] Open
Abstract
The recent outbreak of the Zika virus attracts worldwide attention probably because the most recently affected country (Brazil) will host the 2016 Olympic Game. Zika virus infected cases are now spreading to many other countries and its infection might be linked to some severe medical sequelae. Since its first isolation from the infected monkey in 1947 in Uganda, only a few studies had been taken until recent outbreak. According to the history of referenced publications, there is a 19-year gap from 1989 to 2007. This might be because only mild diseases were diagnosed from Zika virus infected populations. Obviously, the recent reports that Zika virus infection is probably associated with microcephaly of the neonates makes us reevaluate the medical significance of the viral pathogen. It can be transmitted sexually or by mosquito biting. Sexual transmission of the Zika virus distinguishes it from other members of the Genus Flavivirus. Detailed information of the Zika virus is needed through a thorough investigation covering basic, epidemical, subclinical and clinical studies. Here, we reviewed the published information of Zika virus.
Collapse
|
11
|
Lee H, Ren J, Nocadello S, Rice AJ, Ojeda I, Light S, Minasov G, Vargas J, Nagarathnam D, Anderson WF, Johnson ME. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus. Antiviral Res 2016; 139:49-58. [PMID: 28034741 DOI: 10.1016/j.antiviral.2016.12.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/11/2023]
Abstract
Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain-Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activity (IC50) and binding affinity (KD) of ∼5-10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a "pre-open conformation", a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.
Collapse
Affiliation(s)
- Hyun Lee
- Novalex Therapeutics, Inc., 2242 W Harrison Suite 201, Chicago, IL 60612, USA
| | - Jinhong Ren
- Center for Biomolecular Science, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA
| | - Salvatore Nocadello
- Center for Structural Genomics of Infectious Diseases (CSGID), Dept. of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Amy J Rice
- Center for Biomolecular Science, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, IL 60612, USA
| | - Isabel Ojeda
- Center for Biomolecular Science, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, IL 60612, USA
| | - Samuel Light
- Center for Structural Genomics of Infectious Diseases (CSGID), Dept. of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases (CSGID), Dept. of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Jason Vargas
- Center for Biomolecular Science, University of Illinois at Chicago, 900 S. Ashland, IL 60607, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, IL 60612, USA
| | | | - Wayne F Anderson
- Center for Structural Genomics of Infectious Diseases (CSGID), Dept. of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Michael E Johnson
- Novalex Therapeutics, Inc., 2242 W Harrison Suite 201, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase. Antiviral Res 2016; 137:131-133. [PMID: 27902932 DOI: 10.1016/j.antiviral.2016.11.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022]
Abstract
We describe the expression and purification of an active recombinant Zika virus RNA-dependent RNA polymerase (RdRp). Next, we present the development and optimization of an in vitro assay to measure its activity. We then applied the assay to selected triphosphate analogs and discovered that 2'-C-methylated nucleosides exhibit strong inhibitory activity. Surprisingly, also carbocyclic derivatives with the carbohydrate locked in a North-like conformation as well as a ribonucleotide with a South conformation exhibited strong activity. Our results suggest that the traditional 2'-C-methylated nucleosides pursued in the race for anti-HCV treatment can be superseded by brand new scaffolds in the case of the Zika virus.
Collapse
|
13
|
Jasti AK, Selmi C, Sarmiento-Monroy JC, Vega DA, Anaya JM, Gershwin ME. Guillain-Barré syndrome: causes, immunopathogenic mechanisms and treatment. Expert Rev Clin Immunol 2016. [DOI: 10.1080/1744666x.2016.1193006 10.1080/1744666x.2016.1193006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Zika: As an emergent epidemic. ASIAN PAC J TROP MED 2016; 9:723-9. [PMID: 27569879 DOI: 10.1016/j.apjtm.2016.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022] Open
Abstract
Zika virus is a new global threat for 2016 that has been swept to almost all Americas and is now posing serious threats to the entire globe. This deadly virus is playing havoc to unborn lives because of its reported association with upsurge of fetal deformation called microcephaly and neuropathic disorders including Guillain-Barré syndrome. Till today, there is no vaccine prospect, antiviral therapy or licensed medical countermeasures to curb the teratogenic outcomes of this destructive viral infection. Diagnosis, treatment, chronicity and pathogenesis are still vague and unsettled. Therefore, this review article addresses all the aspects related to this disease to mitigate the explosive rise in Zika virus infection.
Collapse
|
15
|
Jasti AK, Selmi C, Sarmiento-Monroy JC, Vega DA, Anaya JM, Gershwin ME. Guillain-Barré syndrome: causes, immunopathogenic mechanisms and treatment. Expert Rev Clin Immunol 2016; 12:1175-1189. [PMID: 27292311 DOI: 10.1080/1744666x.2016.1193006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Guillain-Barré syndrome is a rare disease representing the most frequent cause of acute flaccid symmetrical weakness of the limbs and areflexia usually reaching its peak within a month. The etiology and pathogenesis remain largely enigmatic and the syndrome results in death or severe disability in 9-17% of cases despite immunotherapy. Areas covered: In terms of etiology, Guillain-Barré syndrome is linked to Campylobacter infection but less than 0.1% of infections result in the syndrome. In terms of pathogenesis, activated macrophages and T cells and serum antibodies against gangliosides are observed but their significance is unclear. Expert commentary: Guillain-Barré syndrome is a heterogeneous condition with numerous subtypes and recent data point towards the role of ganglioside epitopes by immunohistochemical methods. Ultimately, the syndrome results from a permissive genetic background on which environmental factors, including infections, vaccination and the influence of aging, lead to disease.
Collapse
Affiliation(s)
- Anil K Jasti
- a Division of Rheumatology, Allergy, and Clinical Immunology , University of California Davis , Davis , CA , USA
| | - Carlo Selmi
- b Rheumatology and Clinical Immunology , Humanitas Research Hospital , Rozzano , Milan , Italy.,c BIOMETRA Department , University of Milan , Milan , Italy
| | - Juan C Sarmiento-Monroy
- d Center for Autoimmune Diseases Research (CREA) , Universidad del Rosario , Bogota , Colombia
| | - Daniel A Vega
- e Intensive Care Unit, Mederi, Hospital Universitario Mayor , Universidad del Rosario , Bogotá , Colombia
| | - Juan-Manuel Anaya
- d Center for Autoimmune Diseases Research (CREA) , Universidad del Rosario , Bogota , Colombia
| | - M Eric Gershwin
- a Division of Rheumatology, Allergy, and Clinical Immunology , University of California Davis , Davis , CA , USA
| |
Collapse
|