1
|
Peter-Ajuzie IK, Chinyere CN, Olorunfemi AB, Kpasham LZ, Opaleye OO, Bakarey AS, Daodu OB, Happi AN, Olowe OA, Happi CT, Oluwayelu DO, Ojurongbe O, Olopade JO. Repeated detection of SARS-CoV-2 in pet dogs in Ibadan, Oyo State, Nigeria: a cause for vigilance. BMC Vet Res 2025; 21:196. [PMID: 40121457 PMCID: PMC11929258 DOI: 10.1186/s12917-025-04647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic of 2020 was unprecedented in its devastating impact on the global economy, public health, travel and tourism, education, sports, religion, and social lives. Studies conducted thereafter on the disease and its causative agent, SARS-CoV-2, have highlighted the need for effective and sustainable public health interventions. METHODS This study investigated the prevalence and endemicity of SARS-CoV-2 infection in pet dogs using immunochromatography assay (IC) and quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) of their blood, rectal swabs, and nasal swabs in Ibadan, Oyo State, Nigeria between 2022 and 2024. KEY FINDINGS For the IC, positivity rates of 11.7% (23/197), 85.7% (6/7), and 100% (3/3) were recorded for 2022, 2023 and 2024 while for the RT-qPCR, positivity rates of 37.9% (11/29), 33.3% (2/6) and 100% (3/3) were recorded for 2022, 2023 and 2024. This repeated detection of SARS-CoV-2 in three of the dogs tested over the three-year period suggests continuous shedding of the virus by these animals and indicates endemicity of the virus in the study area. Findings highlight the urgent need for optimized SARS-CoV-2 rapid diagnostic tools tailored for veterinary applications to ensure rapid and reliable detection of the virus, especially in resource-constrained settings. CONCLUSION Considering the zoonotic nature of SARS-CoV-2 and its potential for mutation into more virulent strains that can be transmissible to humans, the findings of this study have significant implications for public health and implementation of One Health strategies by policymakers, and highlight the need for robust SARS-CoV-2 surveillance in domestic animals to mitigate potential zoonotic risks.
Collapse
Affiliation(s)
- I K Peter-Ajuzie
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
- Humboldt Research Hub for Zoonotic Arboviral Diseases, University of Ibadan, Ibadan, Nigeria
| | - C N Chinyere
- Humboldt Research Hub for Zoonotic Arboviral Diseases, University of Ibadan, Ibadan, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- National Veterinary Research Institute, Vom, Nigeria
| | - A B Olorunfemi
- Humboldt Research Hub-Center for Emerging and Re-emerging Diseases, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - L Z Kpasham
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- Humboldt Research Hub for Zoonotic Arboviral Diseases, University of Ibadan, Ibadan, Nigeria
| | - O O Opaleye
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - A S Bakarey
- Humboldt Research Hub for Zoonotic Arboviral Diseases, University of Ibadan, Ibadan, Nigeria
- Institute for Advanced Medical Research and Training, University College Hospital, University of Ibadan, Ibadan, Nigeria
| | - O B Daodu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - A N Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria
| | - O A Olowe
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - C T Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria
| | - D O Oluwayelu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O Ojurongbe
- Humboldt Research Hub-Center for Emerging and Re-emerging Diseases, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
- Humboldt Research Hub for Zoonotic Arboviral Diseases, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
2
|
Aguirre-Pineda JN, Mújica-Sánchez MA, Chávez-Morales HH, Cojuc-Konigsberg G, Braverman-Poyastro A, Moscona-Nissan A, Becherano-Razon G, Guijosa A, Duarte D, García-Colín MDC, Durán-Barrón MA, Becerril-Vargas E. Validation and implementation of TaqMAMA RT-PCR for SARS-CoV-2 variant surveillance: experience from a high-volume setting. BMC Infect Dis 2025; 25:256. [PMID: 39994575 PMCID: PMC11849270 DOI: 10.1186/s12879-025-10645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The genomic surveillance of SARS-CoV-2 is challenging in high-volume, resource-limited settings. Faster and less expensive methods are required for the prompt detection of variants of interest. This study aimed to validate and implement the TaqMAMA RT-PCR method for the detection of SARS-CoV-2 variants. METHODS We developed the TaqMAMA RT-PCR method for SARS-CoV-2 variants. From the viral genomes obtained from the GISAID database, fluorescent amplification probes and oligonucleotides were designed to detect two specific mutations for each variant. The study consisted of an assay validation phase comparing the newly designed method to WGS in COVID-19-positive samples, followed by a large-scale implementation phase to calculate its performance. RESULTS During the assay validation phase, we included 232 samples for analysis using TaqMAMA and WGS. TaqMAMA identified 82.3% as positive, and had sensitivities of 82%, 100%, and 50%, specificities of 91%, 99%, and 100%, with PPVs of 99%, 75%, and 100%, and NPVs of 20%, 100%, and 100% for the Delta, Alpha, and Gamma variants, respectively. For the implementation phase, we included 1315 samples, TaqMAMA identified 68% positive samples, 97.5% as delta. The predicted performance using Bayesian statistics was 95%, 55%, and 0% for the positive, and 29%, 0%, and < 1% for the negative delta, alpha, and gamma variants, respectively. CONCLUSIONS The diagnostic performance of TaqMAMA RT-PCR was acceptable for the detection of the most prevalent SARS-CoV-2 variants of interest. This method offers a cost and time-saving alternative for the genomic surveillance of SARS-CoV-2 in high-volume settings.
Collapse
Affiliation(s)
- José Nicolas Aguirre-Pineda
- Laboratorio de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Belisario Domínguez Secc 16, Alcaldía Tlalpan, Mexico City, 14080, Mexico
| | - Mario Alberto Mújica-Sánchez
- Laboratorio de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Belisario Domínguez Secc 16, Alcaldía Tlalpan, Mexico City, 14080, Mexico
| | - Hansel Hugo Chávez-Morales
- Laboratorio de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Belisario Domínguez Secc 16, Alcaldía Tlalpan, Mexico City, 14080, Mexico
| | - Gabriel Cojuc-Konigsberg
- Faculty of Health Sciences, Universidad Anahuac Mexico, Av. Universidad Anáhuac 46, Lomas Anahuac, Mexico City, 52786, Mexico
| | - Alan Braverman-Poyastro
- Faculty of Health Sciences, Universidad Anahuac Mexico, Av. Universidad Anáhuac 46, Lomas Anahuac, Mexico City, 52786, Mexico
| | - Alberto Moscona-Nissan
- School of Medicine, Universidad Panamericana, Donatello 59, Insurgentes Mixcoac, Mexico City, 03920, Mexico
| | - Gastón Becherano-Razon
- Faculty of Health Sciences, Universidad Anahuac Mexico, Av. Universidad Anáhuac 46, Lomas Anahuac, Mexico City, 52786, Mexico
| | - Alberto Guijosa
- School of Medicine, Universidad Panamericana, Donatello 59, Insurgentes Mixcoac, Mexico City, 03920, Mexico
| | - Damilda Duarte
- Department of Clinical Infectious Diseases. National Institute of Respiratory Diseases, Mexico City, Mexico
- Laboratorio de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Belisario Domínguez Secc 16, Alcaldía Tlalpan, Mexico City, 14080, Mexico
| | - Maria Del Carmen García-Colín
- Laboratorio de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Belisario Domínguez Secc 16, Alcaldía Tlalpan, Mexico City, 14080, Mexico
| | - Martha Angella Durán-Barrón
- Laboratorio de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Belisario Domínguez Secc 16, Alcaldía Tlalpan, Mexico City, 14080, Mexico
| | - Eduardo Becerril-Vargas
- Department of Clinical Infectious Diseases. National Institute of Respiratory Diseases, Mexico City, Mexico.
- Laboratorio de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Belisario Domínguez Secc 16, Alcaldía Tlalpan, Mexico City, 14080, Mexico.
| |
Collapse
|
3
|
Mannarà G, Martinelli M, Giubbi C, Rizza M, Giordano E, Perdoni F, Bruno E, Morella A, Azzellino A, Turolla A, Pedrini R, Malpei F, La Rosa G, Suffredini E, Cereda D, Ammoni E, Villa S, Pregnolato F, Lavitrano M, Franzetti A, Musumeci R, Cocuzza CE. Wastewater Surveillance for SARS-CoV-2 in Northern Italy: An Evaluation of Three Different Gene Targets. Microorganisms 2025; 13:236. [PMID: 40005602 PMCID: PMC11857900 DOI: 10.3390/microorganisms13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Wastewater-based epidemiology has emerged as a complementary tool for the monitoring of COVID-19 pandemic waves and for the circulation of viral variants. The selection, standardization, and dynamics of different SARS-CoV-2 RNA targets in wastewater requires further investigation. In the present study, 106 wastewater samples were collected over a 24-month period from the wastewater treatment plant of Sondrio, north Italy, and were analyzed for the presence of SARS-CoV-2 RNA through the quantification of ORF1b, N1, and N3 gene targets via one-step real-time qPCR. In general, the three RNA targets demonstrated different performances and dynamics over the studied time period, underlying the usefulness of multiple viral targets in the surveillance of SARS-CoV-2 in wastewater. During the first 12 months, the quantification of the selected SARS-CoV-2 viral targets also correlated with the reported clinical cases in the same geographical area; however, from the overall data analysis this did not appear to significantly anticipate the epidemic waves. In conclusion, this study further supports the use of wastewater surveillance as a real time indicator of the human circulation of SARS-CoV-2. Moreover, the use of multiple viral gene targets has been shown to improve the reliability of SARS-CoV-2 surveillance in wastewater over time.
Collapse
Affiliation(s)
- Giulio Mannarà
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Marianna Martinelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Chiara Giubbi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Michelle Rizza
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Eleonora Giordano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Federica Perdoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Erika Bruno
- Department of Earth and Environmental, Sciences—DISAT, University of Milano-Bicocca, 20126 Milan, Italy; (E.B.); (A.F.)
| | - Annalisa Morella
- Società per l’Ecologia e l’Ambiente (SECAM) S.P.A., 23100 Sondrio, Italy;
| | - Arianna Azzellino
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy; (A.A.); (A.T.); (R.P.); (F.M.)
| | - Andrea Turolla
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy; (A.A.); (A.T.); (R.P.); (F.M.)
| | - Ramon Pedrini
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy; (A.A.); (A.T.); (R.P.); (F.M.)
| | - Francesca Malpei
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy; (A.A.); (A.T.); (R.P.); (F.M.)
| | - Giuseppina La Rosa
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Danilo Cereda
- UO Prevenzione, DG Welfare, Regione Lombardia, 20124 Milan, Italy; (D.C.); (E.A.); (F.P.)
| | - Emanuela Ammoni
- UO Prevenzione, DG Welfare, Regione Lombardia, 20124 Milan, Italy; (D.C.); (E.A.); (F.P.)
| | - Simone Villa
- Department of Computer Science, University of Milan, 20133 Milan, Italy;
| | - Francesca Pregnolato
- UO Prevenzione, DG Welfare, Regione Lombardia, 20124 Milan, Italy; (D.C.); (E.A.); (F.P.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Andrea Franzetti
- Department of Earth and Environmental, Sciences—DISAT, University of Milano-Bicocca, 20126 Milan, Italy; (E.B.); (A.F.)
| | - Rosario Musumeci
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Clementina E. Cocuzza
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| |
Collapse
|
4
|
Boza JM, Amirali A, Williams SL, Currall BB, Grills GS, Mason CE, Solo-Gabriele HM, Erickson DC. Evaluation of a field deployable, high-throughput RT-LAMP device as an early warning system for COVID-19 through SARS-CoV-2 measurements in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173744. [PMID: 38844223 PMCID: PMC11249788 DOI: 10.1016/j.scitotenv.2024.173744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Quantification of SARS-CoV-2 RNA copies in wastewater can be used to estimate COVID-19 prevalence in communities. While such results are important for mitigating disease spread, SARS-CoV-2 measurements require sophisticated equipment and trained personnel, for which a centralized laboratory is necessary. This significantly impacts the time to result, defeating its purpose as an early warning detection tool. The objective of this study was to evaluate a field portable device (called MINI) for detecting SARS-CoV-2 viral loads in wastewater using real-time reverse transcriptase loop-mediated isothermal amplification (real-time RT-LAMP). The device was tested using wastewater samples collected from buildings (with 430 to 1430 inhabitants) that had known COVID-19-positive cases. Results show comparable performance of RT-LAMP against reverse transcriptase polymerase chain reaction (RT-qPCR) when detecting SARS-CoV-2 copies in wastewater. Both RT-LAMP and RT-qPCR detected SARS-CoV-2 in wastewater from buildings with at least three positive individuals within a 6-day time frame prior to diagnosis. The large 96-well throughput provided by MINI provided scalability to multi-building detection. The portability of the MINI device enabled decentralized on-site detection, significantly reducing the time to result. The overall findings support the use of RT-LAMP within the MINI configuration as an early detection system for COVID-19 infection using wastewater collected at the building scale.
Collapse
Affiliation(s)
- J M Boza
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - A Amirali
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - S L Williams
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - B B Currall
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - G S Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - C E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - H M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - D C Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA; Division of Nutritional Science, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
5
|
Liu S, Chai X, Liu C, Bai J, Meng J, Tian H, Han X, Han G, Li Q, Xu X. Sensitivity analysis of RT-qPCR and RT-ddPCR for SARS-CoV-2 detection with mutations on N1 and E primer-probe region. Microbiol Spectr 2024; 12:e0429223. [PMID: 38916349 PMCID: PMC11302302 DOI: 10.1128/spectrum.04292-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus that undergoes rapid mutation. Based on viral whole genome sequencing analysis in Hebei Province, China, we identified several essential single nucleotide variants (SNVs) on primer-probe regions accumulating within some Omicron variants' genomes. In this study, we focused on three SNVs, C28290T, T28297C, and C28311T emerging on 2019-nCoV-N1 (CDC-N1) primer-probe regions, recommended by CDC in 2020, and two SNVs, C26270T, A26275G emerging on E (Charité-E) primer-probe regions recommended by Charité, Germany. Our findings revealed that the presence of one or two SNVs in the primer or probe region affected the sensitivity of reverse transcription-quantitative polymerase chain reaction and droplet digital PCR to varying extents. This discovery underscores the importance of continuously monitoring the whole genome sequences of SARS-CoV-2 variants, especially the primer-probe targeting regions, and correspondingly updating commercial test kits or recommended primer-probe sequence sets. IMPORTANCE The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has resulted in a growing number of mutations in its genome, presenting new challenges for the diagnosis of SARS-CoV-2 using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and droplet digital PCR (RT-ddPCR) methods. There is an urgent need to develop refined methods for modifying primers and probes to improve the detection of these emerging variants. In this study, our focus was on the SNVs that have emerged in the CDC-N1 and Charité-E primer-probe regions. Our research has confirmed that the presence of these SNVs in the primer or probe region can significantly affect the results of coronavirus disease 2019 tests. we have developed and validated a modified detection method that can provide higher sensitivity and specificity. This study emphasizes the importance of refining the primer-probe sets to ensure the diagnostic accuracy of RT-qPCR and RT-ddPCR detection.
Collapse
Affiliation(s)
- Shiyou Liu
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
- School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xiaoru Chai
- School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Chao Liu
- Shijiazhuang Qiaodong Sewage Treatment Plant, Shijiazhuang, China
| | - Jiaxuan Bai
- School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Juntao Meng
- School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Hong Tian
- School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xu Han
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Guangyue Han
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Qi Li
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
- School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xiangdong Xu
- School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| |
Collapse
|
6
|
Ogo N, Ikegame S, Hotta T, Kan-O K, Yoneshima Y, Shiraishi Y, Tsubouchi K, Tanaka K, Okamoto I. The Utility and Limitations of Universal Polymerase Chain Reaction Screening for SARS-CoV-2 During Hospital Admission. Cureus 2024; 16:e61470. [PMID: 38953084 PMCID: PMC11215299 DOI: 10.7759/cureus.61470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE Universal polymerase chain reaction (PCR) screening for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on hospital admission is an effective approach to preventing coronavirus disease 2019 (COVID-19) outbreaks in medical facilities. However, false-positive test results due to a recent infection are a concern. We investigated the usefulness and limitations of universal PCR screening for SARS-CoV-2 on hospital admission in a real-world setting. METHODS We retrospectively analyzed 1320 attempted hospital admissions for 775 patients at the Department of Respiratory Medicine, Kyushu University Hospital, between January 1, 2022, and May 2, 2023. RESULTS Thirty-nine out of 1201 PCR tests (3.2%) yielded a positive result, with 22 of these results being considered false positives on the basis of a recent infection. We found that 39% of cases showed a positive PCR result between 31 and 60 days after the onset of COVID-19, although the threshold cycle (Ct) for target 1 (ORF1ab gene) of the Cobas SARS-CoV-2 test (Roche Diagnostics, Basel, Switzerland) was >30 in most instances. CONCLUSION Hospital admission based on the results of PCR screening for SARS-CoV-2 should take into account not only PCR positivity but also the Ct value and recent COVID-19 history.
Collapse
Affiliation(s)
- Naruhiko Ogo
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, JPN
| | - Satoshi Ikegame
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, JPN
| | - Taeko Hotta
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, JPN
| | - Keiko Kan-O
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, JPN
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, JPN
| | - Yoshimasa Shiraishi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, JPN
| | - Kazuya Tsubouchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, JPN
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, JPN
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, JPN
| |
Collapse
|
7
|
Vigil K, D'Souza N, Bazner J, Cedraz FMA, Fisch S, Rose JB, Aw TG. Long-term monitoring of SARS-CoV-2 variants in wastewater using a coordinated workflow of droplet digital PCR and nanopore sequencing. WATER RESEARCH 2024; 254:121338. [PMID: 38430753 DOI: 10.1016/j.watres.2024.121338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Quantitative polymerase chain reaction (PCR) and genome sequencing are important methods for wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The reverse transcription-droplet digital PCR (RT-ddPCR) is a highly sensitive method for quantifying SARS-CoV-2 RNA in wastewater samples to track the trends of viral activity levels but cannot identify new variants. It also takes time to develop new PCR-based assays targeting variants of interest. Whole genome sequencing (WGS) can be used to monitor known and new SARS-CoV-2 variants, but it is generally not quantitative. Several short-read sequencing techniques can be expensive and might experience delayed turnaround times when outsourced due to inadequate in-house resources. Recently, a portable nanopore sequencing system offers an affordable and real-time method for sequencing SARS-CoV-2 variants in wastewater. This technology has the potential to enable swift response to disease outbreaks without relying on clinical sequencing results. In addressing concerns related to rapid turnaround time and accurate variant analysis, both RT-ddPCR and nanopore sequencing methods were employed to monitor the emergence of SARS-CoV-2 variants in wastewater. This surveillance was conducted at 23 sewer maintenance hole sites and five wastewater treatment plants in Michigan from 2020 to 2022. In 2020, the wastewater samples were dominated by the parental variants (20A, 20C and 20 G), followed by 20I (Alpha, B.1.1.7) in early 2021 and the Delta variant of concern (VOC) in late 2021. For the year 2022, Omicron variants dominated. Nanopore sequencing has the potential to validate suspected variant cases that were initially undetermined by RT-ddPCR assays. The concordance rate between nanopore sequencing and RT-ddPCR assays in identifying SARS-CoV-2 variants to the clade-level was 76.9%. Notably, instances of disagreement between the two methods were most prominent in the identification of the parental and Omicron variants. We also showed that sequencing wastewater samples with SARS-CoV-2 N gene concentrations of >104 GC/100 ml as measured by RT-ddPCR improve genome recovery and coverage depth using MinION device. RT-ddPCR was better at detecting key spike protein mutations A67V, del69-70, K417N, L452R, N501Y, N679K, and R408S (p-value <0.05) as compared to nanopore sequencing. It is suggested that RT-ddPCR and nanopore sequencing should be coordinated in wastewater surveillance where RT-ddPCR can be used as a preliminary quantification method and nanopore sequencing as the confirmatory method for the detection of variants or identification of new variants. The RT-ddPCR and nanopore sequencing methods reported here can be adopted as a reliable in-house analysis of SARS-CoV-2 in wastewater for rapid community level surveillance and public health response.
Collapse
Affiliation(s)
- Katie Vigil
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States
| | - Nishita D'Souza
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Julia Bazner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Fernanda Mac-Allister Cedraz
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States
| | - Samuel Fisch
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States.
| |
Collapse
|
8
|
Moehling TJ, Browne ER, Meagher RJ. Effects of single and multiple nucleotide mutations on loop-mediated isothermal amplification. Analyst 2024; 149:1701-1708. [PMID: 38426313 DOI: 10.1039/d3an01927f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Testing is pivotal for early identification of disease and subsequent infection control. Pathogens' nucleic acid sequence can change due to naturally-occurring genetic drift or intentional modification. Because of the reliance on molecular assays for human, animal, and plant disease diagnosis, we must understand how nucleotide mutations affect test accuracy. Primers designed against original lineages of a pathogen may be less efficient at detecting variants with genetic changes in priming regions. Here, we made single- and multi-point mutations in priming regions of a model SARS-CoV-2 template that was used as input for a loop-mediated isothermal amplification (LAMP) assay. We found that many of the modifications impacted assay sensitivity, amplification speed, or both. Further research exploring mutations at every position in each of the eight priming regions should be conducted to evaluate trends and determine generalizability.
Collapse
Affiliation(s)
- Taylor J Moehling
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, 7011 East Ave, Livermore, CA, USA 94550.
| | - Erica R Browne
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, 7011 East Ave, Livermore, CA, USA 94550.
| | - Robert J Meagher
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, 7011 East Ave, Livermore, CA, USA 94550.
| |
Collapse
|
9
|
Pérez-Rodríguez FJ, Cherpillod P, Thomasson V, Vetter P, Schibler M. Identification of a measles variant displaying mutations impacting molecular diagnostics, Geneva, Switzerland, 2023. Euro Surveill 2024; 29. [PMID: 38304951 PMCID: PMC10835752 DOI: 10.2807/1560-7917.es.2024.29.5.2400034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Real-time PCR is one of the most widely used techniques to diagnose measles cases. Here we report measles virus variants with three genetic mutations in the reverse primer annealing site of a widely used PCR. The mutations result in a slight loss of the PCR sensitivity. Variants bearing the three mutations presently circulate in different countries since at least the end of 2021. Our findings highlight the usefulness of molecular surveillance in monitoring if oligonucleotides in diagnostic tests remain adequate.
Collapse
Affiliation(s)
- Francisco-Javier Pérez-Rodríguez
- Geneva Center for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- National Measles and Rubella Reference Laboratory (CNRRR), Geneva University Hospitals, Geneva, Switzerland
- Laboratory of virology, Laboratory Medicine Division, Geneva University Hospitals, Geneva, Switzerland
| | - Pascal Cherpillod
- Geneva Center for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- National Measles and Rubella Reference Laboratory (CNRRR), Geneva University Hospitals, Geneva, Switzerland
- Laboratory of virology, Laboratory Medicine Division, Geneva University Hospitals, Geneva, Switzerland
| | - Valentine Thomasson
- Laboratory of virology, Laboratory Medicine Division, Geneva University Hospitals, Geneva, Switzerland
| | - Pauline Vetter
- Geneva Center for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of virology, Laboratory Medicine Division, Geneva University Hospitals, Geneva, Switzerland
| | - Manuel Schibler
- Geneva Center for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- National Measles and Rubella Reference Laboratory (CNRRR), Geneva University Hospitals, Geneva, Switzerland
- Laboratory of virology, Laboratory Medicine Division, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
10
|
McCracken GR, Gaston D, Pettipas J, Loder A, Majer A, Grudeski E, Labbé G, Joy BK, Patriquin G, LeBlanc JJ. Neglected SARS-CoV-2 variants and potential concerns for molecular diagnostics: a framework for nucleic acid amplification test target site quality assurance. Microbiol Spectr 2023; 11:e0076123. [PMID: 37815347 PMCID: PMC10715164 DOI: 10.1128/spectrum.00761-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE Molecular tests like polymerase chain reaction were widely used during the COVID-19 pandemic but as the pandemic evolved, so did SARS-CoV-2. This virus acquired mutations, prompting concerns that mutations could compromise molecular test results and be falsely negative. While some manufacturers may have in-house programs for monitoring mutations that could impact their assay performance, it is important to promptly report mutations in circulating viral strains that could adversely impact a diagnostic test result. However, commercial test target sites are proprietary, making independent monitoring difficult. In this study, SARS-CoV-2 test target sites were sequenced to monitor and assess mutations impact, and 29 novel mutations impacting SARS-CoV-2 detection were identified. This framework for molecular test target site quality assurance could be adapted to any molecular test, ensuring accurate diagnostic test results and disease diagnoses.
Collapse
Affiliation(s)
- Gregory R. McCracken
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health (NSH), Halifax, Nova Scotia, Canada
| | - Daniel Gaston
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Nova Scotia Health (NSH), Halifax, Nova Scotia, Canada
| | - Janice Pettipas
- Nova Scotia Provincial Public Health Laboratory Network (PPHLN), Halifax, Nova Scotia, Canada
| | - Allana Loder
- National Microbiology Laboratory (NML), Public Health Agency of Canada (PHAC), Winnipeg, Manitoba, Canada
| | - Anna Majer
- National Microbiology Laboratory (NML), Public Health Agency of Canada (PHAC), Winnipeg, Manitoba, Canada
| | - Elsie Grudeski
- National Microbiology Laboratory (NML), Public Health Agency of Canada (PHAC), Winnipeg, Manitoba, Canada
| | - Geneviève Labbé
- National Microbiology Laboratory (NML), Public Health Agency of Canada (PHAC), Winnipeg, Manitoba, Canada
| | - Bryn K. Joy
- Medical Sciences Program, Faculty of Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Glenn Patriquin
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health (NSH), Halifax, Nova Scotia, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason J. LeBlanc
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health (NSH), Halifax, Nova Scotia, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Infectious Diseases), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
Murray A, Ojeda J, El Merhebi O, Calvo-Marzal P, Gerasimova Y, Chumbimuni-Torres K. Cost-Effective Modular Biosensor for SARS-CoV-2 and Influenza A Detection. BIOSENSORS 2023; 13:874. [PMID: 37754108 PMCID: PMC10526333 DOI: 10.3390/bios13090874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
A modular, multi-purpose, and cost-effective electrochemical biosensor based on a five-stranded four-way junction (5S-4WJ) system was developed for SARS-CoV-2 (genes S and N) and Influenza A virus (gene M) detection. The 5S-4WJ structure consists of an electrode-immobilized universal stem-loop (USL) strand, two auxiliary DNA strands, and a universal methylene blue redox strand (UMeB). This design allows for the detection of specific nucleic acid sequences using square wave voltammetry (SWV). The sequence-specific auxiliary DNA strands (m and f) ensure selectivity of the biosensor for target recognition utilizing the same USL and UMeB components. An important feature of this biosensor is the ability to reuse the USL-modified electrodes to detect the same or alternative targets in new samples. This is accomplished by a simple procedure involving rinsing the electrodes with water to disrupt the 5S-4WJ structure and subsequent re-hybridization of the USL strand with the appropriate set of strands for a new analysis. The biosensor exhibited minimal loss in signal after rehybridization, demonstrating its potential as a viable multiplex assay for both current and future pathogens, with a low limit of quantification (LOQ) of as low as 17 pM.
Collapse
Affiliation(s)
| | | | | | | | | | - Karin Chumbimuni-Torres
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA; (A.M.); (J.O.); (O.E.M.); (P.C.-M.); (Y.G.)
| |
Collapse
|
12
|
Feldberg L, Zvi A, Yahalom-Ronen Y, Schuster O. Discriminative Identification of SARS-CoV-2 Variants Based on Mass-Spectrometry Analysis. Biomedicines 2023; 11:2373. [PMID: 37760814 PMCID: PMC10525290 DOI: 10.3390/biomedicines11092373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The spread of SARS-CoV-2 variants of concern (VOCs) is of great importance since genetic changes may increase transmissibility, disease severity and reduce vaccine effectiveness. Moreover, these changes may lead to failure of diagnostic measures. Therefore, variant-specific diagnostic methods are essential. To date, genetic sequencing is the gold-standard method to discriminate between variants. However, it is time-consuming (taking several days) and expensive. Therefore, the development of rapid diagnostic methods for SARS-CoV-2 in accordance with its genetic modification is of great importance. In this study we introduce a Mass Spectrometry (MS)-based methodology for the diagnosis of SARS-CoV-2 in propagated in cell-culture. This methodology enables the universal identification of SARS-CoV-2, as well as variant-specific discrimination. The universal identification of SARS-CoV-2 is based on conserved markers shared by all variants, while the identification of specific variants relies on variant-specific markers. Determining a specific set of peptides for a given variant consists of a multistep procedure, starting with an in-silico search for variant-specific tryptic peptides, followed by a tryptic digest of a cell-cultured SARS-CoV-2 variant, and identification of these markers by HR-LC-MS/MS analysis. As a proof of concept, this approach was demonstrated for four representative VOCs compared to the wild-type Wuhan reference strain. For each variant, at least two unique markers, derived mainly from the spike (S) and nucleocapsid (N) viral proteins, were identified. This methodology is specific, rapid, easy to perform and inexpensive. Therefore, it can be applied as a diagnostic tool for pathogenic variants.
Collapse
Affiliation(s)
- Liron Feldberg
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel;
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel;
| | - Ofir Schuster
- Department of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel;
| |
Collapse
|
13
|
Plasencia-Martínez JM, Moreno-Pastor A, Lozano-Ros M, Jiménez-Pulido C, Herves-Escobedo I, Pérez-Hernández G, García-Santos JM. Digital tomosynthesis improves chest radiograph accuracy and reduces microbiological false negatives in COVID-19 diagnosis. Emerg Radiol 2023; 30:465-474. [PMID: 37358654 DOI: 10.1007/s10140-023-02153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE Diagnosing pneumonia by radiograph is improvable. We aimed (a) to compare radiograph and digital thoracic tomosynthesis (DTT) performances and agreement for COVID-19 pneumonia diagnosis, and (b) to assess the DTT ability for COVID-19 diagnosis when polymerase chain reaction (PCR) and radiograph are negative. METHODS Two emergency radiologists with 11 (ER1) and 14 experience-years (ER2) retrospectively evaluated radiograph and DTT images acquired simultaneously in consecutively clinically suspected COVID-19 pneumonia patients in March 2020-January 2021. Considering PCR and/or serology as reference standard, DTT and radiograph diagnostic performance and interobserver agreement, and DTT contributions in unequivocal, equivocal, and absent radiograph opacities were analysed by the area under the curve (AUC), Cohen's Kappa, Mc-Nemar's and Wilcoxon tests. RESULTS We recruited 480 patients (49 ± 15 years, 277 female). DTT increased ER1 (from 0.76, CI95% 0.7-0.8 to 0.79, CI95% 0.7-0.8; P=.04) and ER2 (from 0.77 CI95% 0.7-0.8 to 0.80 CI95% 0.8-0.8, P=.02) radiograph-AUCs, sensitivity, specificity, predictive values, and positive likelihood ratio. In false negative microbiological cases, DTT suggested COVID-19 pneumonia in 13% (4/30; P=.052, ER1) and 20% (6/30; P=.020, ER2) more than radiograph. DTT showed new or larger opacities in 33-47% of cases with unequivocal opacities in radiograph, new opacities in 2-6% of normal radiographs and reduced equivocal opacities by 13-16%. Kappa increased from 0.64 (CI95% 0.6-0.8) to 0.7 (CI95% 0.7-0.8) for COVID-19 pneumonia probability, and from 0.69 (CI95% 0.6-0.7) to 0.76 (CI95% 0.7-0.8) for pneumonic extension. CONCLUSION DTT improves radiograph performance and agreement for COVID-19 pneumonia diagnosis and reduces PCR false negatives.
Collapse
Affiliation(s)
| | | | | | | | | | - Gloria Pérez-Hernández
- Hospital Universitario Morales Meseguer, 30008, Murcia, ZC, Spain
- Current affiliation: Hospital Clínico, 50009, Zaragoza, ZC, Spain
| | | |
Collapse
|
14
|
Park K, Sung H, Kim MN. Deciphering a Case of SARS-CoV-2 E Gene Dropout With the Xpert Xpress Assay. Ann Lab Med 2023; 43:392-394. [PMID: 36843410 PMCID: PMC9989532 DOI: 10.3343/alm.2023.43.4.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 01/05/2023] [Indexed: 02/28/2023] Open
Affiliation(s)
- Kuenyoul Park
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Lakhal-Naouar I, Hack HR, Moradel E, Jarra A, Grove HL, Ismael RM, Padilla S, Coleman D, Ouellette J, Darden J, Storme C, Peachman KK, Hall TL, Huhtanen ME, Scott PT, Hakre S, Jagodzinski LL, Peel SA. Analytical validation of quantitative SARS-CoV-2 subgenomic and viral load laboratory developed tests conducted on the Panther Fusion® (Hologic) with preliminary application to clinical samples. PLoS One 2023; 18:e0287576. [PMID: 37384714 PMCID: PMC10309597 DOI: 10.1371/journal.pone.0287576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
OBJECTIVE Validate the performance characteristics of two analyte specific, laboratory developed tests (LDTs) for the quantification of SARS-CoV-2 subgenomic RNA (sgRNA) and viral load on the Hologic Panther Fusion® using the Open Access functionality. METHODS Custom-designed primers/probe sets targeting the SARS-CoV-2 Envelope gene (E) and subgenomic E were optimized. A 20-day performance validation following laboratory developed test requirements was conducted to assess assay precision, accuracy, analytical sensitivity/specificity, lower limit of detection and reportable range. RESULTS Quantitative SARS-CoV-2 sgRNA (LDT-Quant sgRNA) assay, which measures intermediates of replication, and viral load (LDT-Quant VLCoV) assay demonstrated acceptable performance. Both assays were linear with an R2 and slope equal to 0.99 and 1.00, respectively. Assay precision was evaluated between 4-6 Log10 with a maximum CV of 2.6% and 2.5% for LDT-Quant sgRNA and LDT-Quant VLCoV respectively. Using negative or positive SARS-CoV-2 human nasopharyngeal swab samples, both assays were accurate (kappa coefficient of 1.00 and 0.92). Common respiratory flora and other viral pathogens were not detected and did not interfere with the detection or quantification by either assay. Based on 95% detection, the assay LLODs were 729 and 1206 Copies/mL for the sgRNA and VL load LDTs, respectively. CONCLUSION The LDT-Quant sgRNA and LDT-Quant VLCoV demonstrated good analytical performance. These assays could be further investigated as alternative monitoring assays for viral replication; and thus, medical management in clinical settings which could inform isolation/quarantine requirements.
Collapse
Affiliation(s)
- Ines Lakhal-Naouar
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Holly R. Hack
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Edgar Moradel
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Amie Jarra
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Hannah L. Grove
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Rani M. Ismael
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Steven Padilla
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Dante Coleman
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Jason Ouellette
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Janice Darden
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Casey Storme
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kristina K. Peachman
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Tara L. Hall
- Moncrief Army Health Clinic, Fort Jackson, South Carolina, United States of America
| | - Mark E. Huhtanen
- Moncrief Army Health Clinic, Fort Jackson, South Carolina, United States of America
| | - Paul T. Scott
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Shilpa Hakre
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Linda L. Jagodzinski
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sheila A. Peel
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
16
|
Chavda VP, Balar P, Vaghela D, Solanki HK, Vaishnav A, Hala V, Vora L. Omicron Variant of SARS-CoV-2: An Indian Perspective of Vaccination and Management. Vaccines (Basel) 2023; 11:160. [PMID: 36680006 PMCID: PMC9860853 DOI: 10.3390/vaccines11010160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Omicron variants have highly influenced the entire globe. It has a high rate of transmissibility, which makes its management tedious. There are various subtypes of omicron, namely BA.1, BA.2, BA.3, BA.4, and BA.5. Currently, one omicron subvariant BF.7 is also immersed in some parts of India. Further studies are required for a better understanding of the new immersing SARS-CoV-2 subvariant of the omicron. They differ in the mutation of the spike proteins, which alters their attachment to the host receptor and hence modifies their virulence and adaptability. Delta variants have a great disastrous influence on the entire world, especially in India. While overcoming it, another mutant catches the pace. The Indian population is highly affected by omicron variants. It alters the entire management and diagnosis system against COVID-19. It demanded forcemeat in the health care system, both qualitatively and quantitively, to cope with the omicron wave. The alteration in spike protein, which is the major target of vaccines, leads to varied immunization against the subvariants. The efficacy of vaccines against the new variant was questioned. Every vaccine had a different shielding effect on the new variant. The hesitancy of vaccination was a prevalent factor in India that might have contributed to its outbreak. The prevalence of omicron, monkeypox, and tomato flu shared some similarities and distinct features when compared to their influence on the Indian population. This review emphasizes the changes omicron brings with it and how the Indian health care system outrage this dangerous variant.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Pankti Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Dixa Vaghela
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Hetvi K. Solanki
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Akta Vaishnav
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Vivek Hala
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
17
|
Marchini A, Petrillo M, Parrish A, Buttinger G, Tavazzi S, Querci M, Betsou F, Elsinga G, Medema G, Abdelrahman T, Gawlik B, Corbisier P. New RT-PCR Assay for the Detection of Current and Future SARS-CoV-2 Variants. Viruses 2023; 15:206. [PMID: 36680246 PMCID: PMC9863853 DOI: 10.3390/v15010206] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Multiple lineages of SARS-CoV-2 have been identified featuring distinct sets of genetic changes that confer to the virus higher transmissibility and ability to evade existing immunity. The continuous evolution of SARS-CoV-2 may pose challenges for current treatment options and diagnostic tools. In this study, we have first evaluated the performance of the 14 WHO-recommended real-time reverse transcription (RT)-PCR assays currently in use for the detection of SARS-CoV-2 and found that only one assay has reduced performance against Omicron. We then developed a new duplex real-time RT-PCR assay based on the amplification of two ultra-conserved elements present within the SARS-CoV-2 genome. The new duplex assay successfully detects all of the tested SARS-CoV-2 variants of concern (including Omicron sub-lineages BA.4 and BA.5) from both clinical and wastewater samples with high sensitivity and specificity. The assay also functions as a one-step droplet digital RT-PCR assay. This new assay, in addition to clinical testing, could be adopted in surveillance programs for the routine monitoring of SARS-CoV-2's presence in a population in wastewater samples. Positive results with our assay in conjunction with negative results from an Omicron-specific assay may provide timely indication of the emergence of a novel SARS-CoV-2 variant in a certain community and thereby aid public health interventions.
Collapse
Affiliation(s)
- Antonio Marchini
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium
| | | | - Amy Parrish
- Department of Microbiology, Laboratoire National de Santé, 3583 Dudelange, Luxembourg
| | - Gerhard Buttinger
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium
| | - Simona Tavazzi
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Maddalena Querci
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Fay Betsou
- Department of Microbiology, Laboratoire National de Santé, 3583 Dudelange, Luxembourg
- Biological Resource Center of Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Goffe Elsinga
- KWR Water Research Institute, 3433 PE Nieuwegein, The Netherlands
| | - Gertjan Medema
- KWR Water Research Institute, 3433 PE Nieuwegein, The Netherlands
| | - Tamir Abdelrahman
- Department of Microbiology, Laboratoire National de Santé, 3583 Dudelange, Luxembourg
| | - Bernd Gawlik
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | | |
Collapse
|
18
|
Kim TY, Bae GE, Kim JY, Kang M, Jang JH, Huh HJ, Chung DR, Lee NY. Evaluation of the Kaira COVID-19/Flu/RSV Detection Kit for detection of SARS-CoV-2, influenza A/B, and respiratory syncytial virus: A comparative study with the PowerChek SARS-CoV-2, influenza A&B, RSV Multiplex Real-time PCR Kit. PLoS One 2022; 17:e0278530. [PMID: 36516190 PMCID: PMC9750031 DOI: 10.1371/journal.pone.0278530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Co-circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses, such as influenza and respiratory syncytial virus (RSV), can be a severe threat to public health. The accurate detection and differentiation of these viruses are essential for clinical laboratories. Herein, we comparatively evaluated the performance of the Kaira COVID-19/Flu/RSV Detection Kit (Kaira; Optolane, Seongnam, Korea) for detection of SARS-CoV-2, influenza A and B, and RSV in nasopharyngeal swab (NPS) specimens with that of the PowerChek SARS-CoV-2, Influenza A&B, RSV Multiplex Real-time PCR Kit (PowerChek; Kogene Biotech, Seoul, Korea). METHODS A total of 250 archived NPS specimens collected for routine clinical testing were tested in parallel by the Kaira and PowerChek assays. RNA standards were serially diluted and tested by the Kaira assay to calculate the limit of detection (LOD). RESULTS The positive and negative percent agreements between the Kaira and PowerChek assays were as follows: 100% (49/49) and 100% (201/201) for SARS-CoV-2; 100% (50/50) and 99.0% (198/200) for influenza A; 100% (50/50) and 100% (200/200) for influenza B; and 100% (51/51) and 100% (199/199) for RSV, respectively. The LODs of the Kaira assay for SARS-CoV-2, influenza A and B, and RSV were 106.1, 717.1, 287.3, and 442.9 copies/mL, respectively. CONCLUSIONS The Kaira assay showed comparable performance to the PowerChek assay for detection of SARS-CoV-2, influenza A and B, and RSV in NPS specimens, indicating that the Kaira assay could be a useful diagnostic tool when these viruses are co-circulating.
Collapse
Affiliation(s)
- Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Go Eun Bae
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Youn Kim
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Minhee Kang
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| | - Doo Ryeon Chung
- Center for Infection Prevention and Control, Samsung Medical Center, Seoul, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Fernandes Q, Inchakalody VP, Merhi M, Mestiri S, Taib N, Moustafa Abo El-Ella D, Bedhiafi T, Raza A, Al-Zaidan L, Mohsen MO, Yousuf Al-Nesf MA, Hssain AA, Yassine HM, Bachmann MF, Uddin S, Dermime S. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Ann Med 2022; 54:524-540. [PMID: 35132910 PMCID: PMC8843115 DOI: 10.1080/07853890.2022.2031274] [Citation(s) in RCA: 264] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/08/2023] Open
Abstract
The emergence of novel and evolving variants of SARS-CoV-2 has fostered the need for change in the form of newer and more adaptive diagnostic methods for the detection of SARS-CoV-2 infections. On the other hand, developing rapid and sensitive diagnostic technologies is now more challenging due to emerging variants and varying symptoms exhibited among the infected individuals. In addition to this, vaccines remain the major mainstay of prevention and protection against infection. Novel vaccines and drugs are constantly being developed to unleash an immune response for the robust targeting of SARS-CoV-2 and its associated variants. In this review, we provide an updated perspective on the current challenges posed by the emergence of novel SARS-CoV-2 mutants/variants and the evolution of diagnostic techniques to enable their detection. In addition, we also discuss the development, formulation, working mechanisms, advantages, and drawbacks of some of the most used vaccines/therapeutic drugs and their subsequent immunological impact.Key messageThe emergence of novel variants of the SARS-CoV-2 in the past couple of months, highlights one of the primary challenges in the diagnostics, treatment, as well as vaccine development against the virus.Advancements in SARS-CoV-2 detection include nucleic acid based, antigen and immuno- assay-based and antibody-based detection methodologies for efficient, robust, and quick testing; while advancements in COVID-19 preventive and therapeutic strategies include novel antiviral and immunomodulatory drugs and SARS-CoV-2 targeted vaccines.The varied COVID-19 vaccine platforms and the immune responses induced by each one of them as well as their ability to battle post-vaccination infections have all been discussed in this review.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mona O. Mohsen
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Department of Biomedical Research, Immunology RIA, University of Bern, Bern, Switzerland
| | | | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | - Martin F. Bachmann
- Department of Biomedical Research, Immunology RIA, University of Bern, Bern, Switzerland
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
20
|
Mihajlovski K, Buttner MP, Cruz P, Labus B, St. Pierre Schneider B, Detrick E. SARS-CoV-2 surveillance with environmental surface sampling in public areas. PLoS One 2022; 17:e0278061. [PMID: 36417446 PMCID: PMC9683569 DOI: 10.1371/journal.pone.0278061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Contaminated surfaces are one of the ways that coronavirus disease 2019 (COVID-19) may be transmitted. SARS-CoV-2 can be detected on environmental surfaces; however, few environmental sampling studies have been conducted in nonclinical settings. The objective of this study was to detect SARS-CoV-2 RNA on environmental surfaces in public areas in Las Vegas, Nevada. In total, 300 surface samples were collected from high-touch surfaces from high-congregate public locations and from a public health facility (PHF) that was visited by COVID-19 patients. Environmental samples were analyzed with quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) using SARS-CoV-2 specific primers and probes for three target genes. Results showed that 31 out of 300 (10.3%) surface samples tested positive for SARS-CoV-2, 24 at the PHF and 7 in high-congregate public locations. Concentrations ranged from 102 to 106 viral particles per 3 ml sample on a wide variety of materials. The data also showed that the N gene assay had greater sensitivity compared to the S and ORF gene assays. Besides frequently touched surfaces, SARS-CoV-2 was detected in restrooms, on floors and surfaces in contact with floors, as well as in a mop water sample. The results of this study describe the extent and distribution of environmental SARS-CoV-2 contamination in public areas in Las Vegas, Nevada. A method using the N gene PCR assay was developed for SARS-CoV-2 environmental monitoring in public areas. Environmental monitoring with this method can determine the specific sites of surface contamination in the community and may be beneficial for prevention of COVID-19 indirect transmission, and evaluation and improvement of infection control practices in public areas, public health facilities, universities, and businesses.
Collapse
Affiliation(s)
- Kristina Mihajlovski
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, United States of America
- * E-mail:
| | - Mark P. Buttner
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, United States of America
| | - Patricia Cruz
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, United States of America
| | - Brian Labus
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, United States of America
| | - Barbara St. Pierre Schneider
- Graduate Nursing Department, College of Nursing and Health Innovation, The University of Texas at Arlington, TX, United States of America
| | - Elizabeth Detrick
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, United States of America
| |
Collapse
|
21
|
Wang Y, Li X, Wang Y, Tu Z, Xu J, Pan J, Zhou Q. Comparison of the performance of two real-time fluorescent quantitative PCR kits for the detection of SARS-CoV-2 nucleic acid: a study based on large real clinical samples. Virol J 2022; 19:191. [PMID: 36401275 PMCID: PMC9675236 DOI: 10.1186/s12985-022-01922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The global pandemic of coronavirus disease 2019 (COVID-19) has led to the development of multiple detection kits by national manufacturers for severe acute respiratory syndrome coronavirus 2 viral nucleic acid testing. The purpose of this study is to evaluate the performance of different kits (i.e., Maccura kit and Sansure kit) in real clinical work using clinical samples, which will help with the optimization of the test kits. METHOD During the past three months (March-May 2022), 1399 pharyngeal swabs from suspected COVID-19 patients have been initially screened using the Maccura kit in Jilin, China, and the test results were verified using the Sansure kit. The cycle threshold (Ct) values generated by the two kits were compared at different viral load levels. Correlation and consistency of the Ct values were investigated using Spearman correlation, Deming regression, and Bland-Altman plots. The cut-off Ct values of the Maccura kit were recalculated by referencing the result of the Sansure kit as a standard. Furthermore, another 163 pharyngeal swabs from suspected COVID-19 patients were collected to verify the new cut-off values. RESULTS As a result of the Maccura kit testing, 1192 positive cases and 207 suspected COVID-19 cases were verified. After re-examination by the Sansure kit, 1118 positive cases were confirmed. The difference between the Ct values provided by the two kits was statistically significant, except for the N gene at high viral load. The Ct values obtained from the two kits presented a linear positive correlation. The Maccura kit used new cut-off Ct values of 35.00 (ORF1ab gene) and 35.07 (N gene). Based on that, the validation pass rate for the new cut-off Ct values was 91.41%. CONCLUSION Since the Maccura kit is found to have false positives in actual clinical work, recalculation of the cut-off values can reduce this occurrence. In order to improve the accuracy of the testing, laboratories should use two kits for COVID-19 testing, and the adjusting and optimizing of the kits for their situation are needed.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Laboratory Medicine, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Xuewen Li
- Department of Laboratory Medicine, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Yifei Wang
- Department of Laboratory Medicine, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Zheyu Tu
- Department of Laboratory Medicine, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Junqi Pan
- University of Melbourne, Grattan Street, Parkville, VIC 3010 Australia
| | - Qi Zhou
- Department of Pediatrics, First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| |
Collapse
|
22
|
Cardeñoso Domingo L, Roy Vallejo E, Zurita Cruz ND, Chicot Llano M, Ávalos Pérez‐Urria E, Barrios A, Hernando Santos J, Ortiz J, Rodríguez García SC, Martín Ramírez A, Ciudad Sañudo M, Marcos C, García Castillo E, Fontán García‐Rodrigo L, González B, Méndez R, Iturrate I, Sanz García A, Villa A, Sánchez Azofra A, Quicios B, Arribas D, Álvarez Rodríguez J, Patiño P, Trigueros M, Uriarte M, Triguero Martínez A, Arévalo C, Galván Román JM, García‐Vicuña R, Ancochea J, Soriano JB, Canabal A, Muñoz Calleja C, De la Cámara R, Suarez Fernández C, González Álvaro I, Rodríguez‐Serrano DA. Relevant SARS-CoV-2 viremia is associated with COVID-19 severity: Prospective cohort study and validation cohort. J Med Virol 2022; 94:5260-5270. [PMID: 35811284 PMCID: PMC9349374 DOI: 10.1002/jmv.27989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022]
Abstract
Early kinetics of SARS-CoV-2 viral load (VL) in plasma determined by quantitative reverse-transcription polymerase chain reaction (RT-PCR) was evaluated as a predictor of poor clinical outcome in a prospective study and assessed in a retrospective validation cohort. Prospective observational single-center study including consecutive adult patients hospitalized with COVID-19 between November 2020 and January 2021. Serial plasma samples were obtained until discharge. Quantitative RT-PCR was performed to assess SARS-CoV-2 VL. The main outcomes were in-hospital mortality, admission to the Intensive Care Unit (ICU), and their combination (Poor Outcome). Relevant viremia (RV), established in the prospective study, was assessed in a retrospective cohort including hospitalized COVID-19 patients from April 2021 to May 2022, in which plasma samples were collected according to clinical criteria. Prospective cohort: 57 patients were included. RV was defined as at least a twofold increase in VL within ≤2 days or a VL > 300 copies/ml, in the first week. Patients with RV (N = 14; 24.6%) were more likely to die than those without RV (35.7% vs. 0%), needed ICU admission (57% vs. 0%) or had Poor Outcome (71.4% vs. 0%), (p < 0.001 for the three variables). Retrospective cohort: 326 patients were included, 18.7% presented RV. Patients with RV compared with patients without RV had higher rates of ICU-admission (odds ratio [OR]: 5.6 [95% confidence interval [CI]: 2.1-15.1); p = 0.001), mortality (OR: 13.5 [95% CI: 6.3-28.7]; p < 0.0001) and Poor Outcome (OR: 11.2 [95% CI: 5.8-22]; p < 0.0001). Relevant SARS-CoV-2 viremia in the first week of hospitalization was associated with higher in-hospital mortality, ICU admission, and Poor Outcome. Findings observed in the prospective cohort were confirmed in a larger validation cohort.
Collapse
Affiliation(s)
| | - Emilia Roy Vallejo
- Internal Medicine DepartmentHospital Universitario La PrincesaMadridSpain
| | | | | | | | - Ana Barrios
- Internal Medicine DepartmentHospital Universitario La PrincesaMadridSpain
| | | | - Javier Ortiz
- Hematology DepartmentHospital Universitario La PrincesaMadridSpain
| | | | | | | | - Celeste Marcos
- Pneumology DepartmentHospital Universitario La PrincesaMadridSpain
| | | | | | - Begoña González
- Intensive Care UnitHospital Universitario La PrincesaMadridSpain
| | - Rosa Méndez
- Anesthesiology DepartmentHospital Universitario La PrincesaMadridSpain
| | - Isabel Iturrate
- Hematology DepartmentHospital Universitario La PrincesaMadridSpain
| | - Ancor Sanz García
- Methodology Unit of the Health Research InstituteHospital Universitario La PrincesaMadridSpain
| | - Almudena Villa
- Internal Medicine DepartmentHospital Universitario La PrincesaMadridSpain
| | | | - Begoña Quicios
- Intensive Care UnitHospital Universitario La PrincesaMadridSpain
| | - David Arribas
- Anesthesiology DepartmentHospital Universitario La PrincesaMadridSpain
| | | | - Pablo Patiño
- Intensive Care UnitHospital Universitario La PrincesaMadridSpain
| | - Marina Trigueros
- Intensive Care UnitHospital Universitario La PrincesaMadridSpain
| | - Miren Uriarte
- Rheumathology DepartmentHospital Universitario La PrincesaMadridSpain
| | | | - Cristina Arévalo
- Internal Medicine DepartmentHospital Universitario La PrincesaMadridSpain
| | | | | | - Julio Ancochea
- Pneumology DepartmentHospital Universitario La PrincesaMadridSpain
| | - Joan B. Soriano
- Pneumology DepartmentHospital Universitario La PrincesaMadridSpain
| | - Alfonso Canabal
- Intensive Care UnitHospital Universitario La PrincesaMadridSpain
| | | | | | | | | | - Diego A. Rodríguez‐Serrano
- Intensive Care UnitHospital Universitario La PrincesaMadridSpain,Present address:
Intensive Care UnitHospital Universitario Príncipe de AsturiasAlcalá de HenaresSpain
| | | |
Collapse
|
23
|
Suddhapas K, Choi MH, Shortreed MR, Timperman A. Evaluation of Variant-Specific Peptides for Detection of SARS-CoV-2 Variants of Concern. J Proteome Res 2022; 21:2443-2452. [PMID: 36108102 PMCID: PMC10318299 DOI: 10.1021/acs.jproteome.2c00325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The SARS-CoV-2 omicron variant presented significant challenges to the global effort to counter the pandemic. SARS-CoV-2 is predicted to remain prevalent for the foreseeable future, making the ability to identify SARS-CoV-2 variants imperative in understanding and controlling the pandemic. The predominant variant discovery method, genome sequencing, is time-consuming, insensitive, and expensive. Ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) offers an exciting alternative detection modality provided that variant-containing peptide markers are sufficiently detectable from their tandem mass spectra (MS/MS). We have synthesized model tryptic peptides of SARS-CoV-2 variants alpha, beta, gamma, delta, and omicron and evaluated their signal intensity, HCD spectra, and reverse phase retention time. Detection limits of 781, 781, 65, and 65 amol are obtained for the molecular ions of the proteotypic peptides, beta (QIAPGQTGNIADYNYK), gamma (TQLPSAYTNSFTR), delta (VGGNYNYR), and omicron (TLVKQLSSK), from neat solutions. These detection limits are on par with the detection limits of a previously reported proteotypic peptide from the SARS-CoV-2 spike protein, HTPINLVR. This study demonstrates the potential to differentiate SARS-CoV-2 variants through their proteotypic peptides with an approach that is broadly applicable across a wide range of pathogens.
Collapse
Affiliation(s)
- Kantaphon Suddhapas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Hannah Choi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - AaronT Timperman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Hong KH, Kim GJ, Roh KH, Sung H, Lee J, Kim SY, Kim TS, Park JS, Huh HJ, Park Y, Kim JS, Kim HS, Seong MW, Ryoo NH, Song SH, Lee H, Kwon GC, Yoo CK. Update of Guidelines for Laboratory Diagnosis of COVID-19 in Korea. Ann Lab Med 2022; 42:391-397. [PMID: 35177559 PMCID: PMC8859556 DOI: 10.3343/alm.2022.42.4.391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Korean Society for Laboratory Medicine and the Korea Disease Prevention and Control Agency have announced guidelines for diagnosing coronavirus disease (COVID-19) in clinical laboratories in Korea. With the ongoing pandemic, we propose an update of the previous guidelines based on new scientific data. This update includes recommendations for tests that were not included in the previous guidelines, including the rapid molecular test, antigen test, antibody test, and self-collected specimens, and a revision of the previous recommendations. This update will aid clinical laboratories in performing laboratory tests for diagnosing COVID-19.
Collapse
Affiliation(s)
- Ki Ho Hong
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Gab Jung Kim
- Bureau of Infectious Disease Diagnosis Control, the Korea Disease Control and Prevention Agency, Osong, Korea
| | - Kyoung Ho Roh
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaehyeon Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - So Yeon Kim
- Department of Laboratory Medicine, National Medical Center, Seoul, Korea
| | - Taek Soo Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jae-Sun Park
- Bureau of Infectious Disease Diagnosis Control, the Korea Disease Control and Prevention Agency, Osong, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Younhee Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Nam Hee Ryoo
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Sang Hoon Song
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Gye Cheol Kwon
- Department of Laboratory Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Cheon Kwon Yoo
- Bureau of Infectious Disease Diagnosis Control, the Korea Disease Control and Prevention Agency, Osong, Korea
| | | |
Collapse
|
25
|
Chavda VP, Patel AB, Vaghasiya DD. SARS-CoV-2 variants and vulnerability at the global level. J Med Virol 2022; 94:2986-3005. [PMID: 35277864 PMCID: PMC9088647 DOI: 10.1002/jmv.27717] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
Numerous variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have evolved. Viral variants may evolve with harmful susceptibility to the immunity established with the existing COVID-19 vaccination. These variants are more transmissible, induce relatively extreme illness, have evasive immunological features, decrease neutralization using antibodies from vaccinated persons, and are more susceptible to re-infection. The Centers for Disease Control and Prevention (CDC) has categorized SARS-CoV-2 mutations as variants of interest (VOI), variants of concern (VOC), and variants of high consequence (VOHC). At the moment, four VOC and many variants of interest have been defined and require constant observation. This review article summarizes various variants of SARS-CoV-2 surfaced with special emphasis on VOCs that are spreading across the world, as well as several viral mutational impacts and how these modifications alter the properties of the virus.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL.M. College of PharmacyAhmedabadGujaratIndia
| | | | | |
Collapse
|
26
|
Hernandez MM, Banu R, Gonzalez-Reiche AS, Gray B, Shrestha P, Cao L, Chen F, Shi H, Hanna A, Ramírez JD, van de Guchte A, Sebra R, Gitman MR, Nowak MD, Cordon-Cardo C, Schutzbank TE, Simon V, van Bakel H, Sordillo EM, Paniz-Mondolfi AE. RT-PCR/MALDI-TOF Diagnostic Target Performance Reflects Circulating SARS-CoV-2 Variant Diversity in New York City. J Mol Diagn 2022; 24:738-749. [PMID: 35525388 PMCID: PMC9067105 DOI: 10.1016/j.jmoldx.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/07/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate, multiple variants of concern have emerged. New variants pose challenges for diagnostic platforms because sequence diversity can alter primer/probe-binding sites (PBSs), causing false-negative results. The MassARRAY SARS-CoV-2 Panel (Agena Bioscience) uses RT-PCR and mass spectrometry to detect five multiplex targets across N and ORF1ab genes. Herein, we use a data set of 256 SARS-CoV-2-positive specimens collected between April 11, 2021, and August 28, 2021, to evaluate target performance with paired sequencing data. During this time frame, two targets in the N gene (N2 and N3) were subject to the greatest sequence diversity. In specimens with N3 dropout, 69% harbored the Alpha-specific A28095U polymorphism that introduces a 3'-mismatch to the N3 forward PBS and increases risk of target dropout relative to specimens with 28095A (relative risk, 20.02; 95% CI, 11.36 to 35.72; P < 0.0001). Furthermore, among specimens with N2 dropout, 90% harbored the Delta-specific G28916U polymorphism that creates a 3'-mismatch to the N2 probe PBS and increases target dropout risk (relative risk, 11.92; 95% CI, 8.17 to 14.06; P < 0.0001). These findings highlight the robust capability of MassARRAY SARS-CoV-2 Panel target results to reveal circulating virus diversity, and they underscore the power of multitarget design to capture variants of concern.
Collapse
Affiliation(s)
- Matthew M Hernandez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Radhika Banu
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brandon Gray
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paras Shrestha
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Liyong Cao
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feng Chen
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Huanzhi Shi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ayman Hanna
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Juan David Ramírez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Sema4, a Mount Sinai venture, Stamford, Connecticut
| | - Melissa R Gitman
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael D Nowak
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Viviana Simon
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alberto E Paniz-Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
27
|
Holland SC, Bains A, Holland LA, Smith MF, Sullins RA, Mellor NJ, Thomas AW, Johnson N, Murugan V, Lim ES. SARS-CoV-2 Delta Variant N Gene Mutations Reduce Sensitivity to the TaqPath COVID-19 Multiplex Molecular Diagnostic Assay. Viruses 2022; 14:1316. [PMID: 35746787 PMCID: PMC9228125 DOI: 10.3390/v14061316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
As the SARS-CoV-2 virus evolves, mutations may result in diminished sensitivity to qRT-PCR diagnostic assays. We investigated four polymorphisms circulating in the SARS-CoV-2 Delta lineage that result in N gene target failure (NGTF) on the TaqPath COVID-19 Combo Kit. These mutations were detected from the SARS-CoV-2 genome sequences that matched with the diagnostic assay results of saliva specimens. Full length N genes from the samples displaying NGTF were cloned into plasmids and assayed using three SARS-CoV-2 qRT-PCR assays. These constructs resulted in reduced sensitivity to the TaqPath COVID-19 Combo Kit compared to the controls (mean Ct differences of 3.06, 7.70, 12.46, and 14.12), but were detected equivalently on the TaqPath COVID-19 Fast PCR Combo 2.0 or CDC 2019_nCoV_N2 assays. This work highlights the importance of genomic sequencing to monitor circulating mutations and provide guidance in improving diagnostic assays.
Collapse
Affiliation(s)
- Steven C. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.C.H.); (A.B.); (L.A.H.); (M.F.S.); (R.A.S.); (N.J.M.)
| | - Ajeet Bains
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.C.H.); (A.B.); (L.A.H.); (M.F.S.); (R.A.S.); (N.J.M.)
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.C.H.); (A.B.); (L.A.H.); (M.F.S.); (R.A.S.); (N.J.M.)
| | - Matthew F. Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.C.H.); (A.B.); (L.A.H.); (M.F.S.); (R.A.S.); (N.J.M.)
| | - Regan A. Sullins
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.C.H.); (A.B.); (L.A.H.); (M.F.S.); (R.A.S.); (N.J.M.)
| | - Nicholas J. Mellor
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.C.H.); (A.B.); (L.A.H.); (M.F.S.); (R.A.S.); (N.J.M.)
| | - Alexis W. Thomas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (A.W.T.); (N.J.); (V.M.)
| | - Nathaniel Johnson
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (A.W.T.); (N.J.); (V.M.)
| | - Vel Murugan
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (A.W.T.); (N.J.); (V.M.)
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.C.H.); (A.B.); (L.A.H.); (M.F.S.); (R.A.S.); (N.J.M.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
28
|
Rodino KG, Peaper DR, Kelly BJ, Bushman F, Marques A, Adhikari H, Tu ZJ, Marrero Rolon R, Westblade LF, Green DA, Berry GJ, Wu F, Annavajhala MK, Uhlemann AC, Parikh BA, McMillen T, Jani K, Babady NE, Hahn AM, Koch RT, Grubaugh ND, Rhoads DD. Partial ORF1ab Gene Target Failure with Omicron BA.2.12.1. J Clin Microbiol 2022; 60:e0060022. [PMID: 35582905 PMCID: PMC9199403 DOI: 10.1128/jcm.00600-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 12/21/2022] Open
Abstract
Mutations in the genome of SARS-CoV-2 can affect the performance of molecular diagnostic assays. In some cases, such as S-gene target failure, the impact can serve as a unique indicator of a particular SARS-CoV-2 variant and provide a method for rapid detection. Here, we describe partial ORF1ab gene target failure (pOGTF) on the cobas SARS-CoV-2 assays, defined by a ≥2-thermocycle delay in detection of the ORF1ab gene compared to that of the E-gene. We demonstrate that pOGTF is 98.6% sensitive and 99.9% specific for SARS-CoV-2 lineage BA.2.12.1, an emerging variant in the United States with spike L452Q and S704L mutations that may affect transmission, infectivity, and/or immune evasion. Increasing rates of pOGTF closely mirrored rates of BA.2.12.1 sequences uploaded to public databases, and, importantly, increasing local rates of pOGTF also mirrored increasing overall test positivity. Use of pOGTF as a proxy for BA.2.12.1 provides faster tracking of the variant than whole-genome sequencing and can benefit laboratories without sequencing capabilities.
Collapse
Affiliation(s)
- Kyle G. Rodino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David R. Peaper
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, USA
| | - Brendan J. Kelly
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frederic Bushman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Marques
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hriju Adhikari
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zheng Jin Tu
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rebecca Marrero Rolon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Lars F. Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Daniel A. Green
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Gregory J. Berry
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Fann Wu
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Medini K. Annavajhala
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - Bijal A. Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tracy McMillen
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Krupa Jani
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - N. Esther Babady
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Anne M. Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Robert T. Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Yale SARS-CoV-2 Genomic Surveillance Initiative
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, USA
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Department of Pathology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel D. Rhoads
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pathology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Sanyaolu A, Marinkovic A, Prakash S, Haider N, Williams M, Okorie C, Badaru O, Smith S. SARS-CoV-2 Omicron variant (B.1.1.529): A concern with immune escape. World J Virol 2022; 11:137-143. [PMID: 35665238 PMCID: PMC9150026 DOI: 10.5501/wjv.v11.i3.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/05/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Omicron, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant that is now spreading across the world, is the most altered version to emerge so far, with mutations comparable to changes reported in earlier variants of concern linked with increased transmissibility and partial resistance to vaccine-induced immunity. This article provides an overview of the SARS-CoV-2 variant Omicron (B.1.1.529) by reviewing the literature from major scientific databases. Although clear immunological and clinical data are not yet available, we extrapolated from what is known about mutations present in the Omicron variant of SARS-CoV-2 and offer preliminary indications on transmissibility, severity, and immune escape through existing research and databases.
Collapse
Affiliation(s)
- Adekunle Sanyaolu
- Department of Public Health, Federal Ministry of Health, Abuja 0000, Nigeria
| | - Aleksandra Marinkovic
- Department of Basic Sciences, Saint James School of Medicine, The Valley 0000, Anguilla
| | - Stephanie Prakash
- Department of Basic Sciences, Saint James School of Medicine, The Valley 0000, Anguilla
| | - Nafees Haider
- Department of Basic Sciences, All Saints University School of Medicine, Roseau 0000, Dominica
| | - Martina Williams
- Department of Basic Sciences, Saint James School of Medicine, The Valley 0000, Anguilla
| | - Chuku Okorie
- Department of Allied Sciences, Union County College, Plainfield, NJ 07060, United States
| | - Olanrewaju Badaru
- Department of Public Health, Nigeria Centre for Disease Control, Abuja 0000, Nigeria
| | - Stella Smith
- Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research, Lagos 100001, Nigeria
| |
Collapse
|
30
|
Rodino KG, Peaper DR, Kelly BJ, Bushman F, Marques A, Adhikari H, Tu ZJ, Rolon RM, Westblade LF, Green DA, Berry GJ, Wu F, Annavajhala MK, Uhlemann AC, Parikh BA, McMillen T, Jani K, Babady NE, Hahn AM, Koch RT, Grubaugh ND, Rhoads DD. Partial ORF1ab Gene Target Failure with Omicron BA.2.12.1. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.04.25.22274187. [PMID: 35547854 PMCID: PMC9094110 DOI: 10.1101/2022.04.25.22274187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mutations in the viral genome of SARS-CoV-2 can impact the performance of molecular diagnostic assays. In some cases, such as S gene target failure, the impact can serve as a unique indicator of a particular SARS-CoV-2 variant and provide a method for rapid detection. Here we describe partial ORF1ab gene target failure (pOGTF) on the cobas ® SARS-CoV-2 assays, defined by a ≥2 thermocycles delay in detection of the ORF1ab gene compared to the E gene. We demonstrate that pOGTF is 97% sensitive and 99% specific for SARS-CoV-2 lineage BA.2.12.1, an emerging variant in the United States with spike L452Q and S704L mutations that may impact transmission, infectivity, and/or immune evasion. Increasing rates of pOGTF closely mirrored rates of BA.2.12.1 sequences uploaded to public databases, and, importantly increasing local rates of pOGTF also mirrored increasing overall test positivity. Use of pOGTF as a proxy for BA.2.12.1 provides faster tracking of the variant than whole-genome sequencing and can benefit laboratories without sequencing capabilities.
Collapse
|
31
|
Lehrach H, Curtis J, Lange B, Ogilvie LA, Gauss R, Steininger C, Scholz E, Kreck M. Proposal of a population wide genome-based testing for Covid-19. Sci Rep 2022; 12:5618. [PMID: 35379812 PMCID: PMC8978767 DOI: 10.1038/s41598-022-08934-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Our lives (and deaths) have by now been dominated for two years by COVID-19, a pandemic that has caused hundreds of millions of disease cases, millions of deaths, trillions in economic costs, and major restrictions on our freedom. Here we suggest a novel tool for controlling the COVID-19 pandemic. The key element is a method for a population-scale PCR-based testing, applied on a systematic and repeated basis. For this we have developed a low cost, highly sensitive virus-genome-based test. Using Germany as an example, we demonstrate by using a mathematical model, how useful this strategy could have been in controlling the pandemic. We show using real-world examples how this might be implemented on a mass scale and discuss the feasibility of this approach.
Collapse
Affiliation(s)
- Hans Lehrach
- Alacris Theranostics GmbH, Berlin, Germany. .,Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195, Berlin, Germany.
| | - Jon Curtis
- Alacris Theranostics GmbH, Berlin, Germany
| | - Bodo Lange
- Alacris Theranostics GmbH, Berlin, Germany
| | | | - Richard Gauss
- State Sanitary Directorate, City Government, Vienna, Austria
| | - Christoph Steininger
- Department of Medicine I, Division of Infectious Diseases, Medical University of Vienna, Vienna, Austria.,LEAD Horizon, Vienna, Austria
| | | | - Matthias Kreck
- University of Bonn, Bonn, Germany.,University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
32
|
Profiling RT-LAMP tolerance of sequence variation for SARS-CoV-2 RNA detection. PLoS One 2022; 17:e0259610. [PMID: 35324900 PMCID: PMC8947081 DOI: 10.1371/journal.pone.0259610] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic has necessitated a dramatic increase in our ability to conduct molecular diagnostic tests, as accurate detection of the virus is critical in preventing its spread. However, SARS-CoV-2 variants continue to emerge, with each new variant potentially affecting widely-used nucleic acid amplification diagnostic tests. RT-LAMP has been adopted as a quick, inexpensive diagnostic alternative to RT-qPCR, but as a newer method, has not been studied as thoroughly. Here we interrogate the effect of SARS-CoV-2 sequence mutations on RT-LAMP amplification, creating 523 single point mutation “variants” covering every position of the LAMP primers in 3 SARS-CoV-2 assays and analyzing their effects with over 4,500 RT-LAMP reactions. Remarkably, we observed only minimal effects on amplification speed and no effect on detection sensitivity at positions equivalent to those that significantly impact RT-qPCR assays. We also created primer sets targeting a specific short deletion and observed that LAMP is able to amplify even with a primer containing multiple consecutive mismatched bases, albeit with reduced speed and sensitivity. This highlights RT-LAMP as a robust technique for viral RNA detection that can tolerate most mutations in the primer regions. Additionally, where variant discrimination is desired, we describe the use of molecular beacons to sensitively distinguish and identify variant RNA sequences carrying short deletions. Together these data add to the growing body of knowledge on the utility of RT-LAMP and increase its potential to further our ability to conduct molecular diagnostic tests outside of the traditional clinical laboratory environment.
Collapse
|
33
|
Wong PK, Yan T, Wang H, Chan IN, Wang J, Li Y, Ren H, Wong CH. Automatic detection of multiple types of pneumonia: Open dataset and a multi-scale attention network. Biomed Signal Process Control 2022; 73:103415. [PMID: 34909050 PMCID: PMC8660060 DOI: 10.1016/j.bspc.2021.103415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/31/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
The quick and precise identification of COVID-19 pneumonia, non-COVID-19 viral pneumonia, bacterial pneumonia, mycoplasma pneumonia, and normal lung on chest CT images play a crucial role in timely quarantine and medical treatment. However, manual identification is subject to potential misinterpretations and time-consumption issues owing the visual similarities of pneumonia lesions. In this study, we propose a novel multi-scale attention network (MSANet) based on a bag of advanced deep learning techniques for the automatic classification of COVID-19 and multiple types of pneumonia. The proposed method can automatically pay attention to discriminative information and multi-scale features of pneumonia lesions for better classification. The experimental results show that the proposed MSANet can achieve an overall precision of 97.31%, recall of 96.18%, F1-score of 96.71%, accuracy of 97.46%, and macro-average area under the receiver operating characteristic curve (AUC) of 0.9981 to distinguish between multiple classes of pneumonia. These promising results indicate that the proposed method can significantly assist physicians and radiologists in medical diagnosis. The dataset is publicly available at https://doi.org/10.17632/rf8x3wp6ss.1.
Collapse
Affiliation(s)
- Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau
| | - Tao Yan
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Huaqiao Wang
- Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - In Neng Chan
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau
| | - Jiangtao Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Yang Li
- Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Hao Ren
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Chi Hong Wong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau
| |
Collapse
|
34
|
|
35
|
Lopez D, Roberts J, Bourgeois M, Kootstra J, Minnick S, Black A, Mauss J, Flores N. Infection clusters can elevate risk of diagnostic target failure for detection of SARS-CoV-2. PLoS One 2022; 17:e0264008. [PMID: 35171960 PMCID: PMC8849547 DOI: 10.1371/journal.pone.0264008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
The C29197T mutation is one of 4 point mutations known to cause N-gene target failure (NGTF) in the Xpert Xpress SARS-CoV-2 and Xpert Omni SARS-CoV-2 assays from Cepheid (Sunnyvale, CA). We describe a high local prevalence in January of 8.5% (CI 4.9-14.2%) for the C29197T mutation, which was over 3-fold higher than the prevalence estimated statewide in California during the same time frame, 2.5% (CI 2.1-2.8%). Using phylogenetic analysis, we discovered that this increase in prevalence was due, at least in part, to a disproportionately large infection cluster of unknown origin. This study emphasizes the importance of sequencing at the local jurisdictional level and demonstrates the impact that regional variation can have when assessing risk due to point mutations that impact clinical test performance. It also reinforces the need for diligent reporting of abnormal test results by clinical laboratories, especially during Emergency Use Authorization (EUA) periods, as additional information is gathered about the target organism and the performance of EUA-authorized tests over time.
Collapse
Affiliation(s)
- Denise Lopez
- College of Public Health, University of South Florida, Tampa, FL, United States of America
- Public Health Branch, County of Tulare, Tulare, CA, United States of America
| | - Jill Roberts
- College of Public Health, University of South Florida, Tampa, FL, United States of America
| | - Marie Bourgeois
- College of Public Health, University of South Florida, Tampa, FL, United States of America
| | - Joshua Kootstra
- Public Health Branch, County of Tulare, Tulare, CA, United States of America
| | - Sharon Minnick
- Public Health Branch, County of Tulare, Tulare, CA, United States of America
| | - Allison Black
- CZBiohub, San Francisco, CA, United States of America
| | - Joshua Mauss
- Public Health Branch, County of Tulare, Tulare, CA, United States of America
| | - Nick Flores
- Public Health Branch, County of Tulare, Tulare, CA, United States of America
| |
Collapse
|
36
|
Fajardo Á, Perbolianachis P, Ferreiro I, Moreno P, Moratorio G. Molecular accuracy vs antigenic speed: SARS-CoV-2 testing strategies. Curr Opin Pharmacol 2022; 62:152-158. [PMID: 35042168 PMCID: PMC8687762 DOI: 10.1016/j.coph.2021.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023]
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has hit every corner of the world faster than any infectious disease ever known. In this context, rapid and accurate testing of positive cases are essential to follow the test-trace-isolate strategy (TETRIS), which has proven to be a key approach to constrain viral spread. Here, we discuss how to interpret and combine molecular or/and antigen-based detection methods for SARS-CoV-2 as well as when they should be used. Their application can be cleverly designed as an algorithm to prevent viral dissemination according to distinct epidemiological contexts within surveillance programs.
Collapse
Affiliation(s)
- Álvaro Fajardo
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur, Montevideo, Uruguay; Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur, Montevideo, Uruguay; Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Irene Ferreiro
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur, Montevideo, Uruguay; Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pilar Moreno
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur, Montevideo, Uruguay; Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | - Gonzalo Moratorio
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur, Montevideo, Uruguay; Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
37
|
Barros FR, Leite DC, Guimarães LJ, Lopes JM, Vasconcelos MW, Ferreira LX, Gonçalves S, Pastre VG, Pereira G, Trentin AB, Gabiatti NC, Kuhn BC, Perseguini JM, Wendt SN, Ghisi NC. Performance of RT-qPCR detection of SARS-CoV-2 in unextracted nasopharyngeal samples using the Seegene Allplex TM 2019-nCoV protocol. J Virol Methods 2022; 300:114429. [PMID: 34919975 PMCID: PMC8668600 DOI: 10.1016/j.jviromet.2021.114429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022]
Abstract
The rapid spread of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led the world to a pandemic. Therefore, rapid, sensitive, and reproducible diagnostic tests are essential to indicate which measures should be taken during pandemics. We retrospectively tested unextracted nasopharyngeal samples from consecutive patients with suspected SARS-CoV-2 infection (n = 334), and compared two different Ct cut-off values for interpretation of results using a modified Allplex protocol. Its performance was evaluated using the USA Centers for Disease Control and Prevention (CDC) as reference. The reduction on Ct cut-off to 35 increased the test NPA from 79.65 to 88.00 %, reducing the number of false positives, from 10.48 to 6.29 %, resulting in an almost perfect agreement between the Allplex and the CDC protocol (Cohen's Kappa coefficient = 0.830 ± 0.032). This study demonstrates that the Seegene Allplex™ 2019-nCoV protocol skipping the viral RNA extraction step using the Ct cut-off of 35 is a rapid and efficient method to detect SARS-CoV-2 in nasopharyngeal samples.
Collapse
Affiliation(s)
- Flavia R.O. Barros
- Corresponding authors at: Universidade Tecnológica Federal do Paraná, Estrada para Boa Esperança, Km 4, Dois Vizinhos, PR, 85660-000, Brazil
| | - Deborah C.A. Leite
- Corresponding authors at: Universidade Tecnológica Federal do Paraná, Estrada para Boa Esperança, Km 4, Dois Vizinhos, PR, 85660-000, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | - Nédia C. Ghisi
- Corresponding authors at: Universidade Tecnológica Federal do Paraná, Estrada para Boa Esperança, Km 4, Dois Vizinhos, PR, 85660-000, Brazil
| |
Collapse
|
38
|
Arana C, Liang C, Brock M, Zhang B, Zhou J, Chen L, Cantarel B, SoRelle J, Hooper LV, Raj P. A short plus long-amplicon based sequencing approach improves genomic coverage and variant detection in the SARS-CoV-2 genome. PLoS One 2022; 17:e0261014. [PMID: 35025877 PMCID: PMC8757904 DOI: 10.1371/journal.pone.0261014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/22/2021] [Indexed: 12/01/2022] Open
Abstract
High viral transmission in the COVID-19 pandemic has enabled SARS-CoV-2 to acquire new mutations that may impact genome sequencing methods. The ARTIC.v3 primer pool that amplifies short amplicons in a multiplex-PCR reaction is one of the most widely used methods for sequencing the SARS-CoV-2 genome. We observed that some genomic intervals are poorly captured with ARTIC primers. To improve the genomic coverage and variant detection across these intervals, we designed long amplicon primers and evaluated the performance of a short (ARTIC) plus long amplicon (MRL) sequencing approach. Sequencing assays were optimized on VR-1986D-ATCC RNA followed by sequencing of nasopharyngeal swab specimens from fifteen COVID-19 positive patients. ARTIC data covered 94.47% of the virus genome fraction in the positive control and patient samples. Variant analysis in the ARTIC data detected 217 mutations, including 209 single nucleotide variants (SNVs) and eight insertions & deletions. On the other hand, long-amplicon data detected 156 mutations, of which 80% were concordant with ARTIC data. Combined analysis of ARTIC + MRL data improved the genomic coverage to 97.03% and identified 214 high confidence mutations. The combined final set of 214 mutations included 203 SNVs, 8 deletions and 3 insertions. Analysis showed 26 SARS-CoV-2 lineage defining mutations including 4 known variants of concern K417N, E484K, N501Y, P618H in spike gene. Hybrid analysis identified 7 nonsynonymous and 5 synonymous mutations across the genome that were either ambiguous or not called in ARTIC data. For example, G172V mutation in the ORF3a protein and A2A mutation in Membrane protein were missed by the ARTIC assay. Thus, we show that while the short amplicon (ARTIC) assay provides good genomic coverage with high throughput, complementation of poorly captured intervals with long amplicon data can significantly improve SARS-CoV-2 genomic coverage and variant detection.
Collapse
Affiliation(s)
- Carlos Arana
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Microbiome and Genomics core, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Chaoying Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Microbiome and Genomics core, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Matthew Brock
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Microbiome and Genomics core, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Bo Zhang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Jinchun Zhou
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Microbiome and Genomics core, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Li Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Brandi Cantarel
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Jeffrey SoRelle
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Lora V. Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Microbiome and Genomics core, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
39
|
Hernandez MM, Banu R, Gonzalez-Reiche AS, van de Guchte A, Khan Z, Shrestha P, Cao L, Chen F, Shi H, Hanna A, Alshammary H, Fabre S, Amoako A, Obla A, Alburquerque B, Patiño LH, Ramírez JD, Sebra R, Gitman MR, Nowak MD, Cordon-Cardo C, Schutzbank TE, Simon V, van Bakel H, Sordillo EM, Paniz-Mondolfi AE. Robust clinical detection of SARS-CoV-2 variants by RT-PCR/MALDI-TOF multitarget approach. J Med Virol 2021; 94:1606-1616. [PMID: 34877674 DOI: 10.1002/jmv.27510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has sparked the rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. However, emerging variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site (PBS) mismatches. The Agena MassARRAY® SARS-CoV-2 Panel combines reverse-transcription polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified data set of 1262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from December 2020 to April 2021 to evaluate target results and corresponding sequencing data. Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with N3 target dropout, 57% harbored an A28095T substitution that is highly specific for the Alpha (B.1.1.7) variant of concern. These data highlight the benefit of redundancy in target design and the potential for target performance to illuminate the dynamics of circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Matthew M Hernandez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Radhika Banu
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paras Shrestha
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Liyong Cao
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Feng Chen
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Huanzhi Shi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ayman Hanna
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shelcie Fabre
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angela Amoako
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ajay Obla
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bremy Alburquerque
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Sema4, a Mount Sinai Venture, Stamford, Connecticut, USA
| | - Melissa R Gitman
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael D Nowak
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ted E Schutzbank
- Senior Scientific Affairs Manager, Infectious Diseases, Agena Bioscience, San Diego, California, USA
| | - Viviana Simon
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alberto E Paniz-Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
40
|
Chrysostomou AC, Hezka Rodosthenous J, Topcu C, Papa C, Aristokleous A, Stathi G, Christodoulou C, Eleftheriou C, Stylianou DC, Kostrikis LG. A Multiallelic Molecular Beacon-Based Real-Time RT-PCR Assay for the Detection of SARS-CoV-2. Life (Basel) 2021; 11:life11111146. [PMID: 34833022 PMCID: PMC8619337 DOI: 10.3390/life11111146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging infectious viruses have led to global advances in the development of specific and sensitive detection techniques. Viruses have an inherent potential to easily mutate, presenting major hurdles for diagnostics and requiring methods capable of detecting genetically diverse viral strains. One such infectious agent is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in December 2019 and has resulted in the global coronavirus disease 2019 (COVID-19) pandemic. This study presents a real-time reverse transcription PCR (RT-PCR) detection assay for SARS-CoV-2, taking into account its intrinsic polymorphic nature that arises due to genetic drift and recombination, as well as the possibility of continuous and multiple introductions of genetically nonidentical strains into the human population. This advance was achieved by using mismatch-tolerant molecular beacons designed to specifically detect the SARS-CoV-2 S, E, M, and N genes. These were applied to create a simple and reproducible real-time RT-PCR assay, which was validated using external quality control panels (QCMD: CVOP20, WHO: SARS-CoV-2-EQAP-01) and clinical samples. This assay was designed for high target detection accuracy and specificity and can also be readily adapted for the detection of other emerging and rapidly mutating pathogens.
Collapse
Affiliation(s)
- Andreas C. Chrysostomou
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus; (A.C.C.); (J.H.R.); (C.T.); (C.P.); (A.A.); (G.S.); (C.C.); (D.C.S.)
| | - Johana Hezka Rodosthenous
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus; (A.C.C.); (J.H.R.); (C.T.); (C.P.); (A.A.); (G.S.); (C.C.); (D.C.S.)
| | - Cicek Topcu
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus; (A.C.C.); (J.H.R.); (C.T.); (C.P.); (A.A.); (G.S.); (C.C.); (D.C.S.)
| | - Christina Papa
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus; (A.C.C.); (J.H.R.); (C.T.); (C.P.); (A.A.); (G.S.); (C.C.); (D.C.S.)
| | - Antonia Aristokleous
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus; (A.C.C.); (J.H.R.); (C.T.); (C.P.); (A.A.); (G.S.); (C.C.); (D.C.S.)
| | - Georgia Stathi
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus; (A.C.C.); (J.H.R.); (C.T.); (C.P.); (A.A.); (G.S.); (C.C.); (D.C.S.)
| | - Christina Christodoulou
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus; (A.C.C.); (J.H.R.); (C.T.); (C.P.); (A.A.); (G.S.); (C.C.); (D.C.S.)
| | - Christina Eleftheriou
- Department of Health and Safety, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus;
| | - Dora C. Stylianou
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus; (A.C.C.); (J.H.R.); (C.T.); (C.P.); (A.A.); (G.S.); (C.C.); (D.C.S.)
| | - Leondios G. Kostrikis
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus; (A.C.C.); (J.H.R.); (C.T.); (C.P.); (A.A.); (G.S.); (C.C.); (D.C.S.)
- Correspondence: ; Tel.: +357-2289-2885
| |
Collapse
|
41
|
Reilly M, Chohan B. Pooled testing for SARS-CoV-2, options for efficiency at scale. Bull World Health Organ 2021; 99:708-714. [PMID: 34621088 PMCID: PMC8477423 DOI: 10.2471/blt.20.283093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022] Open
Abstract
Widescale testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is recognized as a key element of surveillance and outbreak control in the coronavirus disease 2019 (COVID-19) pandemic. The practical challenges, however, have often led to testing only symptomatic individuals and their close contacts. As many countries plan for a cautious relaxation of social restrictions, more effective approaches for widescale testing are increasingly important. Early in the COVID-19 pandemic, laboratories in several countries demonstrated the feasibility of detecting SARS-CoV-2 infection by pooled testing, which combines the specimens from several individuals. Since no further testing is needed for individuals in a negative pool, there is potential for greater efficiency of testing. Despite validations of the accuracy of the results and the efficiency in testing specific groups, the benefits of pooling are less acknowledged as a population surveillance strategy that can detect new disease outbreaks without posing restrictions on entire societies. Pooling specimens from natural clusters, such as school classes, sports teams, workplace colleagues and other social networks, would enable timely and cost-effective widescale testing for SARS-CoV-2. The initial result would be readily translatable into action in terms of quarantine and isolation policies. Clusters of uninfected individuals would be quickly identified and immediate local lockdown of positive clusters would be the appropriate and sufficient action while retesting those individuals. By adapting to the social networks of a population, pooled testing offers a cost-efficient surveillance system that is synchronized with quarantine policies that are rational, risk-based and equitable.
Collapse
Affiliation(s)
- Marie Reilly
- Department of Medical Epidemiology and Biostatistics, Nobels väg 12A, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bhavna Chohan
- Department of Global Health, University of Washington, Seattle, United States of America
| |
Collapse
|
42
|
Zóka A, Bekő G. Does the E gene provide additional information in SARS-CoV-2 PCR? J Infect Chemother 2021; 27:1676-1677. [PMID: 34417095 PMCID: PMC8364812 DOI: 10.1016/j.jiac.2021.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022]
Affiliation(s)
- András Zóka
- South-Pest Central Hospital, National Institute of Hematology and Infectology, Hungary.
| | - Gabriella Bekő
- South-Pest Central Hospital, National Institute of Hematology and Infectology, Hungary
| |
Collapse
|