1
|
McSteen BW, Ying XH, Lucero C, Jesudian AB. Viral etiologies of acute liver failure. World J Virol 2024; 13:97973. [PMID: 39323454 PMCID: PMC11401000 DOI: 10.5501/wjv.v13.i3.97973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Acute liver failure (ALF) is a rare cause of liver-related mortality worldwide, with an estimated annual global incidence of more than one million cases. While drug-induced liver injury, including acetaminophen toxicity, is the leading cause of ALF in the Western world, viral infections remain a significant cause of ALF and the most common cause in many developing nations. Given the high mortality rates associated with ALF, healthcare providers should be aware of the broad range of viral infections that have been implicated to enable early diagnosis, rapid treatment initiation when possible, and optimal management, which may include liver transplantation. This review aims to provide a summary of viral causes of ALF, diagnostic approaches, treatment options, and expected outcomes.
Collapse
Affiliation(s)
- Brian W McSteen
- Department of Medicine, New York-Presbyterian/Weill Cornell Campus, New York, NY 10021, United States
| | - Xiao-Han Ying
- Department of Medicine, New York-Presbyterian/Weill Cornell Campus, New York, NY 10021, United States
| | - Catherine Lucero
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, United States
| | - Arun B Jesudian
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, United States
| |
Collapse
|
2
|
Mattola S, Mäntylä E, Aho V, Salminen S, Leclerc S, Oittinen M, Salokas K, Järvensivu J, Hakanen S, Ihalainen TO, Viiri K, Vihinen-Ranta M. G2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids. Front Cell Dev Biol 2022; 10:1070599. [PMID: 36568985 PMCID: PMC9773396 DOI: 10.3389/fcell.2022.1070599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages of infection. Inhibitors of cell cycle regulatory protein cyclin-dependent kinase 1 (Cdk1) and pro-apoptotic caspase 3 prevented the NE leakage. The change in NE permeability could be explained by the regulation of the G2/M checkpoint which is accompanied by early mitotic and apoptotic events. The model of G2/M checkpoint activation was supported by infection-induced nuclear accumulation of cyclin B1 and Cdk1. Both NE permeability and nuclear egress of capsids were reduced by the inhibition of Cdk1. Additional proof of checkpoint function regulation and promotion of apoptotic events was the nucleocytoplasmic redistribution of nuclear transport factors, importins, and Ran, in late infection. Consistent with our findings, post-translational histone acetylation that promotes the regulation of several genes related to cell cycle transition and arrest was detected. In conclusion, the model we propose implies that parvoviral capsid egress partially depends on infection-induced G2/M checkpoint regulation involving early mitotic and apoptotic events.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Mikko Oittinen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jani Järvensivu
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Teemu O Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland,*Correspondence: Maija Vihinen-Ranta,
| |
Collapse
|
3
|
Mou C, Wang Y, Pan S, Shi K, Chen Z. Porcine sapelovirus 2A protein induces mitochondrial-dependent apoptosis. Front Immunol 2022; 13:1050354. [PMID: 36505441 PMCID: PMC9732094 DOI: 10.3389/fimmu.2022.1050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Porcine sapelovirus (PSV) is an emerging pathogen associated with symptoms of enteritis, pneumonia, polioencephalomyelitis and reproductive disorders in swine, resulting in significant economic losses. Although PSV is reported to trigger cell apoptosis, its specific molecular mechanism is unclear. In this research, the cell apoptosis induced by PSV infection and its underlying mechanisms were investigated. The morphologic features of apoptosis include nuclear condensation and fragmentation, were observed after PSV infection. The cell apoptosis was confirmed by analyzing the apoptotic rates, caspase activation, and PARP1 cleavage. Caspase inhibitors inhibited the PSV-induced intrinsic apoptosis pathway and reduced viral replication. Among the proteins encoded by PSV, 2A is an important factor in inducing the mitochondrial apoptotic pathway. The conserved residues H48, D91, and C164 related to protease activity in PSV 2A were crucial for 2A-induced apoptosis. In conclusion, our results provide insights into how PSV induces host cell apoptosis.
Collapse
Affiliation(s)
- Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuxi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuonan Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, Guangxi, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China,*Correspondence: Zhenhai Chen,
| |
Collapse
|
4
|
Sugiyama A, Hirashima M. Fetal nuchal edema and developmental anomalies caused by gene mutations in mice. Front Cell Dev Biol 2022; 10:949013. [PMID: 36111337 PMCID: PMC9468611 DOI: 10.3389/fcell.2022.949013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Fetal nuchal edema, a subcutaneous accumulation of extracellular fluid in the fetal neck, is detected as increased nuchal translucency (NT) by ultrasonography in the first trimester of pregnancy. It has been demonstrated that increased NT is associated with chromosomal anomalies and genetic syndromes accompanied with fetal malformations such as defective lymphatic vascular development, cardiac anomalies, anemia, and a wide range of other fetal anomalies. However, in many clinical cases of increased NT, causative genes, pathogenesis and prognosis have not been elucidated in humans. On the other hand, a large number of gene mutations have been reported to induce fetal nuchal edema in mouse models. Here, we review the relationship between the gene mutants causing fetal nuchal edema with defective lymphatic vascular development, cardiac anomalies, anemia and blood vascular endothelial barrier anomalies in mice. Moreover, we discuss how studies using gene mutant mouse models will be useful in developing diagnostic method and predicting prognosis.
Collapse
|
5
|
Wang J, Wang Y, Li Y, Gao Y, Li Y, Jiang Z, Zhu G, Wang X. Reproduction and pathogenesis of short beak and dwarfish syndrome in Cherry Valley Pekin ducks infected with the rescued novel goose parvovirus. Virulence 2022; 13:844-858. [PMID: 35481463 PMCID: PMC9090291 DOI: 10.1080/21505594.2022.2071184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Since the outbreak of short beak and dwarfish syndrome (SBDS) in Cherry Valley Pekin ducks in China, novel goose parvovirus (NGPV) has been isolated. Till now, little is known about the NGPV pathogenesis toward Cherry Valley Pekin ducks. Besides, due to detection of duck circovirus co-infection in SBDS clinical cases, whether sole NGPV infection can reproduce all the typical symptoms of SBDS remains unclear. In this study, based on the NGPV isolate SDJN19, an infectious plasmid clone pJNm containing the entire SDJN19 genome was constructed. Transfection of pJNm in embryonated duck eggs resulted in generation of the infectious virus carrying the genetic marker, named rJNm. rJNm infection of 2-day-old Cherry Valley Pekin ducks reproduced all the typical signs of SBDS, including beak atrophy, tongue protrusion, and growth retardation. rJNm can infect Cherry Valley Pekin ducks through the horizontal transmission route, and the infected ducks exhibited the characteristic SBDS symptoms. A high level of serum precipitation antibodies (above 5log2) were induced in the surviving ducks, however, high viral loads were still detected in the duck organs, suggesting persistent NGPV infection in ducks. By incorporating the homologous Rep1 and VP1 gene from classical GPV, two chimeric viruses rJN-cVP1 and rJN-cRep1 were generated. Duck infection tests revealed that the non-structural protein Rep1 played a crucial role in the NGPV pathogenicity. The present result lays a solid foundation for further exploring how the Rep protein contributes to the NGPV pathogenesis.
Collapse
Affiliation(s)
- Jianye Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu, China
| | - Yu Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu, China
| | - Yonglin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu, China
| | - Yuehua Gao
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yufeng Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zhiwei Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Soto-Valerio IA, Cayetano-Cruz M, Valadez-García J, Guadarrama P, Méndez C, Bustos-Jaimes I. In vitro refolding of the structural protein VP1 of parvovirus B19 produces virus-like particles with functional VP1 unique region. Virology 2022; 570:57-66. [DOI: 10.1016/j.virol.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
7
|
Arvia R, Zakrzewska K, Giovannelli L, Ristori S, Frediani E, Del Rosso M, Mocali A, Stincarelli MA, Laurenzana A, Fibbi G, Margheri F. Parvovirus B19 (B19V) induces cellular senescence in human dermal fibroblasts: putative role in SSc-associated fibrosis. Rheumatology (Oxford) 2021; 61:3864-3874. [PMID: 34888638 PMCID: PMC9434300 DOI: 10.1093/rheumatology/keab904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Emerging evidence demonstrates that excessive accumulation of senescent cells is associated with some chronic diseases and suggests a pathogenic role of cellular senescence in fibrotic processes, such as that occurring in aging or in systemic sclerosis (SSc). Recently, we demonstrated that parvovirus B19 (B19V) activates normal human dermal fibroblasts and induces expression of different profibrotic/proinflammatory genes. This observation prompted us to investigate whether it is also able to induce fibroblast senescence as a potential pathogenetic mechanism in B19V-induced fibrosis. METHODS Primary cultures of fibroblasts were infected with B19V and analyzed for the acquisition of senescence markers, such as morphological modifications, senescence-associated beta-galactosidase (SA-β-gal) activity, DNA damage response (DDR) and expression of senescence-associated secretory phenotype (SASP)-related factors. RESULTS We demonstrated that B19V-infected fibroblasts develop typical senescence features such as enlarged and flat-shaped morphology and SA-β-gal activity similar to that observed in SSc skin fibroblasts. They also developed a SASP-like phenotype characterized by mRNA expression and release of some proinflammatory cytokines, along with activation of transcription factor NFkB. Moreover, we observed B19V-induced DNA damage with the comet assay: a subpopulation of fibroblasts from B19V-infected cultures showed a significant higher level of DNA strand breaks and oxidative damage compared with mock-infected cells. Increased level and nuclear localization of ɣH2AX, a hallmark of DNA damage response, were also found. CONCLUSIONS B19V-induced senescence and production of SASP-like factors in normal dermal fibroblasts could represent a new pathogenic mechanism of non-productive B19V infection, which may have a role in the fibrotic process.
Collapse
Affiliation(s)
- Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Krystyna Zakrzewska
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lisa Giovannelli
- Department NEUROFARBA-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Sara Ristori
- Department NEUROFARBA-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Elena Frediani
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Alessandra Mocali
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Maria A Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| |
Collapse
|
8
|
Galibert L, Hyvönen A, Eriksson RAE, Mattola S, Aho V, Salminen S, Albers JD, Peltola SK, Weman S, Nieminen T, Ylä-Herttuala S, Lesch HP, Vihinen-Ranta M, Airenne KJ. Functional roles of the membrane-associated AAV protein MAAP. Sci Rep 2021; 11:21698. [PMID: 34737404 PMCID: PMC8568889 DOI: 10.1038/s41598-021-01220-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
With a limited coding capacity of 4.7 kb, adeno-associated virus (AAV) genome has evolved over-lapping genes to maximise the usage of its genome. An example is the recently found ORF in the cap gene, encoding membrane-associated accessory protein (MAAP), located in the same genomic region as the VP1/2 unique domain, but in a different reading frame. This 13 KDa protein, unique to the dependovirus genus, is not homologous to any known protein. Our studies confirm that MAAP translation initiates from the first CTG codon found in the VP1 ORF2. We have further observed MAAP localised in the plasma membrane, in the membranous structures in close proximity to the nucleus and to the nuclear envelope by co-transfecting with plasmids encoding the wild-type AAV (wt-AAV) genome and adenovirus (Ad) helper genes. While keeping VP1/2 protein sequence identical, both inactivation and truncation of MAAP translation affected the emergence and intracellular distribution of the AAV capsid proteins. We have demonstrated that MAAP facilitates AAV replication and has a role in controlling Ad infection. Additionally, we were able to improve virus production and capsid integrity through a C-terminal truncation of MAAP while other modifications led to increased packaging of contaminating, non-viral DNA. Our results show that MAAP plays a significant role in AAV infection, with profound implications for the production of therapeutic AAV vectors.
Collapse
Affiliation(s)
| | - Amira Hyvönen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.511728.8FinVector, Kuopio, Finland
| | - Reetta A. E. Eriksson
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Salla Mattola
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Vesa Aho
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Sami Salminen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | | | | | - Saija Weman
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Tiina Nieminen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland ,grid.410705.70000 0004 0628 207XGene Therapy Unit and Research Center, Kuopio University Hospital, Kuopio, Finland
| | - Hanna P. Lesch
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Maija Vihinen-Ranta
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | | |
Collapse
|
9
|
Ferri C, Arcangeletti MC, Caselli E, Zakrzewska K, Maccari C, Calderaro A, D'Accolti M, Soffritti I, Arvia R, Sighinolfi G, Artoni E, Giuggioli D. Insights into the knowledge of complex diseases: Environmental infectious/toxic agents as potential etiopathogenetic factors of systemic sclerosis. J Autoimmun 2021; 124:102727. [PMID: 34601207 DOI: 10.1016/j.jaut.2021.102727] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease secondary to three cardinal pathological features: immune-system alterations, diffuse microangiopathy, and fibrosis involving the skin and internal organs. The etiology of SSc remains quite obscure; it may encompass multiple host genetic and environmental -infectious/chemical-factors. The present review focused on the potential role of environmental agents in the etiopathogenesis of SSc based on epidemiological, clinical, and laboratory investigations previously published in the world literature. Among infectious agents, some viruses that may persist and reactivate in infected individuals, namely human cytomegalovirus (HCMV), human herpesvirus-6 (HHV-6), and parvovirus B19 (B19V), and retroviruses have been proposed as potential causative agents of SSc. These viruses share a number of biological activities and consequent pathological alterations, such as endothelial dysfunction and/or fibroblast activation. Moreover, the acute worsening of pre-existing interstitial lung involvement observed in SSc patients with symptomatic SARS-CoV-2 infection might suggest a potential role of this virus in the overall disease outcome. A variety of chemical/occupational agents might be regarded as putative etiological factors of SSc. In this setting, the SSc complicating silica dust exposure represents one of the most promising models of study. Considering the complexity of SSc pathogenesis, none of suggested causative factors may explain the appearance of the whole SSc; it is likely that the disease is the result of a multifactorial and multistep pathogenetic process. A variable combination of potential etiological factors may modulate the appearance of different clinical phenotypes detectable in individual scleroderma patients. The in-deep investigations on the SSc etiopathogenesis may provide useful insights in the broad field of human diseases characterized by diffuse microangiopathy or altered fibrogenesis.
Collapse
Affiliation(s)
- Clodoveo Ferri
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy; Rheumatology Unit, Casa di Cura Madonna dello Scoglio, Cotronei (KR), Italy.
| | | | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Krystyna Zakrzewska
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Clara Maccari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria D'Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianluca Sighinolfi
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy.
| | - Erica Artoni
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy
| | - Dilia Giuggioli
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy
| |
Collapse
|
10
|
Alves AD, Melgaço JG, Cássia Nc Garcia RD, Raposo JV, de Paula VS, Araújo CC, Pinto MA, Amado LA. Persistence of Parvovirus B19 in liver from transplanted patients with acute liver failure. Future Microbiol 2021; 15:307-317. [PMID: 32286103 DOI: 10.2217/fmb-2019-0224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: In this study, we investigated the presence of B19V in liver tissues from patients with acute liver failure (ALF) and evaluated the viral activity in infected liver. Methods: Serum and liver samples from 30 patients who underwent liver transplantation for ALF were investigated for B19V infection by real-time PCR, serological tests and examination of B19V mRNA (transcript) expression in the liver. Results: The serum and liver samples from seven patients were B19V DNA positive (103-105 copies/ml). Most of them presented detectable anti-B19V IgG, indicating persistent infection. B19V mRNA was detected in all patients, demonstrating intra-hepatic replication. Conclusion: B19V infection of the liver during the course of non-A-E ALF suggested a role of B19V, which produced the worst outcome in co-infected patients and in patients with cryptogenic ALF, in liver damage.
Collapse
Affiliation(s)
- Arthur Dr Alves
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Juliana G Melgaço
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Rita de Cássia Nc Garcia
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Jessica V Raposo
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Vanessa S de Paula
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | - Marcelo A Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Luciane A Amado
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
11
|
Arora R, Malla WA, Tyagi A, Mahajan S, Sajjanar B, Tiwari AK. Canine Parvovirus and Its Non-Structural Gene 1 as Oncolytic Agents: Mechanism of Action and Induction of Anti-Tumor Immune Response. Front Oncol 2021; 11:648873. [PMID: 34012915 PMCID: PMC8127782 DOI: 10.3389/fonc.2021.648873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The exploration into the strategies for the prevention and treatment of cancer is far from complete. Apart from humans, cancer has gained considerable importance in animals because of increased awareness towards animal health and welfare. Current cancer treatment regimens are less specific towards tumor cells and end up harming normal healthy cells. Thus, a highly specific therapeutic strategy with minimal side effects is the need of the hour. Oncolytic viral gene therapy is one such specific approach to target cancer cells without affecting the normal cells of the body. Canine parvovirus (CPV) is an oncolytic virus that specifically targets and kills cancer cells by causing DNA damage, caspase activation, and mitochondrial damage. Non-structural gene 1 (NS1) of CPV, involved in viral DNA replication is a key mediator of cytotoxicity of CPV and can selectively cause tumor cell lysis. In this review, we discuss the oncolytic properties of Canine Parvovirus (CPV or CPV2), the structure of the NS1 protein, the mechanism of oncolytic action as well as role in inducing an antitumor immune response in different tumor models.
Collapse
Affiliation(s)
- Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Arpit Tyagi
- GB Pant University of Agriculture and Technology, Pantnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardisation, ICAR-Indian Veterinary Research Institute, Izatnagar, India.,ICAR - Central Avian Research Institute, Izatnagar, India
| |
Collapse
|
12
|
Zhang J, Han Y, Shi H, Chen J, Zhang X, Wang X, Zhou L, Liu J, Zhang J, Ji Z, Jing Z, Ma J, Shi D, Feng L. Swine acute diarrhea syndrome coronavirus-induced apoptosis is caspase- and cyclophilin D- dependent. Emerg Microbes Infect 2020; 9:439-456. [PMID: 32090691 PMCID: PMC7054944 DOI: 10.1080/22221751.2020.1722758] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 02/08/2023]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly discovered enteric coronavirus, is the aetiological agent that causes severe clinical diarrhea and intestinal pathological damage in piglets. To understand the effect of SADS-CoV on host cells, we characterized the apoptotic pathways and elucidated mechanisms underlying the process of apoptotic cell death after SADS-CoV infection. SADS-CoV-infected cells showed evidence of apoptosis in vitro and in vivo. The use of a pan-caspase inhibitor resulted in the inhibition of SADS-CoV-induced apoptosis and reduction in SADS-CoV replication, suggestive of the association of a caspase-dependent pathway. Furthermore, SADS-CoV infection activated the initiators caspase-8 and -9 and upregulated FasL and Bid cleavage, demonstrating a crosstalk between the extrinsic and intrinsic pathways. However, the proapoptotic proteins Bax and Cytochrome c (Cyt c) relocalized to the mitochondria and cytoplasm, respectively, after infection by SADS-CoV. Moreover, Vero E6 and IPI-2I cells treated with cyclosporin A (CsA), an inhibitor of mitochondrial permeability transition pore (MPTP) opening, were completely protected from SADS-CoV-induced apoptosis and viral replication, suggesting the involvement of cyclophilin D (CypD) in these processes. Altogether, our results indicate that caspase-dependent FasL (extrinsic)- and mitochondria (intrinsic)- mediated apoptotic pathways play a central role in SADS-CoV-induced apoptosis that facilitates viral replication. In summary, these findings demonstrate mechanisms by which SADS-CoV induces apoptosis and improve our understanding of SADS-CoV pathogenesis.
Collapse
Affiliation(s)
- Jiyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuru Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaobo Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ling Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jialin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoyang Ji
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoyang Jing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
13
|
Puttaraksa K, Pirttinen H, Karvonen K, Nykky J, Naides SJ, Gilbert L. Parvovirus B19V Nonstructural Protein NS1 Induces Double-Stranded Deoxyribonucleic Acid Autoantibodies and End-Organ Damage in Nonautoimmune Mice. J Infect Dis 2019; 219:1418-1429. [PMID: 30346568 PMCID: PMC6468957 DOI: 10.1093/infdis/jiy614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Viral infection is implicated in development of autoimmunity. Parvovirus B19 (B19V) nonstructural protein, NS1, a helicase, covalently modifies self double-stranded deoxyribonucleic acid (dsDNA) and induces apoptosis. This study tested whether resulting apoptotic bodies (ApoBods) containing virally modified dsDNA could induce autoimmunity in an animal model. METHODS BALB/c mice were inoculated with (1) pristane-induced, (2) B19V NS1-induced, or (3) staurosporine-induced ApoBods. Serum was tested for dsDNA autoantibodies by Crithidia luciliae staining and enzyme-linked immunosorbent assay. Brain, heart, liver, and kidney pathology was examined. Deposition of self-antigens in glomeruli was examined by staining with antibodies to dsDNA, histones H1 and H4, and TATA-binding protein. RESULTS The B19V NS1-induced ApoBod inoculation induced dsDNA autoantibodies in a dose-dependent fashion. Histopathological features of immune-mediated organ damage were evident in pristane-induced and NS1-induced ApoBod groups; severity scores were higher in these groups than in staurosporine-treated groups. Tissue damage was dependent on NS1-induced ApoBod dose. Nucleosomal antigens were deposited in target tissue from pristane-induced and NS1-induced ApoBod inoculated groups, but not in the staurosporine-induced ApoBod inoculated group. CONCLUSIONS This study demonstrated proof of principle in an animal model that virally modified dsDNA in apoptotic bodies could break tolerance to self dsDNA and induce dsDNA autoantibodies and end-organ damage.
Collapse
Affiliation(s)
- Kanoktip Puttaraksa
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| | - Heidi Pirttinen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| | - Kati Karvonen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| | - Jonna Nykky
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| | - Stanley J Naides
- Quest Diagnostics Nichols Institute, Immunology R&D, San Juan Capistrano, California
| | - Leona Gilbert
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| |
Collapse
|
14
|
Ganaie SS, Qiu J. Recent Advances in Replication and Infection of Human Parvovirus B19. Front Cell Infect Microbiol 2018; 8:166. [PMID: 29922597 PMCID: PMC5996831 DOI: 10.3389/fcimb.2018.00166] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/02/2018] [Indexed: 11/28/2022] Open
Abstract
Parvovirus B19 (B19V) is pathogenic to humans and causes bone marrow failure diseases and various other inflammatory disorders. B19V infection exhibits high tropism for human erythroid progenitor cells (EPCs) in the bone marrow and fetal liver. The exclusive restriction of B19V replication to erythroid lineage cells is partly due to the expression of receptor and co-receptor(s) on the cell surface of human EPCs and partly depends on the intracellular factors essential for virus replication. We first summarize the latest developments in the viral entry process and the host cellular factors or pathways critical for B19V replication. We discuss the role of hypoxia, erythropoietin signaling and STAT5 activation in the virus replication. The B19V infection-induced DNA damage response (DDR) and cell cycle arrest at late S-phase are two key events that promote B19V replication. Lately, the virus infection causes G2 arrest, followed by the extensive cell death of EPCs that leads to anemia. We provide the current understanding of how B19V exploits the cellular resources and manipulate pathways for efficient virus replication. B19V encodes a single precursor mRNA (pre-mRNA), which undergoes alternate splicing and alternative polyadenylation to generate at least 12 different species of mRNA transcripts. The post-transcriptional processing of B19V pre-mRNA is tightly regulated through cis-acting elements and trans-acting factors flanking the splice donor or acceptor sites. Overall, in this review, we focus on the recent advances in the molecular virology and pathogenesis of B19V infection.
Collapse
Affiliation(s)
- Safder S Ganaie
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
15
|
Severe Aplastic Anemia following Parvovirus B19-Associated Acute Hepatitis. Case Reports Hepatol 2017; 2017:1359486. [PMID: 28512588 PMCID: PMC5415664 DOI: 10.1155/2017/1359486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/12/2017] [Indexed: 12/04/2022] Open
Abstract
Human parvovirus (HPV) B19 is linked to a variety of clinical manifestations, such as erythema infectiosum, nonimmune hydrops fetalis, and transient aplastic anemia. Although a few cases have shown HPVB19 infection as a possible causative agent for hepatitis-associated aplastic anemia (HAAA) in immunocompetent patients, most reported cases of HAAA following transient hepatitis did not have delayed remission. Here we report a rare case of severe aplastic anemia following acute hepatitis with prolonged jaundice due to HPVB19 infection in a previously healthy young male. Clinical laboratory examination assessed marked liver injury and jaundice as well as peripheral pancytopenia, and bone marrow biopsy revealed severe hypoplasia and fatty replacement. HPVB19 infection was diagnosed by enzyme immunoassay with high titer of anti-HPVB19 immunoglobulin M antibodies. Immunosuppressive therapy was initiated 2 months after the onset of acute hepatitis when liver injury and jaundice were improved. Cyclosporine provided partial remission after 2 months of medication without bone marrow transplantation. Our case suggests that HPVB19 should be considered as a hepatotropic virus and a cause of acquired aplastic anemia, including HAAA.
Collapse
|
16
|
Abstract
Parvovirus B19 (B19V) and human bocavirus 1 (HBoV1), members of the large Parvoviridae family, are human pathogens responsible for a variety of diseases. For B19V in particular, host features determine disease manifestations. These viruses are prevalent worldwide and are culturable in vitro, and serological and molecular assays are available but require careful interpretation of results. Additional human parvoviruses, including HBoV2 to -4, human parvovirus 4 (PARV4), and human bufavirus (BuV) are also reviewed. The full spectrum of parvovirus disease in humans has yet to be established. Candidate recombinant B19V vaccines have been developed but may not be commercially feasible. We review relevant features of the molecular and cellular biology of these viruses, and the human immune response that they elicit, which have allowed a deep understanding of pathophysiology.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Leon LAA, Marchevsky RS, Gaspar AMC, Garcia RDCNC, Almeida AJD, Pelajo-Machado M, Castro TXD, Nascimento JPD, Brown KE, Pinto MA. Cynomolgus monkeys (Macaca fascicularis) experimentally infected with B19V and hepatitis A virus: no evidence of the co-infection as a cause of acute liver failure. Mem Inst Oswaldo Cruz 2016; 111:258-66. [PMID: 27074255 PMCID: PMC4830115 DOI: 10.1590/0074-02760160013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022] Open
Abstract
This study was conducted to analyse the course and the outcome of the liver disease
in the co-infected animals in order to evaluate a possible synergic effect of human
parvovirus B19 (B19V) and hepatitis A virus (HAV) co-infection. Nine adult cynomolgus
monkeys were inoculated with serum obtained from a fatal case of B19V infection
and/or a faecal suspension of acute HAV. The presence of specific antibodies to HAV
and B19V, liver enzyme levels, viraemia, haematological changes, and
necroinflammatory liver lesions were used for monitoring the infections.
Seroconversion was confirmed in all infected groups. A similar pattern of B19V
infection to human disease was observed, which was characterised by high and
persistent viraemia in association with reticulocytopenia and mild to moderate
anaemia during the period of investigation (59 days). Additionally, the intranuclear
inclusion bodies were observed in pro-erythroblast cell from an infected cynomolgus
and B19V Ag in hepatocytes. The erythroid hypoplasia and decrease in lymphocyte
counts were more evident in the co-infected group. The present results demonstrated,
for the first time, the susceptibility of cynomolgus to B19V infection, but it did
not show a worsening of liver histopathology in the co-infected group.
Collapse
Affiliation(s)
- Luciane Almeida Amado Leon
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | - Ana Maria Coimbra Gaspar
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | - Adilson José de Almeida
- Hospital Universitário Gaffrée e Guinle, Escola de Medicina e Cirurgia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Marcelo Pelajo-Machado
- Laboratório de Patologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Tatiana Xavier de Castro
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Jussara Pereira do Nascimento
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Kevin E Brown
- Virus Reference Department, Health Protection Agency, London, UK
| | - Marcelo Alves Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
18
|
Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response. Tumour Biol 2016; 37:12089-12102. [PMID: 27209409 DOI: 10.1007/s13277-016-5093-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/15/2016] [Indexed: 12/26/2022] Open
Abstract
The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.
Collapse
|
19
|
Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model. Virus Res 2016; 213:289-298. [DOI: 10.1016/j.virusres.2015.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023]
|
20
|
Gupta SK, Gandham RK, Sahoo AP, Tiwari AK. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci 2015; 72:1073-94. [PMID: 25408521 PMCID: PMC11113997 DOI: 10.1007/s00018-014-1782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - Ravi Kumar Gandham
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. P. Sahoo
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. K. Tiwari
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| |
Collapse
|
21
|
Nykky J, Vuento M, Gilbert L. Role of mitochondria in parvovirus pathology. PLoS One 2014; 9:e86124. [PMID: 24465910 PMCID: PMC3897641 DOI: 10.1371/journal.pone.0086124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/09/2013] [Indexed: 01/06/2023] Open
Abstract
Proper functioning of the mitochondria is crucial for the survival of the cell. Viruses are able to interfere with mitochondrial functions as they infect the host cell. Parvoviruses are known to induce apoptosis in infected cells, but the role of the mitochondria in parvovirus induced cytopathy is only partially known. Here we demonstrate with confocal and electron microscopy that canine parvovirus (CPV) associated with the mitochondrial outer membrane from the onset of infection. During viral entry a transient depolarization of the mitochondrial transmembrane potential and increase in ROS level was detected. Subsequently, mitochondrial homeostasis was normalized shortly, as detected by repolarization of the mitochondrial membrane and decrease of ROS. Indeed, activation of cell survival signalling through ERK1/2 cascade was observed early in CPV infected cells. At 12 hours post infection, concurrent with the expression of viral non-structural protein 1, damage to the mitochondrial structure and depolarization of its membrane were apparent. Results of this study provide additional insight of parvovirus pathology and also more general information of virus-mitochondria association.
Collapse
Affiliation(s)
- Jonna Nykky
- Department of Biological and Environmental Science, and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Matti Vuento
- Department of Biological and Environmental Science, and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Leona Gilbert
- Department of Biological and Environmental Science, and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| |
Collapse
|
22
|
Acute hepatitis and myositis associated with Erythema infectiosum by Parvovirus B19 in an adolescent. BMC Pediatr 2014; 14:6. [PMID: 24410941 PMCID: PMC3937157 DOI: 10.1186/1471-2431-14-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/14/2013] [Indexed: 12/19/2022] Open
Abstract
Background Erythema infectiosum is the most common clinical manifestation of Parvovirus B19 infection although it has also been associated with rheumatologic diseases and various types of systemic vasculitides. Acute hepatitis and benign myositis however are rarely reported in association with Parvovirus B19 infection. Case presentation Here we report a 14-year old male, who developed acute hepatitis and benign myositis associated with erythema infectiosum following Parvovirus B19 infection. Conclusion Parvovirus B19 infection has rarely been associated with acute hepatitis and exceptionally rarely with benign myositis. Parvovirus B19 should be considered in the differential diagnosis of acute non-A to E hepatitis and in the case of acute benign myositis presenting with a rash especially in children.
Collapse
|
23
|
Parvovirus b19 associated hepatitis. HEPATITIS RESEARCH AND TREATMENT 2013; 2013:472027. [PMID: 24232179 PMCID: PMC3819764 DOI: 10.1155/2013/472027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/10/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022]
Abstract
Parvovirus B19 infection can present with myriads of clinical diseases and syndromes; liver manifestations and hepatitis are examples of them. Parvovirus B19 hepatitis associated aplastic anemia and its coinfection with other hepatotropic viruses are relatively underrecognized, and there is sufficient evidence in the literature suggesting that B19 infections can cause a spectrum of liver diseases from elevation of transaminases to acute hepatitis to fulminant liver failure and even chronic hepatitis. It can also cause fatal macrophage activation syndrome and fibrosing cholestatic hepatitis. Parvovirus B19 is an erythrovirus that can only be replicate in pronormoblasts and hepatocytes, and other cells which have globosides and glycosphingolipids in their membrane can also be affected by direct virus injury due to nonstructural protein 1 persistence and indirectly by immune mediated injury. The virus infection is suspected in bone marrow aspiration in cases with sudden drop of hemoglobin and onset of transient aplastic anemia in immunosuppressed or immunocompetent patients and is confirmed either by IgM and IgG positive serology, PCR analysis, and in situ hybridization in biopsy specimens or by application of both. There is no specific treatment for parvovirus B19 related liver diseases, but triple therapy regimen may be effective consisting of immunoglobulin, dehydrohydrocortisone, and cyclosporine.
Collapse
|
24
|
The determinants for the enzyme activity of human parvovirus B19 phospholipase A2 (PLA2) and its influence on cultured cells. PLoS One 2013; 8:e61440. [PMID: 23596524 PMCID: PMC3626588 DOI: 10.1371/journal.pone.0061440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/08/2013] [Indexed: 12/03/2022] Open
Abstract
Human parvovirus B19 (B19V) is the causative agent of erythema infectiosum in humans. B19 infection also causes severe disease manifestations, such as chronic anemia in immunocompromised patients, aplastic crisis in patients with a high turnover rate of red blood cells, and hydrops fetalis in pregnant women. Although a secreted phospholipase A2 (PLA2) motif has been identified in the unique region of the B19V minor capsid protein VP1(VP1u), the determinants for its enzyme activity and its influences on host cells are not well understood. The purpose of this study was to investigate the contribution of the PLA2 motif and other regions of the VP1u to the PLA2 activity, to determine the cellular localization of the VP1u protein, and to examine the effects of VP1u on cellular cytokines. We found that in addition to the critical conserved and non-conserved amino acids within the VP1u PLA2 motif, amino acid residues outside the VP1u PLA2 motif are also important for the PLA2 activity. VP1u and various mutants all revealed a nucleo-cytoplasmic distribution. UT7-Epo cells treated with prokaryotic expressed VP1u or mutant proteins with PLA2 activity released a large amount of free fatty acid (FFA), and the cell morphological change occurred dramatically. However, neither free fatty acid nor cell morphology change occurred for cells treated with the mutants without PLA2 activity. The wild type and the VP1u mutants with the PLA2 activity also activated TNF-α promoter and upregulated the transcription activity of NF-κB in transfected cells. In addition, we found that the amino acids outside the PLA2 domain are critical for the viral PLA2 activity, and that these tested VP1u mutants did not affect the localization of the VP1u protein.
Collapse
|
25
|
Abstract
Parvoviruses are a group of small DNA viruses with ssDNA genomes flanked by two inverted terminal structures. Due to a limited genetic resource they require host cellular factors and sometimes a helper virus for efficient viral replication. Recent studies have shown that parvoviruses interact with the DNA damage machinery, which has a significant impact on the life cycle of the virus as well as the fate of infected cells. In addition, due to special DNA structures of the viral genomes, parvoviruses are useful tools for the study of the molecular mechanisms underlying viral infection-induced DNA damage response (DDR). This review aims to summarize recent advances in parvovirus-induced DDR, with a focus on the diverse DDR pathways triggered by different parvoviruses and the consequences of DDR on the viral life cycle as well as the fate of infected cells.
Collapse
Affiliation(s)
- Yong Luo
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
26
|
Saxena L, Kumar GR, Saxena S, Chaturvedi U, Sahoo AP, Singh LV, Santra L, Palia SK, Desai GS, Tiwari AK. Apoptosis induced by NS1 gene of Canine Parvovirus-2 is caspase dependent and p53 independent. Virus Res 2013; 173:426-30. [PMID: 23416147 DOI: 10.1016/j.virusres.2013.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 12/13/2022]
Abstract
Apoptosis is programmed cell death that normally occurs during development and aging in multicellular animals. Apoptosis also occurs as a defense mechanism against disease or harmful external agents. It can be initiated by a variety of stimuli including viruses and viral proteins. Canine parvovirus type 2 (CPV-2) that causes acute disease in dogs has been found to induce cell cycle arrest and DNA damage leading to cellular lysis. Though non structural protein 1 (NS1) of many parvoviruses has been found to be apoptotic, no report on the apoptotic potential of NS1 of CPV-2 (CPV-2.NS1) exists. In this study, we evaluated the apoptotic potential of CPV-2.NS1 in HeLa cells. CPV-2.NS1 has been found to induce apoptosis which was evident through characteristic DNA fragmentation, increase in hypodiploid cell count, phosphatidyl serine translocation and activation of caspase-3. Increase in caspase-3 activity and no change in p53 activity with time in CPV-2.NS1 expressing HeLa cells showed the induction of apoptosis to be caspase dependent and p53 independent.
Collapse
Affiliation(s)
- Lovleen Saxena
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Thammasri K, Rauhamäki S, Wang L, Filippou A, Kivovich V, Marjomäki V, Naides SJ, Gilbert L. Human parvovirus B19 induced apoptotic bodies contain altered self-antigens that are phagocytosed by antigen presenting cells. PLoS One 2013; 8:e67179. [PMID: 23776709 PMCID: PMC3680405 DOI: 10.1371/journal.pone.0067179] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/15/2013] [Indexed: 12/03/2022] Open
Abstract
Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens.
Collapse
Affiliation(s)
- Kanoktip Thammasri
- Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sanna Rauhamäki
- Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Liping Wang
- Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Artemis Filippou
- Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Violetta Kivovich
- Pennsylvania State College of Medicine/Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Varpu Marjomäki
- Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Stanley J. Naides
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California, United States of America
| | - Leona Gilbert
- Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| |
Collapse
|
28
|
Acute fulminant hepatic failure associated with parvovirus B19 infection in an immunocompetent adult. Dig Dis Sci 2012; 57:2811-3. [PMID: 22395961 DOI: 10.1007/s10620-012-2110-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 02/22/2012] [Indexed: 12/09/2022]
|
29
|
Cholleti H, Paidikondala M, Munir M, Hakhverdyan M, Baule C. Equine arteritis virus induced cell death is associated with activation of the intrinsic apoptotic signalling pathway. Virus Res 2012; 171:222-6. [PMID: 23079113 DOI: 10.1016/j.virusres.2012.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/09/2023]
Abstract
Equine arteritis virus (EAV) causes a respiratory and reproductive disease in horses, equine viral arteritis. Though cell death in infection with EAV is considered to occur by apoptosis, the underlying molecular mechanism has not been extensively elucidated. We investigated the expression of mRNA of pro-apoptotic and caspase genes during EAV infection in BHK21 cells, a well-established cell type for EAV replication. Using a SYBR Green real-time PCR, mRNA of p53, Bax, caspase 3 and caspase 9 were found up-regulated in a time dependent manner in EAV infected cells. Western blot analysis for caspase 3 and caspase 9 showed expression of cleaved forms of these proteins during EAV infection. In addition, a luminescence-based cell assay for caspase 3/7 activation as a hallmark in apoptosis confirmed apoptotic cell death. The findings demonstrate that cell death in EAV infected BHK21 cells results from apoptosis mediated through the intrinsic signalling pathway.
Collapse
Affiliation(s)
- Harindranath Cholleti
- R&D Unit for Virology, Department of Virology, Immunobiology and Parasitology of the National Veterinary Institute (SVA), Ulls väg 2B, SE-751 89 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Martínez González J, Senosiain Lalastra C, Mesonero Gismero F, Moreira Vicente V. [An exceptional cause of acute hepatitis in an adult: parvovirus B19]. GASTROENTEROLOGIA Y HEPATOLOGIA 2012; 35:697-9. [PMID: 22749503 DOI: 10.1016/j.gastrohep.2012.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/18/2012] [Accepted: 04/22/2012] [Indexed: 11/25/2022]
Abstract
There are multiple causes of hepatitis. The most frequent etiologies are viral, usually hepatitis A, B and C viruses. However, other, non-hepatotropic viruses can cause this disease, including parvovirus B19. We present a case of acute hepatitis due to parvovirus B19, as well as a review of the epidemiological, clinical, diagnostic and therapeutic features of this entity.
Collapse
|
32
|
Kivovich V, Gilbert L, Vuento M, Naides SJ. The putative metal coordination motif in the endonuclease domain of human Parvovirus B19 NS1 is critical for NS1 induced S phase arrest and DNA damage. Int J Biol Sci 2011; 8:79-92. [PMID: 22211107 PMCID: PMC3248650 DOI: 10.7150/ijbs.8.79] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 11/02/2011] [Indexed: 12/14/2022] Open
Abstract
The non-structural proteins (NS) of the parvovirus family are highly conserved multi-functional molecules that have been extensively characterized and shown to be integral to viral replication. Along with NTP-dependent helicase activity, these proteins carry within their sequences domains that allow them to bind DNA and act as nucleases in order to resolve the concatameric intermediates developed during viral replication. The parvovirus B19 NS1 protein contains sequence domains highly similar to those previously implicated in the above-described functions of NS proteins from adeno-associated virus (AAV), minute virus of mice (MVM) and other non-human parvoviruses. Previous studies have shown that transient transfection of B19 NS1 into human liver carcinoma (HepG2) cells initiates the intrinsic apoptotic cascade, ultimately resulting in cell death. In an effort to elucidate the mechanism of mammalian cell demise in the presence of B19 NS1, we undertook a mutagenesis analysis of the protein's endonuclease domain. Our studies have shown that, unlike wild-type NS1, which induces an accumulation of DNA damage, S phase arrest and apoptosis in HepG2 cells, disruptions in the metal coordination motif of the B19 NS1 protein reduce its ability to induce DNA damage and to trigger S phase arrest and subsequent apoptosis. These studies support our hypothesis that, in the absence of replicating B19 genomes, NS1-induced host cell DNA damage is responsible for apoptotic cell death observed in parvoviral infection of non-permissive mammalian cells.
Collapse
Affiliation(s)
- Violetta Kivovich
- Pennsylvania State College of Medicine/ Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | | |
Collapse
|
33
|
Abstract
There are few reports in the literature of hepatitis as a manifestation of parvovirus B19 infection. We describe a case of parvovirus B19-associated acute hepatitis diagnosed based on a positive serologic test (IgM) and molecular detection of parvovirus B19 DNA in a liver biopsy specimen. Parvovirus B19 infection should be considered in the differential diagnosis of patients presenting with acute hepatitis.
Collapse
|
34
|
Abstract
Despite considerable advances in our understanding of myocarditis pathogenesis, the clinical management of myocarditis has changed relatively little in the last few years. This review aims to help bridge the widening gap between recent mechanistic insights, which are largely derived from animal models, and their potential impact on disease burden. We illustrate the pathogenetic mechanisms that are prime targets for novel therapeutic interventions. Pathway and pathogen-specific molecular diagnostic tests have expanded the role for endomyocardial biopsy. State of the art cardiac magnetic resonance imaging can now provide non-invasive tissue characterization and localize inflammatory infiltrates but imaging techniques are misleading if infectious agents are involved. We emphasize the gaps in our current clinical knowledge, particularly with respect to aetiology-based therapy, and suggest opportunities for high impact, translational investigations.
Collapse
|
35
|
Nuclear envelope disruption involving host caspases plays a role in the parvovirus replication cycle. J Virol 2011; 85:4863-74. [PMID: 21367902 DOI: 10.1128/jvi.01999-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Parvoviruses are small, nonenveloped, single-stranded DNA viruses which replicate in the nucleus of the host cell. We have previously found that early during infection the parvovirus minute virus of mice (MVM) causes small, transient disruptions of the nuclear envelope (NE). We have now investigated the mechanism used by MVM to disrupt the NE. Here we show that the viral phospholipase A2, the only known enzymatic domain on the parvovirus capsid, is not involved in causing NE disruption. Instead, the virus utilizes host cell caspases, which are proteases involved in causing NE breakdown during apoptosis, to facilitate these nuclear membrane disruptions. Studies with pharmacological inhibitors indicate that caspase-3 in particular is involved. A caspase-3 inhibitor prevents nuclear lamin cleavage and NE disruption in MVM-infected mouse fibroblast cells and reduces nuclear entry of MVM capsids and viral gene expression. Caspase-3 is, however, not activated above basal levels in MVM-infected cells, and other aspects of apoptosis are not triggered during early MVM infection. Instead, basally active caspase-3 is relocalized to the nuclei of infected cells. We propose that NE disruption involving caspases plays a role in (i) parvovirus entry into the nucleus and (ii) alteration of the compartmentalization of host proteins in a way that is favorable for the virus.
Collapse
|
36
|
Mincberg M, Gopas J, Tal J. Minute virus of mice (MVMp) infection and NS1 expression induce p53 independent apoptosis in transformed rat fibroblast cells. Virology 2011; 412:233-43. [DOI: 10.1016/j.virol.2010.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/10/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
|
37
|
Poole BD, Kivovich V, Gilbert L, Naides SJ. Parvovirus B19 nonstructural protein-induced damage of cellular DNA and resultant apoptosis. Int J Med Sci 2011; 8:88-96. [PMID: 21278893 PMCID: PMC3030141 DOI: 10.7150/ijms.8.88] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/13/2011] [Indexed: 12/19/2022] Open
Abstract
Parvovirus B19 is a widespread virus with diverse clinical presentations. The viral nonstructural protein, NS1, binds to and cleaves the viral genome, and induces apoptosis when transfected into nonpermissive cells, such as hepatocytes. We hypothesized that the cytotoxicity of NS1 in such cells results from chromosomal DNA damage caused by the DNA-nicking and DNA-attaching activities of NS1. Upon testing this hypothesis, we found that NS1 covalently binds to cellular DNA and is modified by PARP, an enzyme involved in repairing single-stranded DNA nicks. We furthermore discovered that the DNA nick repair pathway initiated by poly(ADPribose)polymerase and the DNA repair pathways initiated by ATM/ATR are necessary for efficient apoptosis resulting from NS1 expression.
Collapse
Affiliation(s)
- Brian D Poole
- Huck Institute for Life Sciences, Pennsylvania State University College of Medicine/Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | | |
Collapse
|
38
|
Abstract
The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest.
Collapse
Affiliation(s)
- Aaron Yun Chen
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | | |
Collapse
|
39
|
Mogensen TH, Jensen JMB, Hamilton-Dutoit S, Larsen CS. Chronic hepatitis caused by persistent parvovirus B19 infection. BMC Infect Dis 2010; 10:246. [PMID: 20727151 PMCID: PMC2936411 DOI: 10.1186/1471-2334-10-246] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/20/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human infection with parvovirus B19 may lead to a diverse spectrum of clinical manifestations, including benign erythema infectiosum in children, transient aplastic crisis in patients with haemolytic anaemia, and congenital hydrops foetalis. These different diseases represent direct consequences of the ability of parvovirus B19 to target the erythroid cell lineage. However, accumulating evidence suggests that this virus can also infect other cell types resulting in diverse clinical manifestations, of which the pathogenesis remains to be fully elucidated. This has prompted important questions regarding the tropism of the virus and its possible involvement in a broad range of infectious and autoimmune medical conditions. CASE PRESENTATION Here, we present an unusual case of persistent parvovirus B19 infection as a cause of chronic hepatitis. This patient had persistent parvovirus B19 viraemia over a period of more than four years and displayed signs of chronic hepatitis evidenced by fluctuating elevated levels of ALAT and a liver biopsy demonstrating chronic hepatitis. Other known causes of hepatitis and liver damage were excluded. In addition, the patient was evaluated for immunodeficiency, since she had lymphopenia both prior to and following clearance of parvovirus B19 infection. CONCLUSIONS In this case report, we describe the current knowledge on the natural history and pathogenesis of parvovirus B19 infection, and discuss the existing evidence of parvovirus B19 as a cause of acute and chronic hepatitis. We suggest that parvovirus B19 was the direct cause of this patient's chronic hepatitis, and that she had an idiopathic lymphopenia, which may have predisposed her to persistent infection, rather than bone marrow depression secondary to infection. In addition, we propose that her liver involvement may have represented a viral reservoir. Finally, we suggest that clinicians should be aware of parvovirus B19 as an unusual aetiology of chronic hepatitis, when other causes have been ruled out.
Collapse
Affiliation(s)
- Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, DK-8200 Aarhus N, Denmark.
| | | | | | | |
Collapse
|
40
|
Nykky J, Tuusa JE, Kirjavainen S, Vuento M, Gilbert L. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine. Int J Nanomedicine 2010; 5:417-28. [PMID: 20957163 PMCID: PMC2950399 DOI: 10.2147/ijn.s10579] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Indexed: 01/10/2023] Open
Abstract
Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV) to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK) cells and canine fibroma cells (A72) displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI) labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments.
Collapse
Affiliation(s)
- Jonna Nykky
- Nanoscience Center and Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | | | | | | | | |
Collapse
|
41
|
Tzang BS, Chen DY, Tsai CC, Chiang SY, Lin TM, Hsu TC. Human parvovirus B19 nonstructural protein NS1 enhanced the expression of cleavage of 70 kDa U1-snRNP autoantigen. J Biomed Sci 2010; 17:40. [PMID: 20500824 PMCID: PMC2882912 DOI: 10.1186/1423-0127-17-40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 05/25/2010] [Indexed: 01/10/2023] Open
Abstract
Background Human parvovirus B19 (B19) is known to induce apoptosis that has been associated with a variety of autoimmune disorders. Although we have previously reported that B19 non-structural protein (NS1) induces mitochondrial-dependent apoptosis in COS-7 cells, the precise mechanism of B19-NS1 in developing autoimmunity is still obscure. Methods To further examine the effect of B19-NS1 in presence of autoantigens, COS-7 cells were transfected with pEGFP, pEGFP-B19-NS1 and pEGFP-NS1K334E, a mutant form of B19-NS1, and detected the expressions of autoantigens by various autoantibodies against Sm, U1 small nuclear ribonucleoprotein (U1-snRNP), SSA/Ro, SSB/La, Scl-70, Jo-1, Ku, and centromere protein (CENP) A/B by using Immunoblotting. Results Significantly increased apoptosis was detected in COS-7 cells transfected with pEGFP-B19-NS1 compared to those transfected with pEGFP. Meanwhile, the apoptotic 70 kDa U1-snRNP protein in COS-7 cells transfected with pEGFP-B19-NS1 is cleaved by caspase-3 and converted into a specific 40 kDa product, which were recognized by anti-U1-snRNP autoantibody. In contrast, significantly decreased apoptosis and cleaved 40 kDa product were observed in COS-7 cells transfected with pEGFP-NS1K334E compared to those transfected with pEGFP-B19-NS1. Conclusions These findings suggested crucial association of B19-NS1 in development of autoimmunity by inducing apoptosis and specific cleavage of 70 kDa U1-snRNP.
Collapse
Affiliation(s)
- Bor-Show Tzang
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Kivovich V, Gilbert L, Vuento M, Naides SJ. Parvovirus B19 genotype specific amino acid substitution in NS1 reduces the protein's cytotoxicity in culture. Int J Med Sci 2010; 7:110-9. [PMID: 20567611 PMCID: PMC2880839 DOI: 10.7150/ijms.7.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 05/24/2010] [Indexed: 11/05/2022] Open
Abstract
A clinical association between idiopathic liver disease and parvovirus B19 infection has been observed. Fulminant liver failure, not associated with other liver-tropic viruses, has been attributed to B19 in numerous reports, suggesting a possible role for B19 components in the extensive hepatocyte cytotoxicity observed in this condition. A recent report by Abe and colleagues (Int J Med Sci. 2007;4:105-9) demonstrated a link between persistent parvovirus B19 genotype I and III infection and fulminant liver failure. The genetic analysis of isolates obtained from these patients demonstrated a conservation of key amino acids in the nonstructural protein 1 (NS1) of the disease-associated genotypes. In this report we examine a conserved residue identified by Abe and colleagues and show that substitution of isoleucine 181 for methionine, as occurs in B19 genotype II, results in the reduction of B19 NS1-induced cytotoxicity of liver cells. Our results support the hypothesis that in the setting of persistent B19 infection, direct B19 NS1-induced cytotoxicity may play a role in idiopathic fulminant liver failure.
Collapse
|
43
|
Chen Z, Guan W, Cheng F, Chen AY, Qiu J. Molecular characterization of human parvovirus B19 genotypes 2 and 3. Virology 2009; 394:276-85. [PMID: 19758675 DOI: 10.1016/j.virol.2009.08.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/28/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
We have characterized the transcription profiles of parvovirus B19 (B19V) genotype-2 A6 and genotype-3 V9 variants. The A6 RNA profile differs from that of the prototype B19V in both B19V non-permissive and permissive cells, whereas the overall profile of the V9 RNA in these cells is similar to that of the prototype. A unique feature we have identified is that the genotype-2 A6 variant used only one splice acceptor to remove the first intron. We also demonstrated that the inverted terminal repeats (ITRs) of the prototype B19V support replication of the V9 genome, which produces infectious virus, but not that of the A6 genome, in B19V-permissive cells. Similar to the proapoptotic nature of the prototype B19V large non-structural protein (NS1), the A6 and V9 NS1 proteins also are potent inducers of apoptosis in B19V-permissive cells.
Collapse
Affiliation(s)
- Zhaojun Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | | | | | | | | |
Collapse
|
44
|
The genome of human parvovirus b19 can replicate in nonpermissive cells with the help of adenovirus genes and produces infectious virus. J Virol 2009; 83:9541-53. [PMID: 19587029 DOI: 10.1128/jvi.00702-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human parvovirus B19 (B19V) is a member of the genus Erythrovirus in the family Parvoviridae. In vitro, autonomous B19V replication is limited to human erythroid progenitor cells and in a small number of erythropoietin-dependent human megakaryoblastoid and erythroid leukemic cell lines. Here we report that the failure of B19V DNA replication in nonpermissive 293 cells can be overcome by adenovirus infection. More specifically, the replication of B19V DNA in the 293 cells and the production of infectious progeny virus were made possible by the presence of the adenovirus E2a, E4orf6, and VA RNA genes that emerged during the transfection of the pHelper plasmid. Using this replication system, we identified the terminal resolution site and the nonstructural protein 1 (NS1) binding site on the right terminal palindrome of the viral genome, which is composed of a minimal origin of replication spanning 67 nucleotides. Plasmids or DNA fragments containing an NS1 expression cassette and this minimal origin were able to replicate in both pHelper-transfected 293 cells and B19V-semipermissive UT7/Epo-S1 cells. Our results have important implications for our understanding of native B19V infection.
Collapse
|
45
|
Chikhalya A, Luu DD, Carrera M, De La Cruz A, Torres M, Martinez EN, Chen T, Stephens KD, Haas-Stapleton EJ. Pathogenesis of Autographa californica multiple nucleopolyhedrovirus in fifth-instar Anticarsia gemmatalis larvae. J Gen Virol 2009; 90:2023-2032. [PMID: 19423548 DOI: 10.1099/vir.0.011718-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated infection and pathogenesis of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Anticarsia gemmatalis (velvetbean caterpillar) larvae using a lacZ recombinant virus (AcMNPV-hsp70/lacZ) to track the temporal progression of infection in the midgut intestine and haemocoel. A. gemmatalis was highly resistant to fatal infection by occlusion bodies (OBs; LD(50)>5.5 x 10(5) OB) and budded virus (BV; LD(50)>3 x 10(5) BV) administered via oral and systemic routes, respectively. Orally administered occlusion-derived virus (ODV) efficiently attached and fused to midgut cells; however, high levels of infection-induced apoptosis limited infection in the midgut. Transcriptional analysis of AcMNPV genes expressed in the midgut of OB-inoculated A. gemmatalis larvae showed high levels of mRNA encoding the major capsid protein VP39 in the absence of immediate-early transactivator 1 (ie-1) expression. In the midgut, virus was efficiently transferred from infected midgut epithelial cells to nearby tracheolar cells and circulating haemocytes to initiate systemic infection in the haemocoel. However, haemocoelic BV did not efficiently disseminate infection and only cuticular epidermal cells displayed high levels of viral infection. Flow cytometry analysis of haemocytes isolated from BV-inoculated A. gemmatalis larvae showed low-level expression of the BV envelope protein GP64 on the cell surface, suggesting that A. gemmatalis haemocytes have a limited capacity for amplifying virus. These results show that AcMNPV is not an effective biological control agent for limiting crop damage caused by A. gemmatalis larvae.
Collapse
Affiliation(s)
- Aniska Chikhalya
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Dee Dee Luu
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Maggie Carrera
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Alisa De La Cruz
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Marianne Torres
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Elisa N Martinez
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Tiffany Chen
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Kimberly D Stephens
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Eric J Haas-Stapleton
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| |
Collapse
|
46
|
Bonvicini F, Filippone C, Manaresi E, Zerbini M, Musiani M, Gallinella G. HepG2 hepatocellular carcinoma cells are a non-permissive system for B19 virus infection. J Gen Virol 2009; 89:3034-3038. [PMID: 19008390 DOI: 10.1099/vir.0.2008/004341-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parvovirus B19 has been associated with liver dysfunction and has been considered a potential aetiological agent of fulminant hepatitis and hepatitis-associated aplastic anaemia. The possible effects of B19 virus infection on the liver have been investigated using HepG2 hepatocellular carcinoma cells as a model system, but the reported results are inconsistent. To investigate this relationship further, this study followed the course of B19 virus infection of HepG2 cells in terms of viral DNA, RNA and protein production by quantitative PCR, RT-PCR and immunofluorescence assays. The data showed that B19 virus is able to bind and possibly enter HepG2 cells, but that viral genome replication or transcription is not supported and that viral proteins are not produced. As far as HepG2 cells can be considered a representative model system, any possible pathogenic role of B19 virus on the liver cannot be ascribed to infection or to a direct cytopathic effect on hepatocytes.
Collapse
Affiliation(s)
| | | | | | | | - Monica Musiani
- Department of Microbiology, University of Bologna, Bologna, Italy
| | | |
Collapse
|
47
|
Sieben M, Herzer K, Zeidler M, Heinrichs V, Leuchs B, Schuler M, Cornelis JJ, Galle PR, Rommelaere J, Moehler M. Killing of p53-deficient hepatoma cells by parvovirus H-1 and chemotherapeutics requires promyelocytic leukemia protein. World J Gastroenterol 2008; 14:3819-28. [PMID: 18609705 PMCID: PMC2721438 DOI: 10.3748/wjg.14.3819] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the synergistic targeting and killing of human hepatocellular carcinoma (HCC) cells lacking p53 by the oncolytic autonomous parvovirus (PV) H-1 and chemotherapeutic agents and its dependence on functional promyelocytic leukemia protein (PML).
METHODS: The role of p53 and PML in regulating cytotoxicity and gene transfer mediated by wild-type (wt) PV H-1 were explored in two pairs of isogenic human hepatoma cell lines with different p53 status. Furthermore, H-1 PV infection was combined with cytostatic drug treatment.
RESULTS: While the HCC cells with different p53 status studied were all susceptible to H-1 PV-induced apoptosis, the cytotoxicity of H-1 PV was more pronounced in p53-negative than in p53-positive cells. Apoptosis rates in p53-negative cell lines treated by genotoxic drugs were further enhanced by a treatment with H-1 PV. In flow cytometric analyses, H-1 PV infection resulted in a reduction of the mitochondrial transmembrane potential. In addition, H-1 PV cells showed a significant increase in PML expression. Knocking down PML expression resulted in a striking reduction of the level of H-1 PV infected tumor cell death.
CONCLUSION: H-1 PV is a suitable agent to circumvent the resistance of p53-negative HCC cells to genotoxic agents, and it enhances the apoptotic process which is dependent on functional PML. Thus, H-1 PV and its oncolytic vector derivatives may be considered as therapeutic options for HCC, particularly for p53-negative tumors.
Collapse
|
48
|
Hokynar K, Norja P, Hedman K, Söderlund-Venermo M. Tissue persistence and prevalence of B19 virus types 1–3. Future Virol 2007. [DOI: 10.2217/17460794.2.4.377] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human parvovirus B19 is a minute ssDNA virus that causes a wide variety of diseases, including erythema infectiosum, arthropathy, anemias and fetal death. In addition to the B19 prototype, two new variants (B19 types 2 and 3) have been identified. After primary infection, B19 genomic DNA has been shown to persist in solid tissues of not only symptomatic but also of constitutionally healthy, immunocompetent individuals. The viral DNA persists as an intact molecule without persistence-specific mutations, and via a storage mechanism with life-long capacity. Thus, the mere presence of B19 DNA in tissue cannot be used as a diagnostic criterion, although a possible role in the pathology of diseases, for example through mRNA or protein production, cannot be excluded. The molecular mechanism, host-cell type and possible clinical significance of tissue persistence are yet to be elucidated.
Collapse
Affiliation(s)
- Kati Hokynar
- University of Helsinki, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | - Päivi Norja
- University of Helsinki, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | - Klaus Hedman
- University of Helsinki & Helsinki University Central Hospital Laboratory, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | - Maria Söderlund-Venermo
- University of Helsinki, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| |
Collapse
|
49
|
Abstract
AIM: To study at transcriptional level the similarities and differences of the physiological and biochemical activities between liver tumor (LT) and regenerating liver cells.
METHODS: LT-associated genes and their expression changes in LT were obtained from databases and scientific articles, and their expression profiles in rat liver regeneration (LR) were detected using Rat Genome 230 2.0 array. Subsequently their expression changes in LT and LR were compared and analyzed.
RESULTS: One hundred and twenty one LT-associated genes were found to be LR-associated. Thirty four genes were up-regulated, and 14 genes were down-regulated in both LT and regenerating liver; 20 genes up-regulated in LT were down-regulated in regenerating liver; 21 up-regulated genes and 16 down-regulated genes in LT were up-regulated at some time points and down-regulated at others during LR.
CONCLUSION: Results suggested that apoptosis activity suppressed in LT was still active in regenerating liver, and there are lots of similarities and differences between the LT and regenerating liver at the aspects of cell growth, proliferation, differentiation, migration and angiogenesis.
Collapse
Affiliation(s)
- Cun-Shuan Xu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.
| | | | | | | |
Collapse
|
50
|
Lee SM, Kleiboeker SB. Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway. Virology 2007; 365:419-34. [PMID: 17488647 PMCID: PMC7127477 DOI: 10.1016/j.virol.2007.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/13/2007] [Accepted: 04/02/2007] [Indexed: 12/20/2022]
Abstract
As with a number of other viruses, Porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to induce apoptosis, although the mechanism(s) involved remain unknown. In this study we have characterized the apoptotic pathways activated by PRRSV infection. PRRSV-infected cells showed evidence of apoptosis including phosphatidylserine exposure, chromatin condensation, DNA fragmentation, caspase activation (including caspase-8, 9, 3), and PARP cleavage. DNA fragmentation was dependent on caspase activation but blocking apoptosis by a caspase inhibitor did not affect PRRSV replication. Upregulation of Bax expression by PRRSV infection was followed by disruption of the mitochondria transmembrane potential, resulting in cytochrome c redistridution to the cytoplasm and subsequent caspase-9 activation. A crosstalk between the extrinsic and intrinsic pathways was demonstrated by dependency of caspase-9 activation on active caspase-8 and by Bid cleavage. Furthermore, in this study we provide evidence of the possible involvement of reactive oxygen species (ROS)-mediated oxidative stress in apoptosis induced by PRRSV. Our data indicated that cell death caused by PRRSV infection involves necrosis as well as apoptosis. In summary, these findings demonstrate mechanisms by which PRRSV induces apoptosis and will contribute to an enhanced understanding of PRRSV pathogenesis.
Collapse
Affiliation(s)
- Sang-Myeong Lee
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, USA
| | | |
Collapse
|