1
|
Xiao Y, Wang J, Yang K, Jiang M, Luo J, Chen K, Zhang B. Effect of methylprednisolone in reducing severe COVID-19 and mortality in high-risk patients: A retrospective study. SAGE Open Med 2024; 12:20503121241276683. [PMID: 39257516 PMCID: PMC11384515 DOI: 10.1177/20503121241276683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction The treatment of COVID-19 patients, especially high-risk patients, remains a large challenge. Glucocorticoids have been accepted as effective medicines for severe COVID-19. However, the glucocorticoid usage guidelines do not cover all the indications for high-risk patients. Objective To identify more effective treatments for high-risk patients with COVID-19, this retrospective study analyzed routine epidemiological, clinical, and laboratory data from 33 high-risk patients with COVID-19 in Beijing Gobroad Boren Hospital, Beijing, China, most of whom responded well to treatment. Methods Severe acute respiratory syndrome coronavirus-2 infection was confirmed via real-time reverse transcriptase polymerase chain reaction assays. Outcome measures such as duration of mechanical ventilation, intensive care unit length of stay, and 28-day mortality were analyzed. Patients were divided into two groups: mild to moderate COVID-19 (n = 26) and severe COVID-19 (n = 7). Chest computed tomography images were used to guide methylprednisolone administration or withdrawal. Results Upon intensive care unit admission, 12.1% of patients were mechanically ventilated with an average partial pressure of oxygen/fraction of inspired oxygen(PaO2/FiO2) ratio of 279 ± 146. No coinfections with other endemic viruses were observed. The duration of mechanical ventilation was 16 days (interquartile range: 8-28); the intensive care unit length of stay was 11 (interquartile range: 2-33) days; and the 28-day total mortality was 3.0%. Conclusion Multivariate regression analysis revealed that low-dose, timely methylprednisolone administration was associated with a lower severe COVID-19 rate and mortality in high-risk patients. For high-risk patients, once there are ground-glass opacities (GGO) in the computed tomography image, continuous and low-dose methylprednisolone administration promotes inflammation remission and protects them from severe COVID-19 or mortality.
Collapse
Affiliation(s)
- Yan Xiao
- Respiratory Infection and Critical Disease Diagnosis and Treatment, Beijing Gobroad Boren Hospital, Beijing, China
| | - Jinwei Wang
- Respiratory Infection and Critical Disease Diagnosis and Treatment, Beijing Gobroad Boren Hospital, Beijing, China
| | - Kai Yang
- Respiratory Infection and Critical Disease Diagnosis and Treatment, Beijing Gobroad Boren Hospital, Beijing, China
| | - Meiling Jiang
- Respiratory Infection and Critical Disease Diagnosis and Treatment, Beijing Gobroad Boren Hospital, Beijing, China
| | - Jialin Luo
- Respiratory Infection and Critical Disease Diagnosis and Treatment, Beijing Gobroad Boren Hospital, Beijing, China
| | - Kun Chen
- Respiratory Infection and Critical Disease Diagnosis and Treatment, Beijing Gobroad Boren Hospital, Beijing, China
| | - Bo Zhang
- Respiratory Infection and Critical Disease Diagnosis and Treatment, Beijing Gobroad Boren Hospital, Beijing, China
| |
Collapse
|
2
|
Velikova T, Valkov H, Aleksandrova A, Peshevska-Sekulovska M, Sekulovski M, Shumnalieva R. Harnessing immunity: Immunomodulatory therapies in COVID-19. World J Virol 2024; 13:92521. [PMID: 38984079 PMCID: PMC11229839 DOI: 10.5501/wjv.v13.i2.92521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 06/24/2024] Open
Abstract
An overly exuberant immune response, characterized by a cytokine storm and uncontrolled inflammation, has been identified as a significant driver of severe coronavirus disease 2019 (COVID-19) cases. Consequently, deciphering the intricacies of immune dysregulation in COVID-19 is imperative to identify specific targets for intervention and modulation. With these delicate dynamics in mind, immunomodulatory therapies have emerged as a promising avenue for mitigating the challenges posed by COVID-19. Precision in manipulating immune pathways presents an opportunity to alter the host response, optimizing antiviral defenses while curbing deleterious inflammation. This review article comprehensively analyzes immunomodulatory interventions in managing COVID-19. We explore diverse approaches to mitigating the hyperactive immune response and its impact, from corticosteroids and non-steroidal drugs to targeted biologics, including anti-viral drugs, cytokine inhibitors, JAK inhibitors, convalescent plasma, monoclonal antibodies (mAbs) to severe acute respiratory syndrome coronavirus 2, cell-based therapies (i.e., CAR T, etc.). By summarizing the current evidence, we aim to provide a clear roadmap for clinicians and researchers navigating the complex landscape of immunomodulation in COVID-19 treatment.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Hristo Valkov
- Department of Gastroenterology, University Hospital “Tsaritsa Yoanna-ISUL”, Medical University of Sofia, Sofia 1527, Bulgaria
| | | | - Monika Peshevska-Sekulovska
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | - Russka Shumnalieva
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Rheumatology, Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Medical University-Sofia, Sofia 1612, Bulgaria
| |
Collapse
|
3
|
Boon ACM, Bricker TL, Fritch EJ, Leist SR, Gully K, Baric RS, Graham RL, Troan BV, Mahoney M, Janetka JW. Efficacy of host cell serine protease inhibitor MM3122 against SARS-CoV-2 for treatment and prevention of COVID-19. J Virol 2024; 98:e0190323. [PMID: 38593045 PMCID: PMC11092322 DOI: 10.1128/jvi.01903-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
We developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases, including transmembrane protease serine 2 (TMPRSS2), matriptase, and hepsin. TMPRSS2 is a membrane-associated protease that is highly expressed in the upper and lower respiratory tracts and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell entry, replication, and dissemination of new virus particles. We have previously shown that compound MM3122 exhibited subnanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Furthermore, we evaluated MM3122 in a mouse model of COVID-19 and demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in proinflammatory cytokine and chemokine production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2-infected mice. Therefore, MM3122 is a promising lead candidate small-molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and a therapeutic drug for the treatment of COVID-19 given intraperitoneally in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research, but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.
Collapse
Affiliation(s)
- Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ethan J. Fritch
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah R. Leist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kendra Gully
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rachel L. Graham
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
4
|
Recchia Luciani G, Barilli A, Visigalli R, Sala R, Dall’Asta V, Rotoli BM. IRF1 Mediates Growth Arrest and the Induction of a Secretory Phenotype in Alveolar Epithelial Cells in Response to Inflammatory Cytokines IFNγ/TNFα. Int J Mol Sci 2024; 25:3463. [PMID: 38542436 PMCID: PMC10970306 DOI: 10.3390/ijms25063463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
In COVID-19, cytokine release syndrome can cause severe lung tissue damage leading to acute respiratory distress syndrome (ARDS). Here, we address the effects of IFNγ, TNFα, IL-1β and IL-6 on the growth arrest of alveolar A549 cells, focusing on the role of the IFN regulatory factor 1 (IRF1) transcription factor. The efficacy of JAK1/2 inhibitor baricitinib has also been tested. A549 WT and IRF1 KO cells were exposed to cytokines for up to 72 h. Cell proliferation and death were evaluated with the resazurin assay, analysis of cell cycle and cycle-regulator proteins, LDH release and Annexin-V positivity; the induction of senescence and senescence-associated secretory phenotype (SASP) was evaluated through β-galactosidase staining and the quantitation of secreted inflammatory mediators. While IL-1 and IL-6 proved ineffective, IFNγ plus TNFα caused a proliferative arrest in A549 WT cells with alterations in cell morphology, along with the acquisition of a secretory phenotype. These effects were STAT and IRF1-dependent since they were prevented by baricitinib and much less evident in IRF1 KO than in WT cells. In alveolar cells, STATs/IRF1 axis is required for cytokine-induced proliferative arrest and the induction of a secretory phenotype. Hence, baricitininb is a promising therapeutic strategy for the attenuation of senescence-associated inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (R.S.); (B.M.R.)
| | | |
Collapse
|
5
|
Boon ACM, L Bricker T, Fritch EJ, Leist SR, Gully K, Baric RS, Graham RL, Troan BV, Mahoney M, Janetka JW. Efficacy of Host Cell Serine Protease Inhibitor MM3122 against SARS-CoV-2 for Treatment and Prevention of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579701. [PMID: 38405752 PMCID: PMC10888838 DOI: 10.1101/2024.02.09.579701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We have developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases including transmembrane protease serine 2 (TMPRSS2), matriptase and hepsin. TMPRSS2 is a membrane associated protease which is highly expressed in the upper and lower respiratory tract and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell receptor binding, entry, replication, and dissemination of new virion particles. We have previously shown that compound MM3122 exhibited sub nanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell-viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Further, we have evaluated MM3122 in a mouse model of COVID-19 and have demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion, and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in pro-inflammatory cytokines and chemokines production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2 infected mice. Therefore, MM3122 is a promising lead candidate small molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host-cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and therapeutic drug for the treatment of COVID-19 in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.
Collapse
|