1
|
Gen R, Addetia A, Asarnow D, Park YJ, Quispe J, Chan MC, Brown JT, Lee J, Campbell MG, Lapointe CP, Veesler D. SARS-CoV-2 nsp1 mediates broad inhibition of translation in mammals. Cell Rep 2025; 44:115696. [PMID: 40359110 DOI: 10.1016/j.celrep.2025.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/13/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structural protein 1 (nsp1) promotes innate immune evasion by inhibiting host translation in human cells. However, the role of nsp1 in other host species remains elusive, especially in bats-natural reservoirs of sarbecoviruses with a markedly different innate immune system than humans. We reveal that nsp1 potently inhibits translation in Rhinolophus lepidus bat cells, which belong to the same genus as known sarbecovirus reservoir hosts. We determined a cryoelectron microscopy structure of nsp1 bound to the R. lepidus 40S ribosomal subunit, showing that it blocks the mRNA entry channel by targeting a highly conserved site among mammals. Accordingly, we found that nsp1 blocked protein translation in mammalian cells from several species, underscoring its broadly inhibitory activity and conserved role in numerous SARS-CoV-2 hosts. Our findings illuminate the arms race between coronaviruses and mammalian host immunity, providing a foundation for understanding the determinants of viral maintenance in bat hosts and spillover.
Collapse
Affiliation(s)
- Risako Gen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matthew C Chan
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Melody G Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Lenhard L, Müller M, Diederich S, Loerzer L, Friedrichs V, Köllner B, Finke S, Dorhoi A, Pei G. Ephrin B1 and B2 Mediate Cedar Virus Entry into Egyptian Fruit Bat Cells. Viruses 2025; 17:573. [PMID: 40285015 PMCID: PMC12030902 DOI: 10.3390/v17040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Cedar virus (CedV), closely related to the Hendra and Nipah viruses, is a novel Henipavirus that was originally isolated from flying foxes in Australia in 2012. Although its glycoprotein G exhibits relatively low sequence similarity with its counterparts of the Hendra and Nipah viruses, CedV also uses ephrin receptors, i.e., ephrins B1, B2, A2 and A5, to enters human cells. Nevertheless, the entry mechanism of CedV into bat cells remains unexplored. Considering that Rousettus aegyptiacus (Egyptian Rousette bat, ERB) is postulated to be a reservoir host for henipaviruses, we aim to reveal the receptors utilized by CedV to enable its entry into ERB cells. To this end, we cloned the class A and B ephrins of ERB and generated CHO-K1 cells stably expressing individual ephrins. We also developed a lentivirus-based pseudovirus system containing the firefly luciferase reporter. Assessment of the luciferase activity in cells expressing single ephrins demonstrated that the ERB ephrin B1 and B2 mediated CedV pseudovirus entry. Further, we generated a recombinant CedV expressing the fluorescent protein TurboFP635 (rCedV-nTurbo635). By performing high-content microscopy and flow cytometry, we unveiled that, in addition to ephrin B1 and B2, ephrin A5 was also able to mediate rCedV-nTurbo635 entry, although to a much lesser extent. In contrast to human ephrin A2, ERB ephrin A2 failed to mediate rCedV-nTurbo635 entry. Finally, we generated ERB epithelial cells with ephrin B1 and/or ephrin B2 knockdown (KD). The entry of rCedV-nTurbo635 into ERB epithelial cells was drastically impaired by ephrin B1/B2 KD, validating the importance of ephrin B1 and B2 in its entry. Altogether, we conclude that CedV primarily employs ERB ephrin B1, B2 and, possibly, A5 for its entry into ERB cells.
Collapse
Affiliation(s)
- Lea Lenhard
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (L.L.); (L.L.); (B.K.); (A.D.)
| | - Martin Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (M.M.); (S.F.)
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany;
| | - Lisa Loerzer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (L.L.); (L.L.); (B.K.); (A.D.)
| | - Virginia Friedrichs
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany;
| | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (L.L.); (L.L.); (B.K.); (A.D.)
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (M.M.); (S.F.)
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (L.L.); (L.L.); (B.K.); (A.D.)
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| | - Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany; (L.L.); (L.L.); (B.K.); (A.D.)
| |
Collapse
|
3
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2025; 38:e0012823. [PMID: 39714175 PMCID: PMC11905374 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Deval S, Nathan VS, Venkataraman S, Rao PL, Kar PP, Srivastava A, Subbiah M. Accessory viral protein, V, of Newcastle Disease Virus binds dsRNA to facilitate immune evasion. Virusdisease 2025; 36:68-80. [PMID: 40290766 PMCID: PMC12022205 DOI: 10.1007/s13337-024-00908-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/23/2024] [Indexed: 04/30/2025] Open
Abstract
Newcastle disease virus (NDV) is an avian paramyxovirus known to infect more than 250 bird species across the globe. NDV is enveloped and carries a negative-sense RNA genome that codes for six structural proteins and two accessory proteins expressed through a unique co-transcriptional RNA editing mechanism. One of the accessory viral proteins, V protein, is multifunctional and a well-known interferon (IFN) antagonist. The overexpression of V protein is known to enhance viral production kinetics during NDV infection. In this study, we elucidated the events that lead to this augmented viral replication. The V protein overexpression downregulated the expression of host RNA sensor, namely MDA5. Furthermore, during the over-expression of V protein in NDV infected cells, the V protein aggregated in the perinuclear region, co-localizing and binding with the replicating dsRNA. Our structural studies and in silico predictions suggest that V protein binding with dsRNA interferes and competes with MDA5 for binding to dsRNA, eventually disrupting the IFN induction and facilitating the viral replication. This study reports a novel mechanism of host immune evasion by the accessory V protein. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00908-4.
Collapse
Affiliation(s)
- Sunny Deval
- National Institute of Animal Biotechnology, Hyderabad, Telangana India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana India
| | | | | | - P. L. Rao
- National Institute of Animal Biotechnology, Hyderabad, Telangana India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana India
| | | | - Anand Srivastava
- National Institute of Animal Biotechnology, Hyderabad, Telangana India
- Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana India
| | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Hyderabad, Telangana India
- Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana India
| |
Collapse
|
5
|
Gen R, Addetia A, Asarnow D, Park YJ, Quispe J, Chan MC, Brown JT, Lee J, Campbell MG, Lapointe CP, Veesler D. SARS-CoV-2 nsp1 mediates broad inhibition of translation in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633005. [PMID: 39868184 PMCID: PMC11761087 DOI: 10.1101/2025.01.14.633005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
SARS-CoV-2 nonstructural protein 1 (nsp1) promotes innate immune evasion by inhibiting host translation in human cells. However, the role of nsp1 in other host species remains elusive, especially in bats which are natural reservoirs of sarbecoviruses and possess a markedly different innate immune system than humans. Here, we reveal that SARS-CoV-2 nsp1 potently inhibits translation in bat cells from Rhinolophus lepidus, belonging to the same genus as known sarbecovirus reservoirs hosts. We determined a cryo-electron microscopy structure of SARS-CoV-2 nsp1 bound to the Rhinolophus lepidus 40S ribosome and show that it blocks the mRNA entry channel via targeting a highly conserved site among mammals. Accordingly, we found that nsp1 blocked protein translation in mammalian cell lines from several species, underscoring its broadly inhibitory activity and conserved role in numerous SARS-CoV-2 hosts. Our findings illuminate the arms race between coronaviruses and mammalian host immunity (including bats), providing a foundation for understanding the determinants of viral maintenance in bat hosts and spillovers.
Collapse
Affiliation(s)
- Risako Gen
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Matthew C Chan
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Melody G Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - David Veesler
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington; Seattle, WA 98195, USA
| |
Collapse
|
6
|
Saha S, Bhattacharya M, Lee SS, Chakraborty C. Recent Advances of Nipah Virus Disease: Pathobiology to Treatment and Vaccine Advancement. J Microbiol 2024; 62:811-828. [PMID: 39292378 DOI: 10.1007/s12275-024-00168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024]
Abstract
The zoonotic infection of the Nipah virus (NiV) has yet again appeared in 2023 in Kerala state, India. The virus, which has a mortality rate ranging from about 40 to 70%, has already infected India five times, the first being in 2001. The current infection is the sixth virus outbreak in the Indian population. In 1998, the first NiV infection was noted in one village in Malaysia. After that, outbreaks from other South and Southeast Asian countries have been reported periodically. It can spread between humans through contact with body fluids. Therefore, it is unlikely to generate a new pandemic. However, there is a considerable knowledge gap in the different areas of NiV. To date, no approved vaccines or treatments have been available. To fulfil the knowledge gap, the review article provided a detailed overview of the genome and genome-encoded proteins, epidemiology, transmission, pathobiology, immunobiology, diagnosis, prevention and control measures, therapeutics (monoclonal antibodies and drug molecules), and vaccine advancement of the emerging and deadly pathogen. The advanced information will help researchers to develop safe and effective NiV vaccine and treatment regimens worldwide.
Collapse
Affiliation(s)
- Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
7
|
Meier K, Olejnik J, Hume AJ, Mühlberger E. A Comparative Assessment of the Pathogenic Potential of Newly Discovered Henipaviruses. Pathogens 2024; 13:587. [PMID: 39057814 PMCID: PMC11280395 DOI: 10.3390/pathogens13070587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Recent advances in high-throughput sequencing technologies have led to the discovery of a plethora of previously unknown viruses in animal samples. Some of these newly detected viruses are closely related to human pathogens. A prime example are the henipaviruses. Both Nipah (NiV) and Hendra virus (HeV) cause severe disease in humans. Henipaviruses are of zoonotic origin, and animal hosts, including intermediate hosts, play a critical role in viral transmission to humans. The natural reservoir hosts of NiV and HeV seem to be restricted to a few fruit bat species of the Pteropus genus in distinct geographic areas. However, the recent discovery of novel henipa- and henipa-like viruses suggests that these viruses are far more widespread than was originally thought. To date, these new viruses have been found in a wide range of animal hosts, including bats, shrews, and rodents in Asia, Africa, Europe, and South America. Since these viruses are closely related to human pathogens, it is important to learn whether they pose a threat to human health. In this article, we summarize what is known about the newly discovered henipaviruses, highlight differences to NiV and HeV, and discuss their pathogenic potential.
Collapse
Affiliation(s)
- Kristina Meier
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Judith Olejnik
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Adam J. Hume
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| |
Collapse
|
8
|
Wu X, Chen L, Sui C, Hu Y, Jiang D, Yang F, Miller LC, Li J, Cong X, Hrabchenko N, Lee C, Du Y, Qi J. 3C pro of FMDV inhibits type II interferon-stimulated JAK-STAT signaling pathway by blocking STAT1 nuclear translocation. Virol Sin 2023; 38:387-397. [PMID: 36921803 PMCID: PMC10311264 DOI: 10.1016/j.virs.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) has developed various strategies to antagonize the host innate immunity. FMDV Lpro and 3Cpro interfere with type I IFNs through different mechanisms. The structural protein VP3 of FMDV degrades Janus kinase 1 to suppress IFN-γ signaling transduction. Whether non-structural proteins of FMDV are involved in restraining type II IFN signaling pathways is unknown. In this study, it was shown that FMDV replication was resistant to IFN-γ treatment after the infection was established and FMDV inhibited type II IFN induced expression of IFN-γ-stimulated genes (ISGs). We also showed for the first time that FMDV non-structural protein 3C antagonized IFN-γ-stimulated JAK-STAT signaling pathway by blocking STAT1 nuclear translocation. 3Cpro expression significantly reduced the ISGs transcript levels and palindromic gamma-activated sequences (GAS) promoter activity, without affecting the protein level, tyrosine phosphorylation, and homodimerization of STAT1. Finally, we provided evidence that 3C protease activity played an essential role in degrading KPNA1 and thus inhibited ISGs mRNA and GAS promoter activities. Our results reveal a novel mechanism by which an FMDV non-structural protein antagonizes host type II IFN signaling.
Collapse
Affiliation(s)
- Xiangju Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lei Chen
- College of Life Science, Shandong Normal University, Jinan, 250358, China
| | - Chao Sui
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yue Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Dandan Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology/National Foot and Mouth Disease Reference Laboratory/Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Laura C Miller
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Juntong Li
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Nataliia Hrabchenko
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Life Science, Shandong Normal University, Jinan, 250358, China.
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Life Science, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
9
|
Roy A, Chan Mine E, Gaifas L, Leyrat C, Volchkova VA, Baudin F, Martinez-Gil L, Volchkov VE, Karlin DG, Bourhis JM, Jamin M. Orthoparamyxovirinae C Proteins Have a Common Origin and a Common Structural Organization. Biomolecules 2023; 13:biom13030455. [PMID: 36979390 PMCID: PMC10046310 DOI: 10.3390/biom13030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The protein C is a small viral protein encoded in an overlapping frame of the P gene in the subfamily Orthoparamyxovirinae. This protein, expressed by alternative translation initiation, is a virulence factor that regulates viral transcription, replication, and production of defective interfering RNA, interferes with the host-cell innate immunity systems and supports the assembly of viral particles and budding. We expressed and purified full-length and an N-terminally truncated C protein from Tupaia paramyxovirus (TupV) C protein (genus Narmovirus). We solved the crystal structure of the C-terminal part of TupV C protein at a resolution of 2.4 Å and found that it is structurally similar to Sendai virus C protein, suggesting that despite undetectable sequence conservation, these proteins are homologous. We characterized both truncated and full-length proteins by SEC-MALLS and SEC-SAXS and described their solution structures by ensemble models. We established a mini-replicon assay for the related Nipah virus (NiV) and showed that TupV C inhibited the expression of NiV minigenome in a concentration-dependent manner as efficiently as the NiV C protein. A previous study found that the Orthoparamyxovirinae C proteins form two clusters without detectable sequence similarity, raising the question of whether they were homologous or instead had originated independently. Since TupV C and SeV C are representatives of these two clusters, our discovery that they have a similar structure indicates that all Orthoparamyxovirine C proteins are homologous. Our results also imply that, strikingly, a STAT1-binding site is encoded by exactly the same RNA region of the P/C gene across Paramyxovirinae, but in different reading frames (P or C), depending on which cluster they belong to.
Collapse
Affiliation(s)
- Ada Roy
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Emeric Chan Mine
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie (CIRI), INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, 69365 Lyon, France
| | - Lorenzo Gaifas
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Valentina A. Volchkova
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie (CIRI), INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, 69365 Lyon, France
| | - Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Luis Martinez-Gil
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46010 Valencia, Spain
| | - Viktor E. Volchkov
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie (CIRI), INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, 69365 Lyon, France
| | - David G. Karlin
- Division Phytomedicine, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Lentzeallee 55/57, 14195 Berlin, Germany
- Correspondence: (D.G.K.); (J.-M.B.); (M.J.); Tel.: +33-4-57-42-86-36 (J.-M.B.); +33-4-76-20-94-62 (M.J.)
| | - Jean-Marie Bourhis
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
- Correspondence: (D.G.K.); (J.-M.B.); (M.J.); Tel.: +33-4-57-42-86-36 (J.-M.B.); +33-4-76-20-94-62 (M.J.)
| | - Marc Jamin
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
- Correspondence: (D.G.K.); (J.-M.B.); (M.J.); Tel.: +33-4-57-42-86-36 (J.-M.B.); +33-4-76-20-94-62 (M.J.)
| |
Collapse
|
10
|
Satterfield BA, Mire CE, Geisbert TW. Overview of Experimental Vaccines and Antiviral Therapeutics for Henipavirus Infection. Methods Mol Biol 2023; 2682:1-22. [PMID: 37610570 DOI: 10.1007/978-1-0716-3283-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are highly pathogenic paramyxoviruses, which have emerged in recent decades and cause sporadic outbreaks of respiratory and encephalitic disease in Australia and Southeast Asia, respectively. Over two billion people currently live in regions potentially at risk due to the wide range of the Pteropus fruit bat reservoir, yet there are no approved vaccines or therapeutics to protect against or treat henipavirus disease. In recent years, significant progress has been made toward developing various experimental vaccine platforms and therapeutics. Here, we describe these advances for both human and livestock vaccine candidates and discuss the numerous preclinical studies and the few that have progressed to human phase 1 clinical trial and the one approved veterinary vaccine.
Collapse
Affiliation(s)
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- National Bio- and Agro-defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, NY, USA.
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
11
|
Su CM, Du Y, Rowland RRR, Wang Q, Yoo D. Reprogramming viral immune evasion for a rational design of next-generation vaccines for RNA viruses. Front Immunol 2023; 14:1172000. [PMID: 37138878 PMCID: PMC10149994 DOI: 10.3389/fimmu.2023.1172000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Type I interferons (IFNs-α/β) are antiviral cytokines that constitute the innate immunity of hosts to fight against viral infections. Recent studies, however, have revealed the pleiotropic functions of IFNs, in addition to their antiviral activities, for the priming of activation and maturation of adaptive immunity. In turn, many viruses have developed various strategies to counteract the IFN response and to evade the host immune system for their benefits. The inefficient innate immunity and delayed adaptive response fail to clear of invading viruses and negatively affect the efficacy of vaccines. A better understanding of evasion strategies will provide opportunities to revert the viral IFN antagonism. Furthermore, IFN antagonism-deficient viruses can be generated by reverse genetics technology. Such viruses can potentially serve as next-generation vaccines that can induce effective and broad-spectrum responses for both innate and adaptive immunities for various pathogens. This review describes the recent advances in developing IFN antagonism-deficient viruses, their immune evasion and attenuated phenotypes in natural host animal species, and future potential as veterinary vaccines.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Raymond R. R. Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Dongwan Yoo,
| |
Collapse
|
12
|
Yang H, Dong Y, Bian Y, Xu N, Wu Y, Yang F, Du Y, Qin T, Chen S, Peng D, Liu X. The influenza virus PB2 protein evades antiviral innate immunity by inhibiting JAK1/STAT signalling. Nat Commun 2022; 13:6288. [PMID: 36271046 PMCID: PMC9586965 DOI: 10.1038/s41467-022-33909-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Influenza A virus (IAV) polymerase protein PB2 has been shown to partially inhibit the host immune response by blocking the induction of interferons (IFNs). However, the IAV PB2 protein that regulates the downstream signaling pathway of IFNs is not well characterized. Here, we report that IAV PB2 protein reduces cellular sensitivity to IFNs, suppressing the activation of STAT1/STAT2 and ISGs. Furthermore, IAV PB2 protein targets mammalian JAK1 at lysine 859 and 860 for ubiquitination and degradation. Notably, the H5 subtype of highly pathogenic avian influenza virus with I283M/K526R mutations on PB2 increases the ability to degrade mammalian JAK1 and exhibits higher replicate efficiency in mammalian (but not avian) cells and mouse lung tissues, and causes greater mortality in infected mice. Altogether, these data describe a negative regulatory mechanism involving PB2-JAK1 and provide insights into an evasion strategy from host antiviral immunity employed by IAV.
Collapse
Affiliation(s)
- Hui Yang
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Yurui Dong
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Ying Bian
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Nuo Xu
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Yuwei Wu
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Fan Yang
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Yinping Du
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 225009, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, 225009, Yangzhou, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 225009, Yangzhou, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, 225009, Yangzhou, Jiangsu, China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 225009, Yangzhou, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, 225009, Yangzhou, Jiangsu, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 225009, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, 225009, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Li X, Liu S, Rai KR, Zhou W, Wang S, Chi X, Guo G, Chen JL, Liu S. Initial activation of STAT2 induced by IAV infection is critical for innate antiviral immunity. Front Immunol 2022; 13:960544. [PMID: 36148221 PMCID: PMC9486978 DOI: 10.3389/fimmu.2022.960544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
STAT2 is an important transcription factor activated by interferons (IFNs) upon viral infection and plays a key role in antiviral responses. Interestingly, here we found that phosphorylation of STAT2 could be induced by several viruses at early infection stage, including influenza A virus (IAV), and such initial activation of STAT2 was independent of type I IFNs and JAK kinases. Furthermore, it was observed that the early activation of STAT2 during viral infection was mainly regulated by the RIG-I/MAVS-dependent pathway. Disruption of STAT2 phosphorylation at Tyr690 restrained antiviral response, as silencing STAT2 or blocking STAT2 Y690 phosphorylation suppressed the expression of several interferon-stimulated genes (ISGs), thereby facilitating viral replication. In vitro experiments using overexpression system or kinase inhibitors showed that several kinases including MAPK12 and Syk were involved in regulation of the early phosphorylation of STAT2 triggered by IAV infection. Moreover, when MAPK12 kinase was inhibited, expression of several ISGs was clearly decreased in cells infected with IAV at the early infection stage. Accordingly, inhibition of MAPK12 accelerated the replication of influenza virus in host. These results provide a better understanding of how initial activation of STAT2 and the early antiviral responses are induced by the viral infection.
Collapse
Affiliation(s)
- Xinxin Li
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siya Liu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenzhuo Zhou
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Wang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chi
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Liu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Liew YJM, Ibrahim PAS, Ong HM, Chong CN, Tan CT, Schee JP, Gómez Román R, Cherian NG, Wong WF, Chang LY. The Immunobiology of Nipah Virus. Microorganisms 2022; 10:microorganisms10061162. [PMID: 35744680 PMCID: PMC9228579 DOI: 10.3390/microorganisms10061162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged in Malaysia in 1998. It is a human pathogen capable of causing severe respiratory infection and encephalitis. The natural reservoir of NiV, Pteropus fruit bats, remains a continuous virus source for future outbreaks, although infection in the bats is largely asymptomatic. NiV provokes serious disease in various mammalian species. In the recent human NiV outbreaks in Bangladesh and India, both bats-to-human and human-to-human transmissions have been observed. NiV has been demonstrated to interfere with the innate immune response via interferon type I signaling, promoting viral dissemination and preventing antiviral response. Studies of humoral immunity in infected NiV patients and animal models have shown that NiV-specific antibodies were produced upon infection and were protective. Studies on cellular immunity response to NiV infection in human and animal models also found that the adaptive immune response, specifically CD4+ and CD8+ T cells, was stimulated upon NiV infection. The experimental vaccines and therapeutic strategies developed have provided insights into the immunological requirements for the development of successful medical countermeasures against NiV. This review summarizes the current understanding of NiV pathogenesis and innate and adaptive immune responses induced upon infection.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Deputy Vice Chancellor’s Office (Research & Innovation), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Puteri Ainaa S. Ibrahim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Hui Ming Ong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chee Ning Chong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chong Tin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Raúl Gómez Román
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Neil George Cherian
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Correspondence:
| |
Collapse
|
15
|
Type I and Type II Interferon Antagonism Strategies Used by Paramyxoviridae: Previous and New Discoveries, in Comparison. Viruses 2022; 14:v14051107. [PMID: 35632848 PMCID: PMC9145045 DOI: 10.3390/v14051107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Paramyxoviridae is a viral family within the order of Mononegavirales; they are negative single-strand RNA viruses that can cause significant diseases in both humans and animals. In order to replicate, paramyxoviruses–as any other viruses–have to bypass an important protective mechanism developed by the host’s cells: the defensive line driven by interferon. Once the viruses are recognized, the cells start the production of type I and type III interferons, which leads to the activation of hundreds of genes, many of which encode proteins with the specific function to reduce viral replication. Type II interferon is produced by active immune cells through a different signaling pathway, and activates a diverse range of genes with the same objective to block viral replication. As a result of this selective pressure, viruses have evolved different strategies to avoid the defensive function of interferons. The strategies employed by the different viral species to fight the interferon system include a number of sophisticated mechanisms. Here we analyzed the current status of the various strategies used by paramyxoviruses to subvert type I, II, and III interferon responses.
Collapse
|
16
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|
17
|
Fung SY, Siu KL, Lin H, Chan CP, Yeung ML, Jin DY. SARS-CoV-2 NSP13 helicase suppresses interferon signaling by perturbing JAK1 phosphorylation of STAT1. Cell Biosci 2022; 12:36. [PMID: 35317858 PMCID: PMC8939493 DOI: 10.1186/s13578-022-00770-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Background SARS-CoV-2 is the causative agent of COVID-19. Overproduction and release of proinflammatory cytokines are the underlying cause of severe COVID-19. Treatment of this condition with JAK inhibitors is a double-edged sword, which might result in the suppression of proinflammatory cytokine storm and the concurrent enhancement of viral infection, since JAK signaling is essential for host antiviral response. Improving the current JAK inhibitor therapy requires a detailed molecular analysis on how SARS-CoV-2 modulates interferon (IFN)-induced activation of JAK-STAT signaling. Results In this study, we focused on the molecular mechanism by which SARS-CoV-2 NSP13 helicase suppresses IFN signaling. Expression of SARS-CoV-2 NSP13 alleviated transcriptional activity driven by type I and type II IFN-responsive enhancer elements. It also prevented nuclear translocation of STAT1 and STAT2. The suppression of NSP13 on IFN signaling occurred at the step of STAT1 phosphorylation. Nucleic acid binding-defective mutant K345A K347A and NTPase-deficient mutant E375A of NSP13 were found to have largely lost the ability to suppress IFN-β-induced STAT1 phosphorylation and transcriptional activation, indicating the requirement of the helicase activity for NSP13-mediated inhibition of STAT1 phosphorylation. NSP13 did not interact with JAK1 nor prevent STAT1-JAK1 complex formation. Mechanistically, NSP13 interacted with STAT1 to prevent JAK1 kinase from phosphorylating STAT1. Conclusion SARS-CoV-2 NSP13 helicase broadly suppresses IFN signaling by targeting JAK1 phosphorylation of STAT1.
Collapse
Affiliation(s)
- Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Kam-Leung Siu
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Huayue Lin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Ching-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Man Lung Yeung
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China.,Department of Microbiology, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China. .,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China.
| |
Collapse
|
18
|
Wang C, Wang T, Duan L, Chen H, Hu R, Wang X, Jia Y, Chu Z, Liu H, Wang X, Zhang S, Xiao S, Wang J, Dang R, Yang Z. Evasion of Host Antiviral Innate Immunity by Paramyxovirus Accessory Proteins. Front Microbiol 2022; 12:790191. [PMID: 35173691 PMCID: PMC8841848 DOI: 10.3389/fmicb.2021.790191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023] Open
Abstract
For efficient replication, viruses have developed multiple strategies to evade host antiviral innate immunity. Paramyxoviruses are a large family of enveloped RNA viruses that comprises diverse human and animal pathogens which jeopardize global public health and the economy. The accessory proteins expressed from the P gene by RNA editing or overlapping open reading frames (ORFs) are major viral immune evasion factors antagonizing type I interferon (IFN-I) production and other antiviral innate immune responses. However, the antagonistic mechanisms against antiviral innate immunity by accessory proteins differ among viruses. Here, we summarize the current understandings of immune evasion mechanisms by paramyxovirus accessory proteins, specifically how accessory proteins directly or indirectly target the adaptors in the antiviral innate immune signaling pathway to facilitate virus replication. Additionally, some cellular responses, which are also involved in viral replication, will be briefly summarized.
Collapse
|
19
|
Abstract
The Nipah virus (NiV) phosphoprotein (P) gene encodes four proteins. Three of these-P, V, and W-possess a common N-terminal domain but distinct C termini. These proteins interact with immune modulators. Previous studies demonstrated that P, V, and W bind STAT1 and STAT4 and that V also interacts with STAT2 but not with STAT3. The STAT1 and STAT2 interactions block interferon (IFN)-induced STAT tyrosine phosphorylation. To more fully characterize the interactions of P, V, and W with the STATs, we screened for interaction of each viral protein with STATs 1 to 6 by coimmunoprecipitation. We demonstrate that NiV P, V, and W interact with STAT4 through their common N-terminal domain and block STAT4 activity, based on a STAT4 response element reporter assay. Although none of the NiV proteins interact with STAT3 or STAT6, NiV V, but not P or W, interacts with STAT5 through its unique C terminus. Furthermore, the interaction of NiV V with STAT5 was not disrupted by overexpression of the N-terminal binding STAT1 or the C-terminal binding MDA5. NiV V also inhibits a STAT5 response element reporter assay. Residues 114 to 140 of the common N-terminal domain of the NiV P gene products were found to be sufficient to bind STAT1 and STAT4. Analysis of STAT1-STAT3 chimeras suggests that the P gene products target the STAT1 SH2 domain. When fused to GST, the 114-140 peptide is sufficient to decrease STAT1 phosphorylation in IFN-β-stimulated cells, suggesting that this peptide could potentially be fused to heterologous proteins to confer inhibition of STAT1- and STAT4-dependent responses.IMPORTANCE How Nipah virus (NiV) antagonizes innate immune responses is incompletely understood. The P gene of NiV encodes the P, V, and W proteins. These proteins have a common N-terminal sequence that is sufficient to bind to STAT1 and STAT2 and block IFN-induced signal transduction. This study sought to more fully understand how P, V, and W engage with the STAT family of transcription factors to influence their functions. The results identify a novel interaction of V with STAT5 and demonstrate V inhibition of STAT5 function. We also demonstrate that the common N-terminal residues 114 to 140 of P, V, and W are critical for inhibition of STAT1 and STAT4 function, map the interaction to the SH2 region of STAT1, and show that a fusion construct with this peptide significantly inhibits cytokine-induced STAT1 phosphorylation. These data clarify how these important virulence factors modulate innate antiviral defenses.
Collapse
|
20
|
Schiavina M, Salladini E, Murrali MG, Tria G, Felli IC, Pierattelli R, Longhi S. Ensemble description of the intrinsically disordered N-terminal domain of the Nipah virus P/V protein from combined NMR and SAXS. Sci Rep 2020; 10:19574. [PMID: 33177626 PMCID: PMC7658984 DOI: 10.1038/s41598-020-76522-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Using SAXS and NMR spectroscopy, we herein provide a high-resolution description of the intrinsically disordered N-terminal domain (PNT, aa 1-406) shared by the Nipah virus (NiV) phosphoprotein (P) and V protein, two key players in viral genome replication and in evasion of the host innate immune response, respectively. The use of multidimensional NMR spectroscopy allowed us to assign as much as 91% of the residues of this intrinsically disordered domain whose size constitutes a technical challenge for NMR studies. Chemical shifts and nuclear relaxation measurements provide the picture of a highly flexible protein. The combination of SAXS and NMR information enabled the description of the conformational ensemble of the protein in solution. The present results, beyond providing an overall description of the conformational behavior of this intrinsically disordered region, also constitute an asset for obtaining atomistic information in future interaction studies with viral and/or cellular partners. The present study can thus be regarded as the starting point towards the design of inhibitors that by targeting crucial protein-protein interactions involving PNT might be instrumental to combat this deadly virus.
Collapse
Affiliation(s)
- Marco Schiavina
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Edoardo Salladini
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and CNRS, 163 Avenue de Luminy, Case 932, Marseille, France
| | - Maria Grazia Murrali
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giancarlo Tria
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
- Florence Center for Electron Nanoscopy (FloCEN), University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Isabella C Felli
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and CNRS, 163 Avenue de Luminy, Case 932, Marseille, France.
| |
Collapse
|
21
|
Abstract
Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.
Collapse
|
22
|
Harrison AR, Lieu KG, Larrous F, Ito N, Bourhy H, Moseley GW. Lyssavirus P-protein selectively targets STAT3-STAT1 heterodimers to modulate cytokine signalling. PLoS Pathog 2020; 16:e1008767. [PMID: 32903273 PMCID: PMC7480851 DOI: 10.1371/journal.ppat.1008767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Many viruses target signal transducer and activator of transcription (STAT) 1 to antagonise antiviral interferon signalling, but targeting of STAT3, a pleiotropic molecule that mediates signalling by diverse cytokines, is poorly understood. Here, using lyssavirus infection, quantitative live cell imaging, innate immune signalling and protein interaction assays, and complementation/depletion of STAT expression, we show that STAT3 antagonism is conserved among P-proteins of diverse pathogenic lyssaviruses and correlates with pathogenesis. Importantly, P-protein targeting of STAT3 involves a highly selective mechanism whereby P-protein antagonises cytokine-activated STAT3-STAT1 heterodimers, but not STAT3 homodimers. RT-qPCR and reporter gene assays indicate that this results in specific modulation of interleukin-6-dependent pathways, effecting differential antagonism of target genes. These data provide novel insights into mechanisms by which viruses can modulate cellular function to support infection through discriminatory targeting of immune signalling complexes. The findings also highlight the potential application of selective interferon-antagonists as tools to delineate signalling by particular STAT complexes, significant not only to pathogen-host interactions but also cell physiology, development and cancer.
Collapse
Affiliation(s)
- Angela R. Harrison
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim G. Lieu
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Florence Larrous
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Paris, France
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Paris, France
| | - Gregory W. Moseley
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
23
|
Jensen MR, Yabukarski F, Communie G, Condamine E, Mas C, Volchkova V, Tarbouriech N, Bourhis JM, Volchkov V, Blackledge M, Jamin M. Structural Description of the Nipah Virus Phosphoprotein and Its Interaction with STAT1. Biophys J 2020; 118:2470-2488. [PMID: 32348724 PMCID: PMC7231922 DOI: 10.1016/j.bpj.2020.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
The structural characterization of modular proteins containing long intrinsically disordered regions intercalated with folded domains is complicated by their conformational diversity and flexibility and requires the integration of multiple experimental approaches. Nipah virus (NiV) phosphoprotein, an essential component of the viral RNA transcription/replication machine and a component of the viral arsenal that hijacks cellular components and counteracts host immune responses, is a prototypical model for such modular proteins. Curiously, the phosphoprotein of NiV is significantly longer than the corresponding protein of other paramyxoviruses. Here, we combine multiple biophysical methods, including x-ray crystallography, NMR spectroscopy, and small angle x-ray scattering, to characterize the structure of this protein and provide an atomistic representation of the full-length protein in the form of a conformational ensemble. We show that full-length NiV phosphoprotein is tetrameric, and we solve the crystal structure of its tetramerization domain. Using NMR spectroscopy and small angle x-ray scattering, we show that the long N-terminal intrinsically disordered region and the linker connecting the tetramerization domain to the C-terminal X domain exchange between multiple conformations while containing short regions of residual secondary structure. Some of these transient helices are known to interact with partners, whereas others represent putative binding sites for yet unidentified proteins. Finally, using NMR spectroscopy and isothermal titration calorimetry, we map a region of the phosphoprotein, comprising residues between 110 and 140 and common to the V and W proteins, that binds with weak affinity to STAT1 and confirm the involvement of key amino acids of the viral protein in this interaction. This provides new, to our knowledge, insights into how the phosphoprotein and the nonstructural V and W proteins of NiV perform their multiple functions.
Collapse
Affiliation(s)
| | - Filip Yabukarski
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Guillaume Communie
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Eric Condamine
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Caroline Mas
- Integrated Structural Biology Grenoble CNRS, CEA, University Grenoble Alpes, EMBL, Grenoble, France
| | - Valentina Volchkova
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie, INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, Lyon, France
| | - Nicolas Tarbouriech
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jean-Marie Bourhis
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Viktor Volchkov
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie, INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, Lyon, France
| | - Martin Blackledge
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Marc Jamin
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
24
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Dawes BE, Freiberg AN. Henipavirus infection of the central nervous system. Pathog Dis 2020; 77:5462651. [PMID: 30985897 DOI: 10.1093/femspd/ftz023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae. These viruses were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 75%. While outbreaks of Nipah and Hendra virus infections remain rare and sporadic, there is concern that NiV has pandemic potential. Despite increased attention, little is understood about the neuropathogenesis of henipavirus infection. Neuropathogenesis appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection, but the relative contributions remain unknown while respiratory disease arises from vasculitis and respiratory epithelial cell infection. This review will address NiV basic clinical disease, pathology and pathogenesis with a particular focus on central nervous system (CNS) infection and address the necessity of a model of relapsed CNS infection. Additionally, the innate immune responses to NiV infection in vitro and in the CNS are reviewed as it is likely linked to any persistent CNS infection.
Collapse
Affiliation(s)
- Brian E Dawes
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555, USA
| |
Collapse
|
26
|
Ma W, Wang H, He H. Bovine herpesvirus 1 tegument protein UL41 suppresses antiviral innate immune response via directly targeting STAT1. Vet Microbiol 2019; 239:108494. [DOI: 10.1016/j.vetmic.2019.108494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022]
|
27
|
Kitagawa Y, Yamaguchi M, Kohno M, Sakai M, Itoh M, Gotoh B. Respirovirus C protein inhibits activation of type I interferon receptor-associated kinases to block JAK-STAT signaling. FEBS Lett 2019; 594:864-877. [PMID: 31705658 DOI: 10.1002/1873-3468.13670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
Abstract
Respirovirus C protein blocks the type I interferon (IFN)-stimulated activation of the JAK-STAT pathway. It has been reported that C protein inhibits IFN-α-stimulated tyrosine phosphorylation of STATs, but the underlying mechanism is poorly understood. Here, we show that the C protein of Sendai virus (SeV), a member of the Respirovirus genus, binds to the IFN receptor subunit IFN-α/β receptor subunit (IFNAR)2 and inhibits IFN-α-stimulated tyrosine phosphorylation of the upstream receptor-associated kinases, JAK1 and TYK2. Analysis of various SeV C mutant (Cm) proteins demonstrates the importance of the inhibitory effect on receptor-associated kinase phosphorylation for blockade of JAK-STAT signaling. Furthermore, this inhibitory effect and the IFNAR2 binding capacity are observed for all the respirovirus C proteins examined. Our results suggest that respirovirus C protein inhibits activation of the receptor-associated kinases JAK1 and TYK2 possibly through interaction with IFNAR2.
Collapse
Affiliation(s)
- Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Mayu Yamaguchi
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Miki Kohno
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan.,Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Madoka Sakai
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan.,Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Masae Itoh
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
28
|
Marchese AM, Chiale C, Moshkani S, Robek MD. Mechanisms of Innate Immune Activation by a Hybrid Alphavirus-Rhabdovirus Vaccine Platform. J Interferon Cytokine Res 2019; 40:92-105. [PMID: 31633442 DOI: 10.1089/jir.2019.0123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Virus-like vesicles (VLV) are infectious, self-propagating alphavirus-vesiculovirus hybrid vaccine vectors that can be engineered to express foreign antigens to elicit a protective immune response. VLV are highly immunogenic and nonpathogenic in vivo, and we hypothesize that the unique replication and structural characteristics of VLV efficiently induce an innate antiviral response that enhances immunogenicity and limits replication and spread of the vector. We found that VLV replication is inhibited by interferon (IFN)-α, IFN-γ, and IFN-λ, but not by tumor necrosis factor-α. In cell culture, VLV infection activated IFN production and expression of IFN-stimulated genes (ISGs), such as MXA, ISG15, and IFI27, which were dependent on replication of the evolved VLV-encoded Semliki Forest virus replicon. Knockdown of the pattern recognition receptors, retinoic acid-inducible gene I and melanoma differentiation-associated protein 5 or their intermediary signaling protein mitochondrial antiviral-signaling protein (MAVS) blocked IFN production. Furthermore, ISG expression in VLV-infected cells was dependent on IFN receptor signaling through the Janus kinase (JAK) tyrosine kinases and phosphorylation of the STAT1 protein, and JAK inhibition restored VLV replication in otherwise uninfectable cell lines. This work provides new insight into the mechanism of innate antiviral responses to a hybrid virus-based vector and provides the basis for future characterization of the platform's safety and adjuvant-like effects in vivo. [Figure: see text].
Collapse
Affiliation(s)
- Anthony M Marchese
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| | - Carolina Chiale
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| | - Safiehkhatoon Moshkani
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| | - Michael D Robek
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| |
Collapse
|
29
|
Mandhana R, Qian LK, Horvath CM. Constitutively Active MDA5 Proteins Are Inhibited by Paramyxovirus V Proteins. J Interferon Cytokine Res 2019; 38:319-332. [PMID: 30130154 DOI: 10.1089/jir.2018.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Excessive interferon (IFN) production and signaling can lead to immunological and developmental defects giving rise to autoimmune diseases referred to collectively as "type I interferonopathies." A subset of these diseases is caused by monogenic mutations affecting proteins involved in nucleic acid sensing, homeostasis, and metabolism. Interferonopathic mutations in the cytosolic antiviral sensor MDA5 render it constitutively hyperactive, resulting in chronic IFN production and IFN-stimulated gene expression. Few therapeutic options are available for patients with interferonopathic diseases, but a large number of IFN evasion and antagonism strategies have evolved in viral pathogens that can counteract IFN production and signaling to enhance virus replication. To test the hypothesis that these natural IFN suppressors could be used to subdue the activity of interferonopathic signaling proteins, hyperactive MDA5 variants were assessed for susceptibility to a family of viral MDA5 inhibitors. In this study, Paramyxovirus V proteins were tested for their ability to counteract constitutively active MDA5 proteins. Results indicate that the V proteins are able to bind to and disrupt the signaling activity of these MDA5 proteins, irrespective of their specific mutations, reducing IFN production and IFN-stimulated gene expression to effectively suppress the hyperactive antiviral response.
Collapse
Affiliation(s)
- Roli Mandhana
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| | - Lily K Qian
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| |
Collapse
|
30
|
Mesev EV, LeDesma RA, Ploss A. Decoding type I and III interferon signalling during viral infection. Nat Microbiol 2019; 4:914-924. [PMID: 30936491 PMCID: PMC6554024 DOI: 10.1038/s41564-019-0421-x] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/22/2019] [Indexed: 02/08/2023]
Abstract
Interferon (IFN)-mediated antiviral responses are central to host defence against viral infection. Despite the existence of at least 20 IFNs, there are only three known cell surface receptors. IFN signalling and viral evasion mechanisms form an immensely complex network that differs across species. In this Review, we begin by highlighting some of the advances that have been made towards understanding the complexity of differential IFN signalling inputs and outputs that contribute to antiviral defences. Next, we explore some of the ways viruses can interfere with, or circumvent, these defences. Lastly, we address the largely under-reviewed impact of IFN signalling on host tropism, and we offer perspectives on the future of research into IFN signalling complexity and viral evasion across species.
Collapse
Affiliation(s)
- Emily V Mesev
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Robert A LeDesma
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
31
|
Li J, Meng C, Ren T, Wang W, Zhang Y, Yuan W, Xu S, Sun Y, Tan L, Song C, Liao Y, Nair V, Munir M, Ding Z, Liu X, Qiu X, Ding C. Production, characterization, and epitope mapping of a monoclonal antibody against genotype VII Newcastle disease virus V protein. J Virol Methods 2018; 260:88-97. [PMID: 30026051 DOI: 10.1016/j.jviromet.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 07/14/2018] [Accepted: 07/15/2018] [Indexed: 11/25/2022]
Abstract
Newcastle disease virus (NDV) V protein is crucial for viral interferon (IFN) antagonism and virulence, determining its host range restriction. However, little information is available on the B cell epitopes of V protein and the subcellular movement of V protein in the process of NDV infection. In this study, the monoclonal antibody (mAb) clone 3D7 against genotype VII NDV V protein was generated by immunizing mice with a purified recombinant His-tagged carboxyl-terminal domain (CTD) region of V protein. Fine epitope mapping analysis and B-cell epitope prediction indicated that mAb 3D7 recognized a linear epitope 152RGPAELWK159, which is located in the V protein CTD region. Sequence alignment showed that the mAb clone 3D7-recognized epitope is highly conserved among Class II genotype VII NDV strains, but not among other genotypes, suggesting it could serve as a genetic marker to differentiate NDV genotypes. Furthermore, the movement of V protein during NDV replication in infected cells were determined by using this mAb. It was found that V protein localized around the nucleus during virus replication. The establishment of V protein-specific mAb and identification of its epitope extend our understanding of the antigenic characteristics of V protein and provide a basis for the development of epitope-based diagnostic assays.
Collapse
Affiliation(s)
- Jihong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Tingting Ren
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Wei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yaodan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Weifeng Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shuqin Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | | | | | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xiufan Liu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
32
|
Henipavirus Infection: Natural History and the Virus-Host Interplay. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018. [DOI: 10.1007/s40506-018-0155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Ambrose RL, Liu YC, Adams TE, Bean AGD, Stewart CR. C6orf106 is a novel inhibitor of the interferon-regulatory factor 3-dependent innate antiviral response. J Biol Chem 2018; 293:10561-10573. [PMID: 29802199 DOI: 10.1074/jbc.ra117.001491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/10/2018] [Indexed: 12/12/2022] Open
Abstract
Host recognition of intracellular viral RNA and subsequent induction of cytokine signaling are tightly regulated at the cellular level and are a target for manipulation by viruses and therapeutics alike. Here, we characterize chromosome 6 ORF 106 (C6orf106) as an evolutionarily conserved inhibitor of the innate antiviral response. C6orf106 suppresses the synthesis of interferon (IFN)-α/β and proinflammatory tumor necrosis factor (TNF) α in response to the dsRNA mimic poly(I:C) and to Sendai virus infection. Unlike canonical inhibitors of antiviral signaling, C6orf106 blocks interferon-regulatory factor 3 (IRF3) and, to a lesser extent, NF-κB activity without modulating their activation, nuclear translocation, cellular expression, or degradation. Instead, C6orf106 interacts with IRF3 and inhibits IRF3 recruitment to type I IFN promoter sequences while also reducing the nuclear levels of the coactivator proteins p300 and CREB-binding protein (CBP). In summary, we have defined C6orf106 as a negative regulator of antiviral immunity that blocks IRF3-dependent cytokine production via a noncanonical and poorly defined mechanism. This work presents intriguing implications for antiviral immunity, autoimmune disorders, and cancer.
Collapse
Affiliation(s)
- Rebecca L Ambrose
- From the Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Geelong, Victoria 3220, Australia and
| | - Yu Chih Liu
- CSIRO Manufacturing, Parkville, Victoria 3052, Australia
| | | | - Andrew G D Bean
- From the Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Geelong, Victoria 3220, Australia and
| | - Cameron R Stewart
- From the Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Geelong, Victoria 3220, Australia and
| |
Collapse
|
34
|
Possible role of the Nipah virus V protein in the regulation of the interferon beta induction by interacting with UBX domain-containing protein1. Sci Rep 2018; 8:7682. [PMID: 29769705 PMCID: PMC5955904 DOI: 10.1038/s41598-018-25815-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/17/2018] [Indexed: 02/08/2023] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes lethal encephalitis in humans. We previously reported that the V protein, one of the three accessory proteins encoded by the P gene, is one of the key determinants of the pathogenesis of NiV in a hamster infection model. Satterfield B.A. et al. have also revealed that V protein is required for the pathogenicity of henipavirus in a ferret infection model. However, the complete functions of NiV V have not been clarified. In this study, we identified UBX domain-containing protein 1 (UBXN1), a negative regulator of RIG-I-like receptor signaling, as a host protein that interacts with NiV V. NiV V interacted with the UBX domain of UBXN1 via its proximal zinc-finger motif in the C-terminal domain. NiV V increased the level of UBXN1 protein by suppressing its proteolysis. Furthermore, NiV V suppressed RIG-I and MDA5-dependent interferon signaling by stabilizing UBXN1 and increasing the interaction between MAVS and UBXN1 in addition to directly interrupting the activation of MDA5. Our results suggest a novel molecular mechanism by which the induction of interferon is potentially suppressed by NiV V protein via UBXN1.
Collapse
|
35
|
Laing ED, Amaya M, Navaratnarajah CK, Feng YR, Cattaneo R, Wang LF, Broder CC. Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species. Virol J 2018; 15:56. [PMID: 29587789 PMCID: PMC5869790 DOI: 10.1186/s12985-018-0964-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/13/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hendra virus and Nipah virus are zoonotic viruses that have caused severe to fatal disease in livestock and human populations. The isolation of Cedar virus, a non-pathogenic virus species in the genus Henipavirus, closely-related to the highly pathogenic Hendra virus and Nipah virus offers an opportunity to investigate differences in pathogenesis and receptor tropism among these viruses. METHODS We constructed full-length cDNA clones of Cedar virus from synthetic oligonucleotides and rescued two replication-competent, recombinant Cedar virus variants: a recombinant wild-type Cedar virus and a recombinant Cedar virus that expresses a green fluorescent protein from an open reading frame inserted between the phosphoprotein and matrix genes. Replication kinetics of both viruses and stimulation of the interferon pathway were characterized in vitro. Cellular tropism for ephrin-B type ligands was qualitatively investigated by microscopy and quantitatively by a split-luciferase fusion assay. RESULTS Successful rescue of recombinant Cedar virus expressing a green fluorescent protein did not significantly affect virus replication compared to the recombinant wild-type Cedar virus. We demonstrated that recombinant Cedar virus stimulated the interferon pathway and utilized the established Hendra virus and Nipah virus receptor, ephrin-B2, but not ephrin-B3 to mediate virus entry. We further characterized virus-mediated membrane fusion kinetics of Cedar virus with the known henipavirus receptors ephrin-B2 and ephrin-B3. CONCLUSIONS The recombinant Cedar virus platform may be utilized to characterize the determinants of pathogenesis across the henipaviruses, investigate their receptor tropisms, and identify novel pan-henipavirus antivirals. Moreover, these experiments can be conducted safely under BSL-2 conditions.
Collapse
Affiliation(s)
- Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | | | - Yan-Ru Feng
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
36
|
Atkinson SC, Audsley MD, Lieu KG, Marsh GA, Thomas DR, Heaton SM, Paxman JJ, Wagstaff KM, Buckle AM, Moseley GW, Jans DA, Borg NA. Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus V. Sci Rep 2018; 8:358. [PMID: 29321677 PMCID: PMC5762688 DOI: 10.1038/s41598-017-18742-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/15/2017] [Indexed: 01/04/2023] Open
Abstract
Hendra virus (HeV) is a paramyxovirus that causes lethal disease in humans, for which no vaccine or antiviral agent is available. HeV V protein is central to pathogenesis through its ability to interact with cytoplasmic host proteins, playing key antiviral roles. Here we use immunoprecipitation, siRNA knockdown and confocal laser scanning microscopy to show that HeV V shuttles to and from the nucleus through specific host nuclear transporters. Spectroscopic and small angle X-ray scattering studies reveal HeV V undergoes a disorder-to-order transition upon binding to either importin α/β1 or exportin-1/Ran-GTP, dependent on the V N-terminus. Importantly, we show that specific inhibitors of nuclear transport prevent interaction with host transporters, and reduce HeV infection. These findings emphasize the critical role of host-virus interactions in HeV infection, and potential use of compounds targeting nuclear transport, such as the FDA-approved agent ivermectin, as anti-HeV agents.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michelle D Audsley
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kim G Lieu
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Glenn A Marsh
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Victoria, Australia
| | - David R Thomas
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Steven M Heaton
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jason J Paxman
- La Trobe Institute for Molecular Sciences and Department of Biochemistry and Genetics, La Trobe University, Melbourne, Victoria, Australia
| | - Kylie M Wagstaff
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ashley M Buckle
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gregory W Moseley
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - David A Jans
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | - Natalie A Borg
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
37
|
Tripp RA, Tompkins SM, Foo CH, Bean AGD, Wang LF. A Functional Genomics Approach to Henipavirus Research: The Role of Nuclear Proteins, MicroRNAs and Immune Regulators in Infection and Disease. Curr Top Microbiol Immunol 2017; 419:191-213. [PMID: 28674944 PMCID: PMC7122743 DOI: 10.1007/82_2017_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are zoonotic RNA viruses that cause lethal disease in humans and are designated as Biosafety Level 4 (BSL4) agents. Moreover, henipaviruses belong to the same group of viruses that cause disease more commonly in humans such as measles, mumps and respiratory syncytial virus. Due to the relatively recent emergence of the henipaviruses and the practical constraints of performing functional genomics studies at high levels of containment, our understanding of the henipavirus infection cycle is incomplete. In this chapter we describe recent loss-of-function (i.e. RNAi) functional genomics screens that shed light on the henipavirus-host interface at a genome-wide level. Further to this, we cross-reference RNAi results with studies probing host proteins targeted by henipavirus proteins, such as nuclear proteins and immune modulators. These functional genomics studies join a growing body of evidence demonstrating that nuclear and nucleolar host proteins play a crucial role in henipavirus infection. Furthermore these studies will underpin future efforts to define the role of nucleolar host-virus interactions in infection and disease.
Collapse
Affiliation(s)
- Ralph A. Tripp
- grid.213876.90000 0004 1936 738XDepartment Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA USA
| | - S. Mark Tompkins
- grid.213876.90000 0004 1936 738XCenter for Vaccines and Immunology, University of Georgia, Athens, GA USA
| | - Chwan Hong Foo
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Andrew G D Bean
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| |
Collapse
|
38
|
Ohta K, Matsumoto Y, Ito M, Nishio M. Tetherin antagonism by V proteins is a common trait among the genus Rubulavirus. Med Microbiol Immunol 2017; 206:319-326. [PMID: 28466381 DOI: 10.1007/s00430-017-0509-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022]
Abstract
Tetherin (BST-2/CD317/HM1.24) is an anti-viral factor that restricts the budding of several enveloped viruses. Most of these viruses have evolved to encode tetherin antagonists. Our previous study demonstrated that the growth of human parainfluenza virus type 2 (hPIV-2), a member of the genus Rubulavirus in the family Paramyxoviridae, was inhibited by tetherin, and its V protein decreases the amount of cell surface tetherin by the interaction. In the present study, we investigated whether tetherin inhibits the growth of other rubulaviruses including PIV-5, mumps virus (MuV), simian virus 41, and hPIV-4, and whether their V proteins act as tetherin antagonists. Plaque assay demonstrated that the growth of PIV-5 and MuV was inhibited by tetherin. Flow cytometry and immunoblot analyses revealed that the infection of PIV-5 and MuV caused reduction of cell surface tetherin without affecting total amount of tetherin. Immunoprecipitation analysis showed that all V proteins of rubulaviruses tested bound to tetherin. These results suggest that tetherin antagonism by V proteins is common among the genus Rubulavirus.
Collapse
Affiliation(s)
- Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8509, Japan
| | - Yusuke Matsumoto
- Department of Microbiology, School of Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8509, Japan
| | - Morihiro Ito
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
39
|
Li D, Wei J, Yang F, Liu HN, Zhu ZX, Cao WJ, Li S, Liu XT, Zheng HX, Shu HB. Foot-and-mouth disease virus structural protein VP3 degrades Janus kinase 1 to inhibit IFN-γ signal transduction pathways. Cell Cycle 2016; 15:850-60. [PMID: 26901336 DOI: 10.1080/15384101.2016.1151584] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Foot-and-mouth disease is a highly contagious viral disease of cloven-hoofed animals that is caused by foot-and-mouth disease virus (FMDV). To replicate efficiently in vivo, FMDV has evolved methods to circumvent host antiviral defense mechanisms, including those induced by interferons (IFNs). Previous research has focused on the effect of FMDV L(pro) and 3C(pro) on type I IFNs. In this study, FMDV VP3 was found to inhibit type II IFN signaling pathways. The overexpression of FMDV VP3 inhibited the IFN-γ-triggered phosphorylation of STAT1 at Tyr701 and the subsequent expression of downstream genes. Mechanistically, FMDV VP3 interacted with JAK1/2 and inhibited the tyrosine phosphorylation, dimerization and nuclear accumulation of STAT1. FMDV VP3 also disrupted the assembly of the JAK1 complex and degraded JAK1 but not JAK2 via a lysosomal pathway. Taken together, the results reveal a novel mechanism used by which FMDV VP3 counteracts the type II IFN signaling pathways.
Collapse
Affiliation(s)
- Dan Li
- a State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Jin Wei
- b Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University , Wuhan , China
| | - Fan Yang
- a State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Hua-Nan Liu
- a State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Zi-Xiang Zhu
- a State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Wei-Jun Cao
- a State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Shu Li
- b Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University , Wuhan , China
| | - Xiang-Tao Liu
- a State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Hai-Xue Zheng
- a State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Hong-Bing Shu
- b Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University , Wuhan , China
| |
Collapse
|
40
|
Stuart JH, Sumner RP, Lu Y, Snowden JS, Smith GL. Vaccinia Virus Protein C6 Inhibits Type I IFN Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2. PLoS Pathog 2016; 12:e1005955. [PMID: 27907166 PMCID: PMC5131898 DOI: 10.1371/journal.ppat.1005955] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/26/2016] [Indexed: 12/17/2022] Open
Abstract
The type I interferon (IFN) response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV) strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs) in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3) complex to the interferon stimulated response element (ISRE). Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion. In response to a viral infection, infected host cells mount an early, innate immune response to limit viral replication and spread. Type I interferons (IFNs) are produced by a cell when a viral infection is detected and are a crucial aspect of this early immune response. IFNs are released from the infected cell and can act on the infected cell itself or neighbouring cells to initiate a signalling pathway that results in the production of hundreds of anti-viral proteins. In this work we investigated a vaccinia virus protein called C6, a known inhibitor of type I IFN production. Here we show that C6 also inhibits signalling initiated in response to type I IFNs, therefore providing a dual defence against this essential immune response. The results show that, unlike the majority of viral inhibitors of IFN signalling, C6 inhibits the signalling pathway at a late stage once the proteins required for IFN-stimulated gene transcription have reached the nucleus and bound to the DNA. This work illustrates the complex relationship between infecting viruses and the host immune response and further investigation of the mechanism by which C6 inhibits this important immune pathway will likely increase our knowledge of the pathway itself.
Collapse
Affiliation(s)
- Jennifer H. Stuart
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca P. Sumner
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joseph S. Snowden
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Bharaj P, Wang YE, Dawes BE, Yun TE, Park A, Yen B, Basler CF, Freiberg AN, Lee B, Rajsbaum R. The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response. PLoS Pathog 2016; 12:e1005880. [PMID: 27622505 PMCID: PMC5021333 DOI: 10.1371/journal.ppat.1005880] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/18/2016] [Indexed: 12/03/2022] Open
Abstract
For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for development of therapeutic interventions against NiV infections. Nipah virus (NiV) is a zoonotic paramyxovirus causing severe respiratory and encephalitic illness with case fatality rates of 40 to 90%. The host type-I interferon (IFN-I) system protects against viral infections; however, to establish productive infection NiV has developed mechanisms to evade these host antiviral responses. An important component of the IFN system is the IKKε kinase, which is directly involved in IFN-I production and IFN-I signaling. The activity of the IKKε kinase is regulated by unanchored K48-linked polyubiquitin chains, a novel form of ubiquitin that is not covalently attached to any protein and can induce activation of kinases by promoting protein oligomerization. These unanchored polyubiquitin chains that activate IKKε are generated by the E3-ubiquitin ligase TRIM6. Here we demonstrate that the matrix structural protein (M) of NiV, which is important for virus assembly and budding, also has IFN-I antagonist functions and interferes with the host antiviral response. We found that NiV-M interacts with TRIM6 and promotes its degradation. Consequently, association of unanchored polyubiquitin chains with IKKε is reduced leading to impaired IKKε activation and ineffective IFN responses. Since the matrix protein is present in the virions and is released immediately after virus entry into the cell, this provides an efficient mechanism to escape the host antiviral response. These data may help explain the highly pathogenic potential of these viruses.
Collapse
Affiliation(s)
- Preeti Bharaj
- Department of Microbiology and Immunology, University of Texas Medical Branch, Gavelston, Texas, United States of America
| | - Yao E. Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Brian E. Dawes
- Department of Pathology University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tatyana E. Yun
- Department of Pathology University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Arnold Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Benjamin Yen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alexander N. Freiberg
- Department of Pathology University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (BL); (RR)
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Gavelston, Texas, United States of America
- * E-mail: (BL); (RR)
| |
Collapse
|
42
|
VP8, the Major Tegument Protein of Bovine Herpesvirus 1, Interacts with Cellular STAT1 and Inhibits Interferon Beta Signaling. J Virol 2016; 90:4889-4904. [PMID: 26889034 DOI: 10.1128/jvi.00017-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/10/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED The UL47 gene product, VP8, is the most abundant tegument protein of bovine herpesvirus 1 (BoHV-1). Previously, we demonstrated that a UL47-deleted BoHV-1 mutant (BoHV1-ΔUL47) exhibits 100-fold-reduced virulence in vitro and is avirulent in vivo In this study, we demonstrated that VP8 expression or BoHV-1 infection inhibits interferon beta (IFN-β) signaling by using an IFN-α/β-responsive plasmid in a luciferase assay. As transducer and activator of transcription (STAT) is an essential component in the IFN-signaling pathways, the effect of VP8 on STAT was investigated. An interaction between VP8 and STAT1 was established by coimmunoprecipitation assays in both VP8-transfected and BoHV-1-infected cells. Two domains of VP8, amino acids 259 to 482 and 632 to 686, were found to be responsible for its interaction with STAT1. The expression of VP8 did not induce STAT1 ubiquitination or degradation. Moreover, VP8 did not reduce STAT1 tyrosine phosphorylation to downregulate IFN-β signaling. However, the expression of VP8 or a version of VP8 (amino acids 219 to 741) that contains the STAT1-interacting domains but not the nuclear localization signal prevented nuclear accumulation of STAT1. Inhibition of nuclear accumulation of STAT1 also occurred during BoHV-1 infection, while nuclear translocation of STAT1 was observed in BoHV1-ΔUL47-infected cells. During BoHV-1 infection, VP8 was detected in the cytoplasm at 2 h postinfection without any de novo protein synthesis, at which time STAT1 was already retained in the cytoplasm. These results suggest that viral VP8 downregulates IFN-β signaling early during infection, thus playing a role in overcoming the antiviral response of BoHV-1-infected cells. IMPORTANCE Since VP8 is the most abundant protein in BoHV-1 virions and thus may be released in large amounts into the host cell immediately upon infection, we proposed that it might have a function in the establishment of conditions suitable for viral replication. Indeed, while nonessential in vitro, it is critical for BoHV-1 replication in vivo In this study, we determined that VP8 plays a role in downregulation of the antiviral host response by inhibiting IFN-β signaling. VP8 interacted with and prevented nuclear accumulation of STAT1 at 2 h postinfection in the absence of de novo viral protein synthesis. Two domains of VP8, amino acids 259 to 482 and 632 to 686, were found to be responsible for this interaction. These results provide a new functional role for VP8 in BoHV-1 infection and a potential explanation for the lack of viral replication of the UL47 deletion mutant in cattle.
Collapse
|
43
|
Qiu X, Fu Q, Meng C, Yu S, Zhan Y, Dong L, Song C, Sun Y, Tan L, Hu S, Wang X, Liu X, Peng D, Liu X, Ding C. Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling. PLoS One 2016; 11:e0148560. [PMID: 26859759 PMCID: PMC4747598 DOI: 10.1371/journal.pone.0148560] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/19/2016] [Indexed: 11/29/2022] Open
Abstract
Newcastle disease virus (NDV) V protein is considered as an effector for IFN antagonism, however, the mechanism remains unknown. In this study, the expression of STAT1 and phospho-STAT1 in cells infected with NDV or transfected with V protein-expressing plasmids were analyzed. Our results showed that NDV V protein targets phospho-STAT1 reduction in the cells depends on the stimulation of IFN-α. In addition, a V-deficient genotype VII recombinant NDV strain rZJ1-VS was constructed using reverse genetic technique to confirm the results. The rZJ1-VS lost the ability to reduce phospho-STAT1 and induced higher expression of IFN-responsive genes in infected cells. Furthermore, treatment with an ubiquitin E1 inhibitor PYR-41 demonstrated that phospho-STAT1 reduction was caused by degradation, but not de-phosphorylation. We conclude that NDV V protein targets phospho-STAT1 degradation to block IFN-α signaling, which adds novel knowledge to the strategies used by paramyxoviruses to evade IFN.
Collapse
Affiliation(s)
- Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Qiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Yuan Zhan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Luna Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
| | - Shunlin Hu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiufan Liu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (XFL); (CD)
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (XFL); (CD)
| |
Collapse
|
44
|
Audsley MD, Marsh GA, Lieu KG, Tachedjian M, Joubert DA, Wang LF, Jans DA, Moseley GW. The immune evasion function of J and Beilong virus V proteins is distinct from that of other paramyxoviruses, consistent with their inclusion in the proposed genus Jeilongvirus. J Gen Virol 2015; 97:581-592. [PMID: 26703878 DOI: 10.1099/jgv.0.000388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IFN-antagonist function is a major determinant of pathogenicity and cross-species infection by viruses, but remains poorly defined for many potentially zoonotic viruses resident in animal species. The paramyxovirus family contains several zoonotic viruses, including highly pathogenic viruses such as Nipah virus and Hendra virus, and an increasing number of largely uncharacterized animal viruses. Here, we report the characterization of IFN antagonism by the rodent viruses J virus (JPV) and Beilong virus (BeiPV) of the proposed genus Jeilongvirus of the paramyxoviruses. Infection of cells by JPV and BeiPV was found to inhibit IFN-activated nuclear translocation of signal transducer and activator of transcription 1 (STAT1). However, in contrast to most other paramyxoviruses, the JPV and BeiPV V proteins did not interact with or inhibit signalling by STAT1 or STAT2, suggesting that JPV/BeiPV use an atypical V protein-independent strategy to target STATs, consistent with their inclusion in a separate genus. Nevertheless, the V proteins of both viruses interacted with melanoma differentiation-associated protein 5 (MDA5) and robustly inhibited MDA5-dependent activation of the IFN-β promoter. This supports a growing body of evidence that MDA5 is a universal target of paramyxovirus V proteins, such that the V-MDA5 interaction represents a potential target for broad-spectrum antiviral approaches.
Collapse
Affiliation(s)
- Michelle D Audsley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Glenn A Marsh
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory (AAHL), Geelong, Victoria 3220, Australia
| | - Kim G Lieu
- Department of Biochemistry and Molecular Biology, BIO21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Mary Tachedjian
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory (AAHL), Geelong, Victoria 3220, Australia
| | - D Albert Joubert
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory (AAHL), Geelong, Victoria 3220, Australia
| | - Lin-Fa Wang
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory (AAHL), Geelong, Victoria 3220, Australia.,Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 169857Singapore
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Department of Biochemistry and Molecular Biology, BIO21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
45
|
Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1. J Virol 2015; 90:2403-17. [PMID: 26676772 DOI: 10.1128/jvi.02749-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/08/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Influenza A virus (IAV) employs diverse strategies to circumvent type I interferon (IFN) responses, particularly by inhibiting the synthesis of type I IFNs. However, it is poorly understood if and how IAV regulates the type I IFN receptor (IFNAR)-mediated signaling mode. In this study, we demonstrate that IAV induces the degradation of IFNAR subunit 1 (IFNAR1) to attenuate the type I IFN-induced antiviral signaling pathway. Following infection, the level of IFNAR1 protein, but not mRNA, decreased. Indeed, IFNAR1 was phosphorylated and ubiquitinated by IAV infection, which resulted in IFNAR1 elimination. The transiently overexpressed IFNAR1 displayed antiviral activity by inhibiting virus replication. Importantly, the hemagglutinin (HA) protein of IAV was proved to trigger the ubiquitination of IFNAR1, diminishing the levels of IFNAR1. Further, influenza A viral HA1 subunit, but not HA2 subunit, downregulated IFNAR1. However, viral HA-mediated degradation of IFNAR1 was not caused by the endoplasmic reticulum (ER) stress response. IAV HA robustly reduced cellular sensitivity to type I IFNs, suppressing the activation of STAT1/STAT2 and induction of IFN-stimulated antiviral proteins. Taken together, our findings suggest that IAV HA causes IFNAR1 degradation, which in turn helps the virus escape the powerful innate immune system. Thus, the research elucidated an influenza viral mechanism for eluding the IFNAR signaling pathway, which could provide new insights into the interplay between influenza virus and host innate immunity. IMPORTANCE Influenza A virus (IAV) infection causes significant morbidity and mortality worldwide and remains a major health concern. When triggered by influenza viral infection, host cells produce type I interferon (IFN) to block viral replication. Although IAV was shown to have diverse strategies to evade this powerful, IFN-mediated antiviral response, it is not well-defined if IAV manipulates the IFN receptor-mediated signaling pathway. Here, we uncovered that influenza viral hemagglutinin (HA) protein causes the degradation of type I IFN receptor subunit 1 (IFNAR1). HA promoted phosphorylation and polyubiquitination of IFNAR1, which facilitated the degradation of this receptor. The HA-mediated elimination of IFNAR1 notably decreased the cells' sensitivities to type I IFNs, as demonstrated by the diminished expression of IFN-induced antiviral genes. This discovery could help us understand how IAV regulates the host innate immune response to create an environment optimized for viral survival in host cells.
Collapse
|
46
|
Pisanelli G, Laurent-Rolle M, Manicassamy B, Belicha-Villanueva A, Morrison J, Lozano-Dubernard B, Castro-Peralta F, Iovane G, García-Sastre A. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation. Virus Res 2015; 213:11-22. [PMID: 26546155 DOI: 10.1016/j.virusres.2015.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/24/2022]
Abstract
La Piedad Michoacán Mexico Virus (LPMV) is a member of the Rubulavirus genus within the Paramyxoviridae family. LPMV is the etiologic agent of "blue eye disease", causing a significant disease burden in swine in Mexico with long-term implications for the agricultural industry. This virus mainly affects piglets and is characterized by meningoencephalitis and respiratory distress. It also affects adult pigs, causing reduced fertility and abortions in females, and orchitis and epididymitis in males. Viruses of the Paramyxoviridae family evade the innate immune response by targeting components of the interferon (IFN) signaling pathway. The V protein, expressed by most paramyxoviruses, is a well-characterized IFN signaling antagonist. Until now, there were no reports on the role of the LPMV-V protein in inhibiting the IFN response. In this study we demonstrate that LPMV-V protein antagonizes type I but not type II IFN signaling by binding STAT2, a component of the type I IFN cascade. Our results indicate that the last 18 amino acids of LPMV-V protein are required for binding to STAT2 in human and swine cells. While LPMV-V protein does not affect the protein levels of STAT1 or STAT2, it does prevent the IFN-induced phosphorylation and nuclear translocation of STAT1 and STAT2 thereby inhibiting cellular responses to IFN α/β.
Collapse
Affiliation(s)
- Giuseppe Pisanelli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Maudry Laurent-Rolle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Balaji Manicassamy
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Alan Belicha-Villanueva
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Juliet Morrison
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Bernardo Lozano-Dubernard
- Departamento de Investigación y Desarrollo, Laboratorio Avi-Mex, SA de CV, Bartolache 1862, Colonia del Valle, D.F. México 01900, Mexico
| | - Felipa Castro-Peralta
- Departamento de Investigación y Desarrollo, Laboratorio Avi-Mex, SA de CV, Bartolache 1862, Colonia del Valle, D.F. México 01900, Mexico
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Medicine, Division of Infectious Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States.
| |
Collapse
|
47
|
Lieu KG, Marsh GA, Wang LF, Netter HJ. The non-pathogenic Henipavirus Cedar paramyxovirus phosphoprotein has a compromised ability to target STAT1 and STAT2. Antiviral Res 2015; 124:69-76. [PMID: 26526590 DOI: 10.1016/j.antiviral.2015.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/19/2015] [Accepted: 09/06/2015] [Indexed: 12/24/2022]
Abstract
Immune evasion by the lethal henipaviruses, Hendra (HeV) and Nipah virus, is mediated by its interferon (IFN) antagonist P gene products, phosphoprotein (P), and the related V and W proteins, which can target the signal transducer and activator of transcription 1 (STAT1) and STAT2 proteins to inhibit IFN/STAT signaling. However, it is not clear if the recently identified non-pathogenic Henipavirus, Cedar paramyxovirus (CedPV), is also able to antagonize the STAT proteins. We performed comparative studies between the HeV P gene products (P/V/W) and CedPV-P (CedPV does not encode V or W) and demonstrate that differences exist in their ability to engage the STAT proteins using immunoprecipitation and quantitative confocal microscopic analysis. In contrast to HeV-P gene encoded proteins, the ability of CedPV-P to interact with and relocalize STAT1 or STAT2 is compromised, correlating with a reduced capacity to inhibit the mRNA synthesis of IFN-inducible gene MxA. Furthermore, infection studies with HeV and CedPV demonstrate that HeV is more potent than CedPV in inhibiting the IFN-α-mediated nuclear accumulation of STAT1. These results strongly suggest that the ability of CedPV to counteract the IFN/STAT response is compromised compared to HeV.
Collapse
Affiliation(s)
- Kim G Lieu
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Glenn A Marsh
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Australia
| | - Lin-Fa Wang
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Australia; Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Hans J Netter
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
48
|
Hoffmann HH, Schneider WM, Rice CM. Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol 2015; 36:124-38. [PMID: 25704559 DOI: 10.1016/j.it.2015.01.004] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 12/24/2022]
Abstract
Over half a century has passed since interferons (IFNs) were discovered and shown to inhibit virus infection in cultured cells. Since then, researchers have steadily brought to light the molecular details of IFN signaling, catalogued their pleiotropic effects on cells, and harnessed their therapeutic potential for a variety of maladies. While advances have been plentiful, several fundamental questions have yet to be answered and much complexity remains to be unraveled. We explore the current knowledge surrounding four main questions: are type I IFN subtypes differentially produced in response to distinct pathogens? How are IFN subtypes distinguished by cells? What are the mechanisms and consequences of viral antagonism? Lastly, how can the IFN response be harnessed to improve vaccine efficacy?
Collapse
Affiliation(s)
- Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
49
|
Abstract
Hendra virus and Nipah virus are closely related, recently emerged zoonotic paramyxoviruses, belonging to the Henipavirus genus. Both viruses induce generalized vasculitis affecting particularly the respiratory tract and CNS. The exceptionally broad species tropism of Henipavirus, the high case fatality rate and person-to-person transmission associated with Nipah virus outbreaks emphasize the necessity of effective antiviral strategies for these intriguing threatening pathogens. Current therapeutic approaches, validated in animal models, target early steps in viral infection; they include the use of neutralizing virus-specific antibodies and blocking membrane fusion with peptides that bind the viral fusion protein. A better understanding of Henipavirus pathogenesis is critical for the further advancement of antiviral treatment, and we summarize here the recent progress in the field.
Collapse
Affiliation(s)
- Cyrille Mathieu
- CIRI, International Center for Infectiology Research, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | | |
Collapse
|
50
|
Abstract
UNLABELLED Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus that causes an economically important disease in ruminants. BTV infection is a strong inducer of type I interferon (IFN-I) in multiple cell types. It has been shown recently that BTV and, more specifically, the nonstructural protein NS3 of BTV are able to modulate the IFN-I synthesis pathway. However, nothing is known about the ability of BTV to counteract IFN-I signaling. Here, we investigated the effect of BTV on the IFN-I response pathway and, more particularly, the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription protein (STAT) signaling pathway. We found that BTV infection triggered the expression of IFN-stimulated genes (ISGs) in A549 cells. However, when BTV-infected cells were stimulated with external IFN-I, we showed that activation of the IFN-stimulated response element (ISRE) promoter and expression of ISGs were inhibited. We found that this inhibition involved two different mechanisms that were dependent on the time of infection. After overnight infection, BTV blocked specifically the phosphorylation and nuclear translocation of STAT1. This inhibition correlated with the redistribution of STAT1 in regions adjacent to the nucleus. At a later time point of infection, BTV was found to interfere with the activation of other key components of the JAK/STAT pathway and to induce the downregulation of JAK1 and TYK2 protein expression. Overall, our study indicates for the first time that BTV is able to interfere with the JAK/STAT pathway to modulate the IFN-I response. IMPORTANCE Bluetongue virus (BTV) causes a severe disease in ruminants and has an important impact on the livestock economy in areas of endemicity such as Africa. The emergence of strains, such as serotype 8 in Europe in 2006, can lead to important economic losses due to commercial restrictions and prophylactic measures. It has been known for many years that BTV is a strong inducer of type I interferon (IFN-I) in vitro and in vivo in multiple cell types. However, the ability of BTV to interact with the IFN-I system remains unclear. Here, we report that BTV is able to modulate the IFN-I response by interfering with the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription protein (STAT) signaling pathway. These findings contribute to knowledge of how BTV infection interferes with the host's innate immune response and becomes pathogenic. This will also be important for the design of efficacious vaccine candidates.
Collapse
|