1
|
Wang H, Liu R, Yu Y, Xue H, Shen R, Zhang Y, Ding J. Effects of cell shape and nucleus shape on epithelial-mesenchymal transition revealed using chimeric micropatterns. Biomaterials 2025; 317:123013. [PMID: 39733514 DOI: 10.1016/j.biomaterials.2024.123013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/16/2024] [Accepted: 12/13/2024] [Indexed: 12/31/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a key phenotypic switch in cancer metastasis, leading to fatal consequences for patients. Under geometric constraints, the morphology of cancer cells changes in both cellular and subcellular levels, whose effects on EMT are, however, not fully understood. Herein, we designed and fabricated chimeric micropatterns of polystyrene (PS) with adhesion contrast to reveal the impacts of cell shapes and nuclear shapes on EMT in a decoupled way. Cell elongation was modulated via microwell aspect ratios (ARs), and nuclear deformation was generated through a micropillar array in the microwell. Human non-small cell lung cancer cells (A549) were cultured on the quasi-three dimensional micropatterned surfaces, and transforming growth factor-β1 (TGF-β1) was added to induce EMT. We found that chimeric micropatterns upregulated EMT with an increase of cellular AR and nuclear indentation under given TGF-β1. The subsequent assessment of the contractility and oriented assembly of microfilaments elucidated the key role of mechanotransduction in cell elongation and EMT, as proved by myosin inhibition, while it was obstructed by micropillars in the chimeric micropattern. Hence, the micropillar array possessed a nonmonotonic influence, enhancing the EMT of cells with AR of 1, but hindering the EMT with an impact more significant on microwells with large ARs due to the impeded cytoskeleton assembly. This fundamental research has illustrated the complex of cellular and subcellular geometries on cell behaviors including phenotype transition in cancer metastasis.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yue Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongrui Xue
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yanshuang Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Nie Y, Lu X, Zhu Y, Shi Y, Ren K, Li Z, Chen P, Han D, Li X. Circular Adhesion Substrates Inhibiting Cell Polarization and Proliferation via Graded Texture of Geometric Micropatterns. SMALL METHODS 2025; 9:e2401471. [PMID: 39564718 DOI: 10.1002/smtd.202401471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Most melanomas that occur on the skin surface originate from a newly formed nevus and grow outward in a circular pattern and metastasize from the nevus center. Herein, a circular microfabricated substrate is constructed to explore the growth behavior of melanoma cells. Modeling software is used to calculate appropriate parameters, including shape and size, and then the substrates are processed with microfabrication technologies. The results show that the melanoma cells on the circular adhesion substrate are oval and are significant changes in cell spread length, nuclei, area, aspect ratio, Young's modulus, and orientation angles, indicating inhibition of cell polarization. Moreover, three different layers from circular adhesion substrates are selected to construct new substrates, which indicates that the polarization degree of cells is closely related to the number of micropillar arrays on the circular geometric substrate. In addition, flow cytometry demonstrates that the circular substrate reduced the transition from resting/gap 1 phase (G0/G1) to synthesis phase (S phase), thereby decreasing DNA synthesis and proliferation, reminding a potential method for treatment strategy. More importantly, the circular adhesion substrate influences the integrin signaling pathway, which has a potential application and research prospect in the treatment of melanoma.
Collapse
Affiliation(s)
- Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xi Lu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, P. R. China
| | - Yuting Zhu
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Yahong Shi
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, P. R. China
| | - Keli Ren
- The Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhongxian Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peipei Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
O'Connor CE, Zhang F, Neufeld A, Prado O, Simmonds SP, Fortin CL, Johansson F, Mene J, Saxton SH, Kopyeva I, Gregorio NE, James Z, DeForest CA, Wayne EC, Witten DM, Stevens KR. Bioprinted platform for parallelized screening of engineered microtissues in vivo. Cell Stem Cell 2025; 32:838-853.e6. [PMID: 40168987 DOI: 10.1016/j.stem.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/19/2024] [Accepted: 03/04/2025] [Indexed: 04/03/2025]
Abstract
Human engineered tissues hold great promise for therapeutic tissue regeneration and repair. Yet, development of these technologies often stalls at the stage of in vivo studies due to the complexity of engineered tissue formulations, which are often composed of diverse cell populations and material elements, along with the tedious nature of in vivo experiments. We introduce a "plug and play" platform called parallelized host apposition for screening tissues in vivo (PHAST). PHAST enables parallelized in vivo testing of 43 three-dimensional microtissues in a single 3D-printed device. Using PHAST, we screen microtissue formations with varying cellular and material components and identify formulations that support vascular graft-host inosculation and engineered liver tissue function in vivo. Our studies reveal that the cellular population(s) that should be included in engineered tissues for optimal in vivo performance is material dependent. PHAST could thus accelerate development of human tissue therapies for clinical regeneration and repair.
Collapse
Affiliation(s)
- Colleen E O'Connor
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Fan Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Anna Neufeld
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Olivia Prado
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Susana P Simmonds
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Chelsea L Fortin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Fredrik Johansson
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Jonathan Mene
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Sarah H Saxton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Nicole E Gregorio
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Zachary James
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth C Wayne
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Daniela M Witten
- Department of Statistics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kelly R Stevens
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Dehn KI, Maiello G, Hartmann FT, Morgenstern Y, Hawkins SJ, Offner T, Walter J, Hassenklöver T, Manzini I, Fleming RW. Human shape perception spontaneously discovers the biological origin of novel, but natural, stimuli. J R Soc Interface 2025; 22:20240931. [PMID: 40393522 DOI: 10.1098/rsif.2024.0931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/17/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025] Open
Abstract
Humans excel at categorizing objects by shape. This facility involves identifying shape features that objects have in common with other members of their class and relies-at least in part-on semantic/cognitive constructs. For example, plants sprout branches, fish grow fins, shoes are moulded to our feet. Can humans parse shapes according to the processes that give shapes their key characteristics, even when such processes are hidden? To answer this, we investigated how humans perceive the shape of cells from the olfactory system of Xenopus laevis tadpoles. These objects are novel to most humans yet occur in nature and cluster into classes following their underlying biological function. We reconstructed three-dimensional (3D) cell models through 3D microscopy and photogrammetry, then conducted psychophysical experiments. Human participants performed two tasks: they arranged 3D-printed cell models by similarity and rated them along eight visual dimensions. Participants were highly consistent in their arrangements and ratings and spontaneously grouped stimuli to reflect the cell classes, unwittingly revealing the underlying processes shaping these forms. Our findings thus demonstrate that human perceptual organization mechanisms spontaneously parse the biological systematicities of never-before-seen, natural shapes. Integrating such human perceptual strategies into automated systems may enhance morphology-based analysis in biology and medicine.
Collapse
Affiliation(s)
- Kira Isabel Dehn
- Department of Psychology, Justus Liebig University Giessen, Giessen, Hessen, Germany
| | - Guido Maiello
- School of Psychology, University of Southampton, Southampton, England, UK
| | - Frieder Tom Hartmann
- Department of Psychology, Justus Liebig University Giessen, Giessen, Hessen, Germany
| | - Yaniv Morgenstern
- Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Zuid-Holland, The Netherlands
| | - Sara Joy Hawkins
- School of Biological Sciences, University of Southampton, Southampton, England, UK
| | - Thomas Offner
- Georg August University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Joshua Walter
- Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Hessen, Germany
| | - Thomas Hassenklöver
- Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Hessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Hessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Hessen, Germany
| | - Roland W Fleming
- Department of Psychology, Justus Liebig University Giessen, Giessen, Hessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Hessen, Germany
| |
Collapse
|
5
|
Ino K, Mockaitis T, Shikuwa R, Oba K, Hiramoto K, Morkvenaite-Vilkonciene I, Abe H, Shiku H. Recent advances in electrochemiluminescence sensing for in vitro cell analysis: a review. ANAL SCI 2025; 41:557-569. [PMID: 39918697 DOI: 10.1007/s44211-025-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 05/10/2025]
Abstract
Electrochemiluminescence (ECL) is a chemiluminescence phenomenon triggered by electrochemical reactions and is widely used for (bio)chemical analyses and electrochemical bioimaging. Compared to fluorescence sensing, ECL sensing reduces background noise by eliminating autofluorescence associated with excitation light. In addition, compared with conventional electrochemical imaging with scanning electrochemical microscopes, ECL imaging is faster as it requires no scanning. Furthermore, unlike electrode arrays, ECL devices can function without complex wiring, simplifying their construction. These characteristics render ECL sensing a useful analytical tool. Recently, ECL sensing has been widely used for in vitro cell analysis due to high demand for biochips in regenerative medicine, drug screening, and microphysiological systems. This review focuses on recent advancements in ECL-based cell analysis with applications for the detection of H2O2, respiration activity, cell adhesion, lipid membranes, and bipolar electrochemistry-based devices.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| | - Tomas Mockaitis
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
- Laboratory of Bioelectrochemical Technologies, Department of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 10257, Vilnius, Lithuania
| | - Ryota Shikuwa
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Kimiharu Oba
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Kaoru Hiramoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8577, Japan
- Research Institute of Electrical Communications, Tohoku University, Sendai, 980-8577, Japan
| | - Inga Morkvenaite-Vilkonciene
- Laboratory of Bioelectrochemical Technologies, Department of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 10257, Vilnius, Lithuania
- Department of Electrical Engineering, Vilnius Gediminas Technical University, 10223, Vilnius, Lithuania
| | - Hiroya Abe
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
6
|
Han Y, Liu X, Qu S, Duan X, Xiang Y, Jiang N, Yang S, Fang X, Xu L, Wen H, Yu Y, Huang S, Huang J, Zhu K. Tissue geometry spatiotemporally drives bacterial infections. Cell 2025:S0092-8674(25)00394-0. [PMID: 40262607 DOI: 10.1016/j.cell.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
Epithelial tissues serve as the first line of host against bacterial infections. The self-organization of epithelial tissues continuously adapts to the architecture and mechanics of microenvironments, thereby dynamically impacting the initial niche of infections. However, the mechanism by which tissue geometry regulates bacterial infection remains poorly understood. Here, we showed geometry-guided infection patterns of bacteria in epithelial tissues using bioengineering strategies. We discovered that cellular traction forces play a crucial role in the regulation of bacterial invasive sites and marginal infection patterns in epithelial monolayers through triggering co-localization of mechanosensitive ion channel protein Piezo1 with bacteria. Further, we developed precise mechanobiology-based strategies to potentiate the antibacterial efficacy in animal models of wound and intestinal infection. Our findings demonstrate that tissue geometry exerts a key impact on mediating spatiotemporal infections of bacteria, which has important implications for the discovery and development of alternative strategies against bacterial infections.
Collapse
Affiliation(s)
- Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoye Liu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, China
| | - Shaoqi Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Yunqing Xiang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Nan Jiang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Shuyu Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xu Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Liang Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Hui Wen
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yue Yu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Shuqiang Huang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Villeneuve C, McCreery KP, Wickström SA. Measuring and manipulating mechanical forces during development. Nat Cell Biol 2025; 27:575-590. [PMID: 40065147 DOI: 10.1038/s41556-025-01632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/04/2025] [Indexed: 04/13/2025]
Abstract
Tissue deformations are a central feature of development, from early embryogenesis, growth and building the body plan to the establishment of functional organs. These deformations often result from active contractile forces generated by cells and cell collectives, and are mediated by changes in their mechanical properties. Mechanical forces drive the formation of functional organ architectures, but they also coordinate cell behaviour and fate transitions, ensuring robustness of development. Advances in microscopy, genetics and chemistry have enabled increasingly powerful tools for measuring, generating and perturbing mechanical forces. Here we discuss approaches to measure and manipulate mechanical forces with a focus on developmental processes, ranging from quantification of molecular interactions to mapping the mechanical properties of tissues. We focus on contemporary methods, and discuss the biological discoveries that these approaches have enabled. We conclude with an outlook to methodologies at the interface of physics, chemistry and biology to build an integrated understanding of tissue morphodynamics.
Collapse
Affiliation(s)
- Clémentine Villeneuve
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kaitlin P McCreery
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Zhang X, Smith J, Zhou AC, Duong JTT, Qi T, Chen S, Lin YJ, Gill A, Lo CH, Lin NYC, Wen J, Lu Y, Chiou PY. Large-scale acoustic single cell trapping and selective releasing. LAB ON A CHIP 2025; 25:1537-1551. [PMID: 39901861 DOI: 10.1039/d4lc00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Recent advancements in single-cell analysis have underscored the need for precise isolation and manipulation of individual cells. Traditional techniques for single-cell manipulation are often limited by the number of cells that can be parallel trapped and processed and usually require complex devices or instruments to operate. Here, we introduce an acoustic microfluidic platform that efficiently traps and selectively releases individual cells using spherical air cavities embedded in a polydimethylsiloxane (PDMS) substrate for large scale manipulation. Our device utilizes the principle of acoustic impedance mismatches to generate near-field acoustic potential gradients that create trapping sites for single cells. These single cell traps can be selectively disabled by illuminating a near-infrared laser pulse, allowing targeted release of trapped cells. This method ensures minimal impact on cell viability and proliferation, making it ideal for downstream single-cell analysis. Experimental results demonstrate our platform's capability to trap and release synthetic microparticles and biological cells with high efficiency and biocompatibility. Our device can handle a wide range of cell sizes (8-30 μm) across a large active manipulation area of 1 cm2 with 20 000 single-cell traps, providing a versatile and robust platform for single-cell applications. This acoustic microfluidic platform offers a cost-effective and practical method for large scale single-cell trapping and selective releasing with potential applications in genomics, proteomics, and other fields requiring precise single-cell manipulation.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | - Jacob Smith
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | | | | | - Tong Qi
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Shilin Chen
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Yen-Ju Lin
- Department of Electrical and Computer Engineering, University of California at Los Angeles, USA
| | - Alexi Gill
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | - Chih-Hui Lo
- Department of Bioengineering, University of California at Los Angeles, USA
| | - Neil Y C Lin
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
- Department of Bioengineering, University of California at Los Angeles, USA
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, USA
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, USA
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| |
Collapse
|
9
|
Buglione A, Alloisio G, Ciaccio C, Rodriguez DB, Dogali S, Luce M, Marini S, Cricenti A, Gioia M. GsMTx-4 venom toxin antagonizes biophysical modulation of metastatic traits in human osteosarcoma cells. Eur J Cell Biol 2025; 104:151469. [PMID: 39671774 DOI: 10.1016/j.ejcb.2024.151469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Despite their genetic diversity, metastatic cells converge on similar physical constraints during tumor progression. At the nanoscale, these forces can induce substantial molecular deformations, altering the structure and behavior of cancer cells. To address the challenges of osteosarcoma (OS), a highly aggressive cancer, we explored the mechanobiology of OS cells, in vitro. Using uniaxial-stretching technology, we examined the biophysical modulation of metastatic traits in SAOS-2, U-2 OS, and non-tumorigenic hFOB cells. Changes in cell morphology were quantified using confocal and fluorescence microscopy. To elucidate the molecular mechanisms that translate biomechanical alterations into biochemical responses, we employed Western blotting, real-time quantitative RT-PCR, reactive oxygen species ROS assay, and the mechanosensitive channel blocker Grammostola MechanoToxin4 (GsMTx-4). Our study reveals that mechanical stimulation uniquely affects OS cells, increasing nuclear size and altering the N/C ratio. We found that mechanosensitive (MS) channels are activated, leading to ROS accumulation, Src protein modulation, and histone H3 acetylation. These changes influence OS cell motility and adhesion but not proliferation. Importantly, mechanical preconditioning differentially impacts doxorubicin resistance, correlating with the Src-H3 acetylation axis. This study underscores the critical role of MS channels in OS cells and highlights the importance of mechanobiology in identifying molecular pathways that traditional biochemical approaches may not reveal. Notably, the GsMTx-4 venom peptide effectively countered mechanically induced responses, particularly by inhibiting OS cell migration, without harming healthy cells. Thus, suggesting its potential as a promising therapeutic agent for targeting osteosarcoma metastasis.
Collapse
Affiliation(s)
- Arianna Buglione
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - David Becerril Rodriguez
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Simone Dogali
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Marco Luce
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Antonio Cricenti
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy.
| |
Collapse
|
10
|
House A, Santillan A, Correa E, Youssef V, Guvendiren M. Cellular Alignment and Matrix Stiffening Induced Changes in Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Adv Healthc Mater 2025; 14:e2402228. [PMID: 39468891 DOI: 10.1002/adhm.202402228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Biological processes are inherently dynamic, necessitating biomaterial platforms capable of spatiotemporal control over cellular organization and matrix stiffness for accurate study of tissue development, wound healing, and disease. However, most in vitro platforms remain static. In this study, a dynamic biomaterial platform comprising a stiffening hydrogel is introduced and achieved through a stepwise approach of addition followed by light-mediated crosslinking, integrated with an elastomeric substrate featuring strain-responsive lamellar surface patterns. Employing this platform, the response of human induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CMs) is investigated to dynamic stiffening from healthy to fibrotic tissue stiffness. The results demonstrate that culturing hIPSC-CMs on physiologically relevant healthy stiffness significantly enhances their function, as evidenced by increased sarcomere fraction, wider sarcomere width, significantly higher connexin-43 content, and elevated cell beating frequency compared to cells cultured on fibrotic matrix. Conversely, dynamic matrix stiffening negatively impacts hIPSC-CM function, with earlier stiffening events exerting a more pronounced hindering effect. These findings provide valuable insights into material-based approaches for addressing existing challenges in hIPSC-CM maturation and have broader implications across various tissue models, including muscle, tendon, nerve, and cornea, where both cellular alignment and matrix stiffening play pivotal roles in tissue development and regeneration.
Collapse
Affiliation(s)
- Andrew House
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Anjeli Santillan
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Evan Correa
- Federated Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Victoria Youssef
- Federated Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| | - Murat Guvendiren
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA
| |
Collapse
|
11
|
Putra VDL, Kilian KA, Knothe Tate ML. Stem cell mechanoadaptation. II. Microtubule stabilization and substrate compliance effects on cytoskeletal remodeling. APL Bioeng 2025; 9:016103. [PMID: 39801501 PMCID: PMC11719672 DOI: 10.1063/5.0231287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/01/2024] [Indexed: 01/16/2025] Open
Abstract
Stem cells adapt to their local mechanical environment by rearranging their cytoskeleton, which underpins the evolution of their shape and fate as well as the emergence of tissue structure and function. Here, in the second part of a two-part experimental series, we aimed to elucidate spatiotemporal cytoskeletal remodeling and resulting changes in morphology and mechanical properties of cells and their nuclei. Akin to mechanical testing of the most basic living and adapting unit of life, i.e., the cell, in situ in model tissue templates, we probed native and microtubule-stabilized (via Paclitaxel, PAX, exposure) stem cells' cytoskeletal adaptation capacity on substrates of increasing compliance (exerting local tension on cells) and with increased target seeding densities (exerting local compression on cells). On 10 and 100 kPa gels, cells seeded at 5000 cells/cm2 and cells proliferated to 15 000 cells/cm2 exhibited bulk moduli that nearly matched those of their respective substrates; hence, they exhibited a greater increase in Young's Modulus after microtubule stabilization than cells cultured on glass. Culture on compliant substrates also reduced microtubule-stabilized cells' F-actin, and microtubule concentration increases compared to cells seeded on glass. On gels, F-actin alignment decreased as more randomly oriented, short actin crosslinks were observed, representing emergent adaptation to the compliant substrate, mediated through myosin II contractility. We conclude that stem cell adaptation to compliant substrates facilitates the accommodation of larger loads from the PAX-stabilized polymerizing microtubule, which, in turn, exerts a larger effect in determining cells' capacity to stiffen and remodel the cytoskeleton. Taken as a whole, these studies establish correlations between cytoskeleton and physical and mechanical parameters of stem cells. Hence, the studies progress our understanding of the dynamic cytoskeleton as well as shape changes in cells and their nuclei, culminating in emergent tissue development and healing.
Collapse
Affiliation(s)
- Vina D. L. Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A. Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | | |
Collapse
|
12
|
Okura K, Tatsumi H. Pulling Forces Dampen Torsional Fluctuations of Actin Filaments and Reduce Cooperative Cofilin Binding. J Mol Biol 2025; 437:168942. [PMID: 39814170 DOI: 10.1016/j.jmb.2025.168942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
A variety of potential biological roles of mechanical forces have been proposed in the field of cell biology. In particular, mechanical forces alter the mechanical conditions within cells and their environment, exerting a strong effect on the reorganization of the actin cytoskeleton. Single-molecule imaging studies have provided evidence that an actin filament may act as a mechanosensor. An increase in the tension within actin filaments causes changes in their conformation and affinity to their regulatory proteins. However, our current understanding of the molecular mechanisms of the tension sensing and the affinity change of regulatory proteins is still incomplete. In this study, we employed fluorescence polarization microscopy and magnetic tweezers to directly quantify the torsional fluctuations of single actin filaments and cofilin binding to the filament under several distinct mechanical conditions. When an actin filament was severed by scratching the filament with a pipette tip, the amplitude of twisting/torsional fluctuations and the rate of cooperative cofilin binding increased. On the other hand, when a piconewton force was applied to single actin filaments by magnetic tweezers, the amplitude of twisting fluctuations and the rate of cooperative cofilin binding decreased. This may be involved in the molecular mechanism behind the mechanical force-dependent severing of actin filaments in cells.
Collapse
Affiliation(s)
- Kaoru Okura
- Department of Applied Bioscience, Kanazawa Institute of Technology, Japan
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology, Japan.
| |
Collapse
|
13
|
Elblová P, Andělová H, Lunova M, Anthi J, Henry SJW, Tu X, Dejneka A, Jirsa M, Stephanopoulos N, Lunov O. Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake. J Mater Chem B 2025; 13:2335-2351. [PMID: 39835937 PMCID: PMC11749194 DOI: 10.1039/d5tb00074b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
DNA nanostructures (DNs) have gained popularity in various biomedical applications due to their unique properties, including structural programmability, ease of synthesis and functionalization, and low cytotoxicity. Effective utilization of DNs in biomedical applications requires a fundamental understanding of their interactions with living cells and the mechanics of cellular uptake. Current knowledge primarily focuses on how the physicochemical properties of DNs, such as mass, shape, size, and surface functionalization, affect uptake efficacy. However, the role of cellular mechanics and morphology in DN uptake remains largely unexplored. In this work, we show that cells subjected to geometric constraints remodel their actin cytoskeleton, resulting in differential mechanical force generation that facilitates DN uptake. The length, number, and orientation of F-actin fibers are influenced by these constraints, leading to distinct mechanophenotypes. Overall, DN uptake is governed by F-actin forces arising from filament reorganisation under geometric constraints. These results underscore the importance of actin dynamics in the cellular uptake of DNs and suggest that leveraging geometric constraints to induce specific cell morphology adaptations could enhance the uptake of therapeutically designed DNs.
Collapse
Affiliation(s)
- Petra Elblová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Prague 2, Czech Republic
| | - Hana Andělová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Judita Anthi
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| | - Skylar J W Henry
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, USA
| | - Xinyi Tu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, USA
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, USA
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
14
|
Dudaryeva OY, Cousin L, Krajnovic L, Gröbli G, Sapkota V, Ritter L, Deshmukh D, Cui Y, Style RW, Levato R, Labouesse C, Tibbitt MW. Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410452. [PMID: 39745118 PMCID: PMC11837887 DOI: 10.1002/adma.202410452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/01/2024] [Indexed: 02/20/2025]
Abstract
3D scaffolds enable biological investigations with a more natural cell conformation. However, the porosity of synthetic hydrogels is often limited to the nanometer scale, which confines the movement of 3D encapsulated cells and restricts dynamic cell processes. Precise control of hydrogel porosity across length scales remains a challenge and the development of porous materials that allow cell infiltration, spreading, and migration in a manner more similar to natural ECM environments is desirable. Here, a straightforward and reliable method is presented for generating kinetically-controlled macroporous biomaterials using liquid-liquid phase separation between poly(ethylene glycol) (PEG) and dextran. Photopolymerization-induced phase separation resulted in macroporous hydrogels with tunable pore size. Varying light intensity and hydrogel composition controlled polymerization kinetics, time to percolation, and complete gelation, which defined the average pore diameter (Ø = 1-200 µm) and final gel stiffness of the formed hydrogels. Critically, for biological applications, macroporous hydrogels are prepared from aqueous polymer solutions at physiological pH and temperature using visible light, allowing for direct cell encapsulation. Human dermal fibroblasts in a range of macroporous gels are encapsulated with different pore sizes. Porosity improved cell spreading with respect to bulk gels and allowed migration in the porous biomaterials.
Collapse
Affiliation(s)
- Oksana Y. Dudaryeva
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
- Department of OrthopedicsUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Lucien Cousin
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Leila Krajnovic
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Gian Gröbli
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Virbin Sapkota
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Lauritz Ritter
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Dhananjay Deshmukh
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Yifan Cui
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Robert W. Style
- Laboratory for Soft Materials and InterfacesDepartment of MaterialsETH ZurichZurich8093Switzerland
| | - Riccardo Levato
- Department of OrthopedicsUniversity Medical Center UtrechtUtrecht3584Netherlands
- Department of Clinical ScienceFaculty of Veterinary MedicineUtrecht UniversityUtrecht3581CTNetherlands
| | - Céline Labouesse
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| |
Collapse
|
15
|
Che H, Hart ML, Lauer JC, Selig M, Voelker M, Kurz B, Rolauffs B. A xenogenic-free culture medium for cell micro-patterning systems as cell-instructive biomaterials for potential clinical applications. Biomed Mater 2025; 20:025008. [PMID: 39719129 DOI: 10.1088/1748-605x/ada335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/24/2024] [Indexed: 12/26/2024]
Abstract
Cell micro-patterning controls cell fate and function and has potential for generating therapeutically usable mesenchymal stromal cell (MSC) populations with precise functions. However, to date, the micro-patterning of human cells in a translational context has been impossible because only ruminant media supplements, e.g. fetal bovine serum (FBS), are established for use with micro-patterns (MPs). Thus, there are currently no good manufacturing practice (GMP)-compliant media available for MPs. This study tested a xenogenic-free human plasma and platelet lysate (hP + PL) medium supplement to determine its compatibility with MPs. Unfiltered hP + PL medium resulted in significant protein deposition, creating a 'carpet-like' layer that rendered MPs ineffective. Filtration (3×/5×) eliminated this effect. Importantly, quantitative comparison using droplet digital PCR revealed that human MSCs in all media types exhibited similar profiles with strong myogenic Calponin 1/Transgelin 2 (TAGLN2) and weaker osteogenic alkaline phosphatase/Runt-related transcription factor 2 marker expression, and much weaker adipogenic (lipoprotein lipase/peroxisome proliferator-activated receptor gamma) and chondrogenic (collagen type II/aggrecan) expression, with profiles being dominated by myogenic markers. Within these similar profiles, an even stronger induction of the myogenic marker TAGLN2 by all hP + PL- compared to FBS-containing media. Overall, this suggested that FBS can be replaced with hP + PL without altering differentiation profiles. However, assessing individual MSC responses to various MP types with defined categories revealed that unfiltered hP + PL medium was unusable. Importantly, FBS- and 3× filtered hP + PL media were comparable in each differentiation category. Summarized, this study recommends 3× filtered hP + PL as a xenogenic-free and potentially GMP-compliant alternative to FBS as a culture medium supplement for micro-patterning cell populations in both basic and translational research that will ensure consistent and reliable MSC micro-patterning for therapeutic use.
Collapse
Affiliation(s)
- Hui Che
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Jasmin C Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Marita Voelker
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
16
|
Radoszkiewicz K, Rybkowska P, Szymanska M, Krzesniak NE, Sarnowska A. The influence of biomimetic conditions on neurogenic and neuroprotective properties of dedifferentiated fat cells. Stem Cells 2025; 43:sxae066. [PMID: 39576128 PMCID: PMC11811640 DOI: 10.1093/stmcls/sxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/30/2024] [Indexed: 02/12/2025]
Abstract
In the era of a constantly growing number of reports on the therapeutic properties of dedifferentiated, ontogenetically rejuvenated cells and their use in the treatment of neurological diseases, the optimization of their derivation and long-term culture methods seem to be crucial. One of the solutions is seen in the use of dedifferentiated fat cells (DFATs) that are characterized by a greater homogeneity. Moreover, these cells seem to possess a higher expression of transcriptional factors necessary to maintain pluripotency (stemness-related transcriptional factors) as well as a greater ability to differentiate in vitro into 3 embryonic germ layers, and a high proliferative potential in comparison to adipose stem/stromal cells. However, the neurogenic and neuroprotective potential of DFATs is still insufficiently understood; hence, our research goal was to contribute to our current knowledge of the subject. To recreate the brain's physiological (biomimetic) conditions, the cells were cultured at 5% oxygen concentration. The neural differentiation capacity of DFATs was assessed in the presence of the N21 supplement containing the factors that are typically found in the natural environment of the neural cell niche or in the presence of cerebrospinal fluid and under various spatial conditions (microprinting). The neuroprotective properties of DFATs were assessed using the coculture method with the ischemically damaged nerve tissue.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Magdalena Szymanska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Natalia Ewa Krzesniak
- Department of Plastic and Reconstructive Surgery, Centre of Postgraduate Medical Education, Prof. W. Orlowski Memorial Hospital, 00‐416 Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| |
Collapse
|
17
|
Nia HT, Munn LL, Jain RK. Probing the physical hallmarks of cancer. Nat Methods 2025:10.1038/s41592-024-02564-4. [PMID: 39815103 DOI: 10.1038/s41592-024-02564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/11/2024] [Indexed: 01/18/2025]
Abstract
The physical microenvironment plays a crucial role in tumor development, progression, metastasis and treatment. Recently, we proposed four physical hallmarks of cancer, with distinct origins and consequences, to characterize abnormalities in the physical tumor microenvironment: (1) elevated compressive-tensile solid stresses, (2) elevated interstitial fluid pressure and the resulting interstitial fluid flow, (3) altered material properties (for example, increased tissue stiffness) and (4) altered physical micro-architecture. As this emerging field of physical oncology is being advanced by tumor biologists, cell and developmental biologists, engineers, physicists and oncologists, there is a critical need for model systems and measurement tools to mechanistically probe these physical hallmarks. Here, after briefly defining these physical hallmarks, we discuss the tools and model systems available for probing each hallmark in vitro, ex vivo, in vivo and in clinical settings. We finally review the unmet needs for mechanistic probing of the physical hallmarks of tumors and discuss the challenges and unanswered questions associated with each hallmark.
Collapse
Affiliation(s)
- Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Pandey S, Kolya S, Devendran P, Sadhukhan S, Das T, Nandi SK. The structure-dynamics feedback mechanism governs the glassy dynamics in epithelial monolayers. SOFT MATTER 2025; 21:269-276. [PMID: 39668670 DOI: 10.1039/d4sm01059k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The glass-like slow dynamics in confluent epithelial monolayers is crucial for wound healing, embryogenesis, cancer progression, etc. Experiments have indicated several unusual properties in these systems. Unlike ordinary glasses, the glassiness in cellular systems strongly correlates with their static properties and is sub-Arrhenius. These results imply that the slow dynamics in epithelial monolayers is either not glassy or the underlying mechanism is different from ordinary glasses. Combining the analytical mode-coupling theory (MCT), vertex model simulations, and cellular experiments, we show that the slow dynamics is glassy, though the mechanism differs from ordinary glasses. The structure-dynamics feedback mechanism of MCT, and not the barrier-crossing mechanism, dominates the glassy dynamics, where the relaxation time diverges as a power law with a universal exponent 3/2 and naturally explains the sub-Arrhenius relaxation. Our results suggest the possibility of describing various complex biological processes like cell division and apoptosis via the static properties of the systems, such as average cell shape or shape variability.
Collapse
Affiliation(s)
- Satyam Pandey
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad-500046, India.
| | - Soumitra Kolya
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad-500046, India.
| | - Padmashree Devendran
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad-500046, India.
| | - Souvik Sadhukhan
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad-500046, India.
| | - Tamal Das
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad-500046, India.
| | - Saroj Kumar Nandi
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad-500046, India.
| |
Collapse
|
19
|
Golchin A, Shams F, Moradi F, Sadrabadi AE, Parviz S, Alipour S, Ranjbarvan P, Hemmati Y, Rahnama M, Rasmi Y, Aziz SGG. Single-cell Technology in Stem Cell Research. Curr Stem Cell Res Ther 2025; 20:9-32. [PMID: 38243989 DOI: 10.2174/011574888x265479231127065541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 01/22/2024]
Abstract
Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing on the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Moradi
- Department of Tissue Engineering, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Shima Parviz
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parviz Ranjbarvan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Hemmati
- Department of Prosthodontics, Dental Faculty, Urmia University of Medical Science, Urmia, Iran
| | - Maryam Rahnama
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Frey K, Brunner M, Curio C, Kemkemer R. Curvature Perception of Mesenchymal Cells on Mesoscale Topographies. Adv Healthc Mater 2025; 14:e2402865. [PMID: 39659136 PMCID: PMC11773129 DOI: 10.1002/adhm.202402865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Cells can sense geometrical cues with sizes of several tens of micrometers in their vicinity. Recent in vitro studies show that cells can adapt their shape, align along specific directions, or regulate other cellular functions when grown on surfaces with curvatures larger than their size. Although possible mechanisms for such responses like the alignment along axial cues have been suggested, a detailed understanding of the involved cellular processes remains open. This work addresses this gap by systematically investigating mesenchymal cell and nucleus orientation responses using a low-cost model surface platform, the CurvChip. Using an array of cylindrically curved topographies with radii of curvatures ranging from tens to hundreds of micrometers, the contact guidance response of cells and nuclei is quantified in dependence on substratum curvature and manipulation of cytoskeletal components. Results suggest a desired perceived curvature for the investigated cells, and a very sensitive and robust curvature perception mechanism, as the effect of pharmacological manipulation of cytoskeletal components is relatively small. Furthermore, a comparison with previously published work strengthens the hypothesis of an involvement of the nucleus in the cell response to three-dimensional (3D) curvatures.
Collapse
Affiliation(s)
- Kerstin Frey
- Reutlingen UniversityAlteburgstrasse 15072764ReutlingenGermany
| | - Michael Brunner
- Reutlingen UniversityAlteburgstrasse 15072764ReutlingenGermany
| | | | - Ralf Kemkemer
- Reutlingen UniversityAlteburgstrasse 15072764ReutlingenGermany
- Max Plank Institute for Medical ResearchJahnstrasse 2969120HeidelbergGermany
| |
Collapse
|
21
|
Baig MA, Du Y, Zan Z, Fan Z. Influence of cell shape on sonoporation efficiency in microbubble-facilitated delivery using micropatterned cell arrays. Sci Rep 2024; 14:30845. [PMID: 39730459 PMCID: PMC11680583 DOI: 10.1038/s41598-024-81410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
Microbubble-facilitated sonoporation is a rapid, versatile, and non-viral intracellular delivery technique with potential for clinical and ex vivo cell engineering applications. We developed a micropatterning-based approach to investigate the impact of cell shape on sonoporation efficacy. Cationic microbubbles were employed to enhance sonoporation by binding to the cell membrane electrostatically. NIH/3T3 fibroblasts were micropatterned into circle, square, triangle, and rectangle. A two-plate system ensured high-throughput and efficient sonoporation by controlling cationic microbubble-cell attachment. High-speed video microscopy captured the acoustic dynamics of microbubbles under short ultrasound pulses. Our findings reveal that for NIH/3T3 fibroblasts, rectangular cells achieved the highest sonoporation and survival rate, while square-shaped cells demonstrated the greatest propidium iodide uptake. Triangle-shaped NIH/3T3 fibroblasts displayed an initial rise then a plateau in the sonoporation and survival rate as the ultrasound pulse duration increased from 10 cycles to 100 cycles, and then to 200 cycles. Conversely, rectangle-shaped cells showed a decrease followed by a stabilization. Circle-shaped and rectangle-shaped HeLa cells exhibited similar sonoporation outcomes, which were not as effective as NIH/3T3 fibroblasts. This study underscores the significance of cell shape in optimizing sonoporation efficiency and highlights the potential of combining micropatterning with controlled targeting sonoporation to advance intracellular delivery technologies.
Collapse
Affiliation(s)
- Mirza Albash Baig
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Yanyao Du
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhaoguang Zan
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhenzhen Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
22
|
Yan S, Lu Y, An C, Hu W, Chen Y, Li Z, Wei W, Chen Z, Zeng X, Xu W, Lv Z, Pan F, Gao W, Wu Y. Biomechanical research using advanced micro-nano devices: In-Vitro cell Characterization focus. J Adv Res 2024:S2090-1232(24)00602-7. [PMID: 39701378 DOI: 10.1016/j.jare.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cells in the body reside in a dynamic microenvironment subjected to various physical stimuli, where mechanical stimulation plays a crucial role in regulating cellular physiological behaviors and functions. AIM OF REVIEW Investigating the mechanisms and interactions of mechanical transmission is essential for understanding the physiological and functional interplay between cells and physical stimuli. Therefore, establishing an in vitro biomechanical stimulation cell culture system holds significant importance for research related to cellular biomechanics. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we primarily focused on various biomechanically relevant cell culture systems and highlighted the advancements and prospects in their preparation processes. Firstly, we discussed the types and characteristics of biomechanics present in the microenvironment within the human body. Subsequently, we introduced the research progress, working principles, preparation processes, potential advantages, applications, and challenges of various biomechanically relevant in vitro cell culture systems. Additionally, we summarized and categorized currently commercialized biomechanically relevant cell culture systems, offering a comprehensive reference for researchers in related fields.
Collapse
Affiliation(s)
- Shiqiang Yan
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China; Center of Cancer Immunology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wanglai Hu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Yaofeng Chen
- Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Ziwen Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenbo Wei
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Zongzheng Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Xianhai Zeng
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, Shandong, China
| | - Zhenghua Lv
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, Shandong, China.
| | - Fan Pan
- Center of Cancer Immunology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Wei Gao
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China.
| | - Yongyan Wu
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China; Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
23
|
Alsubaie FS, Neufeld Z. Modelling the effect of cell motility on mixing and invasion in epithelial monolayers. J Biol Phys 2024; 50:291-306. [PMID: 39031299 PMCID: PMC11490479 DOI: 10.1007/s10867-024-09660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/22/2024] [Indexed: 07/22/2024] Open
Abstract
Collective cell invasion underlies several biological processes such as wound healing, embryonic development, and cancerous invasion. Here, we investigate the impact of cell motility on invasion in epithelial monolayers and its coupling to cellular mechanical properties, such as cell-cell adhesion and cortex contractility. We develop a two-dimensional computational model for cells with active motility based on the cellular Potts model, which predicts that the cellular invasion speed is mainly determined by active cell motility and is independent of the biological and mechanical properties of the cells. We also find that, in general, motile cells out-compete and invade non-motile cells, however, this can be reversed by differential cell proliferation. Stable coexistence of motile and static cell types is also possible for certain parameter regimes.
Collapse
Affiliation(s)
- Faris Saad Alsubaie
- School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, 4072, Queensland, Australia
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, 4072, Queensland, Australia.
| |
Collapse
|
24
|
Izadifar Z, Charrez B, Almeida M, Robben S, Pilobello K, van der Graaf-Mas J, Marquez SL, Ferrante TC, Shcherbina K, Gould R, LoGrande NT, Sesay AM, Ingber DE. Organ chips with integrated multifunctional sensors enable continuous metabolic monitoring at controlled oxygen levels. Biosens Bioelectron 2024; 265:116683. [PMID: 39213819 PMCID: PMC11391946 DOI: 10.1016/j.bios.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Despite remarkable advances in Organ-on-a-chip (Organ Chip) microfluidic culture technology, recreating tissue-relevant physiological conditions, such as the region-specific oxygen concentrations, remains a formidable technical challenge, and analysis of tissue functions is commonly carried out using one analytical technique at a time. Here, we describe two-channel Organ Chip microfluidic devices fabricated from polydimethylsiloxane and gas impermeable polycarbonate materials that are integrated with multiple sensors, mounted on a printed circuit board and operated using a commercially available Organ Chip culture instrument. The novelty of this system is that it enables the recreation of physiologically relevant tissue-tissue interfaces and oxygen tension as well as non-invasive continuous measurement of transepithelial electrical resistance, oxygen concentration and pH, combined with simultaneous analysis of cellular metabolic activity (ATP/ADP ratio), cell morphology, and tissue phenotype. We demonstrate the reliable and reproducible functionality of this system in living human Gut and Liver Chip cultures. Changes in tissue barrier function and oxygen tension along with their functional and metabolic responses to chemical stimuli (e.g., calcium chelation, oligomycin) were continuously and noninvasively monitored on-chip for up to 23 days. A physiologically relevant microaerobic microenvironment that supports co-culture of human intestinal cells with living Lactococcus lactis bacteria also was demonstrated in the Gut Chip. The integration of multi-functional sensors into Organ Chips provides a robust and scalable platform for the simultaneous, continuous, and non-invasive monitoring of multiple physiological functions that can significantly enhance the comprehensive and reliable evaluation of engineered tissues in Organ Chip models in basic research, preclinical modeling, and drug development.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Berenice Charrez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Micaela Almeida
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Stijn Robben
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; Department of Microelectronics, Technical University Delft, Delft, 2628 CD, Netherlands
| | - Kanoelani Pilobello
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Janet van der Graaf-Mas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Susan L Marquez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Thomas C Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Kostyantyn Shcherbina
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Russell Gould
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Da Silva André G, Labouesse C. Mechanobiology of 3D cell confinement and extracellular crowding. Biophys Rev 2024; 16:833-849. [PMID: 39830117 PMCID: PMC11735831 DOI: 10.1007/s12551-024-01244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
Cells and tissues are often under some level of confinement, imposed by the microenvironment and neighboring cells, meaning that there are limitations to cell size, volume changes, and fluid exchanges. 3D cell culture, increasingly used for both single cells and organoids, inherently impose levels of confinement absent in 2D systems. It is thus key to understand how different levels of confinement influences cell survival, cell function, and cell fate. It is well known that the mechanical properties of the microenvironment, such as stiffness and stress relaxation, are important in activating mechanosensitive pathways, and these are responsive to confinement conditions. In this review, we look at how low, intermediate, and high levels of confinement modulate the activation of known mechanobiology pathways, in single cells, organoids, and tumor spheroids, with a specific focus on 3D confinement in microwells, elastic, or viscoelastic scaffolds. In addition, a confining microenvironment can drastically limit cellular communication in both healthy and diseased tissues, due to extracellular crowding. We discuss potential implications of extracellular crowding on molecular transport, extracellular matrix deposition, and fluid transport. Understanding how cells sense and respond to various levels of confinement should inform the design of 3D engineered matrices that recapitulate the physical properties of tissues.
Collapse
Affiliation(s)
- Gabriela Da Silva André
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
26
|
Faure LM, Gómez‐González M, Baguer O, Comelles J, Martínez E, Arroyo M, Trepat X, Roca‐Cusachs P. 3D Micropatterned Traction Force Microscopy: A Technique to Control 3D Cell Shape While Measuring Cell-Substrate Force Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406932. [PMID: 39443837 PMCID: PMC11633470 DOI: 10.1002/advs.202406932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Cell shape and function are intimately linked, in a way that is mediated by the forces exerted between cells and their environment. The relationship between cell shape and forces has been extensively studied for cells seeded on flat 2D substrates, but not for cells in more physiological 3D settings. Here, a technique called 3D micropatterned traction force microscopy (3D-µTFM) to confine cells in 3D wells of defined shape, while simultaneously measuring the forces transmitted between cells and their microenvironment is demonstrated. This technique is based on the 3D micropatterning of polyacrylamide wells and on the calculation of 3D traction force from their deformation. With 3D-µTFM, it is shown that MCF10A breast epithelial cells exert defined, reproducible patterns of forces on their microenvironment, which can be both contractile and extensile. Cells switch from a global contractile to extensile behavior as their volume is reduced are further shown. The technique enables the quantitative study of cell mechanobiology with full access to 3D cellular forces while having accurate control over cell morphology and the mechanical conditions of the microenvironment.
Collapse
Affiliation(s)
- Laura M. Faure
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
| | - Manuel Gómez‐González
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
| | - Ona Baguer
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Biomedical SciencesUniversity of BarcelonaC. Casanova 143Barcelona08034Spain
| | - Jordi Comelles
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Electronics and Biomedical EngineeringUniversity of BarcelonaC. Martí Franquès 1Barcelona08028Spain
| | - Elena Martínez
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Electronics and Biomedical EngineeringUniversity of BarcelonaC. Martí Franquès 1Barcelona08028Spain
- Centro de Investigación Biomédica en Red en BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)Avenida Monforte de Lemos 3‐5Madrid28029Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Laboratori de Càlcul Numèric (LaCàN)Universitat Politècnica de Catalunya (UPC)Jordi Girona 1‐3Barcelona08036Spain
- Institut de Matemàtiques de la UPC–BarcelonaTech (IMTech)Pau Gargallo 14Barcelona08028Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)Gran Capità S/NBarcelona08034Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Biomedical SciencesUniversity of BarcelonaC. Casanova 143Barcelona08034Spain
- Centro de Investigación Biomédica en Red en BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)Avenida Monforte de Lemos 3‐5Madrid28029Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Lluis Companys 23Barcelona08010Spain
| | - Pere Roca‐Cusachs
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Biomedical SciencesUniversity of BarcelonaC. Casanova 143Barcelona08034Spain
| |
Collapse
|
27
|
Kiratitanaporn W, Guan J, Tang M, Xiang Y, Lu TY, Balayan A, Lao A, Berry DB, Chen S. 3D Printing of a Biomimetic Myotendinous Junction Assisted by Artificial Intelligence. Biomater Sci 2024; 12:6047-6062. [PMID: 39446075 DOI: 10.1039/d4bm00892h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The myotendinous junction (MTJ) facilitates force transmission between muscle and tendon to produce joint movement. The complex microarchitecture and regional mechanical heterogeneity of the myotendinous junction pose major challenges in creating this interface in vitro. Engineering this junction in vitro is challenging due to substantial fabrication difficulties in creating scaffolds with intricate microarchitecture and stiffness heterogeneity to mimic the native muscle-tendon interface. To address the current challenges in creating the MTJ in vitro, digital light processing (DLP)-based 3D printing was used to fabricate poly(glycerol sebacate)acrylate (PGSA)-based muscle-tendon scaffolds with physiologically informed microstructure and mechanical properties. Local mechanical properties in various regions of the scaffold were tuned by adjusting the exposure time and light intensity used during the continuous DLP-based 3D printing process to match the mechanical properties present in distinct regions of native muscle-tendon tissue using printing parameters defined by an artificial intelligence-trained algorithm. To evaluate how the presence of zonal stiffness regions can affect the phenotype of a 3D-printed MTJ in vitro model, three 3D-printed PGSA-based scaffold conditions were investigated: (1) a scaffold with muscle-informed mechanical properties in its entirety without zonal stiffness regions, (2) a scaffold with one end possessing native muscle stiffness and the other end possessing native tendon stiffness, and (3) a scaffold with three distinct regions whose stiffness values correspond to those of muscle on one end of the scaffold, MTJ in the middle junction of the scaffold, and tendon on the other end of the scaffold. The scaffold containing regional mechanical heterogeneity most similar to the native MTJ (condition 3) was found to enhance the expression of MTJ-related markers compared to those without the presence of zonal stiffness regions. Overall, the DLP-based 3D printing platform and biomaterial system developed in this study could serve as a useful tool for mimicking the complexity of the native MTJ, which possesses inherent geometric and mechanical heterogeneity.
Collapse
Affiliation(s)
- Wisarut Kiratitanaporn
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ting-Yu Lu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Alis Balayan
- School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alison Lao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - David B Berry
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
28
|
Hsieh HC, Chen CY, Chou CH, Peng BY, Sun YC, Lin TW, Chien Y, Chiou SH, Hung KF, Lu HHS. Deep learning-based automatic image classification of oral cancer cells acquiring chemoresistance in vitro. PLoS One 2024; 19:e0310304. [PMID: 39485749 PMCID: PMC11530068 DOI: 10.1371/journal.pone.0310304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/29/2024] [Indexed: 11/03/2024] Open
Abstract
Cell shape reflects the spatial configuration resulting from the equilibrium of cellular and environmental signals and is considered a highly relevant indicator of its function and biological properties. For cancer cells, various physiological and environmental challenges, including chemotherapy, cause a cell state transition, which is accompanied by a continuous morphological alteration that is often extremely difficult to recognize even by direct microscopic inspection. To determine whether deep learning-based image analysis enables the detection of cell shape reflecting a crucial cell state alteration, we used the oral cancer cell line resistant to chemotherapy but having cell morphology nearly indiscernible from its non-resistant parental cells. We then implemented the automatic approach via deep learning methods based on EfficienNet-B3 models, along with over- and down-sampling techniques to determine whether image analysis of the Convolutional Neural Network (CNN) can accomplish three-class classification of non-cancer cells vs. cancer cells with and without chemoresistance. We also examine the capability of CNN-based image analysis to approximate the composition of chemoresistant cancer cells within a population. We show that the classification model achieves at least 98.33% accuracy by the CNN model trained with over- and down-sampling techniques. For heterogeneous populations, the best model can approximate the true proportions of non-chemoresistant and chemoresistant cancer cells with Root Mean Square Error (RMSE) reduced to 0.16 by Ensemble Learning (EL). In conclusion, our study demonstrates the potential of CNN models to identify altered cell shapes that are visually challenging to recognize, thus supporting future applications with this automatic approach to image analysis.
Collapse
Affiliation(s)
- Hsing-Chuan Hsieh
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Hsien Chou
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bou-Yue Peng
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Sun
- College of Medicine, Tzu-Chi University, Hualien, Taiwan
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Henry Horng-Shing Lu
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
29
|
Choi H, Rheem HB, Nguyen DT, Han SY, Lee H, Choi IS. Iron Gall Ink Revisited: Visible Light-Induced, Eosin-Mediated Acceleration of Fe 2+ Oxidation in Pattern Nanoarchitectonics of Fe 3+-Tannic Acid Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23033-23040. [PMID: 39418218 DOI: 10.1021/acs.langmuir.4c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Inspired by iron gall ink (IGI), the Fe2+ ion is utilized for the continuous formation of Fe3+-tannic acid (TA) films through its in situ oxidation to the Fe3+ ion. Although several IGI-based strategies have been developed to meet different application requirements, there remains a need for the precise kinetic control for Fe2+ oxidation, along with one-step spatial controllability. This work demonstrates a visible light-induced method for oxidizing Fe2+ to Fe3+ ions, achieving the kinetic control over Fe3+-TA film formation. Photoexcitation of eosin Y leads to significantly accelerated film formation in a continuous manner, as shown by an 11-fold increase in film thickness compared with the air oxidation-based IGI method. Mechanistic studies reveal that the process is O2-dependent, and the kinetics of the film-forming process could be easily tuned by changing the light intensity or eosin Y concentration. Furthermore, the spatiotemporal controllability of the photoreaction allows for the pattern generation of Fe3+-TA complexes, proteins, and cells.
Collapse
Affiliation(s)
- Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Hyeong Bin Rheem
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Duc Tai Nguyen
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yeong Han
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Hojae Lee
- Department of Chemistry, Hallym University, Chuncheon 24252, Republic of Korea
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
30
|
Al Sayed ZR, Jouve C, Seguret M, Ruiz-Velasco A, Pereira C, Trégouët DA, Hulot JS. Rod-shaped micropatterning enhances the electrophysiological maturation of cardiomyocytes derived from human induced pluripotent stem cells. Stem Cell Reports 2024; 19:1417-1431. [PMID: 39303707 PMCID: PMC11561463 DOI: 10.1016/j.stemcr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer great potential for drug screening and disease modeling. However, hiPSC-CMs remain immature compared to the adult cardiac cells. Cardiomyocytes isolated from adult human hearts have a typical rod-shaped morphology. Here, we sought to develop a simple method to improve the architectural maturity of hiPSC-CMs by using a rod-shaped cell micropatterned substrate consisting of repeated rectangles (120 μm long × 30 μm wide) surrounded by a chemical cell repellent. The generated hiPSC-CMs exhibit numerous characteristics similar to adult human cardiomyocytes, including elongated cell shape, well-organized sarcomeres, and increased myofibril density. The improvement in structural properties correlates with the enrichment of late ventricular action potentials characterized by a more hyperpolarized resting membrane potential and an enhanced depolarization consistent with an increased sodium current density. The more mature hiPSC-CMs generated by this method may serve as a useful in vitro platform for characterizing cardiovascular disease.
Collapse
Affiliation(s)
| | - Charlène Jouve
- Université de Paris Cité, PARCC, INSERM, 75006 Paris, France
| | - Magali Seguret
- Université de Paris Cité, PARCC, INSERM, 75006 Paris, France
| | | | - Céline Pereira
- Université de Paris Cité, PARCC, INSERM, 75006 Paris, France
| | - David-Alexandre Trégouët
- INSERM UMR_S 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Jean-Sébastien Hulot
- Université de Paris Cité, PARCC, INSERM, 75006 Paris, France; CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, 75015 Paris, France.
| |
Collapse
|
31
|
Wang TC, Sawhney S, Morgan D, Bennett RL, Rashmi R, Estecio MR, Brock A, Singh I, Baer CF, Licht JD, Lele TP. Genetic variation drives cancer cell adaptation to ECM stiffness. Proc Natl Acad Sci U S A 2024; 121:e2403062121. [PMID: 39302966 PMCID: PMC11441511 DOI: 10.1073/pnas.2403062121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
The progression of many solid tumors is accompanied by temporal and spatial changes in the stiffness of the extracellular matrix (ECM). Cancer cells adapt to soft and stiff ECM through mechanisms that are not fully understood. It is well known that there is significant genetic heterogeneity from cell to cell in tumors, but how ECM stiffness as a parameter might interact with that genetic variation is not known. Here, we employed experimental evolution to study the response of genetically variable and clonal populations of tumor cells to variable ECM stiffness. Proliferation rates of genetically variable populations cultured on soft ECM increased over a period of several weeks, whereas clonal populations did not evolve. Tracking of DNA barcoded cell lineages revealed that soft ECM consistently selected for the same few variants. These data provide evidence that ECM stiffness exerts natural selection on genetically variable tumor populations. Soft-selected cells were highly migratory, with enriched oncogenic signatures and unusual behaviors such as spreading and traction force generation on ECMs with stiffness as low as 1 kPa. Rho-regulated cell spreading was found to be the directly selected trait, with yes-associated protein 1 translocation to the nucleus mediating fitness on soft ECM. Overall, these data show that genetic variation can drive cancer cell adaptation to ECM stiffness.
Collapse
Affiliation(s)
- Ting-Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77843
| | - Suchitaa Sawhney
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
| | - Daylin Morgan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Richard L. Bennett
- Division of Hematology and Oncology, University of Florida Health Cancer Center, Gainesville, FL32610
| | - Richa Rashmi
- Department of Cell Biology and Genetics, Texas A&M University, Bryan, TX77807
| | - Marcos R. Estecio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Irtisha Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
- Department of Cell Biology and Genetics, Texas A&M University, Bryan, TX77807
| | - Charles F. Baer
- Department of Biology, University of Florida, Gainesville, FL32611
| | - Jonathan D. Licht
- Division of Hematology and Oncology, University of Florida Health Cancer Center, Gainesville, FL32610
| | - Tanmay P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX77843
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX77030
| |
Collapse
|
32
|
Bustamante A, Baritaki S, Zaravinos A, Bonavida B. Relationship of Signaling Pathways between RKIP Expression and the Inhibition of EMT-Inducing Transcription Factors SNAIL1/2, TWIST1/2 and ZEB1/2. Cancers (Basel) 2024; 16:3180. [PMID: 39335152 PMCID: PMC11430682 DOI: 10.3390/cancers16183180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Untreated primary carcinomas often lead to progression, invasion and metastasis, a process that involves the epithelial-to-mesenchymal transition (EMT). Several transcription factors (TFs) mediate the development of EMT, including SNAIL1/SNAIL2, TWIST1/TWIST2 and ZEB1/ZEB2, which are overexpressed in various carcinomas along with the under expression of the metastasis suppressor Raf Kinase Inhibitor Protein (RKIP). Overexpression of RKIP inhibits EMT and the above associated TFs. We, therefore, hypothesized that there are inhibitory cross-talk signaling pathways between RKIP and these TFs. Accordingly, we analyzed the various properties and biomarkers associated with the epithelial and mesenchymal tissues and the various molecular signaling pathways that trigger the EMT phenotype such as the TGF-β, the RTK and the Wnt pathways. We also presented the various functions and the transcriptional, post-transcriptional and epigenetic regulations for the expression of each of the EMT TFs. Likewise, we describe the transcriptional, post-transcriptional and epigenetic regulations of RKIP expression. Various signaling pathways mediated by RKIP, including the Raf/MEK/ERK pathway, inhibit the TFs associated with EMT and the stabilization of epithelial E-Cadherin expression. The inverse relationship between RKIP and the TF expressions and the cross-talks were further analyzed by bioinformatic analysis. High mRNA levels of RKIP correlated negatively with those of SNAIL1, SNAIL2, TWIST1, TWIST2, ZEB1, and ZEB2 in several but not all carcinomas. However, in these carcinomas, high levels of RKIP were associated with good prognosis, whereas high levels of the above transcription factors were associated with poor prognosis. Based on the inverse relationship between RKIP and EMT TFs, it is postulated that the expression level of RKIP in various carcinomas is clinically relevant as both a prognostic and diagnostic biomarker. In addition, targeting RKIP induction by agonists, gene therapy and immunotherapy will result not only in the inhibition of EMT and metastases in carcinomas, but also in the inhibition of tumor growth and reversal of resistance to various therapeutic strategies. However, such targeting strategies must be better investigated as a result of tumor heterogeneities and inherent resistance and should be better adapted as personalized medicine.
Collapse
Affiliation(s)
- Andrew Bustamante
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Meng J, Cheung LH, Ren Y, Stuart MCA, Wang Q, Chen S, Chen J, Leung FKC. Aqueous Supramolecular Transformations of Motor Bola-Amphiphiles at Multiple Length-Scale. Macromol Rapid Commun 2024; 45:e2400261. [PMID: 38805189 DOI: 10.1002/marc.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Molecular motor amphiphiles have already been widely attempted for dynamic nanosystems across multiple length-scale for developments of small functional materials, including controlling macroscopic foam properties, amplifying motion as artificial molecular muscles, and serving as extracellular matrix mimicking cell scaffolds. However, limiting examples of bola-type molecular motor amphiphiles are considered for constructing macroscopic biomaterials. Herein, this work presents the designed two second generation molecular motor amphiphiles, motor bola-amphiphiles (MBAs). Aside from the photoinduced motor rotation of MBAs achieved in both organic and aqueous media, the rate of recovering thermal helix inversion step can be controlled by the rotor part with different steric hindrances. Dynamic assembled structures of MBAs are observed under (cryo)-transmission electron microscopy (TEM). This dynamicity assists MBAs in further assembling as macroscopic soft scaffolds by applying a shear-flow method. Upon photoirradiation, the phototropic bending function of MBA scaffolds is observed, demonstrating the amplification of molecular motion into macroscopic phototropic bending functions at the macroscopic length-scale. Since MBAs are confirmed with low cytotoxicity, human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can grow on the surface of MBA scaffolds. These results clearly demonstrate the concept of designing MBAs for developing photoresponsive dynamic functional materials to create new-generation soft robotic systems and cell-material interfaces.
Collapse
Affiliation(s)
- Jiahui Meng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou, 510006, China
| | - Leong-Hung Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yikun Ren
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Marc C A Stuart
- Centre for System Chemistry, Stratingh Institute for Chemistry and Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, AG Groningen, 9747, Netherlands
| | - Qian Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shaoyu Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiawen Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou, 510006, China
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Centre for Eye and Vision Research, 17 W Hong Kong Science Park, Hong Kong, 999077, China
| |
Collapse
|
34
|
Hu X, Bao M. Advances in micropatterning technology for mechanotransduction research. MECHANOBIOLOGY IN MEDICINE 2024; 2:100066. [PMID: 40395493 PMCID: PMC12082312 DOI: 10.1016/j.mbm.2024.100066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 05/22/2025]
Abstract
Micropatterning is a sophisticated technique that precisely manipulates the spatial distribution of cell adhesion proteins on various substrates across multiple scales. This precise control over adhesive regions facilitates the manipulation of architectures and physical constraints for single or multiple cells. Furthermore, it allows for an in-depth analysis of how chemical and physical properties influence cellular functionality. In this comprehensive review, we explore the current understanding of the impact of geometrical confinement on cellular functions across various dimensions, emphasizing the benefits of micropatterning in addressing fundamental biological queries. We advocate that utilizing directed self-organization via physical confinement and morphogen gradients on micropatterned surfaces represents an innovative approach to generating functional tissue and controlling morphogenesis in vitro. Integrating this technique with cutting-edge technologies, micropatterning presents a significant potential to bridge a crucial knowledge gap in understanding core biological processes.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Min Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325001, Zhejiang, China
| |
Collapse
|
35
|
Zeng Y, Shen J, Zhou X, Ouyang Z, Zhong J, Qin Y, Jin L, He X, Li L, Xie J, Liu X. Osteogenic differentiation of bone mesenchymal stem cells on linearly aligned triangular micropatterns. J Mater Chem B 2024; 12:8420-8430. [PMID: 39093007 DOI: 10.1039/d4tb01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mesenchymal stem cells (MSCs) hold promise for regenerative medicine, particularly for bone tissue engineering. However, directing MSC differentiation towards specific lineages, such as osteogenic, while minimizing undesired phenotypes remains a challenge. Here, we investigate the influence of micropatterns on the behavior and lineage commitment of rat bone marrow-derived MSCs (rBMSCs), focusing on osteogenic differentiation. Linearly aligned triangular micropatterns (TPs) and circular micropatterns (CPs) coated with fibronectin were fabricated to study their effects on rBMSC morphology and differentiation and the underlying mechanobiological mechanisms. TPs, especially TP15 (15 μm), induced the cell elongation and thinning, while CPs also promoted the cell stretching, as evidenced by the decreased circularity and increased aspect ratio. TP15 significantly promoted osteogenic differentiation, with increased expression of osteogenic genes (Runx2, Spp1, Alpl, Bglap, Col1a1) and decreased expression of adipogenic genes (Pparg, Cebpa, Fabp4). Conversely, CPs inhibited both osteogenic and adipogenic differentiation. Mechanistically, TP15 increased Piezo1 activity, cytoskeletal remodeling including the aggregates of F-actin and myosin filaments at the cell periphery, YAP1 nuclear translocation, and integrin upregulation. Piezo1 inhibition suppressed the osteogenic genes expression, myosin remodeling, and YAP1 nuclear translocation, indicating Piezo1-mediated the mechanotransduction in rBMSCs on TPs. TP15 also induced osteogenic differentiation of BMSCs from aging rats, with upregulated Piezo1 and nuclear translocation of YAP1. Therefore, triangular micropatterns, particularly TP15, promote osteogenesis and inhibit adipogenesis of rBMSCs through Piezo1-mediated myosin and YAP1 pathways. Our study provides novel insights into the mechanobiological mechanisms governing MSC behaviors on micropatterns, offering new strategies for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Xintong Zhou
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Zhi Ouyang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Jian Zhong
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Yixue Qin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Linlu Jin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Xueling He
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China.
| |
Collapse
|
36
|
Lee S, Moon H, Kim J, Ryu S, Park SM, Yoon DK. On-Demand Crack Formation on DNA Film via Organic Solvent-Induced Dehydration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314374. [PMID: 38490809 DOI: 10.1002/adma.202314374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Crack is found on the soil when severe drought comes, which inspires the idea to rationalize patterning applications using dried deoxyribonucleic acid (DNA) film. DNA is one of the massively produced biomaterials in nature, showing the lyotropic liquid crystal (LC) phase in highly concentrated conditions. DNA nanostructures in the hydrated condition can be orientation controlled, which can be extended to make dryinginduced cracks. The controlled crack generation in oriented DNA films by inducing mechanical fracture through organic solvent-induced dehydration (OSID) using tetrahydrofuran (THF) is explored. The corresponding simulations show a strong correlation between the long axis of DNA due to the shrinkage during the dehydration and in the direction of crack propagation. The cracks are controlled by simple brushing and a 3D printing method. This facile way of aligning cracks will be used in potential patterning applications.
Collapse
Affiliation(s)
- Soeun Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeonbin Moon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Juri Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Soon Mo Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, 14853, USA
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
37
|
Thite NG, Tuberty-Vaughan E, Wilcox P, Wallace N, Calderon CP, Randolph TW. Stain-Free Approach to Determine and Monitor Cell Heath Using Supervised and Unsupervised Image-Based Deep Learning. J Pharm Sci 2024; 113:2114-2127. [PMID: 38710387 PMCID: PMC11670887 DOI: 10.1016/j.xphs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Cell-based medicinal products (CBMPs) are a growing class of therapeutics that promise new treatments for complex and rare diseases. Given the inherent complexity of the whole human cells comprising CBMPs, there is a need for robust and fast analytical methods for characterization, process monitoring, and quality control (QC) testing during their manufacture. Existing techniques to evaluate and monitor cell quality typically constitute labor-intensive, expensive, and highly specific staining assays. In this work, we combine image-based deep learning with flow imaging microscopy (FIM) to predict cell health metrics using cellular morphology "fingerprints" extracted from images of unstained Jurkat cells (immortalized human T-lymphocyte cells). A supervised (i.e., algorithm trained with human-generated labels for images) fingerprinting algorithm, trained on images of unstained healthy and dead cells, provides a robust stain-free, non-invasive, and non-destructive method for determining cell viability. Results from the stain-free method are in good agreement with traditional stain-based cytometric viability measurements. Additionally, when trained with images of healthy cells, dead cells and cells undergoing chemically induced apoptosis, the supervised fingerprinting algorithm is able to distinguish between the three cell states, and the results are independent of specific treatments or signaling pathways. We then show that an unsupervised variational autoencoder (VAE) algorithm trained on the same images, but without human-generated labels, is able to distinguish between samples of healthy, dead and apoptotic cells along with cellular debris based on learned morphological features and without human input. With this, we demonstrate that VAEs are a powerful exploratory technique that can be used as a process monitoring analytical tool.
Collapse
Affiliation(s)
- Nidhi G Thite
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Emma Tuberty-Vaughan
- Dosage Form Design & Development (DFDD), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Paige Wilcox
- Dosage Form Design & Development (DFDD), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Nicole Wallace
- Dosage Form Design & Development (DFDD), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Christopher P Calderon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA; Ursa Analytics, Denver, CO 80212, USA
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
38
|
Li H, Liu S, Deguchi S, Matsunaga D. Diffusion model predicts the geometry of actin cytoskeleton from cell morphology. PLoS Comput Biol 2024; 20:e1012312. [PMID: 39102394 PMCID: PMC11326640 DOI: 10.1371/journal.pcbi.1012312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Cells exhibit various morphological characteristics due to their physiological activities, and changes in cell morphology are inherently accompanied by the assembly and disassembly of the actin cytoskeleton. Stress fibers are a prominent component of the actin-based intracellular structure and are highly involved in numerous physiological processes, e.g., mechanotransduction and maintenance of cell morphology. Although it is widely accepted that variations in cell morphology interact with the distribution and localization of stress fibers, it remains unclear if there are underlying geometric principles between the cell morphology and actin cytoskeleton. Here, we present a machine learning system that uses the diffusion model to convert the cell shape to the distribution and alignment of stress fibers. By training with corresponding cell shape and stress fibers datasets, our system learns the conversion to generate the stress fiber images from its corresponding cell shape. The predicted stress fiber distribution agrees well with the experimental data. With this conversion relation, our system allows for performing virtual experiments that provide a visual map showing the probability of stress fiber distribution from the virtual cell shape. Our system potentially provides a powerful approach to seek further hidden geometric principles regarding how the configuration of subcellular structures is determined by the boundary of the cell structure; for example, we found that the stress fibers of cells with small aspect ratios tend to localize at the cell edge while cells with large aspect ratios have homogenous distributions.
Collapse
Affiliation(s)
- Honghan Li
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shiyou Liu
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
- School of Life Science, Peking University, Beijing, China
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Daiki Matsunaga
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
39
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
40
|
Calzuola ST, Newman G, Feaugas T, Perrault CM, Blondé JB, Roy E, Porrini C, Stojanovic GM, Vidic J. Membrane-based microfluidic systems for medical and biological applications. LAB ON A CHIP 2024; 24:3579-3603. [PMID: 38954466 DOI: 10.1039/d4lc00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Microfluidic devices with integrated membranes that enable control of mass transport in constrained environments have shown considerable growth over the last decade. Membranes are a key component in several industrial processes such as chemical, pharmaceutical, biotechnological, food, and metallurgy separation processes as well as waste management applications, allowing for modular and compact systems. Moreover, the miniaturization of a process through microfluidic devices leads to process intensification together with reagents, waste and cost reduction, and energy and space savings. The combination of membrane technology and microfluidic devices allows therefore magnification of their respective advantages, providing more valuable solutions not only for industrial processes but also for reproducing biological processes. This review focuses on membrane-based microfluidic devices for biomedical science with an emphasis on microfluidic artificial organs and organs-on-chip. We provide the basic concepts of membrane technology and the laws governing mass transport. The role of the membrane in biomedical microfluidic devices, along with the required properties, available materials, and current challenges are summarized. We believe that the present review may be a starting point and a resource for researchers who aim to replicate a biological phenomenon on-chip by applying membrane technology, for moving forward the biomedical applications.
Collapse
Affiliation(s)
- Silvia Tea Calzuola
- UMR7646 Laboratoire d'hydrodynamique (LadHyX), Ecole Polytechnique, Palaiseau, France.
- Eden Tech, Paris, France
| | - Gwenyth Newman
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Thomas Feaugas
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | | | | | | | | | - Goran M Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovića 6, 21000 Novi Sad, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
41
|
Garibyan M, Hoffman T, Makaske T, Do SK, Wu Y, Williams BA, March AR, Cho N, Pedroncelli N, Lima RE, Soto J, Jackson B, Santoso JW, Khademhosseini A, Thomson M, Li S, McCain ML, Morsut L. Engineering programmable material-to-cell pathways via synthetic notch receptors to spatially control differentiation in multicellular constructs. Nat Commun 2024; 15:5891. [PMID: 39003263 PMCID: PMC11246427 DOI: 10.1038/s41467-024-50126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.
Collapse
Affiliation(s)
- Mher Garibyan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Thijs Makaske
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
- Utrecht University in the lab of Prof. Dr. Lukas Kapitein, Los Angeles, CA, 90024, USA
| | - Stephanie K Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander R March
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nathan Cho
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Ricardo Espinosa Lima
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Brooke Jackson
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey W Santoso
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Megan L McCain
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad Center, University of Southern California, Los Angeles, CA, 90033, USA.
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Xie J, Huck WTS, Bao M. Unveiling the Intricate Connection: Cell Volume as a Key Regulator of Mechanotransduction. Annu Rev Biophys 2024; 53:299-317. [PMID: 38424091 DOI: 10.1146/annurev-biophys-030822-035656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The volumes of living cells undergo dynamic changes to maintain the cells' structural and functional integrity in many physiological processes. Minor fluctuations in cell volume can serve as intrinsic signals that play a crucial role in cell fate determination during mechanotransduction. In this review, we discuss the variability of cell volume and its role in vivo, along with an overview of the mechanisms governing cell volume regulation. Additionally, we provide insights into the current approaches used to control cell volume in vitro. Furthermore, we summarize the biological implications of cell volume regulation and discuss recent advances in understanding the fundamental relationship between cell volume and mechanotransduction. Finally, we delve into the potential underlying mechanisms, including intracellular macromolecular crowding and cellular mechanics, that govern the global regulation of cell fate in response to changes in cell volume. By exploring the intricate interplay between cell volume and mechanotransduction, we underscore the importance of considering cell volume as a fundamental signaling cue to unravel the basic principles of mechanotransduction. Additionally, we propose future research directions that can extend our current understanding of cell volume in mechanotransduction. Overall, this review highlights the significance of considering cell volume as a fundamental signal in understanding the basic principles in mechanotransduction and points out the possibility of controlling cell volume to control cell fate, mitigate disease-related damage, and facilitate the healing of damaged tissues.
Collapse
Affiliation(s)
- Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands;
| | - Min Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China;
| |
Collapse
|
43
|
Chojowski R, Schwarz US, Ziebert F. The role of the nucleus for cell mechanics: an elastic phase field approach. SOFT MATTER 2024; 20:4488-4503. [PMID: 38804018 DOI: 10.1039/d4sm00345d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The nucleus of eukaryotic cells typically makes up around 30% of the cell volume and has significantly different mechanics, which can make it effectively up to ten times stiffer than the surrounding cytoplasm. Therefore it is an important element for cell mechanics, but a quantitative understanding of its mechanical role during whole cell dynamics is largely missing. Here we demonstrate that elastic phase fields can be used to describe dynamical cell processes in adhesive or confining environments in which the nucleus acts as a stiff inclusion in an elastic cytoplasm. We first introduce and verify our computational method and then study several prevalent cell-mechanical measurement methods. For cells on adhesive patterns, we find that nuclear stress is shielded by the adhesive pattern. For cell compression between two parallel plates, we obtain force-compression curves that allow us to extract an effective modulus for the cell-nucleus composite. For micropipette aspiration, the effect of the nucleus on the effective modulus is found to be much weaker, highlighting the complicated interplay between extracellular geometry and cell mechanics that is captured by our approach. We also show that our phase field approach can be used to investigate the effects of Kelvin-Voigt-type viscoelasticity and cortical tension.
Collapse
Affiliation(s)
- Robert Chojowski
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Yang S, Golkaram M, Oh S, Oh Y, Cho Y, Yoe J, Ju S, Lalli MA, Park SY, Lee Y, Jang J. ETV4 is a mechanical transducer linking cell crowding dynamics to lineage specification. Nat Cell Biol 2024; 26:903-916. [PMID: 38702503 PMCID: PMC11178500 DOI: 10.1038/s41556-024-01415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/03/2024] [Indexed: 05/06/2024]
Abstract
Dynamic changes in mechanical microenvironments, such as cell crowding, regulate lineage fates as well as cell proliferation. Although regulatory mechanisms for contact inhibition of proliferation have been extensively studied, it remains unclear how cell crowding induces lineage specification. Here we found that a well-known oncogene, ETS variant transcription factor 4 (ETV4), serves as a molecular transducer that links mechanical microenvironments and gene expression. In a growing epithelium of human embryonic stem cells, cell crowding dynamics is translated into ETV4 expression, serving as a pre-pattern for future lineage fates. A switch-like ETV4 inactivation by cell crowding derepresses the potential for neuroectoderm differentiation in human embryonic stem cell epithelia. Mechanistically, cell crowding inactivates the integrin-actomyosin pathway and blocks the endocytosis of fibroblast growth factor receptors (FGFRs). The disrupted FGFR endocytosis induces a marked decrease in ETV4 protein stability through ERK inactivation. Mathematical modelling demonstrates that the dynamics of cell density in a growing human embryonic stem cell epithelium precisely determines the spatiotemporal ETV4 expression pattern and, consequently, the timing and geometry of lineage development. Our findings suggest that cell crowding dynamics in a stem cell epithelium drives spatiotemporal lineage specification using ETV4 as a key mechanical transducer.
Collapse
Affiliation(s)
- Seungbok Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Mahdi Golkaram
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Seyoun Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yujeong Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoonjae Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeehyun Yoe
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Matthew A Lalli
- Seaver Autism Center for Research and Treatment at Mount Sinai, New York, NY, USA
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
45
|
Du Plessis LH, Gouws C, Nieto D. The influence of viscosity of hydrogels on the spreading and migration of cells in 3D bioprinted skin cancer models. Front Cell Dev Biol 2024; 12:1391259. [PMID: 38835508 PMCID: PMC11148284 DOI: 10.3389/fcell.2024.1391259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Various in vitro three-dimensional (3D) tissue culture models of human and diseased skin exist. Nevertheless, there is still room for the development and improvement of 3D bioprinted skin cancer models. The need for reproducible bioprinting methods, cell samples, biomaterial inks, and bioinks is becoming increasingly important. The influence of the viscosity of hydrogels on the spreading and migration of most types of cancer cells is well studied. There are however limited studies on the influence of viscosity on the spreading and migration of cells in 3D bioprinted skin cancer models. In this review, we will outline the importance of studying the various types of skin cancers by using 3D cell culture models. We will provide an overview of the advantages and disadvantages of the various 3D bioprinting technologies. We will emphasize how the viscosity of hydrogels relates to the spreading and migration of cancer cells. Lastly, we will give an overview of the specific studies on cell migration and spreading in 3D bioprinted skin cancer models.
Collapse
Affiliation(s)
- Lissinda H Du Plessis
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Daniel Nieto
- Advanced Biofabrication for Tissue and Organ Engineering Group, Interdisciplinary Centre of Chemistry and Biology (CICA), Faculty of Health Sciences, University of Coruña, Campus de A Coruna, Coruna, Spain
| |
Collapse
|
46
|
Ryoo H, Kimmel H, Rondo E, Underhill GH. Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications. Bioeng Transl Med 2024; 9:e10627. [PMID: 38818120 PMCID: PMC11135158 DOI: 10.1002/btm2.10627] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 06/01/2024] Open
Abstract
Cellular phenotypes and functional responses are modulated by the signals present in their microenvironment, including extracellular matrix (ECM) proteins, tissue mechanical properties, soluble signals and nutrients, and cell-cell interactions. To better recapitulate and analyze these complex signals within the framework of more physiologically relevant culture models, high throughput culture platforms can be transformative. High throughput methodologies enable scientists to extract increasingly robust and broad datasets from individual experiments, screen large numbers of conditions for potential hits, better qualify and predict responses for preclinical applications, and reduce reliance on animal studies. High throughput cell culture systems require uniformity, assay miniaturization, specific target identification, and process simplification. In this review, we detail the various techniques that researchers have used to face these challenges and explore cellular responses in a high throughput manner. We highlight several common approaches including two-dimensional multiwell microplates, microarrays, and microfluidic cell culture systems as well as unencapsulated and encapsulated three-dimensional high throughput cell culture systems, featuring multiwell microplates, micromolds, microwells, microarrays, granular hydrogels, and cell-encapsulated microgels. We also discuss current applications of these high throughput technologies, namely stem cell sourcing, drug discovery and predictive toxicology, and personalized medicine, along with emerging opportunities and future impact areas.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Hannah Kimmel
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Evi Rondo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Gregory H. Underhill
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
47
|
Zhang J, Chen P, Hu F, Chen C, Song L. Porous structure design and properties of dental implants. Comput Methods Biomech Biomed Engin 2024; 27:717-726. [PMID: 37053006 DOI: 10.1080/10255842.2023.2199901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
At present, selective laser melting (SLM) 3D printing technology can accurately control the internal pore structure and complex cell shape. Three types of reticulated meshes with cubic, G7 and composite structure cell shapes were fabricated by the SLM 3D printing technology using Ti-6Al-4V alloy powders. The bone stresses around the implant and the stresses in the implant were analyzed by ANSYS finite element software, which comprehensively evaluated the effect of porous dental implants with different spatial porosity characteristics on osseointegration. The results show that porous dental implants with composite structure of pore characteristics have improved mechanical and biological properties and can better promote the growth and integration of bone tissue.
Collapse
Affiliation(s)
- Jianguo Zhang
- School of mechanical engineering, Shanghai Institute of Technology, Shanghai, China
| | - Peng Chen
- School of mechanical engineering, Shanghai Institute of Technology, Shanghai, China
| | - Fengling Hu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- School of mechanical engineering, Shanghai Institute of Technology, Shanghai, China
| | - Liang Song
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Zhang D, Wu W, Zhang W, Feng Q, Zhang Q, Liang H. Nuclear deformation and cell division of single cell on elongated micropatterned substrates fabricated by DMD lithography. Biofabrication 2024; 16:035001. [PMID: 38471164 DOI: 10.1088/1758-5090/ad3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Cells sense mechanical signals from the surrounding environment and transmit them to the nucleus through mechanotransduction to regulate cellular behavior. Microcontact printing, which utilizes elastomer stamps, is an effective method for simulating the cellular microenvironment and manipulating cell morphology. However, the conventional fabrication process of silicon masters and elastomer stamps requires complex procedures and specialized equipment, which restricts the widespread application of micropatterning in cell biology and hinders the investigation of the role of cell geometry in regulating cell behavior. In this study, we present an innovative method for convenient resin stamp microfabrication based on digital micromirror device planar lithography. Using this method, we generated a series of patterns ranging from millimeter to micrometer scales and validated their effectiveness in controlling adhesion at both collective and individual cell levels. Additionally, we investigated mechanotransduction and cell behavior on elongated micropatterned substrates. We then examined the effects of cell elongation on cytoskeleton organization, nuclear deformation, focal adhesion formation, traction force generation, nuclear mechanics, and the growth of HeLa cells. Our findings reveal a positive correlation between cell length and mechanotransduction. Interestingly, HeLa cells with moderate length exhibit the highest cell division and proliferation rates. These results highlight the regulatory role of cell elongation in mechanotransduction and its significant impact on cancer cell growth. Furthermore, our methodology for controlling cell adhesion holds the potential for addressing fundamental questions in both cell biology and biomedical engineering.
Collapse
Affiliation(s)
- Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
- School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, People's Republic of China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial Technology, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
49
|
Yan S, Qian Y, Haghayegh M, Xia Y, Yang S, Cao R, Zhu M. Electrospun organic/inorganic hybrid nanofibers for accelerating wound healing: a review. J Mater Chem B 2024; 12:3171-3190. [PMID: 38488129 DOI: 10.1039/d4tb00149d] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Electrospun nanofiber membranes hold great promise as scaffolds for tissue reconstruction, mirroring the natural extracellular matrix (ECM) in their structure. However, their limited bioactive functions have hindered their effectiveness in fostering wound healing. Inorganic nanoparticles possess commendable biocompatibility, which can expedite wound healing; nevertheless, deploying them in the particle form presents challenges associated with removal or collection. To capitalize on the strengths of both components, electrospun organic/inorganic hybrid nanofibers (HNFs) have emerged as a groundbreaking solution for accelerating wound healing and maintaining stability throughout the healing process. In this review, we provide an overview of recent advancements in the utilization of HNFs for wound treatment. The review begins by elucidating various fabrication methods for hybrid nanofibers, encompassing direct electrospinning, coaxial electrospinning, and electrospinning with subsequent loading. These techniques facilitate the construction of micro-nano structures and the controlled release of inorganic ions. Subsequently, we delve into the manifold applications of HNFs in promoting the wound regeneration process. These applications encompass hemostasis, antibacterial properties, anti-inflammatory effects, stimulation of cell proliferation, and facilitation of angiogenesis. Finally, we offer insights into the prospective trends in the utilization of hybrid nanofiber-based wound dressings, charting the path forward in this dynamic field of research.
Collapse
Affiliation(s)
- Sai Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Yuqi Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Marjan Haghayegh
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Yuhan Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Shengyuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
50
|
Mirzakhel Z, Reddy GA, Boman J, Manns B, Veer ST, Katira P. "Patchiness" in mechanical stiffness across a tumor as an early-stage marker for malignancy. BMC Ecol Evol 2024; 24:33. [PMID: 38486161 PMCID: PMC10938681 DOI: 10.1186/s12862-024-02221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024] Open
Abstract
Mechanical phenotyping of tumors, either at an individual cell level or tumor cell population level is gaining traction as a diagnostic tool. However, the extent of diagnostic and prognostic information that can be gained through these measurements is still unclear. In this work, we focus on the heterogeneity in mechanical properties of cells obtained from a single source such as a tissue or tumor as a potential novel biomarker. We believe that this heterogeneity is a conventionally overlooked source of information in mechanical phenotyping data. We use mechanics-based in-silico models of cell-cell interactions and cell population dynamics within 3D environments to probe how heterogeneity in cell mechanics drives tissue and tumor dynamics. Our simulations show that the initial heterogeneity in the mechanical properties of individual cells and the arrangement of these heterogenous sub-populations within the environment can dictate overall cell population dynamics and cause a shift towards the growth of malignant cell phenotypes within healthy tissue environments. The overall heterogeneity in the cellular mechanotype and their spatial distributions is quantified by a "patchiness" index, which is the ratio of the global to local heterogeneity in cell populations. We observe that there exists a threshold value of the patchiness index beyond which an overall healthy population of cells will show a steady shift towards a more malignant phenotype. Based on these results, we propose that the "patchiness" of a tumor or tissue sample, can be an early indicator for malignant transformation and cancer occurrence in benign tumors or healthy tissues. Additionally, we suggest that tissue patchiness, measured either by biochemical or biophysical markers, can become an important metric in predicting tissue health and disease likelihood just as landscape patchiness is an important metric in ecology.
Collapse
Affiliation(s)
- Zibah Mirzakhel
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Gudur Ashrith Reddy
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Jennifer Boman
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Brianna Manns
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Savannah Ter Veer
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA.
- Computational Science Research Center, San Diego State University, San Diego, CA, USA.
| |
Collapse
|