1
|
Chen YM, Yang WQ, Fan YY, Chen Z, Liu YZ, Zhao BS. Trichostatin A augments cell migration and epithelial-mesenchymal transition in esophageal squamous cell carcinoma through BRD4/ c-Myc endoplasmic reticulum-stress pathway. World J Gastroenterol 2025; 31:103449. [PMID: 40124272 PMCID: PMC11924005 DOI: 10.3748/wjg.v31.i11.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/13/2025] Open
Abstract
BACKGROUND The causes of death in patients with advanced esophageal cancer are multifactorial, with tumor metastasis being one of the important factors. Histone acetylation promotes the migration of esophageal squamous cell carcinoma (ESCC) cells, while the histone deacetylase inhibitor (HDACi) shows complex effects on tumor functions. AIM To comprehensively elucidate the impact and molecular mechanisms of trichostatin A (TSA), an HDACi, on cell migration in ESCC through bromodomain-containing protein (BRD4)/cellular myelocytomatosis oncogene (c-Myc)/endoplasmic reticulum (ER)-stress. METHODS The effects of TSA on ESCC cell lines Eca109 and EC9706 migration were evaluated using Transwell assays, with small interfering transfection and pathway-specific inhibitors to elucidate underlying mechanisms. The mRNA levels involved were examined by quantitative real-time polymerase chain reaction. Protein levels of acetylated histones H3 (acH3) and acetylated histones H4, BRD4, c-Myc, as well as markers of ER stress and epithelial-mesenchymal transition (EMT), were analyzed using western blot. Additionally, this method was also used to examine acH3 levels in esophageal cancer tissues and adjacent tissues. Patient outcomes were subsequently tracked to identify prognostic indicators using Log-Rank tests and Cox multivariate analysis. RESULTS TSA promoted the migration of ESCC cells by stimulating the EMT process. TSA-mediated histone acetylation facilitated the recruitment of BRD4, a bromodomain-containing protein, triggering the expression of c-Myc. This cascade induced ER stress and enhanced EMT in ESCC cells. To further elucidate the underlying mechanism, we employed various interventions including the ER stress inhibitor 4-phenylbutyric acid, knockdown of c-Myc and BRD4 expression, and utilization of the BRD4 inhibitor carboxylic acid as well as the inhibitor of TSA 1. Mechanistically, these studies revealed that TSA-mediated histone acetylation facilitated the recruitment of BRD4, which in turn triggered the expression of c-Myc. This sequential activation induced ER stress and subsequently enhanced EMT, thereby promoting the migration of ESCC cells. Additionally, we examined histone acetylation levels in specimens from 43 patients with ESCC, including both tumor tissues and paired adjacent tissues. Statistical analysis unveiled a negative correlation between the level of histone acetylation and the long-term prognosis of patients with ESCC. CONCLUSION TSA promoted ESCC cell migration through the BRD4/c-Myc/ER stress pathway. Moreover, elevated histone acetylation in ESCC tissues correlated with poor ESCC prognosis. These findings enhance our understanding of ESCC migration and HDACi therapy.
Collapse
Affiliation(s)
- Yan-Min Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Department of Oncology, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo 454000, Henan Province, China
| | - Wen-Qian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Ying-Ying Fan
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Zhi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Yu-Zhen Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Bao-Sheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
- Henan Medical Science Key Laboratory of Esophageal Cancer Metastasis Translational Medicine, Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| |
Collapse
|
2
|
Nichols Doyle R, Yang V, Kayode YI, Damoiseaux R, Taylor HE, Fregoso OI. NSC95397 Is a Novel HIV-1 Latency-Reversing Agent. Viruses 2024; 16:1783. [PMID: 39599897 PMCID: PMC11599149 DOI: 10.3390/v16111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
The latent viral reservoir represents one of the major barriers to curing HIV-1. Focus on the "kick and kill" (also called "shock and kill") approach, in which virus expression is reactivated, and then cells producing virus are selectively depleted, has led to the discovery of many latency-reversing agents (LRAs) that have furthered our understanding of the mechanisms driving HIV-1 latency and latency reversal. Thus far, individual compounds have yet to be robust enough to work as a therapy, highlighting the importance of identifying new compounds that target novel pathways and synergize with known LRAs. In this study, we identified a promising LRA, NSC95397, from a screen of ~4250 compounds. We validated that NSC95397 reactivates latent viral transcription and protein expression from cells with unique integration events and across different latency models. Co-treating cells with NSC95397 and known LRAs demonstrated that NSC95397 synergizes with different drugs under both standard normoxic and physiological hypoxic conditions. NSC95397 does not globally increase open chromatin, and bulk RNA sequencing revealed that NSC95397 does not greatly increase cellular transcription. Instead, NSC95397 downregulates pathways key to metabolism, cell growth, and DNA repair-highlighting the potential of these pathways in regulating HIV-1 latency. Overall, we identified NSC95397 as a novel LRA that does not largely alter global transcription, shows potential for synergy with known LRAs, and may act through novel pathways not previously recognized for their ability to modulate HIV-1 latency.
Collapse
Affiliation(s)
- Randilea Nichols Doyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (R.N.D.); (V.Y.)
| | - Vivian Yang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (R.N.D.); (V.Y.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Yetunde I. Kayode
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA; (Y.I.K.); (H.E.T.)
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA;
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Harry E. Taylor
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA; (Y.I.K.); (H.E.T.)
| | - Oliver I. Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (R.N.D.); (V.Y.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Doyle RN, Yang V, Kayode YI, Damoiseaux R, Taylor HE, Fregoso OI. NSC95397 is a Novel HIV-1 Latency Reversing Agent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.24.542213. [PMID: 37293110 PMCID: PMC10245985 DOI: 10.1101/2023.05.24.542213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The latent viral reservoir represents one of the major barriers of curing HIV-1. Focus on the "kick and kill" approach, in which virus expression is reactivated then cells producing virus are selectively depleted, has led to the discovery of many latency reversing agents (LRAs) that have furthered our understanding of the mechanisms driving HIV-1 latency and latency reversal. Thus far, individual compounds have yet to be robust enough to work as a therapy, highlighting the importance of identifying new compounds that target novel pathways and synergize with known LRAs. In this study, we identified a promising LRA, NSC95397, from a screen of ~4250 compounds. We validated that NSC95397 reactivates latent viral transcription and protein expression from cells with unique integration events and across different latency models. Co-treating cells with NSC95397 and known LRAs demonstrated that NSC95397 synergizes with different drugs under both standard normoxic and physiological hypoxic conditions. NSC95397 does not globally increase open chromatin, and bulk RNA sequencing revealed NSC95397 does not greatly increase cellular transcription. Instead, NSC95397 downregulates pathways key to metabolism, cell growth, and DNA repair - highlighting the potential of these pathways in regulating HIV-1 latency. Overall, we identified NSC95397 as a novel LRA that does not largely alter global transcription, that shows potential for synergy with known LRAs, and that may act through novel pathways not previously recognized for their ability to modulate HIV-1 latency.
Collapse
Affiliation(s)
- Randilea Nichols Doyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Vivian Yang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Yetunde I. Kayode
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Harry E. Taylor
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY
| | - Oliver I. Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
4
|
Zhou M, Yang T, Yuan M, Li X, Deng J, Wu S, Zhong Z, Lin Y, Zhang W, Xia B, Wu Y, Wang L, Chen T, Liu R, Pan T, Ma X, Li L, Liu B, Zhang H. ORC1 enhances repressive epigenetic modifications on HIV-1 LTR to promote HIV-1 latency. J Virol 2024; 98:e0003524. [PMID: 39082875 PMCID: PMC11334468 DOI: 10.1128/jvi.00035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/21/2024] [Indexed: 08/21/2024] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) reservoir consists of latently infected cells which present a major obstacle to achieving a functional cure for HIV-1. The formation and maintenance of HIV-1 latency have been extensively studied, and latency-reversing agents (LRAs) that can reactivate latent HIV-1 by targeting the involved host factors are developed; however, their clinical efficacies remain unsatisfactory. Therefore, it is imperative to identify novel targets for more potential candidates or better combinations for LRAs. In this study, we utilized CRISPR affinity purification in situ of regulatory elements system to screen for host factors associated with the HIV-1 long terminal repeat region that could potentially be involved in HIV-1 latency. We successfully identified that origin recognition complex 1 (ORC1), the largest subunit of the origin recognition complex, contributes to HIV-1 latency in addition to its function in DNA replication initiation. Notably, ORC1 is enriched on the HIV-1 promoter and recruits a series of repressive epigenetic elements, including DNMT1 and HDAC1/2, and histone modifiers, such as H3K9me3 and H3K27me3, thereby facilitating the establishment and maintenance of HIV-1 latency. Moreover, the reactivation of latent HIV-1 through ORC1 depletion has been confirmed across various latency cell models and primary CD4+ T cells from people living with HIV-1. Additionally, we comprehensively validated the properties of liquid-liquid phase separation (LLPS) of ORC1 from multiple perspectives and identified the key regions that promote the formation of LLPS. This property is important for the recruitment of ORC1 to the HIV-1 promoter. Collectively, these findings highlight ORC1 as a potential novel target implicated in HIV-1 latency and position it as a promising candidate for the development of novel LRAs. IMPORTANCE Identifying host factors involved in maintaining human immunodeficiency virus type 1 (HIV-1) latency and understanding their mechanisms prepares the groundwork to discover novel targets for HIV-1 latent infection and provides further options for the selection of latency-reversing agents in the "shock" strategy. In this study, we identified a novel role of the DNA replication factor origin recognition complex 1 (ORC1) in maintaining repressive chromatin structures surrounding the HIV-1 promoter region, thereby contributing to HIV-1 latency. This discovery expands our understanding of the non-replicative functions of the ORC complex and provides a potential therapeutic strategy for HIV-1 cure.
Collapse
Affiliation(s)
- Mo Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Yuan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyu Li
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jieyi Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shiyu Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihan Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingtong Lin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanying Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baijin Xia
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Science), Guangzhou, China
| | - Yating Wu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Science), Guangzhou, China
| | - Lilin Wang
- Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Tao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Ruxin Liu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ting Pan
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Linghua Li
- Center for Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Ghasemi N, Azizi H. Exploring Myc puzzle: Insights into cancer, stem cell biology, and PPI networks. Gene 2024; 916:148447. [PMID: 38583818 DOI: 10.1016/j.gene.2024.148447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
"The grand orchestrator," "Universal Amplifier," "double-edged sword," and "Undruggable" are just some of the Myc oncogene so-called names. It has been around 40 years since the discovery of the Myc, and it remains in the mainstream of cancer treatment drugs. Myc is part of basic helix-loop-helix leucine zipper (bHLH-LZ) superfamily proteins, and its dysregulation can be seen in many malignant human tumors. It dysregulates critical pathways in cells that are connected to each other, such as proliferation, growth, cell cycle, and cell adhesion, impacts miRNAs action, intercellular metabolism, DNA replication, differentiation, microenvironment regulation, angiogenesis, and metastasis. Myc, surprisingly, is used in stem cell research too. Its family includes three members, MYC, MYCN, and MYCL, and each dysfunction was observed in different cancer types. This review aims to introduce Myc and its function in the body. Besides, Myc deregulatory mechanisms in cancer cells, their intricate aspects will be discussed. We will look at promising drugs and Myc-based therapies. Finally, Myc and its role in stemness, Myc pathways based on PPI network analysis, and future insights will be explained.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
6
|
Chou TC, Maggirwar NS, Marsden MD. HIV Persistence, Latency, and Cure Approaches: Where Are We Now? Viruses 2024; 16:1163. [PMID: 39066325 PMCID: PMC11281696 DOI: 10.3390/v16071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The latent reservoir remains a major roadblock to curing human immunodeficiency virus (HIV) infection. Currently available antiretroviral therapy (ART) can suppress active HIV replication, reduce viral loads to undetectable levels, and halt disease progression. However, antiretroviral drugs are unable to target cells that are latently infected with HIV, which can seed viral rebound if ART is stopped. Consequently, a major focus of the field is to study the latent viral reservoir and develop safe and effective methods to eliminate it. Here, we provide an overview of the major mechanisms governing the establishment and maintenance of HIV latency, the key challenges posed by latent reservoirs, small animal models utilized to study HIV latency, and contemporary cure approaches. We also discuss ongoing efforts to apply these approaches in combination, with the goal of achieving a safe, effective, and scalable cure for HIV that can be extended to the tens of millions of people with HIV worldwide.
Collapse
Affiliation(s)
- Tessa C. Chou
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Nishad S. Maggirwar
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
- Department of Medicine, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
7
|
Gambelli A, Nespolo A, Rampioni Vinciguerra GL, Pivetta E, Pellarin I, Nicoloso MS, Scapin C, Stefenatti L, Segatto I, Favero A, D'Andrea S, Mucignat MT, Bartoletti M, Lucia E, Schiappacassi M, Spessotto P, Canzonieri V, Giorda G, Puglisi F, Vecchione A, Belletti B, Sonego M, Baldassarre G. Platinum-induced upregulation of ITGA6 promotes chemoresistance and spreading in ovarian cancer. EMBO Mol Med 2024; 16:1162-1192. [PMID: 38658801 PMCID: PMC11099142 DOI: 10.1038/s44321-024-00069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Platinum (PT)-resistant Epithelial Ovarian Cancer (EOC) grows as a metastatic disease, disseminating in the abdomen and pelvis. Very few options are available for PT-resistant EOC patients, and little is known about how the acquisition of PT-resistance mediates the increased spreading capabilities of EOC. Here, using isogenic PT-resistant cells, genetic and pharmacological approaches, and patient-derived models, we report that Integrin α6 (ITGA6) is overexpressed by PT-resistant cells and is necessary to sustain EOC metastatic ability and adhesion-dependent PT-resistance. Using in vitro approaches, we showed that PT induces a positive loop that, by stimulating ITGA6 transcription and secretion, contributes to the formation of a pre-metastatic niche enabling EOC cells to disseminate. At molecular level, ITGA6 engagement regulates the production and availability of insulin-like growth factors (IGFs), over-stimulating the IGF1R pathway and upregulating Snail expression. In vitro data were recapitulated using in vivo models in which the targeting of ITGA6 prevents PT-resistant EOC dissemination and improves PT-activity, supporting ITGA6 as a promising druggable target for EOC patients.
Collapse
Affiliation(s)
- Alice Gambelli
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Anna Nespolo
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Gian Luca Rampioni Vinciguerra
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, Italy
| | - Eliana Pivetta
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Ilenia Pellarin
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Milena S Nicoloso
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Chiara Scapin
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Linda Stefenatti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Ilenia Segatto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Andrea Favero
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Sara D'Andrea
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Maria Teresa Mucignat
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Michele Bartoletti
- Deparment of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Emilio Lucia
- Gynecological Surgery Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Monica Schiappacassi
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Paola Spessotto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, TS, Italy
| | - Giorgio Giorda
- Gynecological Surgery Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Fabio Puglisi
- Deparment of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
- Department of Medicine, University of Udine, Udine, UD, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, Italy
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Maura Sonego
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, PN, Italy.
| |
Collapse
|
8
|
LaPorte A, Pathak R, Eliscovich C, Martins L, Nell R, Spivak A, Suzuki M, Planelles V, Singer R, Kalpana G. Single-molecule RNA-FISH analysis reveals stochasticity in reactivation of latent HIV-1 regulated by Nuclear Orphan Receptors NR4A and cMYC. RESEARCH SQUARE 2024:rs.3.rs-4166090. [PMID: 38699331 PMCID: PMC11065080 DOI: 10.21203/rs.3.rs-4166090/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
HIV-1 eradication strategies require complete reactivation of HIV-1 latent cells by Latency Reversing Agents (LRA). Current methods lack effectiveness due to incomplete proviral reactivation. We employed a single-molecule RNA-FISH (smRNA-FISH) and FISH-Quant analysis and found that proviral reactivation is highly variable from cell-to-cell, stochastic, and occurs in bursts and waves, with different kinetics in response to diverse LRAs. Approximately 1-5% of latent cells exhibited stochastic reactivation without LRAs. Through single-cell RNA-seq analysis, we identified NR4A3 and cMYC as extrinsic factors associated with stochastic HIV-1 reactivation. Concomitant with HIV-1 reactivation cMYC was downregulated and NR4A3 was upregulated in both latent cell lines and primary CD4+ T-cells from aviremic patients. By inhibiting cMYC using SN-38, an active metabolite of irinotecan, we induced NR4A3 and HIV-1 expression. Our results suggest that inherent stochasticity in proviral reactivation contributes to cell-to-cell variability, which could potentially be modulated by drugs targeting cMYC and NR4A3.
Collapse
|
9
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
11
|
Chen R, Han X, Xu H, Xu J, Cao T, Shan Y, He F, Fang W, Li X. N-terminal domain of classical swine fever virus N pro induces proteasomal degradation of specificity protein 1 with reduced HDAC1 expression to evade from innate immune responses. J Virol 2023; 97:e0111523. [PMID: 37796122 PMCID: PMC10617410 DOI: 10.1128/jvi.01115-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Of the flaviviruses, only CSFV and bovine viral diarrhea virus express Npro as the non-structural protein which is not essential for viral replication but functions to dampen host innate immunity. We have deciphered a novel mechanism with which CSFV uses to evade the host antiviral immunity by the N-terminal domain of its Npro to facilitate proteasomal degradation of Sp1 with subsequent reduction of HDAC1 and ISG15 expression. This is distinct from earlier findings involving Npro-mediated IRF3 degradation via the C-terminal domain. This study provides insights for further studies on how HDAC1 plays its role in antiviral immunity, and if and how other viral proteins, such as the core protein of CSFV, the nucleocapsid protein of porcine epidemic diarrhea virus, or even other coronaviruses, exert antiviral immune responses via the Sp1-HDAC1 axis. Such research may lead to a deeper understanding of viral immune evasion strategies as part of their pathogenetic mechanisms.
Collapse
Affiliation(s)
- Rong Chen
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xiao Han
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Hankun Xu
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Jidong Xu
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Tong Cao
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Ying Shan
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Fang He
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xiaoliang Li
- Zhejiang University Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Ran XH, Zhu JW, Ni RZ, Zheng YT, Chen YY, Zheng WH, Mu D. TRIM5α recruits HDAC1 to p50 and Sp1 and promotes H3K9 deacetylation at the HIV-1 LTR. Nat Commun 2023; 14:3343. [PMID: 37291137 PMCID: PMC10250300 DOI: 10.1038/s41467-023-39056-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Tripartite motif-containing protein 5α (TRIM5α) is generally known to block the postentry events of HIV-1. Here, we report an uncharacterized role for TRIM5α in the maintenance of viral latency. Knockdown of TRIM5α potentiates the transcription of HIV-1 in multiple latency models, which is reversed by shRNA-resistant TRIM5α. TRIM5α suppresses TNFα-activated HIV-1 LTR-driven as well as NF-κB- and Sp1-driven gene expression, with the RING and B-box 2 domains being the essential determinants. Mechanistically, TRIM5α binds to and enhances the recruitment of histone deacetylase 1 (HDAC1) to NF-κB p50 and Sp1. ChIP‒qPCR analyses further reveal that the association of TRIM5α with HIV-1 LTR induces HDAC1 recruitment and local H3K9 deacetylation. Conserved suppression effects of TRIM5α orthologs from multiple species on both HIV-1 and endo-retroelement HERV-K LTR activities have also been demonstrated. These findings provide new insights into the molecular mechanisms by which proviral latency is initially established and activatable proviruses are resilenced by histone deacetylase recruitment.
Collapse
Affiliation(s)
- Xiang-Hong Ran
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jia-Wu Zhu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Run-Ze Ni
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ya-Yun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wei-Hua Zheng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Dan Mu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Youn EK, Cho HM, Jung JK, Yoon GE, Eto M, Kim JI. Pathologic HDAC1/c-Myc signaling axis is responsible for angiotensinogen transcription and hypertension induced by high-fat diet. Biomed Pharmacother 2023; 164:114926. [PMID: 37244179 DOI: 10.1016/j.biopha.2023.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
High-fat diet (HFD)-induced obesity is a cause of resistant hypertension. We have shown a possible link between histone deacetylases (HDACs) and renal angiotensinogen (Agt) upregulation in the HFD-induced hypertension, whereas the underlying mechanisms remain to be elucidated. Here, using a HDAC1/2 inhibitor romidepsin (FK228) and siRNAs, we determined roles of HDAC1 and HDAC2 in HFD-induced hypertension and found the pathologic signaling axis between HDAC1 and Agt transcription. Treatment with FK228 canceled the increased blood pressure of male C57BL/6 mice induced by HFD. FK228 also blocked upregulation of renal Agt mRNA, protein, angiotensin II (Ang II) or serum Ang II. Activation and nuclear accumulation of both HDAC1 and HDAC2 occurred in the HFD group. The HFD-induced HDAC activation was associated with an increase in deacetylated c-Myc transcription factor. Silencing of HDAC1, HDAC2 or c-Myc in HRPTEpi cells decreased Agt expression. However, only HDAC1 knockdown, but not HDAC2, increased c-Myc acetylation, suggesting selective roles in two enzymes. Chromatin immunoprecipitation assay revealed that HFD induced the binding of HDAC1 and deacetylated c-Myc at the Agt gene promoter. A putative c-Myc binding sequence in the promotor region was necessary for Agt transcription. Inhibition of c-Myc downregulated Agt and Ang II levels in kidney and serum, ameliorating HFD-induced hypertension. Thus, the abnormal HDAC1/2 in the kidney may be responsible for the upregulation of the Agt gene expression and hypertension. The results expose the pathologic HDAC1/c-myc signaling axis in kidney as a promising therapeutic target for obesity-associated resistant hypertension.
Collapse
Affiliation(s)
- Eui Kyung Youn
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Hyun Min Cho
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Jin Ki Jung
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Ga-Eun Yoon
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Masumi Eto
- Department of Veterinary Medicine, Okayama University of Science, Ehime 794-8555, Japan
| | - Jee In Kim
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea.
| |
Collapse
|
14
|
Pávová M, Reyes-Gutiérrez PE, Kozák J, Dobiaš J, Yurenko Y, Lepšík M, Teplý F, Weber J. Helquat dyes targeting G-quadruplexes as a new class of anti-HIV-1 inhibitors. Sci Rep 2023; 13:6096. [PMID: 37055553 PMCID: PMC10102027 DOI: 10.1038/s41598-023-33263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
The secondary structure of nucleic acids containing quartets of guanines, termed G-quadruplexes, is known to regulate the transcription of many genes. Several G-quadruplexes can be formed in the HIV-1 long terminal repeat promoter region and their stabilization results in the inhibition of HIV-1 replication. Here, we identified helquat-based compounds as a new class of anti-HIV-1 inhibitors that inhibit HIV-1 replication at the stage of reverse transcription and provirus expression. Using Taq polymerase stop and FRET melting assays, we have demonstrated their ability to stabilize G-quadruplexes in the HIV-1 long-terminal repeat sequence. Moreover, these compounds were not binding to the general G-rich region, but rather to G-quadruplex-forming regions. Finally, docking and molecular dynamics calculations indicate that the structure of the helquat core greatly affects the binding mode to the individual G-quadruplexes. Our findings can provide useful information for the further rational design of inhibitors targeting G-quadruplexes in HIV-1.
Collapse
Affiliation(s)
- Marcela Pávová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Paul Eduardo Reyes-Gutiérrez
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Jaroslav Kozák
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Juraj Dobiaš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Yevgen Yurenko
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Filip Teplý
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic.
| |
Collapse
|
15
|
Mediouni S, Lyu S, Schader SM, Valente ST. Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses 2022; 14:1980. [PMID: 36146786 PMCID: PMC9502519 DOI: 10.3390/v14091980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Current antiretroviral therapy (ART) increases the survival of HIV-infected individuals, yet it is not curative. The major barrier to finding a definitive cure for HIV is our inability to identify and eliminate long-lived cells containing the dormant provirus, termed viral reservoir. When ART is interrupted, the viral reservoir ensures heterogenous and stochastic HIV viral gene expression, which can reseed infection back to pre-ART levels. While strategies to permanently eradicate the virus have not yet provided significant success, recent work has focused on the management of this residual viral reservoir to effectively limit comorbidities associated with the ongoing viral transcription still observed during suppressive ART, as well as limit the need for daily ART. Our group has been at the forefront of exploring the viability of the block-and-lock remission approach, focused on the long-lasting epigenetic block of viral transcription such that without daily ART, there is no risk of viral rebound, transmission, or progression to AIDS. Numerous studies have reported inhibitors of both viral and host factors required for HIV transcriptional activation. Here, we highlight and review some of the latest HIV transcriptional inhibitor discoveries that may be leveraged for the clinical exploration of block-and-lock and revolutionize the way we treat HIV infections.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Shuang Lyu
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| |
Collapse
|
16
|
Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Front Microbiol 2022; 13:862270. [PMID: 35572626 PMCID: PMC9093714 DOI: 10.3389/fmicb.2022.862270] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although HIV-1 replication can be efficiently suppressed to undetectable levels in peripheral blood by combination antiretroviral therapy (cART), lifelong medication is still required in people living with HIV (PLWH). Life expectancies have been extended by cART, but age-related comorbidities have increased which are associated with heavy physiological and economic burdens on PLWH. The obstacle to a functional HIV cure can be ascribed to the formation of latent reservoir establishment at the time of acute infection that persists during cART. Recent studies suggest that some HIV reservoirs are established in the early acute stages of HIV infection within multiple immune cells that are gradually shaped by various host and viral mechanisms and may undergo clonal expansion. Early cART initiation has been shown to reduce the reservoir size in HIV-infected individuals. Memory CD4+ T cell subsets are regarded as the predominant cellular compartment of the HIV reservoir, but monocytes and derivative macrophages or dendritic cells also play a role in the persistent virus infection. HIV latency is regulated at multiple molecular levels in transcriptional and post-transcriptional processes. Epigenetic regulation of the proviral promoter can profoundly regulate the viral transcription. In addition, transcriptional elongation, RNA splicing, and nuclear export pathways are also involved in maintaining HIV latency. Although most proviruses contain large internal deletions, some defective proviruses may induce immune activation by expressing viral proteins or producing replication-defective viral-like particles. In this review article, we discuss the state of the art on mechanisms of virus persistence in the periphery and tissue and summarize interdisciplinary approaches toward a functional HIV cure, including novel capabilities and strategies to measure and eliminate the infected reservoirs and induce immune control.
Collapse
Affiliation(s)
- Tram M. Ta
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Sajjaf Malik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. Anderson
- Office of the Assistant Secretary for Health, Region 3, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Amber D. Jones
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jocelyn Perchik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Maryann Freylikh
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Luca Sardo
- Department of Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Zackary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University of Medicine, Philadelphia, PA, United States
| | - Taisuke Izumi
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,*Correspondence: Taisuke Izumi,
| |
Collapse
|
17
|
Barbian HJ, Seaton MS, Narasipura SD, Wallace J, Rajan R, Sha BE, Al-Harthi L. β-catenin regulates HIV latency and modulates HIV reactivation. PLoS Pathog 2022; 18:e1010354. [PMID: 35255110 PMCID: PMC8939789 DOI: 10.1371/journal.ppat.1010354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/22/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Latency is the main obstacle towards an HIV cure, with cure strategies aiming to either elicit or prevent viral reactivation. While these strategies have shown promise, they have only succeeded in modulating latency in a fraction of the latent HIV reservoir, suggesting that the mechanisms controlling HIV latency are not completely understood, and that comprehensive latency modulation will require targeting of multiple latency maintenance pathways. We show here that the transcriptional co-activator and the central mediator of canonical Wnt signaling, β-catenin, inhibits HIV transcription in CD4+ T cells via TCF-4 LTR binding sites. Further, we show that inhibiting the β-catenin pathway reactivates HIV in a primary TCM cell model of HIV latency, primary cells from cART-controlled HIV donors, and in CD4+ latent cell lines. β-catenin inhibition or activation also enhanced or inhibited the activity of several classes of HIV latency reversing agents, respectively, in these models, with significant synergy of β-catenin and each LRA class tested. In sum, we identify β-catenin as a novel regulator of HIV latency in vitro and ex vivo, adding new therapeutic targets that may be combined for comprehensive HIV latency modulation in HIV cure efforts.
Collapse
Affiliation(s)
- Hannah J. Barbian
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Melanie S. Seaton
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Srinivas D. Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Reshma Rajan
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Beverly E. Sha
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinios United States of America
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
18
|
Li D, Dewey MG, Wang L, Falcinelli SD, Wong LM, Tang Y, Browne EP, Chen X, Archin NM, Margolis DM, Jiang G. Crotonylation sensitizes IAPi-induced disruption of latent HIV by enhancing p100 cleavage into p52. iScience 2022; 25:103649. [PMID: 35024584 PMCID: PMC8728431 DOI: 10.1016/j.isci.2021.103649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023] Open
Abstract
The eradication of HIV infection is difficult to achieve because of stable viral reservoirs. Here, we show that crotonylation enhances AZD5582-induced noncanonical NF-κB (ncNF-κB) signaling, further augmenting HIV latency reversal in Jurkat and U1 cell line models of latency, HIV latently infected primary CD4+ T cells and resting CD4+ T cells isolated from people living with HIV. Crotonylation upregulated the levels of the active p52 subunit of NF-κB following AZD5582. Biochemical analyses suggest that the ubiquitin E3 ligase TRIM27 is involved in enhanced p100 cleavage to p52. When TRIM27 was depleted, AZD5582-induced HIV latency reversal was reduced. TRIM27 small interfering RNA (siRNA) knockdown reduced both p100 and p52 levels without inhibiting p100 transcription, indicating that TRIM27 not only acts on p100 cleavage but also may impact p100/p52 stability. These observations reveal the complexity of HIV transcriptional machinery, particularly of NF-κB.
Collapse
Affiliation(s)
- Dajiang Li
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
| | - Morgan G. Dewey
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
| | - Li Wang
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Shane D. Falcinelli
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Lilly M. Wong
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
| | - Yuyang Tang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
| | - Edward P. Browne
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Nancie M. Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - David M. Margolis
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| |
Collapse
|
19
|
Abstract
To identify novel host factors as putative targets to reverse HIV-1 latency, we performed an insertional mutagenesis genetic screen in a latent HIV-1 infected pseudohaploid KBM7 cell line (Hap-Lat). Following mutagenesis, insertions were mapped to the genome, and bioinformatic analysis resulted in the identification of 69 candidate host genes involved in maintaining HIV-1 latency. A select set of candidate genes was functionally validated using short hairpin RNA (shRNA)-mediated depletion in latent HIV-1 infected J-Lat A2 and 11.1 T cell lines. We confirmed ADK, CHD9, CMSS1, EVI2B, EXOSC8, FAM19A, GRIK5, IRF2BP2, NF1, and USP15 as novel host factors involved in the maintenance of HIV-1 latency. Chromatin immunoprecipitation assays indicated that CHD9, a chromodomain helicase DNA-binding protein, maintains HIV-1 latency via direct association with the HIV-1 5′ long terminal repeat (LTR), and its depletion results in increased histone acetylation at the HIV-1 promoter, concomitant with HIV-1 latency reversal. FDA-approved inhibitors 5-iodotubercidin, trametinib, and topiramate, targeting ADK, NF1, and GRIK5, respectively, were characterized for their latency reversal potential. While 5-iodotubercidin exhibited significant cytotoxicity in both J-Lat and primary CD4+ T cells, trametinib reversed latency in J-Lat cells but not in latent HIV-1 infected primary CD4+ T cells. Importantly, topiramate reversed latency in cell line models, in latently infected primary CD4+ T cells, and crucially in CD4+ T cells from three people living with HIV-1 (PLWH) under suppressive antiretroviral therapy, without inducing T cell activation or significant toxicity. Thus, using an adaptation of a haploid forward genetic screen, we identified novel and druggable host factors contributing to HIV-1 latency.
Collapse
|
20
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021. [PMID: 34728591 PMCID: PMC8550911 DOI: 10.1007/s12038-021-00215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
|
21
|
Porcine Epidemic Diarrhea Virus Inhibits HDAC1 Expression To Facilitate Its Replication via Binding of Its Nucleocapsid Protein to Host Transcription Factor Sp1. J Virol 2021; 95:e0085321. [PMID: 34232065 DOI: 10.1128/jvi.00853-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing acute intestinal infection in pigs, with high mortality often seen in neonatal pigs. The newborns rely on innate immune responses against invading pathogens because of lacking adaptive immunity. However, how PEDV disables the innate immunity of newborns toward severe infection remains unknown. We found that PEDV infection led to reduced expression of histone deacetylases (HDACs), especially HDAC1, in porcine IPEC-J2 cells. HDACs are considered important regulators of innate immunity. We hypothesized that PEDV interacts with certain host factors to regulate HDAC1 expression in favor of its replication. We show that HDAC1 acted as a negative regulator of PEDV replication in IPEC-J2 cells, as shown by chemical inhibition, gene knockout, and overexpression. A GC-box (GCCCCACCCCC) within the HDAC1 promoter region was identified for Sp1 binding in IPEC-J2 cells. Treatment of the cells with Sp1 inhibitor mithramycin A inhibited HDAC1 expression, indicating direct regulation of HDAC1 expression by Sp1. Of the viral proteins that were overexpressed in IPEC-J2 cells, the N protein was found to be present in the nuclei and more inhibitory to HDAC1 transcription. The putative nuclear localization sequence 261PKKNKSR267 contributed to its nuclear localization. The N protein interacted with Sp1 and interfered with its binding to the promoter region, thereby inhibiting its transcriptional activity for HDAC1 expression. Our findings reveal a novel mechanism of PEDV evasion of the host responses, offering implications for studying the infection processes of other coronaviruses. IMPORTANCE The enteric coronavirus porcine epidemic diarrhea virus (PEDV) causes fatal acute intestinal infection in neonatal pigs that rely on innate immune responses. Histone deacetylases (HDACs) play important roles in innate immune regulation. Our study found PEDV suppresses HDAC1 expression via the interaction of its N protein and porcine Sp1, which identified a novel mechanism of PEDV evasion of the host responses to benefit its replication. This study suggests that other coronaviruses, including SARS-CoV and SARS-CoV-2, also make use of their N proteins to intercept the host immune responses in favor of their infection.
Collapse
|
22
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Sonti S, Sharma AL, Tyagi M. HIV-1 persistence in the CNS: Mechanisms of latency, pathogenesis and an update on eradication strategies. Virus Res 2021; 303:198523. [PMID: 34314771 DOI: 10.1016/j.virusres.2021.198523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022]
Abstract
Despite four decades of research into the human immunodeficiency virus (HIV-1), a successful strategy to eradicate the virus post-infection is lacking. The major reason for this is the persistence of the virus in certain anatomical reservoirs where it can become latent and remain quiescent for as long as the cellular reservoir is alive. The Central Nervous System (CNS), in particular, is an intriguing anatomical compartment that is tightly regulated by the blood-brain barrier. Targeting the CNS viral reservoir is a major challenge owing to the decreased permeability of drugs into the CNS and the cellular microenvironment that facilitates the compartmentalization and evolution of the virus. Therefore, despite effective antiretroviral (ARV) treatment, virus persists in the CNS, and leads to neurological and neurocognitive deficits. To date, viral eradication strategies fail to eliminate the virus from the CNS. To facilitate the improvement of the existing elimination strategies, as well as the development of potential therapeutic targets, the aim of this review is to provide an in-depth understanding of HIV latency in CNS and the onset of HIV-1 associated neurological disorders.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
24
|
Veenhuis RT, Abreu CM, Shirk EN, Gama L, Clements JE. HIV replication and latency in monocytes and macrophages. Semin Immunol 2021; 51:101472. [PMID: 33648815 PMCID: PMC10171083 DOI: 10.1016/j.smim.2021.101472] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
The relevance of monocyte and macrophage reservoirs in virally suppressed people with HIV (vsPWH) has previously been debatable. Macrophages were assumed to have a moderate life span and lack self-renewing potential. However, recent studies have challenged this dogma and now suggest an important role of these cell as long-lived HIV reservoirs. Lentiviruses have a long-documented association with macrophages and abundant evidence exists that macrophages are important target cells for HIV in vivo. A critical understanding of HIV infection, replication, and latency in macrophages is needed in order to determine the appropriate method of measuring and eliminating this cellular reservoir. This review provides a brief discussion of the biology and acute and chronic infection of monocytes and macrophages, with a more substantial focus on replication, latency and measurement of the reservoir in cells of myeloid origin.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Celina M Abreu
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erin N Shirk
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lucio Gama
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| | - Janice E Clements
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
25
|
Chander Y, Kumar R, Khandelwal N, Singh N, Shringi BN, Barua S, Kumar N. Role of p38 mitogen-activated protein kinase signalling in virus replication and potential for developing broad spectrum antiviral drugs. Rev Med Virol 2021; 31:1-16. [PMID: 33450133 DOI: 10.1002/rmv.2217] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play a key role in complex cellular processes such as proliferation, development, differentiation, transformation and apoptosis. Mammals express at least four distinctly regulated groups of MAPKs which include extracellular signal-related kinases (ERK)-1/2, p38 proteins, Jun amino-terminal kinases (JNK1/2/3) and ERK5. p38 MAPK is activated by a wide range of cellular stresses and modulates activity of several downstream kinases and transcription factors which are involved in regulating cytoskeleton remodeling, cell cycle modulation, inflammation, antiviral response and apoptosis. In viral infections, activation of cell signalling pathways is part of the cellular defense mechanism with the basic aim of inducing an antiviral state. However, viruses can exploit enhanced cell signalling activities to support various stages of their replication cycles. Kinase activity can be inhibited by small molecule chemical inhibitors, so one strategy to develop antiviral drugs is to target these cellular signalling pathways. In this review, we provide an overview on the current understanding of various cellular and viral events regulated by the p38 signalling pathway, with a special emphasis on targeting these events for antiviral drug development which might identify candidates with broad spectrum activity.
Collapse
Affiliation(s)
- Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Biotechnology, GLA University, Mathura, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Brij Nandan Shringi
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
26
|
In Vitro Pharmacokinetic/Pharmacodynamic Modeling of HIV Latency Reversal by Novel HDAC Inhibitors Using an Automated Platform. SLAS DISCOVERY 2021; 26:642-654. [DOI: 10.1177/2472555220983810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Antiretroviral therapy is able to effectively control but not eradicate HIV infection, which can persist, leading to the need for lifelong therapy. The existence of latently HIV-infected cells is a major barrier to the eradication of chronic HIV infection. Histone deacetylase inhibitors (HDACis), small molecules licensed for oncology indications, have shown the ability to produce HIV transcripts in vitro and in vivo. The pharmacologic parameters that drive optimal HIV latency reversal in vivo are unknown and could be influenced by such factors as the HDACi binding kinetics, concentration of compound, and duration of exposure. This study evaluates how these parameters affect HIV latency reversal for a series of novel HDACis that differ in their enzymatic on and off rates. Varying cellular exposure, using automated washout methods of HDACi in a Jurkat cell model of HIV latency, led to the investigation of the relationship between pharmacokinetic (PK) properties, target engagement (TE), and pharmacodynamic (PD) responses. Using an automated robotic platform enabled miniaturization of a suspension cell-based washout assay that required multiple manipulations over the 48 h duration of the assay. Quantification of histone acetylation (TE) revealed that HDACis showed early peaks and differences in the durability of response between different investigated HDACis. By expanding the sample times, the shift between TE and PD, as measured by green fluorescent protein, could be fully characterized. The comprehensive data set generated by automating the assays described here was used to establish a PK/PD model for HDACi-induced HIV latency reversal.
Collapse
|
27
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021; 46:94. [PMID: 34728591 PMCID: PMC8550911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 02/11/2023]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
Affiliation(s)
- Ramisetti Rajeev
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ambey Prasad Dwivedi
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anunay Sinha
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Viplove Agarwaal
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | | | - Anjana Kar
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Institute of Microbial Technology (IMTech), Chandigarh, India
| |
Collapse
|
28
|
Latency-Reversing Agents Induce Differential Responses in Distinct Memory CD4 T Cell Subsets in Individuals on Antiretroviral Therapy. Cell Rep 2020; 29:2783-2795.e5. [PMID: 31775045 DOI: 10.1016/j.celrep.2019.10.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/11/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Latent proviruses persist in central (TCM), transitional (TTM), and effector (TEM) memory cells. We measured the levels of cellular factors involved in HIV gene expression in these subsets. The highest levels of acetylated H4, active nuclear factor κB (NF-κB), and active positive transcription elongation factor b (P-TEFb) were measured in TEM, TCM, and TTM cells, respectively. Vorinostat and romidepsin display opposite abilities to induce H4 acetylation across subsets. Protein kinase C (PKC) agonists are more efficient at inducing NF-κB phosphorylation in TCM cells but more potent at activating PTEF-b in the TEM subset. We selected the most efficient latency-reversing agents (LRAs) and measured their ability to reverse latency in each subset. While ingenol alone has modest activities in the three subsets, its combination with a histone deacetylase inhibitor (HDACi) dramatically increases latency reversal in TCM cells. Altogether, these results indicate that cellular HIV reservoirs are differentially responsive to common LRAs and suggest that combination of compounds will be required to achieve latency reversal in all subsets.
Collapse
|
29
|
Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol 2020; 51:101412. [PMID: 32981836 DOI: 10.1016/j.smim.2020.101412] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection has proven remarkably successful - for those who can access and afford it - yet HIV infection persists indefinitely in a reservoir of cells, despite effective ART and despite host antiviral immune responses. An HIV cure is therefore the next aspirational goal and challenge, though approaches differ in their objectives - with 'functional cures' aiming for durable viral control in the absence of ART, and 'sterilizing cures' aiming for the more difficult to realize objective of complete viral eradication. Mechanisms of HIV persistence, including viral latency, anatomical sequestration, suboptimal immune functioning, reservoir replenishment, target cell-intrinsic immune resistance, and, potentially, target cell distraction of immune effectors, likely need to be overcome in order to achieve a cure. A small fraction of people living with HIV (PLWH) naturally control infection via immune-mediated mechanisms, however, providing both sound rationale and optimism that an immunological approach to cure is possible. Herein we review up to date knowledge and emerging evidence on: the mechanisms contributing to HIV persistence, as well as potential strategies to overcome these barriers; promising immunological approaches to achieve viral control and elimination of reservoir-harboring cells, including harnessing adaptive immune responses to HIV and engineered therapies, as well as enhancers of their functions and of complementary innate immune functioning; and combination strategies that are most likely to succeed. Ultimately, a cure must be safe, effective, durable, and, eventually, scalable in order to be widely acceptable and available.
Collapse
Affiliation(s)
- Adam R Ward
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; PhD Program in Epidemiology, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
30
|
Anisenko A, Kan M, Shadrina O, Brattseva A, Gottikh M. Phosphorylation Targets of DNA-PK and Their Role in HIV-1 Replication. Cells 2020; 9:E1907. [PMID: 32824372 PMCID: PMC7464883 DOI: 10.3390/cells9081907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The DNA dependent protein kinase (DNA-PK) is a trimeric nuclear complex consisting of a large protein kinase and the Ku heterodimer. The kinase activity of DNA-PK is required for efficient repair of DNA double-strand breaks (DSB) by non-homologous end joining (NHEJ). We also showed that the kinase activity of DNA-PK is essential for post-integrational DNA repair in the case of HIV-1 infection. Besides, DNA-PK is known to participate in such cellular processes as protection of mammalian telomeres, transcription, and some others where the need for its phosphorylating activity is not clearly elucidated. We carried out a systematic search and analysis of DNA-PK targets described in the literature and identified 67 unique DNA-PK targets phosphorylated in response to various in vitro and/or in vivo stimuli. A functional enrichment analysis of DNA-PK targets and determination of protein-protein associations among them were performed. For 27 proteins from these 67 DNA-PK targets, their participation in the HIV-1 life cycle was demonstrated. This information may be useful for studying the functioning of DNA-PK in various cellular processes, as well as in various stages of HIV-1 replication.
Collapse
Affiliation(s)
- Andrey Anisenko
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (O.S.); (M.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;; (M.K.); (A.B.)
| | - Marina Kan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;; (M.K.); (A.B.)
| | - Olga Shadrina
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (O.S.); (M.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;; (M.K.); (A.B.)
| | - Anna Brattseva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;; (M.K.); (A.B.)
| | - Marina Gottikh
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (O.S.); (M.G.)
| |
Collapse
|
31
|
Cellular Gene Modulation of HIV-Infected CD4 T Cells in Response to Serial Treatment with the Histone Deacetylase Inhibitor Vorinostat. J Virol 2020; 94:JVI.00351-20. [PMID: 32295913 PMCID: PMC7307144 DOI: 10.1128/jvi.00351-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylase inhibitors are widely studied HIV latency-reversing agents (LRAs). VOR, an HDACi, induces histone acetylation and chromatin remodeling and modulates host and HIV gene expression. However, the relationship between these events is poorly defined, and clinical studies suggest diminished HIV reactivation in resting CD4 T cells with daily exposure to VOR. Our study provides evidence that VOR induces a consistent level of host cell gene transcription following intermittent exposure. In addition, in response to VOR exposure a gene signature that was conserved across single and serial exposures both in vitro and in vivo was identified, indicating that VOR can consistently and reproducibly modulate transcriptional host responses. However, as the HIV response to HDACi declines over time, other factors modulate viral reactivation in vivo despite robust HDAC activity. The identified host gene VOR biomarkers can be used for monitoring the pharmacodynamic activity of HDAC inhibitors. Histone deacetylase inhibitors (HDACi) are the most widely studied HIV latency-reversing agents (LRAs). The HDACi suberoylanilide hydroxamic acid (vorinostat [VOR]) has been employed in several clinical HIV latency reversal studies, as well as in vitro models of HIV latency, and has been shown to effectively induce HIV RNA and protein expression. Despite these findings, response to HDACi can vary, particularly with intermittent dosing, and information is lacking on the relationship between the host transcriptional response and HIV latency reversal. Here, we report on global gene expression responses to VOR and examine the longevity of the transcriptional response in various cellular models. We found that many genes are modulated at 6 h post-VOR treatment in HCT116, Jurkat, and primary resting CD4 T cells, yet return to baseline levels after an 18-h VOR-free period. With repeat exposure to VOR in resting CD4 T cells, we found similar and consistent transcriptional changes at 6 h following each serial treatment. In addition, serial exposure in HIV-infected suppressed donor CD4 T cells showed consistent transcriptional changes after each exposure to VOR. We identified five host genes that were strongly and consistently modulated following histone deacetylase (HDAC) inhibition; three (H1F0, IRGM, and WIPI49) were upregulated, and two (PHF15 and PRDM10) were downregulated. These genes demonstrated consistent modulation in peripheral blood mononuclear cell (PBMC) samples from HIV-positive (HIV+) participants who received either single or multiple doses of 400 mg of VOR. Interestingly, the host transcriptional response did not predict induction of cell-associated HIV RNA, suggesting that other cellular factors play key roles in HIV latency reversal in vivo despite robust HDACi pharmacological activity. IMPORTANCE Histone deacetylase inhibitors are widely studied HIV latency-reversing agents (LRAs). VOR, an HDACi, induces histone acetylation and chromatin remodeling and modulates host and HIV gene expression. However, the relationship between these events is poorly defined, and clinical studies suggest diminished HIV reactivation in resting CD4 T cells with daily exposure to VOR. Our study provides evidence that VOR induces a consistent level of host cell gene transcription following intermittent exposure. In addition, in response to VOR exposure a gene signature that was conserved across single and serial exposures both in vitro and in vivo was identified, indicating that VOR can consistently and reproducibly modulate transcriptional host responses. However, as the HIV response to HDACi declines over time, other factors modulate viral reactivation in vivo despite robust HDAC activity. The identified host gene VOR biomarkers can be used for monitoring the pharmacodynamic activity of HDAC inhibitors.
Collapse
|
32
|
Abstract
Dysregulation of MYC protein levels is associated with most human cancers. MYC is regulated by both transcription and protein stability. BRD4, a driver of oncogenesis that activates Myc transcription, is being investigated as a therapeutic target in MYC-driven cancers. We report that BRD4 directly destabilizes MYC protein by phosphorylating it at a site leading to ubiquitination and degradation, thereby maintaining homeostatic levels of MYC protein. While JQ1, an inhibitor which releases BRD4 from chromatin and reduces MYC transcription has no effect on MYC protein stability, MZ1, which degrades BRD4 has the paradoxical effect of decreasing MYC transcription but increasing MYC stability. Our findings demonstrating BRD4-mediated MYC degradation are likely to have significant translational implications. The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC. We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4’s HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation.
Collapse
|
33
|
Hu H, Xiao A, Zhang S, Li Y, Shi X, Jiang T, Zhang L, Zhang L, Zeng J. DeepHINT: understanding HIV-1 integration via deep learning with attention. Bioinformatics 2020; 35:1660-1667. [PMID: 30295703 DOI: 10.1093/bioinformatics/bty842] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/07/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023] Open
Abstract
MOTIVATION Human immunodeficiency virus type 1 (HIV-1) genome integration is closely related to clinical latency and viral rebound. In addition to human DNA sequences that directly interact with the integration machinery, the selection of HIV integration sites has also been shown to depend on the heterogeneous genomic context around a large region, which greatly hinders the prediction and mechanistic studies of HIV integration. RESULTS We have developed an attention-based deep learning framework, named DeepHINT, to simultaneously provide accurate prediction of HIV integration sites and mechanistic explanations of the detected sites. Extensive tests on a high-density HIV integration site dataset showed that DeepHINT can outperform conventional modeling strategies by automatically learning the genomic context of HIV integration from primary DNA sequence alone or together with epigenetic information. Systematic analyses on diverse known factors of HIV integration further validated the biological relevance of the prediction results. More importantly, in-depth analyses of the attention values output by DeepHINT revealed intriguing mechanistic implications in the selection of HIV integration sites, including potential roles of several DNA-binding proteins. These results established DeepHINT as an effective and explainable deep learning framework for the prediction and mechanistic study of HIV integration. AVAILABILITY AND IMPLEMENTATION DeepHINT is available as an open-source software and can be downloaded from https://github.com/nonnerdling/DeepHINT. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hailin Hu
- School of Medicine, Tsinghua University, Beijing, China
| | - An Xiao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Sai Zhang
- Department of Genetics, Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yangyang Li
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA.,Bioinformatics Division, BNRIST/Department of Computer Science and Technology, Tsinghua University, Beijing, China.,Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Lei Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
Mota TM, McCann CD, Danesh A, Huang SH, Magat DB, Ren Y, Leyre L, Bui TD, Rohwetter TM, Kovacs CM, Benko E, MacLaren L, Wimpelberg A, Cannon CM, Hardy WD, Safrit JT, Jones RB. Integrated Assessment of Viral Transcription, Antigen Presentation, and CD8 + T Cell Function Reveals Multiple Limitations of Class I-Selective Histone Deacetylase Inhibitors during HIV-1 Latency Reversal. J Virol 2020; 94:e01845-19. [PMID: 32051267 PMCID: PMC7163115 DOI: 10.1128/jvi.01845-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Clinical trials investigating histone deacetylase inhibitors (HDACi) to reverse HIV-1 latency aim to expose reservoirs in antiretroviral (ARV)-treated individuals to clearance by immune effectors, yet have not driven measurable reductions in the frequencies of infected cells. We therefore investigated the effects of the class I-selective HDACi nanatinostat and romidepsin on various blocks to latency reversal and elimination, including viral splicing, antigen presentation, and CD8+ T cell function. In ex vivo CD4+ T cells from ARV-suppressed individuals, both HDACi significantly induced viral transcription, but not splicing nor supernatant HIV-1 RNA. In an HIV-1 latency model using autologous CD8+ T cell clones as biosensors of antigen presentation, neither HDACi-treated CD4+ T cell condition induced clone degranulation. Both HDACi also impaired the function of primary CD8+ T cells in viral inhibition assays, with nanatinostat causing less impairment. These findings suggest that spliced or cell-free HIV-1 RNAs are more indicative of antigen expression than unspliced HIV-RNAs and may help to explain the limited abilities of HDACi to generate CD8+ T cell targets in vivoIMPORTANCE Antiretroviral (ARV) drug regimens suppress HIV-1 replication but are unable to cure infection. This leaves people living with HIV-1 burdened by a lifelong commitment to expensive daily medication. Furthermore, it has become clear that ARV therapy does not fully restore health, leaving individuals at elevated risk for cardiovascular disease, certain types of cancers, and neurocognitive disorders, as well as leaving them exposed to stigma. Efforts are therefore under way to develop therapies capable of curing infection. A key focus of these efforts has been on a class of drugs called histone deacetylase inhibitors (HDACi), which have the potential of exposing hidden reservoirs of HIV-1 to elimination by the immune system. Unfortunately, clinical trial results with HDACi have thus far been disappointing. In the current study, we integrate a number of experimental approaches to build a model that provides insights into the limited activity of HDACi in clinical trials and offers direction for future approaches.
Collapse
Affiliation(s)
- Talia M Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Chase D McCann
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Ali Danesh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Szu-Han Huang
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Dean B Magat
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Yanqin Ren
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Louise Leyre
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Tracy D Bui
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Thomas M Rohwetter
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | | | | | - Lynsay MacLaren
- Research Department, Whitman-Walker Health, Washington, DC, USA
| | | | | | - W David Hardy
- Division of Infectious Disease, Johns Hopkins University School of Medicine, Washington, DC, USA
| | | | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| |
Collapse
|
35
|
Hsiao F, Frouard J, Gramatica A, Xie G, Telwatte S, Lee GQ, Roychoudhury P, Schwarzer R, Luo X, Yukl SA, Lee S, Hoh R, Deeks SG, Jones RB, Cavrois M, Greene WC, Roan NR. Tissue memory CD4+ T cells expressing IL-7 receptor-alpha (CD127) preferentially support latent HIV-1 infection. PLoS Pathog 2020; 16:e1008450. [PMID: 32353080 PMCID: PMC7192375 DOI: 10.1371/journal.ppat.1008450] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
The primary reservoir for HIV is within memory CD4+ T cells residing within tissues, yet the features that make some of these cells more susceptible than others to infection by HIV is not well understood. Recent studies demonstrated that CCR5-tropic HIV-1 efficiently enters tissue-derived memory CD4+ T cells expressing CD127, the alpha chain of the IL7 receptor, but rarely completes the replication cycle. We now demonstrate that the inability of HIV to replicate in these CD127-expressing cells is not due to post-entry restriction by SAMHD1. Rather, relative to other memory T cell subsets, these cells are highly prone to undergoing latent infection with HIV, as revealed by the high levels of integrated HIV DNA in these cells. Host gene expression profiling revealed that CD127-expressing memory CD4+ T cells are phenotypically distinct from other tissue memory CD4+ T cells, and are defined by a quiescent state with diminished NFκB, NFAT, and Ox40 signaling. However, latently-infected CD127+ cells harbored unspliced HIV transcripts and stimulation of these cells with anti-CD3/CD28 reversed latency. These findings identify a novel subset of memory CD4+ T cells found in tissue and not in blood that are preferentially targeted for latent infection by HIV, and may serve as an important reservoir to target for HIV eradication efforts.
Collapse
Affiliation(s)
- Feng Hsiao
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
- Department of Urology, University of California, San Francisco, California, United States of America
| | - Julie Frouard
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
- Department of Urology, University of California, San Francisco, California, United States of America
| | - Andrea Gramatica
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
| | - Guorui Xie
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
- Department of Urology, University of California, San Francisco, California, United States of America
| | - Sushama Telwatte
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco, California, United States of America
| | - Guinevere Q. Lee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Roland Schwarzer
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
| | - Xiaoyu Luo
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
| | - Steven A. Yukl
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco, California, United States of America
| | - Sulggi Lee
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, California, United States of America
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - R. Brad Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Marielle Cavrois
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
- Departments of Medicine and Departments of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Nadia R. Roan
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
- Department of Urology, University of California, San Francisco, California, United States of America
| |
Collapse
|
36
|
Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A, Rohr O, Van Lint C. Current Status of Latency Reversing Agents Facing the Heterogeneity of HIV-1 Cellular and Tissue Reservoirs. Front Microbiol 2020; 10:3060. [PMID: 32038533 PMCID: PMC6993040 DOI: 10.3389/fmicb.2019.03060] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most explored therapeutic approaches aimed at eradicating HIV-1 reservoirs is the "shock and kill" strategy which is based on HIV-1 reactivation in latently-infected cells ("shock" phase) while maintaining antiretroviral therapy (ART) in order to prevent spreading of the infection by the neosynthesized virus. This kind of strategy allows for the "kill" phase, during which latently-infected cells die from viral cytopathic effects or from host cytolytic effector mechanisms following viral reactivation. Several latency reversing agents (LRAs) with distinct mechanistic classes have been characterized to reactivate HIV-1 viral gene expression. Some LRAs have been tested in terms of their potential to purge latent HIV-1 in vivo in clinical trials, showing that reversing HIV-1 latency is possible. However, LRAs alone have failed to reduce the size of the viral reservoirs. Together with the inability of the immune system to clear the LRA-activated reservoirs and the lack of specificity of these LRAs, the heterogeneity of the reservoirs largely contributes to the limited success of clinical trials using LRAs. Indeed, HIV-1 latency is established in numerous cell types that are characterized by distinct phenotypes and metabolic properties, and these are influenced by patient history. Hence, the silencing mechanisms of HIV-1 gene expression in these cellular and tissue reservoirs need to be better understood to rationally improve this cure strategy and hopefully reach clinical success.
Collapse
Affiliation(s)
- Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anna Kula
- Malopolska Centre of Biotechnology, Laboratory of Virology, Jagiellonian University, Krakow, Poland
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stephane De Wit
- Service des Maladies Infectieuses, CHU Saint-Pierre, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
37
|
Kruize Z, Kootstra NA. The Role of Macrophages in HIV-1 Persistence and Pathogenesis. Front Microbiol 2019; 10:2828. [PMID: 31866988 PMCID: PMC6906147 DOI: 10.3389/fmicb.2019.02828] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Current antiretroviral therapy (ART) effectively suppresses Human Immunodeficiency Virus type 1 (HIV-1) in infected individuals. However, even long term ART does not eradicate HIV-1 infected cells and the virus persists in cellular reservoirs. Beside memory CD4+ T cells, cells of the myeloid lineage, especially macrophages, are believed to be an important sanctuary for HIV-1. Monocytes and macrophages are key players in the innate immune response to pathogens and are recruited to sites of infection and inflammation. Due to their long life span and ability to reside in virtually every tissue, macrophages have been proposed to play a critical role in the establishment and persistence of the HIV-1 reservoir. Current HIV-1 cure strategies mainly focus on the concept of “shock and kill” to purge the viral reservoir. This approach aims to reactivate viral protein production in latently infected cells, which subsequently are eliminated as a consequence of viral replication, or recognized and killed by the immune system. Macrophage susceptibility to HIV-1 infection is dependent on the local microenvironment, suggesting that molecular pathways directing differentiation and polarization are involved. Current latency reversing agents (LRA) are mainly designed to reactivate the HIV-1 provirus in CD4+ T cells, while their ability to abolish viral latency in macrophages is largely unknown. Moreover, the resistance of macrophages to HIV-1 mediated kill and the presence of infected macrophages in immune privileged regions including the central nervous system (CNS), may pose a barrier to elimination of infected cells by current “shock and kill” strategies. This review focusses on the role of monocytes/macrophages in HIV-1 persistence. We will discuss mechanisms of viral latency and persistence in monocytes/macrophages. Furthermore, the role of these cells in HIV-1 tissue distribution and pathogenesis will be discussed.
Collapse
Affiliation(s)
- Zita Kruize
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
38
|
Mirzaei H, Ghorbani S, Khanizadeh S, Namdari H, Faghihloo E, Akbari A. Histone deacetylases in virus-associated cancers. Rev Med Virol 2019; 30:e2085. [PMID: 31743548 DOI: 10.1002/rmv.2085] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
Oncogenic viruses are one of the most important causes of cancer worldwide. The pathogens contribute to the establishment of human malignancies by affecting various cellular events. Epigenetic mechanisms, such as histone modification methylation/demethylation, are one of the most critical events manipulated by oncogenic viruses to drive tumorigenesis. Histone modifications are mediated by histone acetylation and deacetylation, regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Dysregulation of HDACs activity affects viral tumorigenesis in several ways, such as manipulating tumor suppressor and viral gene expression. The present review aims to describe the vital interactions between both cancer-caused/associated viruses and the HDAC machinery, particularly by focusing on those viruses involved in gastrointestinal tumors, as some of the most common viral-mediated cancers.
Collapse
Affiliation(s)
- Habibollah Mirzaei
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Ghorbani
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Haideh Namdari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Larguet F, Caté C, Barbeau B, Rassart E, Edouard E. Histone deacetylase 1 interacts with HIV-1 Integrase and modulates viral replication. Virol J 2019; 16:138. [PMID: 31744547 PMCID: PMC6862858 DOI: 10.1186/s12985-019-1249-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/05/2019] [Indexed: 01/09/2023] Open
Abstract
Background HIV-1 hijacks the cellular machinery for its own replication through protein-protein interactions between viral and host cell factors. One strategy against HIV-1 infection is thus to target these key protein complexes. As the integration of reverse transcribed viral cDNA into a host cell chromosome is an essential step in the HIV-1 life cycle, catalyzed by the viral integrase and other important host factors, we aimed at identifying new integrase binding partners through a novel approach. Methods A LTR-derived biotinylated DNA fragment complexed with the integrase on magnetic beads was incubated with extracts from integrase-expressing 293 T cells. Liquid chromatography-mass spectrometry/mass spectrometry and co-immunoprecipitation/pull-down experiments were used for the identification of binding partners. Transfections of histone deacetylase 1 (HDAC1) expression vectors and/or specific siRNA were conducted in HeLa-CD4 and 293 T cells followed by infection with fully infectious NL4–3 and luciferase-expressing pseudotyped viruses or by proviral DNA transfection. Fully infectious and pseudotyped viruses produced from HDAC1-silenced 293 T cells were tested for their infectivity toward HeLa-CD4 cells, T cell lines and primary CD4+ T cells. Late RT species and integrated viral DNA were quantified by qPCR and infectivity was measured by luciferase activity and p24 ELISA assay. Results were analyzed by the Student’s t-test. Results Using our integrase-LTR bait approach, we successfully identified new potential integrase-binding partners, including HDAC1. We further confirmed that HDAC1 interacted with the HIV-1 integrase in co-immunoprecipitation and pull-down experiments. HDAC1 knockdown in infected HeLa cells was shown to interfere with an early preintegration step of the HIV-1 replication cycle, which possibly involves reverse transcription. We also observed that, while HDAC1 overexpression inhibited HIV-1 expression after integration, HDAC1 knockdown had no effect on this step. In virus producer cells, HDAC1 knockdown had a limited impact on virus infectivity in either cell lines or primary CD4+ T cells. Conclusions Our results show that HDAC1 interacts with the HIV-1 integrase and affects virus replication before and after integration. Overall, HDAC1 appears to facilitate HIV-1 replication with a major effect on a preintegration step, which likely occurs at the reverse transcription step.
Collapse
Affiliation(s)
- Fadila Larguet
- Département des sciences biologiques, and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada
| | - Clément Caté
- Département des sciences biologiques, and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada
| | - Benoit Barbeau
- Département des sciences biologiques, and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada
| | - Eric Rassart
- Département des sciences biologiques, and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada.
| | - Elsy Edouard
- Département des sciences biologiques, and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
40
|
Interferon-inducible TRIM22 contributes to maintenance of HIV-1 proviral latency in T cell lines. Virus Res 2019; 269:197631. [PMID: 31136823 DOI: 10.1016/j.virusres.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 11/23/2022]
Abstract
The human immunodeficiency virus type-1 (HIV-1) establishes a state of latent infection in a small number of CD4+ T lymphocytes that, nonetheless, represent a major obstacle to viral eradication. We here show that Tripartite Motif-containing protein 22 (TRIM22), an epigenetic inhibitor of Specificity protein 1 (Sp1)-dependent HIV-1 transcription, is a relevant factor in maintaining a state of repressed HIV-1 expression at least in CD4+ T cell lines. By knocking-down (KD) TRIM22 expression, we observed an accelerated reactivation of a doxycycline (Dox)-controlled HIV-1 replication in the T lymphocytic SupT1 cell line. Furthermore, we here report for the first time that TRIM22 is a crucial factor for maintaining a state of HIV-1 quiescence in chronically infected ACH2 -T cell line while its KD potentiated HIV-1 expression in both ACH-2 and J-Lat 10.6 cell lines upon cell stimulation with either tumor necrosis factor-α (TNF-α) or histone deacetylase inhibitors (HDACi). In conclusion, TRIM22 is a novel determinant of HIV-1 latency, at least in T cell lines, thus representing a potential pharmacological target for strategies aiming at curtailing or silencing the pool of latently infected CD4+ T lymphocytes constituting the HIV-1 reservoir in individuals receiving combination antiretroviral therapy.
Collapse
|
41
|
García-Gutiérrez L, Delgado MD, León J. MYC Oncogene Contributions to Release of Cell Cycle Brakes. Genes (Basel) 2019; 10:E244. [PMID: 30909496 PMCID: PMC6470592 DOI: 10.3390/genes10030244] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Promotion of the cell cycle is a major oncogenic mechanism of the oncogene c-MYC (MYC). MYC promotes the cell cycle by not only activating or inducing cyclins and CDKs but also through the downregulation or the impairment of the activity of a set of proteins that act as cell-cycle brakes. This review is focused on the role of MYC as a cell-cycle brake releaser i.e., how MYC stimulates the cell cycle mainly through the functional inactivation of cell cycle inhibitors. MYC antagonizes the activities and/or the expression levels of p15, ARF, p21, and p27. The mechanism involved differs for each protein. p15 (encoded by CDKN2B) and p21 (CDKN1A) are repressed by MYC at the transcriptional level. In contrast, MYC activates ARF, which contributes to the apoptosis induced by high MYC levels. At least in some cells types, MYC inhibits the transcription of the p27 gene (CDKN1B) but also enhances p27's degradation through the upregulation of components of ubiquitin ligases complexes. The effect of MYC on cell-cycle brakes also opens the possibility of antitumoral therapies based on synthetic lethal interactions involving MYC and CDKs, for which a series of inhibitors are being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
- Current address: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - María Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|
42
|
Banerjee A, Mahata B, Dhir A, Mandal TK, Biswas K. Elevated histone H3 acetylation and loss of the Sp1-HDAC1 complex de-repress the GM2-synthase gene in renal cell carcinoma. J Biol Chem 2019; 294:1005-1018. [PMID: 30463940 PMCID: PMC6341395 DOI: 10.1074/jbc.ra118.004485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/16/2018] [Indexed: 11/06/2022] Open
Abstract
GM2-synthase produces sialic acid-containing glycosphingolipids called gangliosides, and its mRNA overexpression and the gangliosides it generates are linked to tumor progression, migration, and suppression of tumor-specific host immune responses. However, the mechanism underlying GM2-synthase de-repression in renal cell carcinoma (RCC) is poorly understood. Here, we demonstrate that higher GM2-synthase mRNA expression levels in various cancer cells and in human RCC tumors correlate with higher histone acetylation levels (H3K9, H3K14, or both) at region +38/+187 relative to the transcription start site (TSS) of the GM2-synthase gene than in normal kidney epithelial (NKE) cells or healthy adjacent tissues. An increase in GM2-synthase mRNA expression in cells treated with a histone deacetylase (HDAC) inhibitor was accompanied by increased histone acetylation levels at this promoter region. DNA methylation around the TSS was absent in both RCC cell lines and NKE cells. Of note, both the transcription factor Sp1 and corepressor HDAC1 associated with the +38/+187 region when the GM2-synthase gene was repressed in NKE and tumor-adjacent tissues, indicating plausible site-specific repressive roles of HDAC1 and Sp1 in GM2-synthase mRNA expression. Site-directed mutagenesis of the Sp1-binding site within the +38/+187 region relieved repressed luciferase activity of this region by limiting HDAC1 recruitment. Moreover, Sp1 or HDAC1 knock down increased GM2-synthase transcription, and butyrate-mediated activation of GM2-synthase mRNA expression in SK-RC-45 cells was accompanied by Sp1 and HDAC1 loss from the +38/+187 region. Taken together, we have identified an epigenetic mechanism for the de-repression of the GM2-synthase gene in RCC.
Collapse
Affiliation(s)
- Avisek Banerjee
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| | - Barun Mahata
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| | - Arjun Dhir
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| | - Tapan Kumar Mandal
- Department of Urology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal 700 014 India
| | - Kaushik Biswas
- From the Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700 054 India and
| |
Collapse
|
43
|
Abstract
Current antiretroviral therapy (ART) effectively suppresses Human Immunodeficiency Virus type 1 (HIV-1) in infected individuals. However, even long term ART does not eradicate HIV-1 infected cells and the virus persists in cellular reservoirs. Beside memory CD4+ T cells, cells of the myeloid lineage, especially macrophages, are believed to be an important sanctuary for HIV-1. Monocytes and macrophages are key players in the innate immune response to pathogens and are recruited to sites of infection and inflammation. Due to their long life span and ability to reside in virtually every tissue, macrophages have been proposed to play a critical role in the establishment and persistence of the HIV-1 reservoir. Current HIV-1 cure strategies mainly focus on the concept of "shock and kill" to purge the viral reservoir. This approach aims to reactivate viral protein production in latently infected cells, which subsequently are eliminated as a consequence of viral replication, or recognized and killed by the immune system. Macrophage susceptibility to HIV-1 infection is dependent on the local microenvironment, suggesting that molecular pathways directing differentiation and polarization are involved. Current latency reversing agents (LRA) are mainly designed to reactivate the HIV-1 provirus in CD4+ T cells, while their ability to abolish viral latency in macrophages is largely unknown. Moreover, the resistance of macrophages to HIV-1 mediated kill and the presence of infected macrophages in immune privileged regions including the central nervous system (CNS), may pose a barrier to elimination of infected cells by current "shock and kill" strategies. This review focusses on the role of monocytes/macrophages in HIV-1 persistence. We will discuss mechanisms of viral latency and persistence in monocytes/macrophages. Furthermore, the role of these cells in HIV-1 tissue distribution and pathogenesis will be discussed.
Collapse
Affiliation(s)
- Zita Kruize
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
44
|
Chen L, Keppler OT, Schölz C. Post-translational Modification-Based Regulation of HIV Replication. Front Microbiol 2018; 9:2131. [PMID: 30254620 PMCID: PMC6141784 DOI: 10.3389/fmicb.2018.02131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) relies heavily on the host cellular machinery for production of viral progeny. To exploit cellular proteins for replication and to overcome host factors with antiviral activity, HIV has evolved a set of regulatory and accessory proteins to shape an optimized environment for its replication and to facilitate evasion from the immune system. Several cellular pathways are hijacked by the virus to modulate critical steps during the viral life cycle. Thereby, post-translational modifications (PTMs) of viral and cellular proteins gain increasingly attention as modifying enzymes regulate virtually every step of the viral replication cycle. This review summarizes the current knowledge of HIV-host interactions influenced by PTMs with a special focus on acetylation, ubiquitination, and phosphorylation of proteins linked to cellular signaling and viral replication. Insights into these interactions are surmised to aid development of new intervention strategies.
Collapse
Affiliation(s)
- Lin Chen
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Schölz
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
45
|
Sen S, Maulik U. Recent advancement toward significant association between disordered transcripts and virus-infected diseases: a survey. Brief Funct Genomics 2018; 17:458-470. [DOI: 10.1093/bfgp/ely021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sagnik Sen
- Department of Computer Science and Engineering, Jadavpur University, Kolkata-700032, India
| | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
46
|
Kuai Q, Lu X, Qiao Z, Wang R, Wang Y, Ye S, He M, Wang Y, Zhang T, Wu H, Ren S, Yu Q. Histone deacetylase inhibitor chidamide promotes reactivation of latent human immunodeficiency virus by introducing histone acetylation. J Med Virol 2018; 90:1478-1485. [PMID: 29704439 DOI: 10.1002/jmv.25207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/18/2018] [Indexed: 01/30/2023]
Abstract
Highly active antiretroviral therapy can reduce the human immunodeficiency virus (HIV) viral load in the plasma to undetectable levels. However, because of the presence of latent HIV reservoirs, it is difficult to completely eradicate HIV in infected patients. Our objective was to assess the potency of chidamide, a novel histone deacetylase inhibitor recently approved for cancer treatment by the China Food and Drug Administration, to reactivate latent HIV-1 via histone acetylation. Viral reactivities of chidamide were accessed in 2 latent HIV pseudotype virus cell reporter systems (J-Lat Tat-green fluorescent protein clone A72 and TZM-bl), a latently infected full-length HIV virus cell system (U1/HIV), and resting CD4+ T cells from 9 HIV-infected patients under highly active antiretroviral therapy with undetectable viral load. Chidamide was able to increase HIV expression in each cell line, as evidenced by green fluorescent protein, luciferase activity, and p24, as well as to reactivate latent HIV-1 in primary CD4+ T cells of HIV-infected patients. Histone acetylation adjacent to the HIV promoter in A72 cells was determined by chromatin immunoprecipitation. Chidamide was able to increase histone H3 and H4 acetylation at the HIV promoter. In brief, chidamide induced the reactivation of latent HIV in pseudotype virus reporter cells, latently infected cells, and primary CD4+ T cells, making this compound an attractive option for future clinical trials.
Collapse
Affiliation(s)
- Qiyuan Kuai
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xiaofan Lu
- STD/HIV Research Laboratory, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Zhixin Qiao
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Rui Wang
- Beijing Key Laboratory for HIV/AIDS Research, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Yanbing Wang
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Sanxian Ye
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Min He
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yu Wang
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Tong Zhang
- STD/HIV Research Laboratory, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Center of Infectious Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Suping Ren
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China.,Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Qun Yu
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China.,Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| |
Collapse
|
47
|
Vicenzi E, Poli G. The interferon-stimulated gene TRIM22: A double-edged sword in HIV-1 infection. Cytokine Growth Factor Rev 2018; 40:40-47. [PMID: 29650252 DOI: 10.1016/j.cytogfr.2018.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 12/17/2022]
Abstract
Infection of target cells by the human immunodeficiency virus type-1 (HIV-1) is hampered by constitutively expressed host cell proteins preventing or curtailing virus replication and therefore defined as "restriction factors". Among them, members of the tripartite motif (TRIM) family have emerged as important players endowed with both antiviral effects and modulatory capacity of the innate immune response. TRIM5α and TRIM19 (i.e. promyelocytic leukemia, PML) are among the best-characterized family members; however, in this review we will focus on the potential role of another family member, i.e. TRIM22, a factor strongly induced by interferon stimulation, in HIV infection in vivo and in vitro in the context of its broader antiviral effects. We will also focus on the potential role of TRIM22 in HIV-1-infected individuals speculating on its dual role in controlling virus replication and more complex role in chronic infection. At the molecular levels, we will review the evidence in favor of a relevant role of TRIM22 as epigenetic inhibitor of HIV-1 transcription acting by preventing the binding of the host cell transcription factor Sp1 to the viral promoter. These evidences suggest that TRIM22 should be considered a potential new player in either the establishment or maintenance of HIV-1 reservoirs of latently infected cells unaffected by combination antiretroviral therapy.
Collapse
Affiliation(s)
- Elisa Vicenzi
- Viral Pathogens and Biosafety Unit, P2-P3 Laboratories, DIBIT, Via Olgettina n. 58, 20132, Milano, Italy.
| | - Guido Poli
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| |
Collapse
|
48
|
Jiang G, Nguyen D, Archin NM, Yukl SA, Méndez-Lagares G, Tang Y, Elsheikh MM, Thompson GR, Hartigan-O'Connor DJ, Margolis DM, Wong JK, Dandekar S. HIV latency is reversed by ACSS2-driven histone crotonylation. J Clin Invest 2018; 128:1190-1198. [PMID: 29457784 DOI: 10.1172/jci98071] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Eradication of HIV-1 (HIV) is hindered by stable viral reservoirs. Viral latency is epigenetically regulated. While the effects of histone acetylation and methylation at the HIV long-terminal repeat (LTR) have been described, our knowledge of the proviral epigenetic landscape is incomplete. We report that a previously unrecognized epigenetic modification of the HIV LTR, histone crotonylation, is a regulator of HIV latency. Reactivation of latent HIV was achieved following the induction of histone crotonylation through increased expression of the crotonyl-CoA-producing enzyme acyl-CoA synthetase short-chain family member 2 (ACSS2). This reprogrammed the local chromatin at the HIV LTR through increased histone acetylation and reduced histone methylation. Pharmacologic inhibition or siRNA knockdown of ACSS2 diminished histone crotonylation-induced HIV replication and reactivation. ACSS2 induction was highly synergistic in combination with either a protein kinase C agonist (PEP005) or a histone deacetylase inhibitor (vorinostat) in reactivating latent HIV. In the SIV-infected nonhuman primate model of AIDS, the expression of ACSS2 was significantly induced in intestinal mucosa in vivo, which correlated with altered fatty acid metabolism. Our study links the HIV/SIV infection-induced fatty acid enzyme ACSS2 to HIV latency and identifies histone lysine crotonylation as a novel epigenetic regulator for HIV transcription that can be targeted for HIV eradication.
Collapse
Affiliation(s)
- Guochun Jiang
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Don Nguyen
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Nancie M Archin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven A Yukl
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gema Méndez-Lagares
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Yuyang Tang
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - Maher M Elsheikh
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | - George R Thompson
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| | | | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph K Wong
- Department of Medicine, UCSF, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, UCD, Davis, California, USA
| |
Collapse
|
49
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
50
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|