1
|
Gibellini D, Clò A, Morini S, Miserocchi A, Ponti C, Re MC. Effects of human immunodeficiency virus on the erythrocyte and megakaryocyte lineages. World J Virol 2013; 2:91-101. [PMID: 24175233 PMCID: PMC3785048 DOI: 10.5501/wjv.v2.i2.91] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/07/2013] [Accepted: 01/13/2013] [Indexed: 02/05/2023] Open
Abstract
Anaemia and thrombocytopenia are haematological disorders that can be detected in many human immunodeficiency virus (HIV)-positive patients during the development of HIV infection. The progressive decline of erythrocytes and platelets plays an important role both in HIV disease progression and in the clinical and therapeutic management of HIV-positive patients. HIV-dependent impairment of the megakaryocyte and erythrocyte lineages is multifactorial and particularly affects survival, proliferation and differentiation of bone marrow (BM) CD34+ haematopoietic progenitor cells, the activity of BM stromal cells and the regulation of cytokine networks. In this review, we analyse the major HIV-related mechanisms that are involved in the genesis and development of the anaemia and thrombocytopenia observed in HIV positive patients.
Collapse
|
2
|
Park YA, Hay SN, Brecher ME. ADAMTS13 activity levels in patients with human immunodeficiency virus-associated thrombotic microangiopathy and profound CD4 deficiency. J Clin Apher 2009; 24:32-6. [PMID: 19156755 DOI: 10.1002/jca.20189] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Thrombotic microangiopathy (TMA) encompasses a number of disorders with hemolytic anemia and thrombocytopenia, including thrombotic thrombocytopenic purpura (TTP). A deficiency in ADAMTS13 enzyme levels, along with an inhibitory antibody, is found in most patients with idiopathic TTP. Patients with human immunodeficiency virus (HIV) infection can have a TTP-like illness; however, it appears to have a different etiology. METHODS A retrospective review of patients who had an ADAMTS13 activity level performed from 2005 through 2007 was completed. Patients with a diagnosis of HIV infection with TMA were investigated. RESULTS Two patients were identified. Case 1: a 47-year-old man with HIV infection and a CD4 count <10/microL presented with altered mental status, pneumonia, acute renal failure, thrombocytopenia, and anemia. The ADAMTS13 level was 71%. He was treated with plasma infusion. Two days after admission, he expired because of respiratory distress syndrome and metabolic lactic acidosis. Case 2: a 39-year-old man with HIV infection and a CD4 count of 9/microL presented with chest pain, acute renal failure, thrombocytopenia, and anemia. The ADAMTS13 level was 65%. He received multiple units of fresh frozen plasma without significant improvement in his platelet count. Six days after admission, the patient began highly active antiretroviral therapy, which resulted in a rapid increase in his platelet count. CONCLUSIONS HIV-associated TMA is postulated to have a different pathophysiology than idiopathic TTP. This study supports that assumption because both patients exhibited many of the classic findings of TTP but did not have a deficiency of ADAMTS13.
Collapse
Affiliation(s)
- Yara A Park
- Department of Pathology and Laboratory Medicine, University of North Carolina Hospitals, Chapel Hill, North Carolina, USA.
| | | | | |
Collapse
|
3
|
Brecher ME, Hay SN, Park YA. Is it HIV TTP or HIV-associated thrombotic microangiopathy? J Clin Apher 2009; 23:186-90. [PMID: 18973113 DOI: 10.1002/jca.20176] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thrombocytopenia is a common complication of Human Immunodeficiency Virus (HIV) infection. With advanced HIV disease, the presence of both thrombocytopenia and schistocytosis are frequently observed. In such cases, the diagnosis of HIV associated TTP is often considered. This article reviews emerging concepts of HIV associated microangiopathies. It concludes that the pathophysiology, in many cases seems to be distinct from idiopathic TTP (particularly with advanced HIV disease-<100 CD4/microliter). A sine que non for successful therapy of HIV-TMA appears to be the treatment of the underlying HIV infection.
Collapse
Affiliation(s)
- Mark E Brecher
- Department of Pathology and Laboratory Medicine, University of North Carolina Hospitals, Chapel Hill, North Carolina 27514, USA.
| | | | | |
Collapse
|
4
|
Gibellini D, Vitone F, Buzzi M, Schiavone P, De Crignis E, Cicola R, Conte R, Ponti C, Re MC. HIV-1 negatively affects the survival/maturation of cord blood CD34(+) hematopoietic progenitor cells differentiated towards megakaryocytic lineage by HIV-1 gp120/CD4 membrane interaction. J Cell Physiol 2007; 210:315-24. [PMID: 17111363 DOI: 10.1002/jcp.20815] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To investigate the mechanisms involved in the human immunodeficiency virus type 1 (HIV-1)-related thrombocytopenia (TP), human umbilical cord blood (UCB) CD34(+) hematopoietic progenitor cells (HPCs) were challenged with HIV-1(IIIb) and then differentiated by thrombopoietin (TPO) towards megakaryocytic lineage. This study showed that HIV-1, heat-inactivated HIV-1, and HIV-1 recombinant gp120 (rgp120) activated apoptotic process of megakaryocyte (MK) progenitors/precursors and decreased higher ploidy MK cell fraction. All these inhibitory effects on MK survival/maturation and platelets formation were elicited by the interaction between gp120 and CD4 receptor on the cell membrane in the absence of HIV-1 productive infection. In fact, in our experimental conditions, HPCs were resistant to HIV-1 infection and no detectable productive infection was observed. We also evaluated whether the expression of specific cytokines, such as TGF-beta1 and APRIL, involved in the regulation of HPCs and MKs proliferation, was modulated by HIV-1. The specific protein and mRNA detection analysis, during TPO-induced differentiation, demonstrated that HIV-1 upregulates TGF-beta1 and downregulates APRIL expression through the CD4 engagement by gp120. Altogether, these data suggest that survival/differentiation of HPCs committed to MK lineage is negatively affected by HIV-1 gp120/CD4 interaction. This long-term inhibitory effect is also correlated to specific cytokines regulation and it may represent an additional mechanism to explain the TP occurring in HIV-1 patients.
Collapse
Affiliation(s)
- Davide Gibellini
- Department of Clinical and Experimental Medicine, Microbiology Section, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tenedini E, Fagioli ME, Vianelli N, Tazzari PL, Ricci F, Tagliafico E, Ricci P, Gugliotta L, Martinelli G, Tura S, Baccarani M, Ferrari S, Catani L. Gene expression profiling of normal and malignant CD34-derived megakaryocytic cells. Blood 2004; 104:3126-35. [PMID: 15271793 DOI: 10.1182/blood-2003-07-2597] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gene expression profiles of bone marrow (BM) CD34-derived megakaryocytic cells (MKs) were compared in patients with essential thrombocythemia (ET) and healthy subjects using oligonucleotide microarray analysis to identify differentially expressed genes and disease-specific transcripts. We found that proapoptotic genes such as BAX, BNIP3, and BNIP3L were down-regulated in ET MKs together with genes that are components of the mitochondrial permeability transition pore complex, a system with a pivotal role in apoptosis. Conversely, antiapoptotic genes such as IGF1-R and CFLAR were up-regulated in the malignant cells, as was the SDF1 gene, which favors cell survival. On the basis of the array results, we characterized apoptosis of normal and ET MKs by time-course evaluation of annexin-V and sub-G1 peak DNA stainings of immature and mature MKs after culture in serum-free medium with an optimal thrombopoietin concentration, and annexin-V-positive MKs only, with decreasing thrombopoietin concentrations. ET MKs were more resistant to apoptosis than their normal counterparts. We conclude that imbalance between proliferation and apoptosis seems to be an important step in malignant ET megakaryocytopoiesis.
Collapse
Affiliation(s)
- Elena Tenedini
- Istituto di Ematologia e Oncologia Medica L. e A. Seràgnoli, Università di Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Catani L, Vianelli N, Amabile M, Pattacini L, Valdrè L, Fagioli ME, Poli M, Gugliotta L, Moi P, Marini MG, Martinelli G, Tura S, Baccarani M. Nuclear factor-erythroid 2 (NF-E2) expression in normal and malignant megakaryocytopoiesis. Leukemia 2002; 16:1773-81. [PMID: 12200693 DOI: 10.1038/sj.leu.2402597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2001] [Accepted: 04/11/2002] [Indexed: 11/09/2022]
Abstract
Although the transcription factor nuclear factor-erythroid 2 (NF-E2) is known to be functionally linked to the megakaryocytic lineage, little is known about its role in malignant megakaryocytes. We used real-time RT-PCR and Western blotting to investigate expression of NF-E2 and its partner, MafG, in CD34-derived normal (five cases) and malignant megakaryocytes from essential thrombocythemia (ET) patients (eight cases) and in megakaryoblastic cell lines. We also quantitated the mRNA of the thromboxane synthase (TXS) gene, which is directly regulated by NF-E2. Although real-time RT-PCR showed that both a and f NF-E2 isoforms were significantly reduced with respect to the normal counterpart both in ET megakaryocytes and in cell lines (P < or = 0.01), western blotting revealed decreased NF-E2 protein expression only in the latter. However, both the NF-E2a/MafG mRNA ratio (P < or = 0.01) and TXS (P< or = 0.01) mRNA expression were significantly reduced in megakaryocytes from ET patients and cell lines with respect to healthy subjects. These two findings provide strong indirect evidence of altered activity of the a isoform of NF-E2 in malignant megakaryocytes, raising the possibility that NF-E2 could play a role in megakaryocyte transformation.
Collapse
Affiliation(s)
- L Catani
- Istituto di Ematologia e Oncologia Medica 'L. e A. Seràgnoli', University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Majka M, Rozmyslowicz T, Honczarenko M, Ratajczak J, Wasik MA, Gaulton GN, Ratajczak MZ. Biological significance of the expression of HIV-related chemokine coreceptors (CCR5 and CXCR4) and their ligands by human hematopoietic cell lines. Leukemia 2000; 14:1821-32. [PMID: 11021758 DOI: 10.1038/sj.leu.2401891] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to learn more about the role of the HIV-related chemokine-chemokine receptor axes in human hematopoiesis. To address this issue we phenotyped 35 selected hematopoietic cell lines for the expression of CD4, CXCR4 and CCR5. We next evaluated the functionality of these chemokine receptors by calcium flux and chemotaxis assays, and by the ability of SDF-1, MIP-1alpha, MIP-1beta and RANTES to influence the growth of the cells expressing CXCR4 and/or CCR5. Lastly, we examined whether human hematopoietic cell lines may secrete some HIV-related chemokines, and whether endogenously secreted chemokines might interfere with the infectability. of hematopoietic cells by X4 and R5 HIV strains. These results demonstrate that: (1) HIV-related receptors are widely expressed on human hematopoietic cell lines; (2) stimulation of CXCR4 by SDF-1 induces calcium flux and chemotaxis in several hematopoietic cell lines more efficiently than stimulation of CCR5 by receptor-specific beta-chemokines; (3) chemokines do not regulate proliferation of the hematopoietic cells; and finally (4) infectability of the hematopoietic cells by HIV-1 may be auto-modulated by endogenously secreted chemokines. These data shed more light on the role of HIV-related chemokine-chemokine receptors axes in human hematopoiesis and interaction of hematopoietic cells with HIV.
Collapse
Affiliation(s)
- M Majka
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Voulgaropoulou F, Pontow SE, Ratner L. Productive infection of CD34+-cell-derived megakaryocytes by X4 and R5 HIV-1 isolates. Virology 2000; 269:78-85. [PMID: 10725200 DOI: 10.1006/viro.2000.0193] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The human immunodeficiency virus (HIV-1) causes various hematopoietic abnormalities, with thrombocytopenia (TP) occurring in 30% of infected individuals. In the present study, we aimed to determine whether HIV-1 in the bone marrow of TP patients can infect primary megakaryocytes in vitro, which may contribute to the development of thrombocytopenia. We amplified the V3 loop of HIV-1 envelope from the bone marrow of TP and non-TP patients and constructed recombinant viruses. We demonstrate that the bone marrow of TP and non-TP patients contained R5 strains, whereas X4 strains were present only in the bone marrow of TP patients. Furthermore, HIV-1 from the bone marrow of TP and non-TP patients infected megakaryocytes to similar levels, suggesting that the V3 loop of HIV-1 may not contain the viral determinants of HIV-associated TP. Chemokine receptor analysis determined that CD34+-cell-derived megakaryocytes express CD4, CXCR4, and CCR5 and are productively infected by both X4 and R5 HIV-1 isolates. Finally, we showed that CD34+-cell-derived megakaryocytes express the chemokine receptor CCR3.
Collapse
Affiliation(s)
- F Voulgaropoulou
- Departments of Medicine, Pathology, and Molecular Microbiology, Washington University, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
9
|
Park IW, Wang JF, Groopman JE. Expression and utilization of co-receptors in HIV and simian immunodeficiency virus infection of megakaryocytes. AIDS 1999; 13:2023-32. [PMID: 10546854 DOI: 10.1097/00002030-199910220-00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To analyse the expression and specificity of co-receptors for the entry of HIV and simian immunodeficiency virus (SIV) into megakaryocytes. DESIGN AND METHODS The expression of co-receptors was determined by flow cytometric analysis in combination with reverse transcription-polymerase chain (RT-PCR) reaction. The specificity of co-receptors in virus entry was determined by the infection of HIV-1 pseudotyped with X4- (HXB2), R5- (YU2), or R5X4-tropic (89.6) envelope proteins of HIV-1 or with envelope proteins of SIVpbj1.9. RESULTS The model human erythroleukemia (HEL) cell line, exhibiting megakaryocytic-like properties, expressed CCR5, CCR3, CXCR4, and CPR15/BOB, and all viruses except YU2 (R5) efficiently entered the cells. The blocking of virus entry with specific chemokines showed that the entry of HXB2 (X4) was impaired by SDF-1beta but not by other chemokines, indicating that CXCR4 was a major co-receptor for the entry of HXB2. Primary human bone marrow megakaryocytes displayed a different repertoire of co-receptor expression from that of HEL cells, as all viruses except YU2 efficiently entered these cells. However, chemokine blocking experiments showed that the entry of HXB2 into primary bone marrow megakaryocytes was insufficiently blocked by SDF-1beta compared with the entry into HEL cells, suggesting that alternative co-receptors could be employed for the entry of X4 virus into bone marrow cells. CONCLUSION These data suggest that cells of megakaryocytic lineage are susceptible to infection by X4 viruses, with less marked susceptibility to R5 isolates, and that SDF-1beta efficiently blocks the infection of HEL cells but not of primary bone marrow megakaryocytes. Our data reveal that novel co-receptors are probably utilized for the entry of X4 virus into megakaryocytes.
Collapse
Affiliation(s)
- I W Park
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | | | | |
Collapse
|
10
|
Gibellini D, Re MC, Bassini A, Guidotti L, Catani L, La Placa M, Zauli G. HIV-1 gp120 induces the activation of both c-fos and c-jun immediate-early genes in HEL megakaryocytic cells. Br J Haematol 1999; 104:81-6. [PMID: 10027715 DOI: 10.1046/j.1365-2141.1999.01141.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously demonstrated that the addition in culture of recombinant HIV-1 IIIB envelope gp120 affects the survival/growth of pluripotent haemopoietic progenitors, and, in particular, of those committed towards the megakaryocytic lineage. To characterize some of the molecular mechanisms involved in this phenomenon, we investigated the expression of members of the activating protein-1 (AP-1) complex in the HEL megakaryoblastic cell line. Following the treatment of HEL cells with recombinant IIIB envelope gp120, we noticed: (i) increased levels of endogenous c-fos and c-jun mRNA and proteins, (ii) activation of both c-fos and c-jun promoters, and (iii) a very rapid stimulation of a MAPK/ERK pathway.
Collapse
Affiliation(s)
- D Gibellini
- Department of Clinical and Experimental Medicine, University of Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Productive Human Immunodeficiency Virus-1 Infection of Purified Megakaryocytic Progenitors/Precursors and Maturing Megakaryocytes. Blood 1998. [DOI: 10.1182/blood.v91.4.1225] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe have evaluated the susceptibility to human immunodeficiency virus (HIV)-1 infection of in vitro grown megakaryopoietic progenitors/precursors and maturing megakaryocytes (MKs), based on the following approach: (1) human hematopoietic progenitor cells (HPCs), stringently purified from peripheral blood and grown in serum-free liquid suspension culture supplemented with thrombopoietin (Tpo), generated a relatively large number of ≥ 98% to 99% pure megakaryocytic precursors and then mature-terminal MKs; (2) at different days of culture (ie, 0, 5, 8, 10) the cells were inoculated with 0.1 to 1.0 multiplicity of infection (m.o.i.) of the lymphotropic NL4-3 or 0.1 m.o.i. of the monocytotropic BaL-1 HIV-1 strain; (3) finally, the presence of viral mRNA and proteins was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR)/in situ hybridization and antigen capture assays, respectively, on day 2 to 12 of culture. MKs derived from day 0 and day 5 BaL-1–challenged cells do not support viral replication as assessed by p24 enzyme-linked immunosorbent assay (ELISA) and RT-PCR. On the contrary, HIV transcripts and proteins were clearly detected in all NL4-3 infection experiments by RT-PCR and p24 assay, respectively, with the highest viral expression in day 5 to 8 challenged MKs. In situ hibridization studies indicate that the percentage of HIV+ MKs varies from at least 1% and 5% for day 0 and day 5 infected cells, respectively. Production of an infectious viral progeny, evaluated by the capability of culture supernatants from day 5 NL4-3–challenged MKs to infect C8166 T-lymphoblastoid cell line, was consistently observed (viral titer, ≈ 5 × 103 tissue culture infectious dose50/mL/106 cells). Exposure of MKs to saturating concentration of anti-CD4 OKT4A monoclonal antibody (MoAb), which recognizes the CD4 region binding with the gp120 envelope glycoprotein, markedly inhibited HIV infection, as indicated by a reduction of p24 content in the supernatants: because the inhibitory effect was incomplete, it is apparent that the infection is only partially CD4-dependent, suggesting that an alternative mechanism of viral entry may exist. Morphologic analysis of day 12 MKs derived from HPCs infected at day 0 showed an impaired megakaryocytic differentiation/maturation: the percentage of mature MKs was markedly reduced, in that ≈ 80% of cells showed only one nuclear lobe and a pale cytoplasm with few granules. Conversely, megakaryocytic precursors challenged at day 5 to 8 generated fully mature day 10 to 12 MKs showing multiple nuclear segmentation. Thus, the inhibitory effect of HIV on the megakaryopoietic gene program relates to the differentiation stage of cells subjected to the viral challenge. Finally, HPCs treated with 20 or 200 ng/mL of recombinant Tat protein, analyzed at different days of culture, showed an impaired megakaryocytopoiesis comparable to that observed in HIV-infected cells, thus suggesting that Tat is a major mediator in the above described phenomena. These results shed light on the pathogenesis of HIV-related thrombocytopenia; furthermore, they provide a model to investigate the effects of HIV on megakaryocytic differentiation and function.
Collapse
|