1
|
Azcarate D, Olasagasti Arsuaga F, Granizo Rodriguez E, Arana-Arri E, España PP, Intxausti M, Sancho C, García de Vicuña Meléndez A, Ibarrondo O, M de Pancorbo M. Human-genetic variants associated with susceptibility to SARS-CoV-2 infection. Gene 2025; 953:149423. [PMID: 40120867 DOI: 10.1016/j.gene.2025.149423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
SARS-CoV-2, the third major coronavirus of the 21st century, causing COVID-19 disease, profoundly impacts public health and workforces worldwide. Identifying individuals at heightened risk of SARS-CoV-2 infection is crucial for targeted interventions and preparedness. This study investigated 35 SNVs within viral infection-associated genes in SARS-CoV-2 patients and uninfected controls from the Basque Country (March 2020-July 2021). Its primary aim was to uncover genetic markers indicative of SARS-CoV-2 susceptibility and explore genetic predispositions to infection. Association analyses revealed previously unreported associations between SNVs and susceptibility. Haplotype analyses uncovered novel links between haplotypes and susceptibility, surpassing individual SNV associations. Descriptive modelling identified key susceptibility factors, with rs11246068-CC (IFITM3), rs5742933-GG (ORMDL1), rs35337543-CG (IFIH1), and GGGCT (rs2070788, rs2298659, rs17854725, rs12329760, rs3787950) variation in TMPRSS2 emerging as main infection-susceptibility indicators for a COVID-19 pandemic situation. These findings underscore the importance of integrated SNV and haplotype analyses in delineating susceptibility to SARS-CoV-2 and informing proactive prevention strategies. The genetic markers profiled in this study offer valuable insights for future pandemic preparedness.
Collapse
Affiliation(s)
- Daniel Azcarate
- BIOMICs Research Group (BIOMICS and Microfluidics cluster), Zoology and animal cellular biology department, Faculty of Science and Technology (UPV/EHU), 48940 Leioa, Biscay (Basque Country), Spain
| | - Felix Olasagasti Arsuaga
- BIOMICs Research Group (BIOMICS and Microfluidics cluster), Biochemistry and molecular biology department, Faculty of Pharmacy (UPV/EHU), 01006 Vitoria-Gasteiz, Alava (Basque Country), Spain.
| | - Eva Granizo Rodriguez
- BIOMICs Research Group (BIOMICS and Microfluidics cluster), Zoology and animal cellular biology department, Faculty of Science and Technology (UPV/EHU), 48940 Leioa, Biscay (Basque Country), Spain
| | - Eunate Arana-Arri
- Clinical Epidemiology Unit, Cruces University Hospital, 48903 Barakaldo, Biscay (Basque Country), Spain
| | - Pedro Pablo España
- Pulmonology Service, Galdakao-Usansolo University Hospital, 48960 Galdakao, Biscay (Basque Country), Spain
| | - Maider Intxausti
- Pulmonology Service, Alava University Hospital - Txagorritxu, 01009 Vitoria-Gasteiz, Álava (Basque Country), Spain
| | - Cristina Sancho
- Department of Pneumology, Basurto University Hospital, 48013 Bilbao, Biscay (Basque Country), Spain
| | | | - Oliver Ibarrondo
- Consultant in Statistics and Health Economics Research, Debagoiena AP-OSI Research Unit, 20500 Arrasate, Gipuzkoa (Basque Country), Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group (BIOMICS and Microfluidics cluster), Zoology and animal cellular biology department, Faculty of Science and Technology (UPV/EHU), 48940 Leioa, Biscay (Basque Country), Spain.
| |
Collapse
|
2
|
Tang X, Zhang J, Sun Y, Xu Z, Huang T, Liu X, Song Y, Zhang Y, Deng Y. Autonomic lysosomal escape via sialic acid modification enhances mRNA lipid nanoparticles to eradicate tumors and build humoral immune memory. J Control Release 2025; 382:113647. [PMID: 40158813 DOI: 10.1016/j.jconrel.2025.113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Lysosomes present a major barrier to efficient mRNA delivery. Existing strategies primarily depend on lysosomal disruption, which is inefficient and carries a risk of cytolysis. We propose an Autonomic Lysosomal Escape (ALE) strategy, in which sialic acid (SA) modification enables over 90 % of LNPs to successfully escape from lysosomes by inducing cells to spontaneously reduce lysosome generation. The SA modification enhances the transfection efficiency of LNPs administered via intravenous injection, intramuscular injection, and inhalation, demonstrating the broad applicability. The structure of cleavable PEG-lipids was optimized using a newly developed method, termed Systematic Evaluation of LNPs' Efficiency by Cumulative Tests (SELECT). The results showed that polyethylene glycol 2000-cholesterol hemisuccinate (Ps) is the optimal candidate for co-modification with SA. The resulting LNPs co-modified with SA and Ps (SAPs@LNPs) completely eradicated TC-1 tumors and induced humoral immune memory. Combining SA-modified doxorubicin liposomes (DOX-SL) further accelerates tumor elimination, while licensed PEGylated liposomal doxorubicin (Caelyx) impairs the efficacy of mRNA vaccines. This difference stems from DOX-SL's selective depletion of tumor-associated immune cells (TAICs) and the nonspecific cytotoxicity of Caelyx. These findings suggest that combining Caelyx with mRNA vaccines should be approached with caution. Our study also highlights the key roles of humoral immune memory and natural killer cell-driven antibody-dependent cellular cytotoxicity (ADCC) in tumor eradication, and incorporating them into the cancer immune cycle further refines this theory.
Collapse
Affiliation(s)
- Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Jiashuo Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Yuejia Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Zihan Xu
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Tiancheng Huang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China.
| | - Yu Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China.
| |
Collapse
|
3
|
Liddie JM, Bind MA, Karra M, Sunderland EM. County-level associations between drinking water PFAS contamination and COVID-19 mortality in the United States. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:478-485. [PMID: 39369072 PMCID: PMC11972421 DOI: 10.1038/s41370-024-00723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Epidemiologic and animal studies both support relationships between exposures to per- and polyfluoroalkyl substances (PFAS) and harmful effects on the immune system. Accordingly, PFAS have been identified as potential environmental risk factors for adverse COVID-19 outcomes. OBJECTIVE Here, we examine associations between PFAS contamination of U.S. community water systems (CWS) and county-level COVID-19 mortality records. Our analyses leverage two datasets: one at the subnational scale (5371 CWS serving 621 counties) and one at the national scale (4798 CWS serving 1677 counties). The subnational monitoring dataset was obtained from statewide drinking monitoring of PFAS (2016-2020) and the national monitoring dataset was obtained from a survey of unregulated contaminants (2013-2015). METHODS We conducted parallel analyses using multilevel quasi-Poisson regressions to estimate cumulative incidence ratios for the association between county-level measures of PFAS drinking water contamination and COVID-19 mortality prior to vaccination onset (Jan-Dec 2020). In the primary analyses, these regressions were adjusted for several county-level sociodemographic factors, days after the first reported case in the county, and total hospital beds. RESULTS In the subnational analysis, detection of at least one PFAS over 5 ng/L was associated with 12% higher [95% CI: 4%, 19%] COVID-19 mortality. In the national analysis, detection of at least one PFAS above the reporting limits (20-90 ng/L) was associated with 13% higher [95% CI: 8%, 19%] COVID-19 mortality. IMPACT STATEMENT Our findings provide evidence for an association between area-level drinking water PFAS contamination and higher COVID-19 mortality in the United States. These findings reinforce the importance of ongoing state and federal monitoring efforts supporting the U.S. Environmental Protection Agency's 2024 drinking water regulations for PFAS. More broadly, this example suggests that drinking water quality could play a role in infectious disease severity. Future research would benefit from study designs that combine area-level exposure measures with individual-level outcome data.
Collapse
Affiliation(s)
- Jahred M Liddie
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Marie-Abèle Bind
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mahesh Karra
- Frederick S. Pardee School of Global Studies, Boston University, Boston, MA, USA
| | - Elsie M Sunderland
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
4
|
Marinho LDSS, Andrade MCR, Lopes CADA, Coelho da Silva KVG, Gama E Souza KDM, Machado-Santos C. Immunohistochemical identification of ACE-2 (SARS-COV II entry mechanism) in the gastrointestinal tract, kidney and lung of rhesus monkeys (Macaca mulatta) and squirrel monkeys (Saimiri sciureus). Tissue Cell 2025; 93:102711. [PMID: 39787940 DOI: 10.1016/j.tice.2024.102711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/15/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
SARS-Cov-2 is a corona virus that causes COVID-19 disease, a viral infection responsible for the pandemic decreed by the World Health Organization in March 2020. Angiotensin-converting enzyme 2 (ACE-2) functions as the main receptor for SARS-Cov-2. The study aimed to detect the expression of ACE-2 in the gastrointestinal tract, kidney, and lung in the rhesus monkeys and squirrel monkeys. The sections from 18 rhesus monkey and 17 squirrel monkeys were incubated with rabbit polyclonal antibody to ACE2 (ab65863). In the lung of the rhesus monkeys, the presence of ACE-2 was noted in the bronchial mucosa of the respiratory epithelium. In the kidney, there was irregular in the proximal convoluted tubules. In the pyloric stomach, duodenum and in the large intestine it was observed on the surface of the lining epithelium. In the lung of the squirrel monkeys, this marking was present in both the ciliated cylindrical and goblet cell sof the bronchi. In the kidney light marking was observed along the surfasse of the cubic epithelium of the proximal convoluted tubules and in the renal glomerulus. No markings were observed throughout the stomach and intense staining was observed along the surfasse of the intestinal epithelium of the duodenum, jejunum and ileum, as well as in the intestinal glands. In our study, we can observe not able differences in the distribution of ACE2 between the two species of primates analysed. These differences must be considered in experimental studies on this disease, which continues to be a topic of notable importance for Public Health.
Collapse
Affiliation(s)
- Larissa Dos Santos Sebould Marinho
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil
| | | | | | - Kassia Valéria Gomes Coelho da Silva
- Department of Pathology and Veterinary Clinic, Faculty of Veterinary, Fluminense Federal University, Vital Brazil/Santa Rosa, Niterói, RJ 24230-340, Brazil
| | - Kauet de Matos Gama E Souza
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil
| | - Clarice Machado-Santos
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil.
| |
Collapse
|
5
|
Kifer A, Pina F, Codallos N, Hermann A, Ziegler L, Niwa M. Orchestration of SARS-CoV-2 Nsp4 and host cell ESCRT proteins induces morphological changes of the endoplasmic reticulum. Mol Biol Cell 2025; 36:ar40. [PMID: 39937675 PMCID: PMC12005107 DOI: 10.1091/mbc.e24-12-0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
Upon entry into the host cell, the nonstructural proteins 3, 4, and 6 (Nsp3, Nsp 4, and Nsp6) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) facilitate the formation of double-membrane vesicles (DMVs) through extensive rearrangement of the host cell endoplasmic reticulum (ER) to replicate the viral genome and translate viral proteins. To dissect the functional roles of each Nsp and the molecular mechanisms underlying the ER changes, we exploited both yeast Saccharomyces cerevisiae and human cell experimental systems. Our results demonstrate that Nsp4 alone is sufficient to induce ER structural changes. Nsp4 expression led to robust activation of both the unfolded protein response (UPR) and the ER surveillance (ERSU) cell cycle checkpoint, resulting in cortical ER inheritance block and septin ring mislocalization. Interestingly, these ER morphological changes occurred independently of the canonical UPR and ERSU components but were mediated by the endosomal sorting complex for transport (ESCRT) proteins Vps4 and Vps24 in yeast. Similarly, ER structural changes occurred in human cells upon Nsp4 expression, providing a basis for a minimal experimental system for testing the involvement of human ESCRT proteins and ultimately advancing our understanding of DMV formation.
Collapse
Affiliation(s)
- Allison Kifer
- School of Biological Sciences, Department of Molecular Biology, NSB, University of California, San Diego, San Diego, CA 92093-0377
| | - Franciso Pina
- School of Biological Sciences, Department of Molecular Biology, NSB, University of California, San Diego, San Diego, CA 92093-0377
| | - Nicholas Codallos
- School of Biological Sciences, Department of Molecular Biology, NSB, University of California, San Diego, San Diego, CA 92093-0377
| | - Anita Hermann
- School of Biological Sciences, Department of Molecular Biology, NSB, University of California, San Diego, San Diego, CA 92093-0377
| | - Lauren Ziegler
- School of Biological Sciences, Department of Molecular Biology, NSB, University of California, San Diego, San Diego, CA 92093-0377
| | - Maho Niwa
- School of Biological Sciences, Department of Molecular Biology, NSB, University of California, San Diego, San Diego, CA 92093-0377
| |
Collapse
|
6
|
Jermakow N, Brodaczewska K, Kot J, Lubas A, Kłos K, Siewiera J. Bayesian Modeling of the Impact of HBOT on the Reduction in Cytokine Storms. J Clin Med 2025; 14:1180. [PMID: 40004710 PMCID: PMC11856955 DOI: 10.3390/jcm14041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Since the initial identification of SARS-CoV-2 infections, numerous clinical challenges have arisen, revealing both acute and long-term effects associated with COVID-19. These effects impact various systems within the body, including the respiratory, cardiovascular, and nervous systems. Background/Objectives: This study aimed to investigate the immunological and inflammatory parameters in patients with severe COVID-19 and evaluate the effects of hyperbaric oxygen therapy (HBOT) on these parameters. Methods: This study enrolled thirty patients from the Military Medical Institute-National Research Institute in Warsaw, who were hospitalized for SARS-CoV-2 infection. Patients were screened for eligibility based on pre-defined inclusion criteria. The subjects were randomly assigned to one of two groups: hyperbaric oxygen therapy (HBOT) or a control group. Immune profiling was performed, measuring cytokine concentrations and leukocyte subpopulations in serum samples. Outcomes were assessed using Bayesian modeling. Results: Bayesian regression analysis confirmed previous findings, indicating that HBOT may reduce inflammatory cytokine levels while improving oxygen saturation (SpO2) in patients with moderate and severe COVID-19. Moreover, the analysis suggested a higher probability of HBOT success in modulating the immune response and reducing inflammatory parameters, particularly in T lymphocyte subpopulations. Conclusions: Hyperbaric oxygen therapy (HBOT) may serve as an effective adjunctive treatment for patients with COVID-19 by enhancing oxygen saturation and modulating the immune response. Further studies are needed to elucidate the underlying mechanisms of HBOT on inflammatory and immunological parameters in COVID-19 patients.
Collapse
Affiliation(s)
- Natalia Jermakow
- Department of Hyperbaric Medicine, Military Institute of Medicine, National Science Institute, Szaserów 128, 04-141 Warsaw, Poland;
| | - Klaudia Brodaczewska
- The Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, National Science Institute, Szaserów 128, 04-141 Warsaw, Poland;
| | - Jacek Kot
- National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519 Gdynia, Poland;
| | - Arkadiusz Lubas
- Department of Internal Diseases Nephrology and Dialysis, Military Institute of Medicine, National Science Institute, Szaserów 128, 04-141 Warsaw, Poland;
| | - Krzysztof Kłos
- Department of Infectious Diseases and Allergology, Military Institute of Medicine, National Science Institute, Szaserów 128, 04-141 Warsaw, Poland;
| | - Jacek Siewiera
- Department of Hyperbaric Medicine, Military Institute of Medicine, National Science Institute, Szaserów 128, 04-141 Warsaw, Poland;
| |
Collapse
|
7
|
de Araújo JLF, Rossi ÁD, de Almeida JM, Alves HJ, Leitão IDC, de Ávila RE, Castiñeiras ACP, Oliveira JDS, Galliez RM, Tonini MDL, Faffe DS, Barroso SPCB, Resende GG, Gonçalves CCA, Castiñeiras TMPP, Tanuri A, Teixeira MM, Aguiar RS, Cardoso CC, de Souza RP. Genetic determinants of COVID-19 severity and mortality: ACE1 Alu 287 bp polymorphism and ACE1, ACE2, TMPRSS2 expression in hospitalized patients. PeerJ 2025; 13:e18508. [PMID: 39850833 PMCID: PMC11756369 DOI: 10.7717/peerj.18508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/21/2024] [Indexed: 01/25/2025] Open
Abstract
Background The angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) are central human molecules in the SARS-CoV-2 virus-host interaction. Evidence indicates that ACE1 may influence ACE2 expression. This study aims to determine whether ACE1, ACE2, and TMPRSS2 mRNA expression levels, along with the ACE1 Alu 287 bp polymorphism (rs4646994), contribute to the severity and mortality of COVID-19. Methods Swabs were collected in two Brazilian cities in 2020: Belo Horizonte (n = 134) and Rio de Janeiro (n = 41). A swab of mild patients in Rio de Janeiro who were not hospitalized (n = 172) was also collected. All analyzed biological material was obtained from residual diagnostic samples in 2020, prior to the emergence of SARS-CoV-2 variants of concern. ACE1, ACE2, TMPRSS2, and B2M (reference gene) expression levels were evaluated in 40 cycles of quantitative PCR. ACE1 Alu 287 bp polymorphism was genotyped using the FastStart Universal SYBR Green Master kit. Results The median age differed between clinical sites (p = 0.016), but no difference in median days of hospitalization was observed (p = 0.329). Age was associated with severity (p = 0.014) and mortality (p = 0.014) in the Belo Horizonte cohort. No alteration in ACE1, ACE2 and TMPRSS2 expression was associated with severity or mortality. ACE1 polymorphism rs4646994 did not influence the likelihood of either outcome. A meta-analysis including available data from the literature showed significant effects: the D-allele conferred risk (OR = 1.39; 95% CI [1.12-1.72]).
Collapse
Affiliation(s)
- João Locke Ferreira de Araújo
- Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de biorregulação, Laboratório de imunofarmacologia e biologia molecular, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Átila Duque Rossi
- Departamento de genética, Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jessica Maciel de Almeida
- Departamento de genética, Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo José Alves
- Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela de Carvalho Leitão
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Anna Carla Pinto Castiñeiras
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica da Silva Oliveira
- Marinha do Brasil, Instituto de Pesquisas Biomédicas, Hospital Naval Marcilio Dias, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Mello Galliez
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlon Daniel Lima Tonini
- Marinha do Brasil, Instituto de Pesquisas Biomédicas, Hospital Naval Marcilio Dias, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Souza Faffe
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shana Priscila Coutinho Barroso Barroso
- Marinha do Brasil, Instituto de Pesquisas Biomédicas, Hospital Naval Marcilio Dias, Rio de Janeiro, Rio de Janeiro, Brazil
- Clínica RioVet, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Gomes Resende
- Hospital das Clínicas, (HC-UFMG/EBSERH), Belo Horizonte, MG, Brazil, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cássia Cristina Alves Gonçalves
- Departamento de genética, Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Terezinha Marta Pereira Pinto Castiñeiras
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Departamento de genética, Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato Santana Aguiar
- Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto D’OR de Pesquisa e Ensino, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynthia Chester Cardoso
- Departamento de genética, Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renan Pedra de Souza
- Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
8
|
Jafari N, Abediankenari S. Role of microRNAs in immunoregulatory functions of epithelial cells. BMC Immunol 2024; 25:84. [PMID: 39707170 PMCID: PMC11662810 DOI: 10.1186/s12865-024-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
Epithelial cells (ECs) provide the first line of defense against microbial threats and environmental challenges. They participate in the host's immune responses via the expression and secretion of various immune-related molecules such as cytokines and chemokines, as well as interaction with immune cells. A growing body of evidence suggests that the dysregulated function of ECs can be involved in the pathophysiology of a broad range of infectious, autoimmune, and inflammatory diseases, including inflammatory bowel disease (IBD), asthma, multiple sclerosis, and rheumatoid arthritis. To maintain a substantial immunoregulatory function of ECs, precise expression of different molecules and their regulatory effects are indispensable. MicroRNAs (miRNAs, miRs) are small non-coding RNAs that regulate gene expression commonly at post-transcriptional level through degradation of target messenger RNAs (mRNAs) or suppression of protein translation. MiRNAs implicate as critical regulators in many cellular processes, including apoptosis, growth, differentiation, and immune response. Due to the crucial roles of miRNAs in such a vast range of biological processes, they have become the spotlight of biological research for more than two decades, but we are still at the beginning stages of the use of miRNA-based therapies in the improvement of human health. Hence, in the present paper, attempts are made to provide a comprehensive overview with regard to the roles of miRNAs in the immunoregulatory functions of ECs. A better understanding of the molecular mechanisms through which immunoregulatory properties of ECs are manifested, could aid the development of efficient strategies to prevent and treat multiple human diseases.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Fajar JK, Tamara F, Putranto W, Prabowo NA, Harapan H. Insertion/deletion (I/D) polymorphisms of angiotensin-converting enzyme gene and their implications for susceptibility and severity of COVID-19: A systematic review and meta-analysis. NARRA J 2024; 4:e727. [PMID: 39816082 PMCID: PMC11731805 DOI: 10.52225/narra.v4i3.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
The insertion or deletion polymorphisms of the angiotensin-converting enzyme gene (ACE I/D) have been the subject of significant research related to coronavirus disease 2019 (COVID-19). Despite this, the findings have remained uncertain and debatable. The aim of this study was to determine the associations between the ACE I/D polymorphisms and the susceptibility as well as the severity of COVID-19. A meta-analysis study (PROSPERO: CRD42022384562) was conducted by searching the articles published on PubMed, Scopus, and Embase as of May 15, 2023. Information regarding the impact of ACE I/D variant on the susceptibility to COVID-19 and its severity was collected and analyzed utilizing the Mantel-Haenszel method with a random effects model or fixed effects model, depending on the presence or absence of heterogeneity. Out of 3,335 articles, 21 articles were included, of which 13 investigated the association between ACE I/D and the risk of COVID-19 infection and 18 of them examined its influence on disease severity. The D allele of ACE increased risk of COVID-19 infection (OR: 1.41; 95%CI: 1.08-1.85; p-Egger: 0.0676; p-Heterogeneity: <0.001; p=0.0120), while ACE I allele (OR: 0.71; 95%CI: 0.54-0.93; p-Egger: 0.0676; p-Heterogeneity: <0.001; p=0.012) and II genotype (OR: 0.55; 95%CI: 0.34-0.87; p-Egger: 0.200; p-Heterogeneity: <0.001; p=0.011) decreased the risk of infection. Additionally, there was a notable association between the ACE ID genotype and an elevated likelihood of experiencing severe COVID-19 within the Asian population (OR: 1.46; 95%CI: 1.15-1.84; p-Egger: 0.092; p-Heterogeneity: 0.116; p=0.002). The presence of ACE I/D polymorphisms significantly influences the likelihood of being susceptible to and experiencing the severity of COVID-19.
Collapse
Affiliation(s)
- Jonny K. Fajar
- Department of Internal Medicine, Rumah Sakit Universitas Brawijaya, Malang, Indonesia
| | - Fredo Tamara
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Wachid Putranto
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Nurhasan A. Prabowo
- Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
10
|
Carvalho-Barbosa NC, Cristina-Rodrigues F, Temerozo JR, Souza TML, Gouvêa AL, Canetti CA, Kurtenbach E, Bou-Habib DC, Benjamim CF, Takiya CM, Savio LEB, Coutinho-Silva R. The role of the P2X7 receptor in inactivated SARS-CoV-2-induced lung injury. Purinergic Signal 2024:10.1007/s11302-024-10062-7. [PMID: 39607622 DOI: 10.1007/s11302-024-10062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Purinergic signaling plays a role in the pathophysiology of different viral infections. Recently, we showed that COVID-19 increases extracellular ATP levels, which may amplify the pro-inflammatory signals in the disease. The P2X7 receptor can be a protagonist in the pro-inflammatory responses. Herein, we investigated the role of the P2X7 receptor in the lung immune response triggered by inoculation of inactivated SARS-CoV-2 (iSARS-CoV-2) in K18-Human ACE2 transgenic mice. Pharmacological inhibition of the P2X7 receptor was performed with intraperitoneal administration of 50 mg/kg of Brilliant Blue G (BBG) one day before viral inoculation. Animals were divided into four groups: a control group (MOCK), a group inoculated with the inactivated virus iSARS-CoV-2, a BBG-treated control group (MOCK + BBG), and a BBG-treated inoculated group (iSARS-CoV-2 + BBG). Virus inoculation was intratracheal with 50 µl of mock or 2 × 106 Plaque Forming Units (PFU) of iSARS-CoV-2. After three days, blood and lungs were collected. We found a significant increase in ATP and LDH in serum and mRNA levels of P2X7 and P2Y12 receptors, CD39, IL-1β, and TNF-α in the lung of the iSARS-CoV-2 group when compared with the control group. BBG treatment attenuated these increases. Lung histological analyses showed severe lung damage in the iSARS-CoV-2 group, which was reduced by the BBG treatment. Immunohistochemical staining confirmed the increased presence of P2X7, P2Y12, and CD39 proteins in the iSARS-CoV-2 vs. the MOCK group. Thus, P2X7 receptor inhibition decreases iSARS-CoV-2-induced lung inflammation, indicating that this receptor might contribute to SARS-CoV-2 pathology.
Collapse
Affiliation(s)
- N C Carvalho-Barbosa
- Laboratory of Immunophysiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabiana Cristina-Rodrigues
- Laboratory of Immunophysiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology On Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Thiago M L Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- Center for Technological Development in Health, National Institute for Science and Technology On Innovation in Diseases of Neglected Populations, Fiocruz, Rio de Janeiro, Brazil
| | - Andre L Gouvêa
- Laboratory of Protein Biochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudio A Canetti
- Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eleonora Kurtenbach
- Laboratory of Protein Biochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology On Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Claudia F Benjamim
- Laboratory of Molecular and Cellular Immunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M Takiya
- Laboratory of Immunopathology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luiz E B Savio
- Laboratory of Immunophysiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Lee JH, Yoo ES, Kim NW, Shim WY, Jeong HB, Kim DH, Park YJ, Seo SM, Yun JW, Park JW, Choi KS, Lee HY, Seo JY, Nam KT, Seong JK, Choi YK. Elimination of olfactory sensory neurons by zinc sulfate inoculation prevents SARS-CoV-2 infection of the brain in K18-hACE2 transgenic mice. Sci Rep 2024; 14:27863. [PMID: 39537718 PMCID: PMC11561319 DOI: 10.1038/s41598-024-78538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Coronavirus disease-2019 (COVID-19), attributed to the severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2), has posed global health challenges since it first emerged in 2019, and its impact continues to persist. The neurotropic nature of SARS-CoV-2 remains undisclosed, though researchers are proposing hypotheses on how the virus is transmitted to the central nervous system. One of the prevailing hypotheses is that SARS-CoV-2 travels through the olfactory nerve system via the olfactory epithelium (OE). Using a K18-human angiotensin converting-enzyme 2 (hACE2) transgenic mouse model with impaired olfactory sensory neurons (OSNs) induced by zinc sulfate, we examined the role of the olfactory nerve in the brain invasion by SARS-CoV-2. Mice lacking OSNs exhibited reduced levels of viral transmission to the brain, leading to significantly improved outcomes following SARS-CoV-2 infection. Moreover, a positive correlation was observed between viral persistence in the OE and brain infection. These results indicate that early inhibition of the olfactory nerve pathway effectively prevents viral invasion of the brain in K18-hACE2 mice. Our study underscores the significance of the olfactory nerve pathway in the transmission of SARS-CoV-2 to the brain.
Collapse
Affiliation(s)
- Ji-Hun Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Eun-Seon Yoo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Na-Won Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Won-Yong Shim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Han-Bi Jeong
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Dong-Hyun Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Young-Jun Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Sun-Min Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Jun Won Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, 13488, South Korea
| | - Jun-Young Seo
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ki Taek Nam
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Je Kyung Seong
- Korea Model Animal Priority Center, Seoul National University, Seoul, 08826, South Korea.
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and Brain Korea 21 FOUR Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea.
- KU Center for Animal Blood Medical Science, Konkuk University, Seoul, South Korea.
| |
Collapse
|
12
|
Lee SB, Dai R, French E, Anzalone JA, Olex AL, Ge J, Schissel M, Agarwal G, Vinson A, Madhira V, Mannon RB. Risk factors for severe outcomes of coronavirus disease 2019 through the waves of the pandemic: Comparing patients with and without solid organ transplantation. Transpl Infect Dis 2024; 26:e14333. [PMID: 38980969 PMCID: PMC11502248 DOI: 10.1111/tid.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND While coronavirus disease 2019 (COVID-19) is no longer a public health emergency, certain patients remain at risk of severe outcomes. To better understand changing risk profiles, we studied the risk factors for patients with and without solid organ transplantation (SOT) through the various waves of the pandemic. METHODS Using the National COVID Cohort Collaborative we studied a cohort of adult patients testing positive for COVID-19 between January 1, 2020, and May 2, 2022. We separated the data into waves of COVID-19 as defined by the Centers for Disease Control. In our primary outcome, we used multivariable survival analysis to look at various risk factors for hospitalization in those with and without SOT. RESULTS A total of 3,570,032 patients were captured. We found an overall risk attenuation of adverse COVID-19-associated outcomes over time. In both non-SOT and SOT populations, diabetes, chronic kidney disease, and congestive heart failure were risk factors for hospitalization. For SOT specifically, longer time periods between transplant and COVID-19 were protective and age was a risk factor. Notably, asthma was not a risk factor for major adverse renal cardiovascular events, hospitalization, or mortality in either group. CONCLUSIONS Our study provides a longitudinal view of the risks associated with adverse COVID-related outcomes amongst SOT and non-SOT patients, and how these risk factors evolved over time. Our work will help inform providers and policymakers to better target high-risk patients.
Collapse
Affiliation(s)
- Stephen B. Lee
- Department of Medicine, Division of Infectious Diseases, University of Saskatchewan, Regina, Canada
| | - Ran Dai
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Evan French
- Virginia Commonwealth University Wright Center for Clinical and Translational Research, Richmond, Virginia, USA
| | - Jerrod A. Anzalone
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Amy L. Olex
- Virginia Commonwealth University Wright Center for Clinical and Translational Research, Richmond, Virginia, USA
| | - Jin Ge
- Department of Medicine, Division of Gastroenterology and Hepatology, University of California, San Francisco, California, USA
| | - Makayla Schissel
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gaurav Agarwal
- Department of Internal Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amanda Vinson
- Department of Medicine, Division of Nephrology, Dalhousie University, Halifax, Canada
| | | | - Roslyn B. Mannon
- Department of Internal Medicine, Division of Nephrology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
13
|
Jacobs AK, Morley SD, Samuel K, Morgan K, Boswell L, Kendall TJ, Dorward DA, Fallowfield JA, Hayes PC, Plevris JN. Hepatic angiotensin-converting enzyme 2 expression in metabolic dysfunction-associated steatotic liver disease and in patients with fatal COVID-19. World J Gastroenterol 2024; 30:3705-3716. [PMID: 39192998 PMCID: PMC11346159 DOI: 10.3748/wjg.v30.i31.3705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD), characterised by hepatic lipid accumulation, causes inflammation and oxidative stress accompanied by cell damage and fibrosis. Liver injury (LI) is also frequently reported in patients hospitalised with coronavirus disease 2019 (COVID-19), while pre-existing MASLD increases the risk of LI and the development of COVID-19-associated cholangiopathy. Mechanisms of injury at the cellular level remain unclear, but it may be significant that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19, uses angiotensin-converting expression enzyme 2 (ACE2), a key regulator of the 'anti-inflammatory' arm of the renin-angiotensin system, for viral attachment and host cell invasion. AIM To determine if hepatic ACE2 levels are altered during progression of MASLD and in patients who died with severe COVID-19. METHODS ACE2 protein levels and localisation, and histological fibrosis and lipid droplet accumulation as markers of MASLD were determined in formalin-fixed liver tissue sections across the MASLD pathological spectrum (isolated hepatocellular steatosis, metabolic dysfunction-associated steatohepatitis (MASH) +/- fibrosis, end-stage cirrhosis) and in post-mortem tissues from patients who had died with severe COVID-19, using ACE2 immunohistochemistry and haematoxylin and eosin and picrosirius red staining of total collagen and lipid droplet areas, followed by quantification using machine learning-based image pixel classifiers. RESULTS ACE2 staining is primarily intracellular and concentrated in the cytoplasm of centrilobular hepatocytes and apical membranes of bile duct cholangiocytes. Strikingly, ACE2 protein levels are elevated in non-fibrotic MASH compared to healthy controls but not in the progression to MASH with fibrosis and in cirrhosis. ACE2 protein levels and histological fibrosis are not associated, but ACE2 and liver lipid droplet content are significantly correlated across the MASLD spectrum. Hepatic ACE2 levels are also increased in COVID-19 patients, especially those showing evidence of LI, but are not correlated with the presence of SARS-CoV-2 virus in the liver. However, there is a clear association between the hepatic lipid droplet content and the presence of the virus, suggesting a possible functional link. CONCLUSION Hepatic ACE2 levels were elevated in nonfibrotic MASH and COVID-19 patients with LI, while lipid accumulation may promote intra-hepatic SARS-CoV-2 replication, accelerating MASLD progression and COVID-19-mediated liver damage.
Collapse
Affiliation(s)
- Angus K Jacobs
- Hepatology Laboratory, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Steven D Morley
- Hepatology Laboratory, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Kay Samuel
- Scottish National Blood Transfusion Service, Jack Copland Centre, Edinburgh EH14 4BE, United Kingdom
| | - Katie Morgan
- Hepatology Laboratory, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Lyndsey Boswell
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Timothy J Kendall
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Edinburgh Pathology, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - David A Dorward
- Edinburgh Pathology, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Jonathan A Fallowfield
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Peter C Hayes
- Hepatology Laboratory, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - John N Plevris
- Hepatology Laboratory, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
14
|
Jang S, Hong W, Moon Y. Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Front Immunol 2024; 15:1433531. [PMID: 39188722 PMCID: PMC11345197 DOI: 10.3389/fimmu.2024.1433531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Post-COVID-19 condition is recognized as a multifactorial disorder, with persistent presence of viral antigens, discordant immunity, delayed viral clearance, and chronic inflammation. Obesity has emerged as an independent risk factor for both SARS-CoV-2 infection and its subsequent sequelae. In this study, we aimed to predict the molecular mechanisms linking obesity and post-COVID-19 distress. Viral antigen-exposed adipose tissues display remarkable levels of viral receptors, facilitating viral entry, deposition, and chronic release of inflammatory mediators and cells in patients. Subsequently, obesity-associated inflammatory insults are predicted to disturb cellular and humoral immunity by triggering abnormal cell differentiation and lymphocyte exhaustion. In particular, the decline in SARS-CoV-2 antibody titers and T-cell exhaustion due to chronic inflammation may account for delayed virus clearance and persistent activation of inflammatory responses. Taken together, obesity-associated defective immunity is a critical control point of intervention against post-COVID-19 progression, particularly in subjects with chronic metabolic distress.
Collapse
Affiliation(s)
- Soonwoo Jang
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
| | - Wooyoung Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
15
|
Williams N, Silva F, Schmolke M. Harnessing host enhancers of SARS-CoV-2 entry as novel targets for antiviral therapy. Antiviral Res 2024; 228:105951. [PMID: 38945485 DOI: 10.1016/j.antiviral.2024.105951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The WHO declared the official end of the SARS-CoV-2 caused public health emergency on May 5th, 2023, after two years in which the virus infected approximately 750 Mio individuals causing estimated up to 7 Mio deaths. Likely, the virus will continue to evolve in the human population as a seasonal respiratory pathogen. To now prevent severe infection outcomes in vulnerable individuals, effective antivirals are urgently needed to complement the protection provided by vaccines. SARS-CoV-2 enters its host cell via ACE2 mediated membrane fusion, either at the plasma membrane, if the protease TMPRSS2 is present or via the endosome, in a cathepsin dependent fashion. A small number of positive regulators of viral uptake were described in the literature, which are potentially useful targets for host directed antiviral therapy or biomarkers indicating increased or diminished susceptibility to infection. We identified here by cell surface proximity ligation novel proteins, required for efficient virion uptake. Importantly, chemical inhibition of one of these factors, SLC3A2, resulted in robust reduction of viral replication, to that achieved with a TMPRSS2 inhibitor. Our screen identified new host dependency factors for SARS-CoV-2 entry, which could be targeted by novel antiviral therapies.
Collapse
Affiliation(s)
- Nathalia Williams
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Filo Silva
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
16
|
Buosi K, Jalalizadeh M, Maia AR, Morari J, Velloso LA, Reis LO. Modulation of Human Macrophages by Plasma from COVID-19 Patients Following BCG Vaccination: BATTLE Trial. Int J Gen Med 2024; 17:3107-3117. [PMID: 39049828 PMCID: PMC11268781 DOI: 10.2147/ijgm.s468047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose To analyze the interfering effect of plasma from COVID-19 convalescent adults vaccinated or not with intradermal Bacillus Calmette-Guérin (BCG) on human macrophages. Methods The BATTLE clinical trial (NCT04369794) was initiated in the 2020 SARS-CoV-2 pandemic to study the safety and efficacy of BCG revaccination of COVID-19 convalescent adults. We measured the expression induction of eleven COVID-19-related genes in human macrophages cultured in plasma taken from 22 BCG vaccinated and 17 placebo patients at baseline and 45 days post-intervention. Subgroup analysis was based on gender, age, job type (healthcare worker [HCW] vs non-HCW), and the presence of anosmia/dysgeusia. Results Compared to plasma from placebo counterparts, the plasma of BCG vaccinated patients increased the expression induction of interferon (IFN)β-1b (p = 0.042) in human macrophages. This increase was more pronounced in females and in healthcare workers (HCW) (p = 0.007 and 0.001, respectively). Interferon-induced transmembrane protein 3 (IFITM3) expression induction was increased by plasma from BCG vaccinated females, young age group, and HCWs (p = 0.004, 0.011, and 0.040, respectively). Interleukin (IL)-10 induction increased by the plasma of young BCG recipients (p = 0.008). Induction of IL-6 expression increased by non-HCW BCG recipients plasma but decreased by HCW BCG recipients plasma (p = 0.005). Baseline plasma of patients who presented with anosmia/dysgeusia at the time of admission induced lower angiotensin-converting enzyme 2 (ACE2) compared to those without the symptom (0.76 vs 0.97, p = 0.004). ACE2 expression induction significantly increased by plasma of BCG recipients if they had anosmia/dysgeusia on admission (p = 0.028). Conclusion The expressions of IFNβ-1b, IFITM3, IL-6, and IL-10 in human macrophages incubated with the plasma of COVID-19 convalescent patients were modulated by BCG. These modulations depended on subject-specific characteristics, including gender, age, clinical presentation (anosmia/dysgeusia), job type, and previous exposure to mycobacteria.
Collapse
Affiliation(s)
- Keini Buosi
- Uroscience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - Mehrsa Jalalizadeh
- Uroscience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
| | - Aline Rosa Maia
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, 13083-864, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, 13083-864, Brazil
| | - Licio Augusto Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, 13083-864, Brazil
| | - Leonardo Oliveira Reis
- Uroscience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas, Sao Paulo, 13083-872, Brazil
- Immunoncology, Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, Sao Paulo, 13087-571, Brazil
| |
Collapse
|
17
|
Kakavandi E, Sadeghi K, Shayestehpour M, Mirhendi H, Rahimi Foroushani A, Mokhtari-Azad T, Shafiei Jandaghi NZ, Yavarian J. Evaluation of angiotensin converting enzyme 2 (ACE2), angiotensin II (Ang II), miR-141-3p, and miR-421 levels in SARS-CoV-2 patients: a case-control study. BMC Infect Dis 2024; 24:429. [PMID: 38649818 PMCID: PMC11036566 DOI: 10.1186/s12879-024-09310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious virus that uses angiotensin converting enzyme 2 (ACE2), a pivotal member of the renin-angiotensin system (RAS), as its cell-entry receptor. Another member of the RAS, angiotensin II (Ang II), is the major biologically active component in this system. There is growing evidence suggesting that serum miRNAs could serve as prognostic biomarkers for SARS-CoV-2 infection and regulate ACE2 expression. Therefore, the aim of this study is to evaluate the changes in the serum levels of sACE2 and Ang II, as well as the expression level of miR-141-3p and miR-421 in SARS-CoV-2 positive and negative subjects. METHODS In the present study, the serum levels of sACE2 and Ang II were measured in 94 SARS-CoV-2 positive patients and 94 SARS-CoV-2 negative subjects with some symptoms similar to those of SARS-CoV-2 positive patients using the ELISA method. In addition, the expression level of miR-141-3p and miR-421 as ACE2 regulators and biomarkers was evaluated using quantitative real-time PCR (qRT-PCR) method. RESULTS The mean serum sACE2 concentration in the SARS-CoV-2-positive group was 3.268 ± 0.410 ng/ml, whereas in the SARS-CoV-2 negative group, it was 3.564 ± 0.437 ng/ml. Additionally, the mean serum Ang II level in the SARS-CoV-2 positive and negative groups were 60.67 ± 6.192 ng/L and 67.97 ± 6.837 ng/L, respectively. However, there was no significant difference in the serum levels of sACE2 (P value: 0.516) and Ang II (P value: 0.134) between the SARS-CoV-2 positive and negative groups. Meanwhile, our findings indicated that the expression levels of miR-141-3p and miR-421 in SARS-CoV-2 positive group were significantly lower and higher than SARS-CoV-2 negative group, respectively (P value < 0.001). CONCLUSIONS Taken together, the results of this study showed that the serum levels of sACE2 and Ang II in SARS-CoV-2 positive and negative subjects were not significantly different, but the expression levels of miR-141-3p and miR-421 were altered in SARS-CoV-2 positive patients which need more investigation to be used as biomarkers for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Ehsan Kakavandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Sadeghi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shayestehpour
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Dell’Aquila M, Cafiero C, Micera A, Stigliano E, Ottaiano MP, Benincasa G, Schiavone B, Guidobaldi L, Santacroce L, Pisconti S, Arena V, Palmirotta R. SARS-CoV-2-Related Olfactory Dysfunction: Autopsy Findings, Histopathology, and Evaluation of Viral RNA and ACE2 Expression in Olfactory Bulbs. Biomedicines 2024; 12:830. [PMID: 38672185 PMCID: PMC11048640 DOI: 10.3390/biomedicines12040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has been a health emergency with a significant impact on the world due to its high infectiousness. The disease, primarily identified in the lower respiratory tract, develops with numerous clinical symptoms affecting multiple organs and displays a clinical finding of anosmia. Several authors have investigated the pathogenetic mechanisms of the olfactory disturbances caused by SARS-CoV-2 infection, proposing different hypotheses and showing contradictory results. Since uncertainties remain about possible virus neurotropism and direct damage to the olfactory bulb, we investigated the expression of SARS-CoV-2 as well as ACE2 receptor transcripts in autoptic lung and olfactory bulb tissues, with respect to the histopathological features. METHODS Twenty-five COVID-19 olfactory bulbs and lung tissues were randomly collected from 200 initial autopsies performed during the COVID-19 pandemic. Routine diagnosis was based on clinical and radiological findings and were confirmed with post-mortem swabs. Real-time RT-PCR for SARS-CoV-2 and ACE2 receptor RNA was carried out on autoptic FFPE lung and olfactory bulb tissues. Histological staining was performed on tissue specimens and compared with the molecular data. RESULTS While real-time RT-PCR for SARS-CoV-2 was positive in 23 out of 25 lung samples, the viral RNA expression was absent in olfactory bulbs. ACE2-receptor RNA was present in all tissues examined, being highly expressed in lung samples than olfactory bulbs. CONCLUSIONS Our finding suggests that COVID-19 anosmia is not only due to neurotropism and the direct action of SARS-CoV-2 entering the olfactory bulb. The mechanism of SARS-CoV-2 neuropathogenesis in the olfactory bulb requires a better elucidation and further research studies to mitigate the olfactory bulb damage associated with virus action.
Collapse
Affiliation(s)
- Marco Dell’Aquila
- Anatomic Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.D.); (E.S.); (V.A.)
- Pathology Unit, Belcolle Hospital, ASL Viterbo, 01100 Viterbo, Italy
| | - Concetta Cafiero
- Medical Oncology, SG Moscati Hospital, 74010 Statte, Italy;
- Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS–Fondazione Bietti, 00184 Rome, Italy
| | - Egidio Stigliano
- Anatomic Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.D.); (E.S.); (V.A.)
| | - Maria Pia Ottaiano
- Department of Clinical Pathology and Molecular Biology, Pineta Grande Hospital, 81030 Castel Volturno, Italy; (M.P.O.); (G.B.); (B.S.)
| | - Giulio Benincasa
- Department of Clinical Pathology and Molecular Biology, Pineta Grande Hospital, 81030 Castel Volturno, Italy; (M.P.O.); (G.B.); (B.S.)
| | - Beniamino Schiavone
- Department of Clinical Pathology and Molecular Biology, Pineta Grande Hospital, 81030 Castel Volturno, Italy; (M.P.O.); (G.B.); (B.S.)
| | - Leo Guidobaldi
- Cytodiagnostic Unit, Section of Pathology Sandro Pertini Hospital, ASL Rm2, 00157 Rome, Italy;
| | - Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | | - Vincenzo Arena
- Anatomic Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.D.); (E.S.); (V.A.)
| | - Raffaele Palmirotta
- Section of Sciences and Technologies of Laboratory Medicine, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
19
|
Nawaz AD, Haider MZ, Akhtar S. COVID-19 and Alzheimer's disease: Impact of lockdown and other restrictive measures during the COVID-19 pandemic. BIOMOLECULES & BIOMEDICINE 2024; 24:219-229. [PMID: 38078809 PMCID: PMC10950341 DOI: 10.17305/bb.2023.9680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 03/14/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection initially results in respiratory distress symptoms but can also lead to central nervous system (CNS) and neurological manifestations, significantly impacting coronavirus disease 2019 (COVID-19) patients with neurodegenerative diseases. Additionally, strict lockdown measures introduced to curtail the spread of COVID-19 have raised concerns over the wellbeing of patients with dementia and/or Alzheimer's disease. The aim of this review was to discuss the overlapping molecular pathologies and the potential bidirectional relationship between COVID-19 and Alzheimer's dementia, as well as the impact of lockdown/restriction measures on the neuropsychiatric symptoms (NPS) of patients with Alzheimer's dementia. Furthermore, we aimed to assess the impact of lockdown measures on the NPS of caregivers, exploring its potential effects on the quality and extent of care they provide to dementia patients.We utilized the PubMed and Google Scholar databases to search for articles on COVID-19, dementia, Alzheimer's disease, lockdown, and caregivers. Our review highlights that patients with Alzheimer's disease face an increased risk of COVID-19 infection and complications. Additionally, these patients are likely to experience greater cognitive decline. It appears that these issues are primarily caused by the SARS-CoV-2 infection and appear to be further exacerbated by restrictive/lockdown measures. Moreover, lockdown measures introduced during the pandemic have negatively impacted both the NPSs of caregivers and their perception of the wellbeing of their Alzheimer's patients. Thus, additional safeguard measures, along with pharmacological and non-pharmacological approaches, are needed to protect the wellbeing of dementia patients and their caregivers in light of this and possible future pandemics.
Collapse
Affiliation(s)
| | | | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
20
|
Nisa A, Kumar R, Ramasamy S, Kolloli A, Olejnik J, Jalloh S, Gummuluru S, Subbian S, Bushkin Y. Modulations of Homeostatic ACE2, CD147, GRP78 Pathways Correlate with Vascular and Endothelial Performance Markers during Pulmonary SARS-CoV-2 Infection. Cells 2024; 13:432. [PMID: 38474396 PMCID: PMC10930588 DOI: 10.3390/cells13050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.
Collapse
Affiliation(s)
- Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Santhamani Ramasamy
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Afsal Kolloli
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Judith Olejnik
- Department of Virology, Immunology & Microbiology, Boston University School of Medicine, Boston, MA 02130, USA; (J.O.); (S.J.); (S.G.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Sallieu Jalloh
- Department of Virology, Immunology & Microbiology, Boston University School of Medicine, Boston, MA 02130, USA; (J.O.); (S.J.); (S.G.)
| | - Suryaram Gummuluru
- Department of Virology, Immunology & Microbiology, Boston University School of Medicine, Boston, MA 02130, USA; (J.O.); (S.J.); (S.G.)
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| |
Collapse
|
21
|
Lima FB, Muniz FWMG, Meneses GC, Bezerra KC, Moreira CN, Aguiar AP, Nascimento JCR, Veras de S Freitas T, de Bruin PFC, Pereira EDB, Daher EDF, Oriá RB. Influence of angiotensin receptor and converting enzyme blockers therapy in the respiratory outcome of COVID-19 hospitalized patients. Med Clin (Barc) 2024; 162:163-169. [PMID: 38000940 DOI: 10.1016/j.medcli.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVES COVID-19, caused by SARS-CoV-2, has spread around the world since 2019. In severe cases, COVID-19 can lead to hospitalization and death. Systemic arterial hypertension and other comorbidities are associated with serious COVID-19 infection. Literature is unclear whether antihypertensive therapy with angiotensin receptor blockers (ARBs) and angiotensin converting enzyme (ACE) inhibitors affect COVID-19 outcomes. We aim to assess whether ACEI/ARB therapy is a risk factor for worse respiratory outcomes related to COVID-19 in hospitalized patients. METHODS Retrospective study enrolling admitted COVID-19-diagnosed patients by RT-PCR at the Hospital Geral de Fortaleza, Brazil, during 2021. Patient medical records, sociodemographic, and clinical data were analyzed. Chest CT images were analyzed using CAD4COVID-CT/Thirona™ software. RESULTS A total of 294 patients took part in the study. A cut-off point of 66% of pulmonary involvement was found by ROC curve, with patients having higher risk of death and intubation and lower 60-day survival. Advanced age (RR 1.025, P=0.001) and intubation (RR 16.747, P<0.001) were significantly associated with a higher risk of death. Advanced age (RR 1.023, P=0.001) and the use of noninvasive ventilation (RR 1.548, P=0.037) were associated with a higher risk of intubation. Lung involvement (>66%) increased the risk of death by almost 2.5-fold (RR 2.439, P<0.001) and by more than 2.3-fold the risk of intubation (RR 2.317, P<0.001). CONCLUSIONS Altogether, our findings suggest that ACEI or ARB therapy does not affect the risk of death and disease course during hospitalization.
Collapse
Affiliation(s)
- Felipe B Lima
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil; Department of Anesthesiology, Hospital Geral de Fortaleza (HGF), Fortaleza, CE, Brazil
| | | | - Gdayllon C Meneses
- Clinical Medicine Department, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Karine C Bezerra
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Carolyne N Moreira
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - André P Aguiar
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - José Carlos R Nascimento
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil; Department of Anesthesiology, Hospital Geral de Fortaleza (HGF), Fortaleza, CE, Brazil
| | - Tainá Veras de S Freitas
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Pedro Felipe C de Bruin
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Eanes Delgado B Pereira
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Elizabeth de F Daher
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Reinaldo B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
| |
Collapse
|
22
|
Nurrohman DT, Chiu NF. Unraveling the Dynamics of SARS-CoV-2 Mutations: Insights from Surface Plasmon Resonance Biosensor Kinetics. BIOSENSORS 2024; 14:99. [PMID: 38392018 PMCID: PMC10887047 DOI: 10.3390/bios14020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Surface Plasmon Resonance (SPR) technology is known to be a powerful tool for studying biomolecular interactions because it offers real-time and label-free multiparameter analysis with high sensitivity. This article summarizes the results that have been obtained from the use of SPR technology in studying the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations. This paper will begin by introducing the working principle of SPR and the kinetic parameters of the sensorgram, which include the association rate constant (ka), dissociation rate constant (kd), equilibrium association constant (KA), and equilibrium dissociation constant (KD). At the end of the paper, we will summarize the kinetic data on the interaction between angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 obtained from the results of SPR signal analysis. ACE2 is a material that mediates virus entry. Therefore, understanding the kinetic changes between ACE2 and SARS-CoV-2 caused by the mutation will provide beneficial information for drug discovery, vaccine development, and other therapeutic purposes.
Collapse
Affiliation(s)
- Devi Taufiq Nurrohman
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
23
|
Noh HE, Rha MS. Mucosal Immunity against SARS-CoV-2 in the Respiratory Tract. Pathogens 2024; 13:113. [PMID: 38392851 PMCID: PMC10892713 DOI: 10.3390/pathogens13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The respiratory tract, the first-line defense, is constantly exposed to inhaled allergens, pollutants, and pathogens such as respiratory viruses. Emerging evidence has demonstrated that the coordination of innate and adaptive immune responses in the respiratory tract plays a crucial role in the protection against invading respiratory pathogens. Therefore, a better understanding of mucosal immunity in the airways is critical for the development of novel therapeutics and next-generation vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses. Since the coronavirus disease 2019 pandemic, our knowledge of mucosal immune responses in the airways has expanded. In this review, we describe the latest knowledge regarding the key components of the mucosal immune system in the respiratory tract. In addition, we summarize the host immune responses in the upper and lower airways following SARS-CoV-2 infection and vaccination, and discuss the impact of allergic airway inflammation on mucosal immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Hae-Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Cai Z, Bai H, Ren D, Xue B, Liu Y, Gong T, Zhang X, Zhang P, Zhu J, Shi B, Zhang C. Integrin αvβ1 facilitates ACE2-mediated entry of SARS-CoV-2. Virus Res 2024; 339:199251. [PMID: 37884208 PMCID: PMC10651773 DOI: 10.1016/j.virusres.2023.199251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Integrins have been suggested to be involved in SARS-CoV-2 infection, but the underlying mechanisms remain largely unclear. This study aimed to investigate how integrins facilitate the ACE2-mediated cellular entry of SARS-CoV-2. We first tested the susceptibility of a panel of human cell lines to SARS-CoV-2 infection using the spike protein pseudotyped virus assay and examined the expression levels of integrins in these cell lines by qPCR, western blot and flow cytometry. We found that integrin αvβ1 was highly enriched in the SARS-CoV-2 susceptible cell lines. Additional studies demonstrated that RGD (403-405)→AAA mutant was defective in binding to integrin αvβ1 compared to its wild type counterpart, and anti-αvβ1 integrin antibodies significantly inhibited the entry of SARS-CoV-2 into the cells. Further studies using mouse NIH3T3 cells expressing human ACE2, integrin αv, integrin β1, and/or integrin αvβ1 suggest that integrin αvβ1 was unable to function as an independent receptor but could significantly facilitate the cellular entry of SASR-CoV-2. Finally, we observed that the Omicron exhibited a significant increase in the ACE2-mediated viral entry. Our findings may enhance our understanding of the pathogenesis of SARS-CoV-2 infection and offer potential therapeutic target for COVID-19.
Collapse
Affiliation(s)
- Zeqiong Cai
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Han Bai
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Doudou Ren
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Biyun Xue
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Yijia Liu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Tian Gong
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China; Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China
| | - Xuan Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China; Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China
| | - Peng Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China; Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China
| | - Junsheng Zhu
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Binyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.
| | - Chengsheng Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China; Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China; Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China.
| |
Collapse
|
25
|
Bauer M, Jorda A, al-Jalali V, Wölfl-Duchek M, Bergmann F, Nussbaumer-Pröll A, Steindl A, Gugenberger R, Bischof S, Wimmer D, Idzko M, Zeitlinger M. Phase I dose-escalation study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of an inhaled recombinant human ACE2. ERJ Open Res 2024; 10:00567-2023. [PMID: 38375429 PMCID: PMC10875465 DOI: 10.1183/23120541.00567-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
Background APN01 is a soluble recombinant human angiotensin-converting enzyme 2 (rhACE2), a key player in the renin-aldosterone-angiotensin system (RAAS). In clinical studies, APN01 was administered intravenously only, so far. The aim of this study (ClinicalTrials.gov: NCT05065645) was to evaluate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of inhaled APN01. Methods This was a phase I, double-blind, placebo-controlled, dose-escalation study. Inhalation was conducted via a nebuliser over 15 min in three single ascending dose (SAD) cohorts (n=24) and two multiple ascending dose (MAD) cohorts (n=16: every 12 h for 7 days). Doses in the SAD cohort were 1.25, 2.5 and 5 mg·mL-1; doses in the MAD cohort were 2.5 and 5 mg·mL-1. Safety (including adverse events (AEs), laboratory findings and lung function results), PK and PD data were assessed. Results In the SAD and MAD cohorts, treatment-related AEs were slightly more frequent in the active treatment group than in the placebo group. AEs were mild to moderate, with no dose-limiting toxicities. No clinically relevant changes in lung function and laboratory results were observed. The mean maximum observed plasma concentration (Cmax) values after single and multiple doses of 5 mg·mL-1 APN01 were 1.88 and 6.61 ng·mL-1, respectively. Among the PD variables, significance was found for ACE2 and angiotensin 1-5. Conclusions The application of aerosolised APN01 is safe and well tolerated after single and multiple doses. By achieving a high local concentration in the lungs and low systemic bioavailability, inhaled rhACE2 may present a therapeutic option in ACE2-related diseases.
Collapse
Affiliation(s)
- Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- M. Bauer and M. Zeitlinger contributed equally to this article as lead authors and supervised the work
| | - Anselm Jorda
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Valentin al-Jalali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Wölfl-Duchek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Felix Bergmann
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Ariane Steindl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | | | - Doris Wimmer
- APEIRON Respiratory Therapies GmbH, Vienna, Austria
| | - Marco Idzko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- M. Bauer and M. Zeitlinger contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
26
|
Gostomczyk K, Borowczak J, Siekielska-Domanowska M, Szczerbowski K, Maniewski M, Dubiel M, Szylberg Ł, Bodnar M. Mechanisms of SARS-CoV-2 Placental Transmission. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0001. [PMID: 38299561 DOI: 10.2478/aite-2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 02/02/2024]
Abstract
The widespread occurrence of SARS-CoV-2 infections and the diverse range of symptoms have placed significant strain on healthcare systems worldwide. Pregnancy has also been affected by COVID-19, with an increased risk of complications and unfavorable outcomes for expectant mothers. Multiple studies indicate that SARS-CoV-2 can infiltrate the placenta, breach its protective barrier, and infect the fetus. Although the precise mechanisms of intrauterine transmission remain unclear, factors such as perinatal infection, macrophages, sexual intercourse, and the virus' interaction with host angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP-1) proteins appear to play a role in this process. The integrity of the placental barrier fluctuates throughout pregnancy and appears to influence the likelihood of fetal transmission. The expression of placental cell receptors, like ACE2, changes during pregnancy and in response to placental damage. However, due to the consistent presence of others, such as NRP-1, SARS-CoV-2 may potentially enter the fetus at different stages of pregnancy. NRP-1 is also found in macrophages, implicating maternal macrophages and Hofbauer cells as potential routes for viral transmission. Our current understanding of SARS-CoV-2's vertical transmission pathways remains limited. Some researchers question the ACE2-associated transmission model due to the relatively low expression of ACE2 in the placenta. Existing studies investigating perinatal transmission and the impact of sexual intercourse have either involved small sample sizes or lacked statistical significance. This review aims to explore the current state of knowledge regarding the potential mechanisms of COVID-19 vertical transmission, identifying areas where further research is needed to fill the gaps in our understanding.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Marta Siekielska-Domanowska
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Szczerbowski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Mateusz Maniewski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Mariusz Dubiel
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Chair of Pathology, Dr. Jan Biziel Memorial University Hospital No. 2, Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Chair of Pathology, Dr. Jan Biziel Memorial University Hospital No. 2, Bydgoszcz, Poland
| |
Collapse
|
27
|
Melano I, Chen HJ, Ngwira L, Hsu PH, Kuo LL, Noriega L, Su WC. Wnt3a Facilitates SARS-CoV-2 Pseudovirus Entry into Cells. Int J Mol Sci 2023; 25:217. [PMID: 38203386 PMCID: PMC10778646 DOI: 10.3390/ijms25010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
How ACE2 functions as the major host receptor of SARS-CoV-2 despite having low expression in the lungs is still unknown. To facilitate the development of therapeutic strategies against coronaviruses, gaining a deeper comprehension of the molecular mechanism of SARS-CoV-2 infection is imperative. In our previous study, we identified several potential host factors of SARS-CoV-2 using an shRNA arrayed screen, one of which was Wnt3a. Here, we validated the significance of Wnt3a, a potent activator of the Wnt/β-catenin signaling pathway, for SARS-CoV-2 entry into cells by evaluating the effects of its knockdown and overexpression on SARS-CoV-2 pseudotyped virus entry. Further analysis revealed that SARS-CoV-2 pseudotyped virus infection activates the canonical Wnt/β-catenin signaling pathway, which we found could subsequently stimulate ACE2 transcription. Collectively, our study identified Wnt3a as an important host factor that facilitates ACE2-mediated virus infection. Insight into the virus entry mechanism is impactful as it will aid in developing novel therapeutic strategies against current and future coronavirus pandemics.
Collapse
Affiliation(s)
- Ivonne Melano
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (I.M.); (H.-J.C.); (L.-L.K.); (L.N.)
| | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (I.M.); (H.-J.C.); (L.-L.K.); (L.N.)
| | - Loveness Ngwira
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Li-Lan Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (I.M.); (H.-J.C.); (L.-L.K.); (L.N.)
| | - Lloyd Noriega
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (I.M.); (H.-J.C.); (L.-L.K.); (L.N.)
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (I.M.); (H.-J.C.); (L.-L.K.); (L.N.)
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Drug Development Center, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
28
|
Sideratou CM, Papaneophytou C. Persisting Shadows: Unraveling the Impact of Long COVID-19 on Respiratory, Cardiovascular, and Nervous Systems. Infect Dis Rep 2023; 15:806-830. [PMID: 38131885 PMCID: PMC10742861 DOI: 10.3390/idr15060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), instigated by the zoonotic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), rapidly transformed from an outbreak in Wuhan, China, into a widespread global pandemic. A significant post-infection condition, known as 'long- COVID-19' (or simply 'long- COVID'), emerges in a substantial subset of patients, manifesting with a constellation of over 200 reported symptoms that span multiple organ systems. This condition, also known as 'post-acute sequelae of SARS-CoV-2 infection' (PASC), presents a perplexing clinical picture with far-reaching implications, often persisting long after the acute phase. While initial research focused on the immediate pulmonary impact of the virus, the recognition of COVID-19 as a multiorgan disruptor has unveiled a gamut of protracted and severe health issues. This review summarizes the primary effects of long COVID on the respiratory, cardiovascular, and nervous systems. It also delves into the mechanisms underlying these impacts and underscores the critical need for a comprehensive understanding of long COVID's pathogenesis.
Collapse
Affiliation(s)
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus;
| |
Collapse
|
29
|
Xia T, Fu X, Fulham M, Wang Y, Feng D, Kim J. CT-based Radiogenomics Framework for COVID-19 Using ACE2 Imaging Representations. J Digit Imaging 2023; 36:2356-2366. [PMID: 37553526 PMCID: PMC10584804 DOI: 10.1007/s10278-023-00895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 which enters the body via the angiotensin-converting enzyme 2 (ACE2) and altering its gene expression. Altered ACE2 plays a crucial role in the pathogenesis of COVID-19. Gene expression profiling, however, is invasive and costly, and is not routinely performed. In contrast, medical imaging such as computed tomography (CT) captures imaging features that depict abnormalities, and it is widely available. Computerized quantification of image features has enabled 'radiogenomics', a research discipline that identifies image features that are associated with molecular characteristics. Radiogenomics between ACE2 and COVID-19 has yet to be done primarily due to the lack of ACE2 expression data among COVID-19 patients. Similar to COVID-19, patients with lung adenocarcinoma (LUAD) exhibit altered ACE2 expression and, LUAD data are abundant. We present a radiogenomics framework to derive image features (ACE2-RGF) associated with ACE2 expression data from LUAD. The ACE2-RGF was then used as a surrogate biomarker for ACE2 expression. We adopted conventional feature selection techniques including ElasticNet and LASSO. Our results show that: i) the ACE2-RGF encoded a distinct collection of image features when compared to conventional techniques, ii) the ACE2-RGF can classify COVID-19 from normal subjects with a comparable performance to conventional feature selection techniques with an AUC of 0.92, iii) ACE2-RGF can effectively identify patients with critical illness with an AUC of 0.85. These findings provide unique insights for automated COVID-19 analysis and future research.
Collapse
Affiliation(s)
- Tian Xia
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Xiaohang Fu
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Fulham
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, 22203, USA
| | - Dagan Feng
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jinman Kim
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
30
|
Stadler JT, Habisch H, Prüller F, Mangge H, Bärnthaler T, Kargl J, Pammer A, Holzer M, Meissl S, Rani A, Madl T, Marsche G. HDL-Related Parameters and COVID-19 Mortality: The Importance of HDL Function. Antioxidants (Basel) 2023; 12:2009. [PMID: 38001862 PMCID: PMC10669705 DOI: 10.3390/antiox12112009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19, caused by the SARS-CoV-2 coronavirus, emerged as a global pandemic in late 2019, resulting in significant global public health challenges. The emerging evidence suggests that diminished high-density lipoprotein (HDL) cholesterol levels are associated with the severity of COVID-19, beyond inflammation and oxidative stress. Here, we used nuclear magnetic resonance spectroscopy to compare the lipoprotein and metabolic profiles of COVID-19-infected patients with non-COVID-19 pneumonia. We compared the control group and the COVID-19 group using inflammatory markers to ensure that the differences in lipoprotein levels were due to COVID-19 infection. Our analyses revealed supramolecular phospholipid composite (SPC), phenylalanine, and HDL-related parameters as key discriminators between COVID-19-positive and non-COVID-19 pneumonia patients. More specifically, the levels of HDL parameters, including apolipoprotein A-I (ApoA-I), ApoA-II, HDL cholesterol, and HDL phospholipids, were significantly different. These findings underscore the potential impact of HDL-related factors in patients with COVID-19. Significantly, among the HDL-related metrics, the cholesterol efflux capacity (CEC) displayed the strongest negative association with COVID-19 mortality. CEC is a measure of how well HDL removes cholesterol from cells, which may affect the way SARS-CoV-2 enters cells. In summary, this study validates previously established markers of COVID-19 infection and further highlights the potential significance of HDL functionality in the context of COVID-19 mortality.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Hansjörg Habisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (H.H.); (T.M.)
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Anja Pammer
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Michael Holzer
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Sabine Meissl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (T.B.); (J.K.); (A.P.); (M.H.); (S.M.); (A.R.)
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
31
|
Dabrell SN, Li YC, Yamaguchi H, Chen HF, Hung MC. Herbal Compounds Dauricine and Isoliensinine Impede SARS-CoV-2 Viral Entry. Biomedicines 2023; 11:2914. [PMID: 38001915 PMCID: PMC10669532 DOI: 10.3390/biomedicines11112914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Targeting viral entry has been the focal point for the last 3 years due to the continued threat posed by SARS-CoV-2. SARS-CoV-2's entry is highly dependent on the interaction between the virus's Spike protein and host receptors. The virus's Spike protein is a key modulator of viral entry, allowing sequential cleavage of ACE2 at the S1/S2 and S2 sites, resulting in the amalgamation of membranes and subsequent entry of the virus. A Polybasic insertion (PRRAR) conveniently located at the S1/S2 site can also be cleaved by furin or by serine protease, TMPRSS2, at the cell surface. Since ACE2 and TMPRSS2 are conveniently located on the surface of host cells, targeting one or both receptors may inhibit receptor-ligand interaction. Here, we show that Dauricine and Isoliensinine, two commonly used herbal compounds, were capable of inhibiting SARS-CoV-2 viral entry by reducing Spike-ACE2 interaction but not suppressing TMPRSS2 protease activity. Further, our biological assays using pseudoviruses engineered to express Spike proteins of different variants revealed a reduction in infection rates following treatment with these compounds. The molecular modeling revealed an interconnection between R403 of Spike protein and both two compounds. Spike mutations at residue R403 are critical, and often utilized by ACE2 to gain cell access. Overall, our findings strongly suggest that Dauricine and Isoliensinine are effective in blocking Spike-ACE2 interaction and may serve as effective therapeutic agents for targeting SARS-CoV-2's viral entry.
Collapse
Affiliation(s)
- Shaneek Natoya Dabrell
- International Master's Program of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan
- Department of Biotechnology, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
32
|
Korayem OH, Ahmed AE, Meabed MH, Magdy DM, Abdelghany WM. Genetic clues to COVID-19 severity: exploring the stromal cell-derived factor-1/CXCL12 rs2839693 polymorphism in adult Egyptians. BMC Infect Dis 2023; 23:702. [PMID: 37858116 PMCID: PMC10588266 DOI: 10.1186/s12879-023-08691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND A novel corona virus called SARS-CoV-2 was identified at the end of December 2019, and the illness induced by it was designated as coronavirus disease 2019 (COVID-19). Severity of the disease could vary significantly since most of the infected individuals experience mild to moderate respiratory symptoms and recover without specialized care. Genetic polymorphisms have implications in influencing the varying degrees of COVID-19 severity. This study aims to assess the potential association between the CXCL12 rs2839693 polymorphism and the severity of COVID-19 in Assiut University Quarantine Hospital during the period from May 2022 to August 2022. METHODS The present study is a cross-sectional study and is applied to 300 COVID-19 patients confirmed by RT-PCR admitted to Assiut University Quarantine Hospital from May 2022 to August 2022. Based on the clinical symptoms, the recruited participants had been divided into two groups. Group I involved mild or moderate cases; Group II involved severe or critical conditions. The rs2839693 polymorphism was detected by real time PCR using TaqMan assay probe. RESULTS The frequency of the T allele and the TT genotype was significantly higher in the severe or critical group compared with the mild or moderate group (p value < 0.001). C-reactive protein (CRP) and D-dimers are significantly elevated in the combined variants (CT + TT) and the TT compared with the CC (P value 0.006 and 0.017 respectively) and the CC,CT genotypes (p value 0.019 and 0.002 respectively). The combined variants (CT + TT) of CXCL12 were found to be independent predictors to severe or critical COVID-19 risk with P value = < 0.001, OR = 3.034& 95% CI = 1.805-5.098. CONCLUSION Our findings revealed that CXCL12 rs2839693 had a role in the development and seriousness of COVID-19. Patients with the TT genotype or the T allele at increased risk developed severe or critical rather than mild or moderate disease.
Collapse
Affiliation(s)
- Osama H Korayem
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Amr E Ahmed
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohamed H Meabed
- Department of Pediatrics,Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Doaa M Magdy
- Department of Chest Disease and Tuberculosis, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Wafaa M Abdelghany
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
33
|
Huang J, Guo Z, Duan J, Zou Y, Chen K, Huang H, Zhang S, Zhou Y. Tissue expression of the SARS-CoV-2 cell receptor gene ACE2 in children. J Trop Pediatr 2023; 69:fmad027. [PMID: 37674390 DOI: 10.1093/tropej/fmad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has become a significant global public health problem. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which causes the disease, utilizes angiotensin-converting enzyme II (ACE2) as a major functional receptor to enter host cells. No study has systematically assessed ACE2 expression in multiple tissues in children. This study investigated ACE2 expression and ACE2 protein's histological distribution in various organs in paediatric patients (the small intestine, thymus, heart and lungs). Our study revealed that ACE2 was highly expressed in enterocytes of the small intestine and widely expressed in the myocardium of heart tissues. The most notable finding was the positive staining of ACE2 in the Hassall's corpuscles epithelial cells. Negligible ACE2 expression in the lung tissues may contribute to a lower risk of infection and fewer symptoms of pneumonia in children than in adults with COVID-19 infection. These findings provide initial evidence for understanding SARS-CoV-2 pathogenesis and prevention strategies in paediatric clinical practice, which should be applicable for all children worldwide.
Collapse
Affiliation(s)
- Jiyi Huang
- Central Laboratory, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| | - Zhibin Guo
- Central Laboratory, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| | - Junkai Duan
- Pediatric Heart Disease Treatment Center, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| | - Yong Zou
- Pediatric Heart Disease Treatment Center, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| | - Kuai Chen
- Department of Neonatal Surgery, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| | - Hui Huang
- Department of Pathology, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| | - Sheng Zhang
- Pediatric Heart Disease Treatment Center, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| | - Yunguo Zhou
- Pediatric Heart Disease Treatment Center, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| |
Collapse
|
34
|
Sánchez Tijmes F, Marschner CA, de Matos JFRG, Urzua Fresno CM, Gutiérrez Chacoff JM, Thavendiranathan P, Fuss C, Hanneman K. Imaging Acute and Chronic Cardiac Complications of COVID-19 and after COVID-19 Vaccination. Radiographics 2023; 43:e230044. [PMID: 37616171 DOI: 10.1148/rg.230044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
COVID-19 is associated with acute and longer-term cardiovascular manifestations including myocardial injury, myopericarditis, stress-induced cardiomyopathy, myocardial infarction, and thromboembolic disease. Although the morbidity and mortality related to acute COVID-19 have decreased substantially, there is growing concern about the longer-term cardiovascular effects of the disease and postacute sequelae. Myocarditis has also been reported after messenger ribonucleic acid (mRNA)-based COVID-19 vaccination, with the highest risk among adolescent boys and young adult men. Noninvasive imaging including cardiac MRI has a key role in identifying the presence of cardiovascular disease, evaluating for potential mechanisms of injury, stratifying risk of future adverse cardiovascular events, and potentially guiding treatment in patients with suspected cardiovascular injury after COVID-19 and vaccination. Patterns of injury identified at cardiac MRI after COVID-19 include myocarditis and pericarditis, myocardial ischemia, and infarction. Myocardial edema and late gadolinium enhancement have been described months after the initial infection in a minority of patients with persistent cardiac symptoms after COVID-19. In patients with myocarditis after receiving a COVID-19 vaccination, the most common pattern of late gadolinium enhancement is subepicardial at the basal inferolateral wall, and patients tend to have milder imaging abnormalities compared with those from other causes of myocarditis. This article describes the role of multimodality cardiac imaging and imaging findings in patients with acute and longer-term cardiovascular manifestations of COVID-19 and in patients with myocarditis after receiving an mRNA-based COVID-19 vaccination. ©RSNA, 2023 Online supplemental material is available for this article. Quiz questions for this article are available through the Online Learning Center.
Collapse
Affiliation(s)
- Felipe Sánchez Tijmes
- From the Department of Medical Imaging (F.S.T., C.A.M., J.F.R.G.d.M., C.M.U.F., P.T., K.H.) and the Division of Cardiology (P.T.), Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile (F.S.T.); Department of Medical Imaging, Hospital Barros Luco, Universidad Mayor, Santiago, Chile (J.M.G.C.); and Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Ore (C.F.)
| | - Constantin A Marschner
- From the Department of Medical Imaging (F.S.T., C.A.M., J.F.R.G.d.M., C.M.U.F., P.T., K.H.) and the Division of Cardiology (P.T.), Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile (F.S.T.); Department of Medical Imaging, Hospital Barros Luco, Universidad Mayor, Santiago, Chile (J.M.G.C.); and Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Ore (C.F.)
| | - Joao Francisco Ribeiro Gavina de Matos
- From the Department of Medical Imaging (F.S.T., C.A.M., J.F.R.G.d.M., C.M.U.F., P.T., K.H.) and the Division of Cardiology (P.T.), Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile (F.S.T.); Department of Medical Imaging, Hospital Barros Luco, Universidad Mayor, Santiago, Chile (J.M.G.C.); and Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Ore (C.F.)
| | - Camila M Urzua Fresno
- From the Department of Medical Imaging (F.S.T., C.A.M., J.F.R.G.d.M., C.M.U.F., P.T., K.H.) and the Division of Cardiology (P.T.), Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile (F.S.T.); Department of Medical Imaging, Hospital Barros Luco, Universidad Mayor, Santiago, Chile (J.M.G.C.); and Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Ore (C.F.)
| | - Jose Miguel Gutiérrez Chacoff
- From the Department of Medical Imaging (F.S.T., C.A.M., J.F.R.G.d.M., C.M.U.F., P.T., K.H.) and the Division of Cardiology (P.T.), Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile (F.S.T.); Department of Medical Imaging, Hospital Barros Luco, Universidad Mayor, Santiago, Chile (J.M.G.C.); and Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Ore (C.F.)
| | - Paaladinesh Thavendiranathan
- From the Department of Medical Imaging (F.S.T., C.A.M., J.F.R.G.d.M., C.M.U.F., P.T., K.H.) and the Division of Cardiology (P.T.), Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile (F.S.T.); Department of Medical Imaging, Hospital Barros Luco, Universidad Mayor, Santiago, Chile (J.M.G.C.); and Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Ore (C.F.)
| | - Cristina Fuss
- From the Department of Medical Imaging (F.S.T., C.A.M., J.F.R.G.d.M., C.M.U.F., P.T., K.H.) and the Division of Cardiology (P.T.), Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile (F.S.T.); Department of Medical Imaging, Hospital Barros Luco, Universidad Mayor, Santiago, Chile (J.M.G.C.); and Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Ore (C.F.)
| | - Kate Hanneman
- From the Department of Medical Imaging (F.S.T., C.A.M., J.F.R.G.d.M., C.M.U.F., P.T., K.H.) and the Division of Cardiology (P.T.), Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, 1 PMB-298, Toronto, ON, Canada M5G 2N2; Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile (F.S.T.); Department of Medical Imaging, Hospital Barros Luco, Universidad Mayor, Santiago, Chile (J.M.G.C.); and Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Ore (C.F.)
| |
Collapse
|
35
|
Tijmes FS, Marschner C, Thavendiranathan P, Hanneman K. Magnetic Resonance Imaging of Cardiovascular Manifestations Following COVID-19. J Magn Reson Imaging 2023; 58:26-43. [PMID: 36951477 DOI: 10.1002/jmri.28677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023] Open
Abstract
Globally, over 650 million people have had COVID-19 due to infection with the SARS-Cov-2 virus. Cardiac complications in the acute infectious and early recovery phase were recognized early in the pandemic, including myocardial injury and inflammation. With a decrease in the number of acute COVID-19 related deaths, there has been increased interest in postacute sequela of COVID-19 (PASC) and other longer-term cardiovascular complications. A proportion of patients recovered from COVID-19 have persistent cardiac symptoms and are at risk of cardiovascular disease. Cardiovascular imaging, including MRI, plays an important role in the detection of cardiovascular manifestations of COVID-19 in both the acute and longer-term phases after COVID-19. The purpose of this review is to highlight the role of cardiovascular imaging in the diagnosis and risk stratification of patients with acute and chronic cardiovascular manifestations of COVID-19 with a focus on cardiac MRI. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Felipe Sanchez Tijmes
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Toronto General Hospital, Peter Munk Cardiac Center, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile
| | - Constantin Marschner
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile
| | - Paaladinesh Thavendiranathan
- Department of Medical Imaging, Toronto General Hospital, Peter Munk Cardiac Center, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Kate Hanneman
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Toronto General Hospital, Peter Munk Cardiac Center, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Jamali E, Shapoori S, Farrokhi MR, Vakili S, Rostamzadeh D, Iravanpour F, Tavakoli Oliaee R, Jafarinia M. Effect of Disease-Modifying Therapies on COVID-19 Vaccination Efficacy in Multiple Sclerosis Patients: A Comprehensive Review. Viral Immunol 2023; 36:368-377. [PMID: 37276047 DOI: 10.1089/vim.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
According to current knowledge, the etiopathogenesis of multiple sclerosis (MS) is complex, involving genetic background as well as several environmental factors that result in dysimmunity in the central nervous system (CNS). MS is an immune-mediated, inflammatory neurological disease affecting the CNS. As part of its attack on the axons of the CNS, MS witnesses varying degrees of myelin and axonal loss. A total of about 20 disease-modifying therapies (DMTs) are available today that, both in clinical trials and in real-world studies, reduce disease activity, such as relapses, magnetic resonance imaging lesions, and disability accumulation. Currently, the world is facing an outbreak of the new coronavirus disease 2019 (COVID-19), which originated in Wuhan, Hubei Province, China, in December 2019 and spread rapidly around the globe. Viral infections play an important role in triggering and maintaining neuroinflammation through direct and indirect mechanisms. There is an old association between MS and viral infections. In the context of MS-related chronic inflammatory damage within the CNS, there has been concern regarding COVID-19 worsening neurological damage. A high rate of disability and increased susceptibility to infection have made MS patients particularly vulnerable. In addition, DMTs have been a concern during the pandemic since many DMTs have immunosuppressive properties. In this article, we discuss the impact of DMTs on COVID-19 risks and the effect of DMTs on COVID-19 vaccination efficacy and outcome in MS patients.
Collapse
Affiliation(s)
- Elham Jamali
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Peyvand Pathobiology and Genetic Laboratory, Shiraz, Iran
| | - Shima Shapoori
- Science Foundation Ireland (SFI), Center for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davoud Rostamzadeh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Farideh Iravanpour
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Tavakoli Oliaee
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
37
|
Ziablitsev DS, Kozyk M, Strubchevska K, Dyadyk OO, Ziablitsev SV. Lung Expression of Macrophage Markers CD68 and CD163, Angiotensin Converting Enzyme 2 (ACE2), and Caspase-3 in COVID-19. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040714. [PMID: 37109672 PMCID: PMC10144424 DOI: 10.3390/medicina59040714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: The coronavirus (SARS-CoV-2) damages all systems and organs. Yet, to a greater extent, the lungs are particularly involved, due to the formation of diffuse exudative inflammation in the form of acute respiratory distress syndrome (ARDS) with next progression to pulmonary fibrosis. SARS-associated lung damage is accompanied by the pronounced activation of mononuclear cells, damage of the alveoli and microvessels, and the development of organized pneumonia. To study the expression of macrophage markers (CD68 and CD163), angiotensin-converting enzyme-2 (ACE2), and caspase-3 on the results of two fatal clinical observations of COVID-19. Materials and Methods: In both clinical cases, the female patients died from complications of confirmed COVID-19. Conventional morphological and immunohistochemical methods were used. Results: There was an acute exudative hemorrhagic pneumonia with the formation of hyaline membranes, focal organization of fibrin, stromal sclerosis, stasis, and thrombus formation in the lung vessels. Signs such as the formation of hyaline membranes, organization, and fibrosis were more pronounced in severe disease activity. The activation of CD68+/CD163+ macrophages could cause cell damage at an early stage of pneumonia development, and subsequently cause fibrotic changes in lung tissue. ACE2 expression in lung tissue was not detected in severe pneumonia, while in moderate pneumonia, weak expression was noted in individual cells of the alveolar epithelium and vascular endothelium. Conclusions: This finding could show the dependence of ACE2 expression on the severity of the inflammatory process in the lungs. The expression of caspase-3 was more pronounced in severe pneumonia.
Collapse
Affiliation(s)
- Denis S Ziablitsev
- Department of Pathophysiology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Marko Kozyk
- Department of Internal Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA
| | - Kateryna Strubchevska
- Department of Internal Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA
| | - Olena O Dyadyk
- Department of Pathologic and Topographic Anatomy, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine
| | - Sergiy V Ziablitsev
- Department of Pathophysiology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| |
Collapse
|
38
|
Suresh MV, Francis S, Aktay S, Kralovich G, Raghavendran K. Therapeutic potential of curcumin in ARDS and COVID-19. Clin Exp Pharmacol Physiol 2023; 50:267-276. [PMID: 36480131 PMCID: PMC9877870 DOI: 10.1111/1440-1681.13744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Curcumin is a safe, non-toxic, readily available and naturally occurring compound, an active constituent of Curcuma longa (turmeric). Curcumin could potentially treat diseases, but faces poor physicochemical and pharmacological characteristics. To overcome these limitations, we developed a stable, water-soluble formulation of curcumin called cyclodextrin-complexed curcumin (CDC). We have previously shown that direct delivery of CDC to the lung following lipopolysaccharides exposure reduces acute lung injury (ALI) and effectively reduces lung injury, inflammation and mortality in mice following Klebsiella pneumoniae. Recently, we found that administration of CDC led to a significant reduction in angiotensin-converting enzyme 2 and signal transducer and activator of transcription 3 expression in gene and protein levels following pneumonia, indicating its potential in treating coronavirus disease 2019 (COVID-19). In this review, we consider the clinical features of ALI and acute respiratory distress syndrome (ARDS) and the role of curcumin in modulating the pathogenesis of bacterial/viral-induced ARDS and COVID-19.
Collapse
Affiliation(s)
| | - Sairah Francis
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Sinan Aktay
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Georgia Kralovich
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
39
|
Zhang H, Lv P, Jiang J, Liu Y, Yan R, Shu S, Hu B, Xiao H, Cai K, Yuan S, Li Y. Advances in developing ACE2 derivatives against SARS-CoV-2. THE LANCET. MICROBE 2023; 4:e369-e378. [PMID: 36934742 PMCID: PMC10019897 DOI: 10.1016/s2666-5247(23)00011-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 03/17/2023]
Abstract
Extensive immune evasion of SARS-CoV-2 rendered therapeutic antibodies ineffective in the COVID-19 pandemic. Propagating SARS-CoV-2 variants are characterised by immune evasion capacity through key amino acid mutations, but can still bind human angiotensin-converting enzyme 2 (ACE2) through the spike protein and are, thus, sensitive to ACE2-mimicking decoys as inhibitors. In this Review, we examine advances in the development of ACE2 derivatives from the past 3 years, including the recombinant ACE2 proteins, ACE2-loaded extracellular vesicles, ACE2-mimicking antibodies, and peptide or mini-protein mimetics of ACE2. Several ACE2 derivatives are granted potent neutralisation efficacy against SARS-CoV-2 variants that rival or surpass endogenous antibodies by various auxiliary techniques such as chemical modification and practical recombinant design. The derivatives also represent enhanced production efficiency and improved bioavailability. In addition to these derivatives of ACE2, new effective therapeutics against SARS-CoV-2 variants are expected to be developed.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Panjing Lv
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jingrui Jiang
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yahui Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Yan
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Shuai Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Hubei Jiangxia Laboratory, Wuhan, China.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Martínez-Diz S, Marín-Benesiu F, López-Torres G, Santiago O, Díaz-Cuéllar JF, Martín-Esteban S, Cortés-Valverde AI, Arenas-Rodríguez V, Cuenca-López S, Porras-Quesada P, Ruiz-Ruiz C, Abadía-Molina AC, Entrala-Bernal C, Martínez-González LJ, Álvarez-Cubero MJ. Relevance of TMPRSS2, CD163/CD206, and CD33 in clinical severity stratification of COVID-19. Front Immunol 2023; 13:1094644. [PMID: 36969980 PMCID: PMC10031647 DOI: 10.3389/fimmu.2022.1094644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 03/10/2023] Open
Abstract
BackgroundApproximately 13.8% and 6.1% of coronavirus disease 2019 (COVID-19) patients require hospitalization and sometimes intensive care unit (ICU) admission, respectively. There is no biomarker to predict which of these patients will develop an aggressive stage that we could improve their quality of life and healthcare management. Our main goal is to include new markers for the classification of COVID-19 patients.MethodsTwo tubes of peripheral blood were collected from a total of 66 (n = 34 mild and n = 32 severe) samples (mean age 52 years). Cytometry analysis was performed using a 15-parameter panel included in the Maxpar® Human Monocyte/Macrophage Phenotyping Panel Kit. Cytometry by time-of-flight mass spectrometry (CyTOF) panel was performed in combination with genetic analysis using TaqMan® probes for ACE2 (rs2285666), MX1 (rs469390), and TMPRSS2 (rs2070788) variants. GemStone™ and OMIQ software were used for cytometry analysis.ResultsThe frequency of CD163+/CD206- population of transitional monocytes (T-Mo) was decreased in the mild group compared to that of the severe one, while T-Mo CD163-/CD206- were increased in the mild group compared to that of the severe one. In addition, we also found differences in CD11b expression in CD14dim monocytes in the severe group, with decreased levels in the female group (p = 0.0412). When comparing mild and severe disease, we also found that CD45- [p = 0.014; odds ratio (OR) = 0.286, 95% CI 0.104–0.787] and CD14dim/CD33+ (p = 0.014; OR = 0.286, 95% CI 0.104–0.787) monocytes were the best options as biomarkers to discriminate between these patient groups. CD33 was also indicated as a good biomarker for patient stratification by the analysis of GemStone™ software. Among genetic markers, we found that G carriers of TMPRSS2 (rs2070788) have an increased risk (p = 0.02; OR = 3.37, 95% CI 1.18–9.60) of severe COVID-19 compared to those with A/A genotype. This strength is further increased when combined with CD45-, T-Mo CD163+/CD206-, and C14dim/CD33+.ConclusionsHere, we report the interesting role of TMPRSS2, CD45-, CD163/CD206, and CD33 in COVID-19 aggressiveness. This strength is reinforced for aggressiveness biomarkers when TMPRSS2 and CD45-, TMPRSS2 and CD163/CD206, and TMPRSS2 and CD14dim/CD33+ are combined.
Collapse
Affiliation(s)
- Silvia Martínez-Diz
- Preventive Medicine and Public Health Service, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Fernando Marín-Benesiu
- GENYO, Center for Genomics and Oncological Research, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | | | - Olivia Santiago
- GENYO, Center for Genomics and Oncological Research, Granada, Spain
| | | | | | | | | | | | | | - Carmen Ruiz-Ruiz
- Department of Biochemistry, Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Immunology Unit, Institute of Regenerative Biomedicine (IBIMER), Center for Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Ana C. Abadía-Molina
- Department of Biochemistry, Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Immunology Unit, Institute of Regenerative Biomedicine (IBIMER), Center for Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Carmen Entrala-Bernal
- LORGEN G.P., PT, Ciencias de la Salud - Business Innovation Centre (BIC), Granada, Spain
| | - Luis J. Martínez-González
- GENYO, Center for Genomics and Oncological Research, Granada, Spain
- *Correspondence: Luis J. Martínez-González,
| | - Maria Jesus Álvarez-Cubero
- GENYO, Center for Genomics and Oncological Research, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Research Institute (ibs. GRANADA), University of Granada, Granada, Spain
| |
Collapse
|
41
|
Borrmann M, Brandes F, Kirchner B, Klein M, Billaud JN, Reithmair M, Rehm M, Schelling G, Pfaffl MW, Meidert AS. Extensive blood transcriptome analysis reveals cellular signaling networks activated by circulating glycocalyx components reflecting vascular injury in COVID-19. Front Immunol 2023; 14:1129766. [PMID: 36776845 PMCID: PMC9909741 DOI: 10.3389/fimmu.2023.1129766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Background Degradation of the endothelial protective glycocalyx layer during COVID-19 infection leads to shedding of major glycocalyx components. These circulating proteins and their degradation products may feedback on immune and endothelial cells and activate molecular signaling cascades in COVID-19 associated microvascular injury. To test this hypothesis, we measured plasma glycocalyx components in patients with SARS-CoV-2 infection of variable disease severity and identified molecular signaling networks activated by glycocalyx components in immune and endothelial cells. Methods We studied patients with RT-PCR confirmed COVID-19 pneumonia, patients with COVID-19 Acute Respiratory Distress Syndrome (ARDS) and healthy controls (wildtype, n=20 in each group) and measured syndecan-1, heparan sulfate and hyaluronic acid. The in-silico construction of signaling networks was based on RNA sequencing (RNAseq) of mRNA transcripts derived from blood cells and of miRNAs isolated from extracellular vesicles from the identical cohort. Differentially regulated RNAs between groups were identified by gene expression analysis. Both RNAseq data sets were used for network construction of circulating glycosaminoglycans focusing on immune and endothelial cells. Results Plasma concentrations of glycocalyx components were highest in COVID-19 ARDS. Hyaluronic acid plasma levels in patients admitted with COVID-19 pneumonia who later developed ARDS during hospital treatment (n=8) were significantly higher at hospital admission than in patients with an early recovery. RNAseq identified hyaluronic acid as an upregulator of TLR4 in pneumonia and ARDS. In COVID-19 ARDS, syndecan-1 increased IL-6, which was significantly higher than in pneumonia. In ARDS, hyaluronic acid activated NRP1, a co-receptor of activated VEGFA, which is associated with pulmonary vascular hyperpermeability and interacted with VCAN (upregulated), a proteoglycan important for chemokine communication. Conclusions Circulating glycocalyx components in COVID-19 have distinct biologic feedback effects on immune and endothelial cells and result in upregulation of key regulatory transcripts leading to further immune activation and more severe systemic inflammation. These consequences are most pronounced during the early hospital phase of COVID-19 before pulmonary failure develops. Elevated levels of circulating glycocalyx components may early identify patients at risk for microvascular injury and ARDS. The timely inhibition of glycocalyx degradation could provide a novel therapeutic approach to prevent the development of ARDS in COVID-19.
Collapse
Affiliation(s)
- Melanie Borrmann
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Florian Brandes
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Rehm
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany,Department of Anesthesiology and intensive Care Medicine, Hospital Agatharied, Hausham, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany,*Correspondence: Gustav Schelling,
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Agnes S. Meidert
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
42
|
Donniacuo M, De Angelis A, Rafaniello C, Cianflone E, Paolisso P, Torella D, Sibilio G, Paolisso G, Castaldo G, Urbanek K, Rossi F, Berrino L, Cappetta D. COVID-19 and atrial fibrillation: Intercepting lines. Front Cardiovasc Med 2023; 10:1093053. [PMID: 36755799 PMCID: PMC9899905 DOI: 10.3389/fcvm.2023.1093053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Almost 20% of COVID-19 patients have a history of atrial fibrillation (AF), but also a new-onset AF represents a frequent complication in COVID-19. Clinical evidence demonstrates that COVID-19, by promoting the evolution of a prothrombotic state, increases the susceptibility to arrhythmic events during the infective stages and presumably during post-recovery. AF itself is the most frequent form of arrhythmia and is associated with substantial morbidity and mortality. One of the molecular factors involved in COVID-19-related AF episodes is the angiotensin-converting enzyme (ACE) 2 availability. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 to enter and infect multiple cells. Atrial ACE2 internalization after binding to SARS-CoV-2 results in a raise of angiotensin (Ang) II, and in a suppression of cardioprotective Ang(1-7) formation, and thereby promoting cardiac hypertrophy, fibrosis and oxidative stress. Furthermore, several pharmacological agents used in COVID-19 patients may have a higher risk of inducing electrophysiological changes and cardiac dysfunction. Azithromycin, lopinavir/ritonavir, ibrutinib, and remdesivir, used in the treatment of COVID-19, may predispose to an increased risk of cardiac arrhythmia. In this review, putative mechanisms involved in COVID-19-related AF episodes and the cardiovascular safety profile of drugs used for the treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Maria Donniacuo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
43
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
44
|
Goel A, Ray A, Chavan A, Sahni S, Gupta BK, Raut SK, Agarwal S, Nehra J, Somu B, Raja R, Aakansha, Nagpal C, Rajanna C, Shahi A, Rajendran A, Varadrajan A, Hasan I, Choppala P, Priyadarshi M, Jain D, Subramanian A, Arava S, Singh G, Das P, Sarkar C, Nischal N, Soneja M, Jorwal P, Trikha A, Wig N. A study on the morbid histopathological changes in COVID-19 patients with or without comorbidities using minimally invasive tissue sampling. J Med Virol 2023; 95:e28384. [PMID: 36477876 PMCID: PMC9878205 DOI: 10.1002/jmv.28384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
COVID-19 causes morbid pathological changes in different organs including lungs, kidneys, liver, and so on, especially in those who succumb. Though clinical outcomes in those with comorbidities are known to be different from those without-not much is known about the differences at the histopathological level. To compare the morbid histopathological changes in COVID-19 patients between those who were immunocompromised (Gr 1), had a malignancy (Gr 2), or had cardiometabolic conditions (hypertension, diabetes, or coronary artery disease) (Gr 3), postmortem tissue sampling (minimally invasive tissue sampling [MITS]) was done from the lungs, kidney, heart, and liver using a biopsy gun within 2 hours of death. Routine (hematoxylin and eosin) and special staining (acid fast bacilli, silver methanamine, periodic acid schiff) was done besides immunohistochemistry. A total of 100 patients underwent MITS and data of 92 patients were included (immunocompromised: 27, malignancy: 18, cardiometabolic conditions: 71). In lung histopathology, capillary congestion was more in those with malignancy, while others like diffuse alveolar damage, microthrombi, pneumocyte hyperplasia, and so on, were equally distributed. In liver histopathology, architectural distortion was significantly different in immunocompromised; while steatosis, portal inflammation, Kupffer cell hypertrophy, and confluent necrosis were equally distributed. There was a trend towards higher acute tubular injury in those with cardiometabolic conditions as compared to the other groups. No significant histopathological difference in the heart was discerned. Certain histopathological features were markedly different in different groups (Gr 1, 2, and 3) of COVID-19 patients with fatal outcomes.
Collapse
Affiliation(s)
- Ayush Goel
- Department of MedicineAIIMSNew DelhiIndia
| | | | | | | | | | | | | | | | | | - Ragu Raja
- Department of MedicineAIIMSNew DelhiIndia
| | - Aakansha
- Department of MedicineAIIMSNew DelhiIndia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anjan Trikha
- Department of Anaesthesiology and Intensive CareAIIMSNew DelhiIndia
| | - Naveet Wig
- Department of MedicineAIIMSNew DelhiIndia
| |
Collapse
|
45
|
Ceramella J, Iacopetta D, Sinicropi MS, Andreu I, Mariconda A, Saturnino C, Giuzio F, Longo P, Aquaro S, Catalano A. Drugs for COVID-19: An Update. Molecules 2022; 27:8562. [PMID: 36500655 PMCID: PMC9740261 DOI: 10.3390/molecules27238562] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the seventh known human coronavirus, and it was identified in Wuhan, Hubei province, China, in 2020. It caused the highly contagious disease called coronavirus disease 2019 (COVID-19), declared a global pandemic by the World Health Organization (WHO) on 11 March 2020. A great number of studies in the search of new therapies and vaccines have been carried out in these three long years, producing a series of successes; however, the need for more effective vaccines, therapies and other solutions is still being pursued. This review represents a tracking shot of the current pharmacological therapies used for the treatment of COVID-19.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Inmaculada Andreu
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación UPV-IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | | | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Federica Giuzio
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
46
|
Antigen-Specific T Cells and SARS-CoV-2 Infection: Current Approaches and Future Possibilities. Int J Mol Sci 2022; 23:ijms232315122. [PMID: 36499448 PMCID: PMC9737069 DOI: 10.3390/ijms232315122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
COVID-19, a significant global health threat, appears to be an immune-related disease. Failure of effective immune responses in initial stages of infection may contribute to development of cytokine storm and systemic inflammation with organ damage, leading to poor clinical outcomes. Disease severity and the emergence of new SARS-CoV-2 variants highlight the need for new preventative and therapeutic strategies to protect the immunocompromised population. Available data indicate that these people may benefit from adoptive transfer of allogeneic SARS-CoV-2-specific T cells isolated from convalescent individuals. This review first provides an insight into the mechanism of cytokine storm development, as it is directly related to the exhaustion of T cell population, essential for viral clearance and long-term antiviral immunity. Next, we describe virus-specific T lymphocytes as a promising and efficient approach for the treatment and prevention of severe COVID-19. Furthermore, other potential cell-based therapies, including natural killer cells, regulatory T cells and mesenchymal stem cells are mentioned. Additionally, we discuss fast and effective ways of producing clinical-grade antigen-specific T cells which can be cryopreserved and serve as an effective "off-the-shelf" approach for rapid treatment of SARS-CoV-2 infection in case of sudden patient deterioration.
Collapse
|
47
|
Rossini V, Tolosa-Enguis V, Frances-Cuesta C, Sanz Y. Gut microbiome and anti-viral immunity in COVID-19. Crit Rev Food Sci Nutr 2022; 64:4587-4602. [PMID: 36382631 DOI: 10.1080/10408398.2022.2143476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SARS-CoV-2 mainly affects the respiratory system, but the gastrointestinal tract is also a target. Prolonged gut disorders, in COVID-19 patients, were correlated with decreased richness and diversity of the gut microbiota, immune deregulation and delayed viral clearance. Although there are no definitive conclusions, ample evidence would suggest that the gut microbiome composition and function play a role in COVID-19 progression. Microbiome modulation strategies for population stratification and management of COVID-19 infection are under investigation, representing an area of interest in the ongoing pandemic. In this review, we present the existing data related to the interaction between gut microbes and the host's immune response to SARS-CoV-2 and discuss the implications for current disease management and readiness to face future pandemics.
Collapse
Affiliation(s)
- V Rossini
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - V Tolosa-Enguis
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - C Frances-Cuesta
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Y Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
48
|
Lennol MP, García-Ayllón MS, Esteban M, García-Arriaza J, Sáez-Valero J. Serum angiotensin-converting enzyme 2 as a potential biomarker for SARS-CoV-2 infection and vaccine efficacy. Front Immunol 2022; 13:1001951. [PMID: 36311758 PMCID: PMC9597869 DOI: 10.3389/fimmu.2022.1001951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Various species of the SARS-CoV-2 host cell receptor, the angiotensin-converting enzyme 2 (ACE2), are present in serum, which may result from virus entry and subsequent proteolytic processing of the membrane receptor. We have recently demonstrated changes of particular ACE2 species in virus infected humans, either cleaved fragments or circulating full-length species. Here, we further explore the potential of serum ACE2 as a biomarker to test SARS-CoV-2 infection and vaccine efficacy in virus susceptible transgenic K18-hACE2 mice expressing human ACE2. First, in serum samples derived from K18-hACE2 mice challenged with a lethal dose of SARS-CoV-2, we observed an increase in the levels of cleaved ACE2 fragment at day 2 post-challenge, which may represent the subsequent proteolytic processing through virus entry. These elevated levels were maintained until the death of the animals at day 6 post-challenge. The circulating full-length ACE2 form displayed a sizable peak at day 4, which declined at day 6 post-challenge. Noticeably, immunization with two doses of the MVA-CoV2-S vaccine candidate prevented ACE2 cleaved changes in serum of animals challenged with a lethal dose of SARS-CoV-2. The efficacy of the MVA-CoV2-S was extended to vaccinated mice after virus re-challenge. These findings highlight that ACE2 could be a potential serum biomarker for disease progression and vaccination against SARS-CoV-2.
Collapse
Affiliation(s)
- Matthew P. Lennol
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), San Juan de Alicante, Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), San Juan de Alicante, Spain
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Hospital General Universitario de Elche, Elche, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- *Correspondence: Juan García-Arriaza, ; Javier Sáez-Valero,
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), San Juan de Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- *Correspondence: Juan García-Arriaza, ; Javier Sáez-Valero,
| |
Collapse
|
49
|
Roy B, Runa SA. SARS-CoV-2 infection and diabetes: Pathophysiological mechanism of multi-system organ failure. World J Virol 2022; 11:252-274. [PMID: 36188734 PMCID: PMC9523319 DOI: 10.5501/wjv.v11.i5.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Since the discovery of the coronavirus disease 2019 outbreak, a vast majority of studies have been carried out that confirmed the worst outcome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in people with preexisting health conditions, including diabetes, obesity, hypertension, cancer, and cardiovascular diseases. Likewise, diabetes itself is one of the leading causes of global public health concerns that impose a heavy global burden on public health as well as socio-economic development. Both diabetes and SARS-CoV-2 infection have their independent ability to induce the pathogenesis and severity of multi-system organ failure, while the co-existence of these two culprits can accelerate the rate of disease progression and magnify the severity of the disease. However, the exact pathophysiology of multi-system organ failure in diabetic patients after SARS-CoV-2 infection is still obscure. This review summarized the organ-specific possible molecular mechanisms of SARS-CoV-2 and diabetes-induced pathophysiology of several diseases of multiple organs, including the lungs, heart, kidneys, brain, eyes, gastrointestinal system, and bones, and sub-sequent manifestation of multi-system organ failure.
Collapse
Affiliation(s)
- Bipradas Roy
- Department of Physiology, Wayne State University, Detroit, MI 48201, United States
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States
| | - Sadia Afrin Runa
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
50
|
Khanna NN, Maindarkar M, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Munjral S, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji J, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Pareek G, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report. J Cardiovasc Dev Dis 2022; 9:268. [PMID: 36005433 PMCID: PMC9409845 DOI: 10.3390/jcdd9080268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2408 Nicosia, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|