1
|
El Omari N, Bakrim S, Elhrech H, Aanniz T, Balahbib A, Lee LH, Al Abdulmonem W, Bouyahya A. Clinical efficacy and mechanistic insights of FDA-approved HDAC inhibitors in the treatment of lymphoma. Eur J Pharm Sci 2025; 208:107057. [PMID: 40043823 DOI: 10.1016/j.ejps.2025.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/18/2024] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Lymphomas are complex malignancies of blood cells, characterized by the malignant transformation of lymphocytes. This transformation is partially driven by disruptions in epigenetic regulation, particularly the acetylation of histones. Among the key players in this process are histone deacetylases (HDACs), whose aberrant activity contributes significantly to lymphoma development. Consequently, targeting HDACs represents a promising pharmacotherapeutic approach. Several HDAC inhibitors (HDACis) have demonstrated significant anticancer effects, with four FDA-approved molecules-vorinostat, romidepsin, belinostat, and panobinostat-forming critical components of chemotherapy regimens for lymphoma treatment. These HDAC inhibitors exhibit their therapeutic efficacy through mechanisms that indirectly impact cellular memory and induce cancer cell death via apoptosis and cell cycle arrest. Their clinical effectiveness is particularly notable in various types of lymphomas, underscoring their therapeutic potential. The objective of this review is to provide a detailed analysis of FDA-approved HDACis, focusing on their molecular mechanisms of action and clinical applications in lymphoma treatment. Specifically, we aim to elucidate how these inhibitors modulate epigenetic regulation to achieve therapeutic efficacy, highlight their utility across different lymphoma subtypes, and examine their integration into combination therapies with other anticancer agents. Furthermore, this review seeks to identify gaps in current knowledge and propose directions for future research, including the development of next-generation HDAC inhibitors and strategies for optimizing their clinical use. By consolidating existing evidence, we strive to enhance the understanding of HDACis' role in lymphoma therapy and inspire advancements in their therapeutic potential.
Collapse
Affiliation(s)
- Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Hamza Elhrech
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Learn-Han Lee
- Microbiome Research Group, Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
2
|
Goncharov N, Baklanov I, Gulaia V, Shuliak A, Lanskikh D, Zhmenia V, Shmelev M, Shved N, Wu J, Liskovykh M, Larionov V, Kouprina N, Kumeiko V. Therapy enhancing chromosome instability may be advantageous for IDH1 R132H/WT gliomas. NAR Cancer 2025; 7:zcaf003. [PMID: 39949830 PMCID: PMC11822378 DOI: 10.1093/narcan/zcaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Recently revised brain tumor classification suggested a glioma treatment strategy that takes into consideration molecular variants in IDH1 and TP53 marker genes. While pathogenic variants of IDH1 and TP53 can be accompanied by chromosomal instability (CIN), the impact of IDH1 and TP53 mutations on genome stability remains unstudied. Elevated CIN might provide therapeutic targets, based on synergistic effects of chemotherapy with CIN-inducing drugs. Using an assay based on human artificial chromosomes, we investigated the impact of common glioma missense mutations in IDH1 and TP53 on chromosome transmission and demonstrated that IDH1R132H and TP53R248Q variants elevate CIN. We next found enhanced CIN levels and the sensitivity of IDH1 R132H/WT and TP53 R248Q/R248Q genotypes, introduced into U87 MG glioma cells by CRISPR/Cas9, to different drugs, including conventional temozolomide. It was found that U87 MG cells carrying IDH1 R132H/WT exhibit dramatic sensitivity to paclitaxel, which was independently confirmed on cell cultures derived from patients with naturally occurring IDH1 R132H/WT. Overall, our results suggest that the development of CIN-enhancing therapy for glioma tumors with the IDH1 R132H/WT genotype could be advantageous for adjuvant treatment.
Collapse
Affiliation(s)
- Nikolay V Goncharov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Ivan N Baklanov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Valeriia S Gulaia
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Anastasiia P Shuliak
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Daria V Lanskikh
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Valeriia M Zhmenia
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Mikhail E Shmelev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Nikita A Shved
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Jing Wu
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Vadim V Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
3
|
Ferrando-Marco M, Barkoulas M. EFL-3/E2F7 modulates Wnt signalling by repressing the Nemo-like kinase LIT-1 during asymmetric epidermal cell division in Caenorhabditis elegans. Development 2025; 152:DEV204546. [PMID: 40026193 PMCID: PMC11925398 DOI: 10.1242/dev.204546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025]
Abstract
The E2F family of transcription factors is conserved in higher eukaryotes and plays pivotal roles in controlling gene expression during the cell cycle. Most canonical E2Fs associate with members of the Dimerisation Partner (DP) family to activate or repress target genes. However, atypical repressors, such as E2F7 and E2F8, lack DP interaction domains and their functions are less understood. We report here that EFL-3, the E2F7 homologue of Caenorhabditis elegans, regulates epidermal stem cell differentiation. We show that phenotypic defects in efl-3 mutants depend on the Nemo-like kinase LIT-1. EFL-3 represses lit-1 expression through direct binding to a lit-1 intronic element. Increased LIT-1 expression in efl-3 mutants reduces POP-1/TCF nuclear distribution, and consequently alters Wnt pathway activation. Our findings provide a mechanistic link between an atypical E2F family member and NLK during C. elegans asymmetric cell division, which may be conserved in other animals.
Collapse
|
4
|
Michel MFV, Phillips BT. SYS-1/beta-catenin inheritance and regulation by Wnt signaling during asymmetric cell division. Mol Biol Cell 2025; 36:ar25. [PMID: 39813084 PMCID: PMC11974967 DOI: 10.1091/mbc.e24-10-0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Asymmetric cell division (ACD) allows daughter cells of a polarized mother to acquire different developmental fates. In Caenorhabditis elegans, the Wnt/β-catenin Asymmetry (WβA) pathway regulates many embryonic and larval ACDs; here, a Wnt gradient induces an asymmetric distribution of Wnt signaling components within the dividing mother cell. One terminal nuclear effector of the WβA pathway is the transcriptional activator SYS-1/β-catenin. SYS-1 is sequentially negatively regulated during ACD; first by centrosomal regulation and subsequent proteasomal degradation and second by asymmetric activity of the β-catenin "destruction complex" in one of the two daughter cells, which decreases SYS-1 levels in the absence of WβA signaling. However, the extent to which mother cell SYS-1 influences cell fate decisions of the daughters is unknown. Here, we quantify inherited SYS-1 in the differentiating daughter cells and the role of SYS-1 inheritance in Wnt-directed ACD. Photobleaching experiments demonstrate the GFP::SYS-1 present in daughter cell nuclei is comprised of inherited and de novo translated SYS-1 pools. We used a photoconvertible DENDRA2::SYS-1, to directly observe the dynamics of inherited SYS-1. Photoconversion during mitosis reveals that SYS-1 clearance at the centrosome preferentially degrades older SYS-1 and that newly localized centrosomal SYS-1 depends on dynein trafficking. Photoconversion of DENDRA2::SYS-1 in the EMS cell during Wnt-driven ACD shows daughter cell inheritance of mother cell SYS-1. Additionally, disrupting centrosomal SYS-1 localization in mother cells increased inherited SYS-1 and, surprisingly, loss of centrosomal SYS-1 also resulted in increased levels of de novo SYS-1 in both EMS daughter cells. Last, we show that negative regulation of SYS-1 in daughter cells via the destruction complex member APR-1/APC is key to limit both the de novo and the inherited SYS-1 pools in both the E and the MS cells. We conclude that regulation of both inherited and newly translated SYS-1 via centrosomal processing in the mother cell and daughter cell regulation via Wnt signaling are critical to maintain sister SYS-1 asymmetry during ACD.
Collapse
Affiliation(s)
| | - Bryan T. Phillips
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242
- Department of Biology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
5
|
Xu J, Song Z. The role of different physical exercises as an anti-aging factor in different stem cells. Biogerontology 2025; 26:63. [PMID: 40009244 DOI: 10.1007/s10522-025-10205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
The senescence process is connected to the characteristics of cellular aging. Understanding their causal network helps develop a framework for creating new treatments to slow down the senescence process. A growing body of research indicates that aging may adversely affect stem cells (SCs). SCs change their capability to differentiate into different cell types and decrease their potential for renewal as they age. Research has indicated that consistent physical exercise offers several health advantages, including a reduced risk of age-associated ailments like tumors, heart disease, diabetes, and neurological disorders. Exercise is a potent physiological stressor linked to higher red blood cell counts and an enhanced immune system, promoting disease resistance. Sports impact mesenchymal SCs (MSCs), hematopoietic SCs (HSCs), neuronal SCs (NuSCs), and muscular SCs (MuSCs), among other aged SCs types. These changes to the niche will probably affect the amount and capability of adult SCs after exercise. In this work, we looked into how different types of SCs age. The impact of physical activity on the aging process has been studied. Additionally, there has been discussion and study on the impact of different sports and physical activities on SCs as an anti-aging component.
Collapse
Affiliation(s)
- Jia Xu
- College of Physical Education, North-West Normal University, Lanzhou, 730070, China
| | - Zhe Song
- Cangzhou Medical College, Cangzhou, 061001, China.
| |
Collapse
|
6
|
Segura J, Gómez M. Replication-transcription symbiosis in the mammalian nucleus: The art of living together. Curr Opin Cell Biol 2025; 93:102479. [PMID: 39938136 DOI: 10.1016/j.ceb.2025.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Similarly to life in our planet, where thousands of species inhabit the same ecosystem, the cell nucleus hosts different essential processes that share the same territory, making the interaction between them unavoidable. DNA replication and transcription are essential processes that copy and decode the information contained in our genomes, sharing -and competing for- the same chromatin template. Both activities are executed by large macromolecular machines with similar requirements to access the DNA, remodel the nucleosomes ahead of them and reassemble the chromatin make-up behind. Mechanistically, both processes cannot simultaneously act on the same DNA sequence, but emerging evidence shows that they frequently interact. Here we revise recent data on how transcription and replication occur in chromatin highlighting the symbiotic relationship between both processes, which might help explain how their activities contribute to shape the structure and function of the mammalian genome.
Collapse
Affiliation(s)
- Joana Segura
- Functional Organization of the Genome Group, Centro de Biología Molecular Severo Ochoa, CBM (CSIC/UAM), Nicolás Cabrera 1, 28049, Madrid, Spain
| | - María Gómez
- Functional Organization of the Genome Group, Centro de Biología Molecular Severo Ochoa, CBM (CSIC/UAM), Nicolás Cabrera 1, 28049, Madrid, Spain.
| |
Collapse
|
7
|
Kemna K, van der Burg M, Lankester A, Giera M. Hematopoietic stem cell metabolism within the bone marrow niche - insights and opportunities. Bioessays 2025; 47:e2400154. [PMID: 39506498 PMCID: PMC11755706 DOI: 10.1002/bies.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Hematopoiesis unfolds within the bone marrow niche where hematopoietic stem cells (HSCs) play a central role in continually replenishing blood cells. The hypoxic bone marrow environment imparts peculiar metabolic characteristics to hematopoietic processes. Here, we discuss the internal metabolism of HSCs and describe external influences exerted on HSC metabolism by the bone marrow niche environment. Importantly, we suggest that the metabolic environment and metabolic cues are intertwined with HSC cell fate, and are crucial for hematopoietic processes. Metabolic dysregulation within the bone marrow niche during acute stress, inflammation, and chronic inflammatory conditions can lead to reduced HSC vitality. Additionally, we raise questions regarding metabolic stresses imposed on HSCs during implementation of stem cell protocols such as allo-SCT and gene therapy, and the potential ramifications. Enhancing our comprehension of metabolic influences on HSCs will expand our understanding of pathophysiology in the bone marrow and improve the application of stem cell therapies.
Collapse
Affiliation(s)
- Koen Kemna
- Department of Pediatrics, Laboratory for Pediatric ImmunologyWillem‐Alexander Children's Hospital, Leiden University Medical CenterLeidenThe Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric ImmunologyWillem‐Alexander Children's Hospital, Leiden University Medical CenterLeidenThe Netherlands
| | - Arjan Lankester
- Department of Pediatrics, Laboratory for Pediatric ImmunologyWillem‐Alexander Children's Hospital, Leiden University Medical CenterLeidenThe Netherlands
| | - Martin Giera
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
8
|
Jiang D, Li P, Lu Y, Tao J, Hao X, Wang X, Wu W, Xu J, Zhang H, Li X, Chen Y, Jin Y, Zhang L. A feedback loop between Paxillin and Yorkie sustains Drosophila intestinal homeostasis and regeneration. Nat Commun 2025; 16:570. [PMID: 39794306 PMCID: PMC11724037 DOI: 10.1038/s41467-024-55255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
Balanced self-renewal and differentiation of stem cells are crucial for maintaining tissue homeostasis, but the underlying mechanisms of this process remain poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Pax, which is orthologous to mammalian PXN, coordinates the proliferation and differentiation of ISCs during both normal homeostasis and injury-induced midgut regeneration in Drosophila. Loss of Pax promotes ISC proliferation while suppressing its differentiation into absorptive enterocytes (ECs). Mechanistically, our findings demonstrate that Pax is a conserved target gene of the Hippo signaling pathway in both Drosophila and mammals. Subsequent investigations have revealed Pax interacts with Yki and enhances its cytoplasmic localization, thereby establishing a feedback regulatory mechanism that attenuates Yki activity and ultimately inhibits ISCs proliferation. Additionally, Pax induces the differentiation of ISCs into ECs by activating Notch expression, thus facilitating the differentiation process. Overall, our study highlights Pax as a pivotal component of the Hippo and Notch pathways in regulating midgut homeostasis, shedding light on this growth-related pathway in tissue maintenance and intestinal function.
Collapse
Affiliation(s)
- Dan Jiang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Pengyue Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiaxin Tao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue Hao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaodong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinjin Xu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Haoen Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yixing Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunyun Jin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
| | - Lei Zhang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China.
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
9
|
Ibrahim B. Dynamics of spindle assembly and position checkpoints: Integrating molecular mechanisms with computational models. Comput Struct Biotechnol J 2025; 27:321-332. [PMID: 39897055 PMCID: PMC11782880 DOI: 10.1016/j.csbj.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Mitotic checkpoints orchestrate cell division through intricate molecular networks that ensure genomic stability. While experimental research has uncovered key aspects of checkpoint function, the complexity of protein interactions and spatial dynamics necessitates computational modeling for a deeper, system-level understanding. This review explores mathematical frameworks-from ordinary differential equations to stochastic simulations, which reveal checkpoint dynamics across multiple scales, encompassing models ranging from simple protein interactions to whole-system simulations with thousands of parameters. These approaches have elucidated fundamental properties, including bistable switches driving spindle assembly checkpoint (SAC) activation, spatial organization principles underlying spindle position checkpoint (SPOC) signaling, and critical system-level features ensuring checkpoint robustness. This study evaluates diverse modeling approaches, from rule-based models to chemical organization theory, highlighting their successful application in predicting protein localization patterns and checkpoint response dynamics validated through live-cell imaging. Contemporary challenges persist in integrating spatial and temporal scales, refining parameter estimation, and enhancing spatial modeling fidelity. However, recent advances in single-molecule imaging, data-driven algorithms, and machine learning techniques, particularly deep learning for parameter optimization, present transformative opportunities for improving model accuracy and predictive power. By bridging molecular mechanisms with system-level behaviors through validated computational frameworks, this review offers a comprehensive perspective on the mathematical modeling of cell cycle control, with practical implications for cancer research and therapeutic development.
Collapse
Affiliation(s)
- Bashar Ibrahim
- Department of Mathematics & Natural Sciences and Centre for Applied Mathematics & Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
- Department of Mathematics and Computer Science, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, Jena, 07743, Germany
- European Virus Bioinformatics Center, Leutragraben 1, Jena, 07743, Germany
| |
Collapse
|
10
|
Lica JJ, Jakóbkiewicz-Banecka J, Hellmann A. In Vitro models of leukemia development: the role of very small leukemic stem-like cells in the cellular transformation cascade. Front Cell Dev Biol 2025; 12:1463807. [PMID: 39830209 PMCID: PMC11740207 DOI: 10.3389/fcell.2024.1463807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells. This review explores the origin of leukemic stem-like cells from very small leukemic stem-like cells establish from transformed very small embryonic-like stem cells. We explore theoretical model of acute myeloid leukemia initiation and progresses through various stages, as well basing the HL60 cell line, present its hierarchical stage development in vitro, highlighting the role of these very small precursor primitive stages. We also discuss the potential implications of further research into these unique cellular stages for advancing leukemia and cancer treatment and prevention.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Department Health Science; Powiśle University, Gdańsk, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
11
|
Vida GS, Botto E, DiNardo S. Maintenance of niche architecture requires actomyosin and enables proper stem cell signaling and oriented division in the Drosophila testis. Development 2025; 152:dev204498. [PMID: 39620974 PMCID: PMC11795290 DOI: 10.1242/dev.204498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Stem cells are essential to repair and regenerate tissues, and often reside in a niche that controls their behavior. Here, we use the Drosophila testis niche, a paradigm for niche-stem cell interactions, to address the cell biological features that maintain niche structure and function during its steady-state operation. We report enrichment of Myosin II (MyoII) and a key regulator of actomyosin contractility (AMC), Rho Kinase (ROK), within the niche cell cortex at the interface with germline stem cells (GSCs). Compromising MyoII and ROK disrupts niche architecture, suggesting that AMC in niche cells is important to maintain its reproducible structure. Furthermore, defects in niche architecture disrupt GSC function. Our data suggest that the niche signals less robustly to adjacent germ cells yet permits increased numbers of cells to respond to the signal. Finally, compromising MyoII in niche cells leads to increased misorientation of centrosomes in GSCs as well as defects in the centrosome orientation checkpoint. Ultimately, this work identifies a crucial role for AMC-dependent maintenance of niche structure to ensure a proper complement of stem cells that correctly execute divisions.
Collapse
Affiliation(s)
- Gabriela S. Vida
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA
- The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Elizabeth Botto
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA
- The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA
- The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Cheng E, Lu R, Gerhold AR. Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells. PLoS Genet 2024; 20:e1011351. [PMID: 39715269 PMCID: PMC11706408 DOI: 10.1371/journal.pgen.1011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Stem and progenitor cell mitosis is essential for tissue development and homeostasis. How these cells ensure proper chromosome segregation, and thereby maintain mitotic fidelity, in the complex physiological environment of a living animal is poorly understood. Here we use in situ live-cell imaging of C. elegans germline stem and progenitor cells (GSPCs) to ask how the signaling environment influences stem and progenitor cell mitosis in vivo. Through a candidate screen we identify a new role for the insulin/IGF receptor (IGFR), daf-2, during GSPC mitosis. Mitosis is delayed in daf-2/IGFR mutants, and these delays require canonical, DAF-2/IGFR to DAF-16/FoxO insulin signaling, here acting cell non-autonomously from the soma. Interestingly, mitotic delays in daf-2/IGFR mutants depend on the spindle assembly checkpoint but are not accompanied by a loss of mitotic fidelity. Correspondingly, we show that caloric restriction, which delays GSPC mitosis and compromises mitotic fidelity, does not act via the canonical insulin signaling pathway, and instead requires AMP-activated kinase (AMPK). Together this work demonstrates that GSPC mitosis is influenced by at least two genetically separable signaling pathways and highlights the importance of signaling networks for proper stem and progenitor cell mitosis in vivo.
Collapse
Affiliation(s)
- Eric Cheng
- Department of Biology, McGill University, Montréal, Canada
| | - Ran Lu
- Department of Biology, McGill University, Montréal, Canada
| | | |
Collapse
|
13
|
Bener MB, Slepchenko BM, Inaba M. Asymmetric stem cell division maintains genetic heterogeneity of tissue cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594576. [PMID: 38798517 PMCID: PMC11118488 DOI: 10.1101/2024.05.16.594576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Within a given tissue, the stem cell niche provides the microenvironment for stem cells suitable for their self-renewal. Conceptually, the niche space constrains the size of a stem-cell pool, as the cells sharing the niche compete for its space. It has been suggested that either neutral- or non-neutral-competition of stem cells changes the clone dynamics of stem cells. Theoretically, if the rate of asymmetric division is high, the stem cell competition is limited, thus suppressing clonal expansion. However, the effects of asymmetric division on clone dynamics have never been experimentally tested. Here, using the Drosophila germline stem cell (GSC) system, as a simple model of the in-vivo niche, we examine the effect of division modes (asymmetric or symmetric) on clonal dynamics by combining experimental approaches with mathematical modeling. Our results suggest that the rate of asymmetric division positively correlates with the time a stem cell clone takes to expand. Taken together, our data suggests that asymmetric division is essential for maintaining the genetic variation of stem cells and thus serves as a critical mechanism for safeguarding fertility over the animal age or preventing multiple disorders caused by the clonal expansion of stem cells.
Collapse
Affiliation(s)
- Muhammed Burak Bener
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Boris M. Slepchenko
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06030
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06030
| |
Collapse
|
14
|
Pan S, Li Y, Wang L, Guan Y, Xv K, Li Q, Feng G, Hu Y, Lan X, Qin S, Gui L, Li L. Microenvironment-optimized gastrodin-functionalized scaffolds orchestrate asymmetric division of recruited stem cells in endogenous bone regeneration. J Nanobiotechnology 2024; 22:722. [PMID: 39563380 DOI: 10.1186/s12951-024-02886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
The regeneration of osteoporotic bone defects remains challenging as the critical stem cell function is impaired by inflammatory microenvironment. Synthetic materials that intrinsically direct osteo-differentiation versus self-renewal of recruited stem cell represent a promising alternative strategy for endogenous bone formation. Therefore, a microenvironmentally optimized polyurethane (PU) /n-HA scaffold to enable sustained delivery of gastrodin is engineered to study its effect on the osteogenic fate of stem cells. It exhibited interconnected porous networks and an elevated sequential gastrodin release pattern to match immune-osteo cascade concurrent with progressive degradation of materials. In a critical-sized femur defect model of osteoporotic rat, 5% gastrodin-PU/n-HA potently promoted neo-bone regeneration by facilitating M2 macrophage polarization and CD146+ host stem cell recruitment to defective site. The implantation time-dependently increased the bone marrow mesenchymal stem cell (BMSC) population, and further culture of BMSCs showed a robust ability of proliferation, migration, and mitochondrial resurgence. Of note, some of cell pairs produced one stemness daughter cell while the other committed to osteogenic lineage in an asymmetric cell division (ACD) manner, and a much more compelling ACD response was triggered when 5% gastrodin-PU/n-HA implanted. Further investigation revealed that one-sided concentrated presentation of aPKC and β-catenin in dividing cells effectively induced asymmetric distribution, which polarized aPKC biased the response of the daughter cells to Wnt signal. The asymmetric cell division in skeletal stem cells (SSCs) was mechanically comparable to BMSCs and also governed by distinct aPKC and β-catenin biases. Concomitantly, delayed bone loss adjacent to the implant partly alleviated development of osteoporosis. In conclusion, our findings provide insight into the regulation of macrophage polarization combined with osteogenic commitment of recruited stem cells in an ACD manner, advancing scaffold design strategy for endogenous bone regeneration.
Collapse
Affiliation(s)
- Shilin Pan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Yao Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Lu Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Yingchao Guan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Kaiyang Xv
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Guangli Feng
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Yingrui Hu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Xiaoqian Lan
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Shiyi Qin
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Li Gui
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, 650011, China.
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
15
|
Song Y, Ji J, Liu C, Wang W. Biochemical Analysis of the Regulatory Role of Gα o in the Conformational Transitions of Drosophila Pins. Biochemistry 2024; 63:2759-2767. [PMID: 39441981 DOI: 10.1021/acs.biochem.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Drosophila Pins (and its mammalian homologue LGN) play a crucial role in the process of asymmetric cell division (ACD). Extensive research has established that Pins/LGN functions as a conformational switch primarily through intramolecular interactions involving the N-terminal TPR repeats and the C-terminal GoLoco (GL) motifs. The GL motifs served as binding sites for the α subunit of the trimeric G protein (Gα), which facilitates the release of the autoinhibited conformation of Pins/LGN. While LGN has been observed to specifically bind to Gαi·GDP, Pins has been found to associate with both Drosophila Gαi (dGαi) and Gαo (dGαo) isoforms. Moreover, dGαo was reported to be able to bind Pins in both the GDP- and GTP-bound forms. However, the precise mechanism underlying the influence of dGαo on the conformational states of Pins remains unclear, despite extensive investigations into the Gαi·GDP-mediated regulatory conformational changes in LGN/Pins. In this study, we conducted a comprehensive characterization of the interactions between Pins-GL motifs and dGαo in both GDP- and GTP-loaded forms. Our findings reveal that Pins-GL specifically binds to GDP-loaded dGαo. Through biochemical characterization, we determined that the intramolecular interactions of Pins primarily involve the entire TPR domain and the GL23 motifs. Additionally, we observed that Pins can simultaneously bind three molecules of dGαo·GDP, leading to a partial opening of the autoinhibited conformation. Furthermore, our study presents evidence contrasting with previous observations indicating the absence of binding between dGαi and Pins-GLs, thus implying the pivotal role of dGαo as the principal participant in the ACD pathway associated with Pins.
Collapse
Affiliation(s)
- Yuxuan Song
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Jie Ji
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Chunhua Liu
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Wenning Wang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| |
Collapse
|
16
|
Hirota K, Yamauchi R, Miyata M, Kojima M, Kako K, Fukamizu A. Dietary methionine functions in proliferative zone maintenance and egg production via sams-1 in Caenorhabditis elegans. J Biochem 2024; 176:359-367. [PMID: 39046461 DOI: 10.1093/jb/mvae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024] Open
Abstract
The maintenance of germ cells is critical for the prosperity of offspring. The amount of food consumption is known to be closely related to reproduction, i.e. the number of eggs decreases under calorie-restricted conditions in various organisms. Previous studies in Caenorhabditis elegans have reported that calorie restriction reduces the number of eggs and the reduction can be rescued by methionine. However, the effect of methionine on the reproductive process has not been fully understood. In this study, to assess the gonadal function of methionine metabolism, we firstly demonstrated that a depletion in dietary methionine resulted in reduced levels of S-adenosyl-l-methionine (SAM) and S-adenosyl homocysteine in wild-type N2, but not in glp-1 mutants, which possess only a few germ cells. Second, we found no recovery in egg numbers upon methionine administration in SAM synthase (sams)-1 mutants. Furthermore, a reduced number of proliferative zone nuclei exhibited in the sams-1 mutants was not rescued via methionine. Thus, our results have shown that dietary methionine is required for the normal establishment of both the germline progenitor pool and fecundity, mediated by sams-1.
Collapse
Affiliation(s)
- Keiko Hirota
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
- Department of Hygiene and Public Health, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo,162-8666, Japan
| | - Rieko Yamauchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Mai Miyata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Mariko Kojima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Koichiro Kako
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
17
|
Jui J, Goldman D. Müller Glial Cell-Dependent Regeneration of the Retina in Zebrafish and Mice. Annu Rev Genet 2024; 58:67-90. [PMID: 38876121 DOI: 10.1146/annurev-genet-111523-102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Sight is one of our most precious senses. People fear losing their sight more than any other disability. Thus, restoring sight to the blind is an important goal of vision scientists. Proregenerative species, such as zebrafish, provide a system for studying endogenous mechanisms underlying retina regeneration. Nonregenerative species, such as mice, provide a system for testing strategies for stimulating retina regeneration. Key to retina regeneration in zebrafish and mice is the Müller glial cell, a malleable cell type that is amenable to a variety of regenerative strategies. Here, we review cellular and molecular mechanisms used by zebrafish to regenerate a retina, as well as the application of these mechanisms, and other strategies to stimulate retina regeneration in mice. Although our focus is on Müller glia (MG), niche components and their impact on MG reprogramming are also discussed.
Collapse
Affiliation(s)
- Jonathan Jui
- Molecular Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Daniel Goldman
- Molecular Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
18
|
Huang S, Fu M, Gu A, Zhao R, Liu Z, Hua W, Mao Y, Wen W. mInsc coordinates Par3 and NuMA condensates for assembly of the spindle orientation machinery in asymmetric cell division. Int J Biol Macromol 2024; 279:135126. [PMID: 39218187 DOI: 10.1016/j.ijbiomac.2024.135126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
As a fundamental process governing the self-renewal and differentiation of stem cells, asymmetric cell division is controlled by several conserved regulators, including the polarity protein Par3 and the microtubule-associated protein NuMA, which orchestrate the assembly and interplay of the Par3/Par6/mInsc/LGN complex at the apical cortex and the LGN/Gαi/NuMA/Dynein complex at the mitotic spindle to ensure asymmetric segregation of cell fate determinants. However, this model, which is well-supported by genetic studies, has been challenged by evidence of competitive interaction between NuMA and mInsc for LGN. Here, the solved crystal structure of the Par3/mInsc complex reveals that mInsc competes with Par6β for Par3, raising questions about how proteins assemble overlapping targets into functional macromolecular complexes. Unanticipatedly, we discover that Par3 can recruit both Par6β and mInsc by forming a dynamic condensate through phase separation. Similarly, the phase-separated NuMA condensate enables the coexistence of competitive NuMA and mInsc with LGN in the same compartment. Bridge by mInsc, Par3/Par6β and LGN/NuMA condensates coacervate, robustly enriching all five proteins both in vitro and within cells. These findings highlight the pivotal role of protein condensates in assembling multi-component signalosomes that incorporate competitive protein-protein interaction pairs, effectively overcoming stoichiometric constraints encountered in conventional protein complexes.
Collapse
Affiliation(s)
- Shijing Huang
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ruiqian Zhao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ziheng Liu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
19
|
Lange M, Piran Z, Klein M, Spanjaard B, Klein D, Junker JP, Theis FJ, Nitzan M. Mapping lineage-traced cells across time points with moslin. Genome Biol 2024; 25:277. [PMID: 39434128 PMCID: PMC11492637 DOI: 10.1186/s13059-024-03422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Simultaneous profiling of single-cell gene expression and lineage history holds enormous potential for studying cellular decision-making. Recent computational approaches combine both modalities into cellular trajectories; however, they cannot make use of all available lineage information in destructive time-series experiments. Here, we present moslin, a Gromov-Wasserstein-based model to couple cellular profiles across time points based on lineage and gene expression information. We validate our approach in simulations and demonstrate on Caenorhabditis elegans embryonic development how moslin predicts fate probabilities and putative decision driver genes. Finally, we use moslin to delineate lineage relationships among transiently activated fibroblast states during zebrafish heart regeneration.
Collapse
Affiliation(s)
- Marius Lange
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Zoe Piran
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Klein
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Fabian J Theis
- Department of Mathematics, Technical University of Munich, Munich, Germany.
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
20
|
Tao M, Wang C, Zheng Z, Gao W, Chen Q, Xu M, Zhu W, Xu L, Han X, Guo X, Liu Y. Nanoplastics exposure-induced mitochondrial dysfunction contributes to disrupted stem cell differentiation in human cerebral organoids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117063. [PMID: 39299213 DOI: 10.1016/j.ecoenv.2024.117063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Nanoplastics are ubiquitous in our daily lives, raising concerns about their potential impact on the human brain. Many studies reported that nanoplastics permeate the blood-brain barrier and influence cellular processes in mouse models. However, the neurotoxic effects of ingesting nanoplastics on human brain remain poorly understood. Here, we treated cerebral organoids with polystyrene nanoplastics to model the effects of nanoplastic exposure on human brain. Importantly, we found that mitochondria might be the significant organelles affected by polystyrene nanoplastics using immunostaing and RNA-seq analysis. Subsequently, we observed the increased cell death and decreased cell differentiation in our cerebral organoids. In conclusion, our findings shed insights on the mechanisms underlying the toxicity of nanoplastics on human brain organoids, providing an evaluation system in detection potential environmental toxicity on human brain.
Collapse
Affiliation(s)
- Mengdan Tao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering; Department of neurology, affiliated Zhongda Hospital, Southeast University, Nanjing 210096, China; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Can Wang
- Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhilong Zheng
- Department of Neurobiology, School of Basic Medical Sciences; Nanjing Medical University, Nanjing 211166, China
| | - Weiwei Gao
- Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Qi Chen
- Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Min Xu
- Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanying Zhu
- Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Lei Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering; Department of neurology, affiliated Zhongda Hospital, Southeast University, Nanjing 210096, China; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xing Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China; Department of Neurobiology, School of Basic Medical Sciences; Nanjing Medical University, Nanjing 211166, China.
| | - Yan Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering; Department of neurology, affiliated Zhongda Hospital, Southeast University, Nanjing 210096, China; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
21
|
Zeng P, Shu LZ, Zhou YH, Huang HL, Wei SH, Liu WJ, Deng H. Stem Cell Division and Its Critical Role in Mammary Gland Development and Tumorigenesis: Current Progress and Remaining Challenges. Stem Cells Dev 2024; 33:449-467. [PMID: 38943275 DOI: 10.1089/scd.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
The origin of breast cancer (BC) has traditionally been a focus of medical research. It is widely acknowledged that BC originates from immortal mammary stem cells and that these stem cells participate in two division modes: symmetric cell division (SCD) and asymmetrical cell division (ACD). Although both of these modes are key to the process of breast development and their imbalance is closely associated with the onset of BC, the molecular mechanisms underlying these phenomena deserve in-depth exploration. In this review, we first outline the molecular mechanisms governing ACD/SCD and analyze the role of ACD/SCD in various stages of breast development. We describe that the changes in telomerase activity, the role of polar proteins, and the stimulation of ovarian hormones subsequently lead to two distinct consequences: breast development or carcinogenesis. Finally, gene mutations, abnormalities in polar proteins, modulation of signal-transduction pathways, and alterations in the microenvironment disrupt the balance of BC stem cell division modes and cause BC. Important regulatory factors such as mammalian Inscuteable mInsc, Numb, Eya1, PKCα, PKCθ, p53, and IL-6 also play significant roles in regulating pathways of ACD/SCD and may constitute key targets for future research on stem cell division, breast development, and tumor therapy.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Animals
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/pathology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/metabolism
- Carcinogenesis/pathology
- Carcinogenesis/metabolism
- Carcinogenesis/genetics
- Stem Cells/metabolism
- Stem Cells/cytology
- Cell Division
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/metabolism
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Peng Zeng
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Lin-Zhen Shu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Hong Zhou
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Hai-Lin Huang
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Shu-Hua Wei
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Wen-Jian Liu
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Huan Deng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Saliu TP, Goh J, Kang G, Burke BI, Ismaeel A, McCarthy JJ. Satellite cell dynamics during skeletal muscle hypertrophy. Biochem Soc Trans 2024; 52:1921-1926. [PMID: 39136196 PMCID: PMC11660404 DOI: 10.1042/bst20240201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Skeletal muscle stem cells (MuSCs) display distinct behavior crucial for tissue maintenance and repair. Upon activation, MuSCs exhibit distinct modes of division: symmetric division, facilitating either self-renewal or differentiation, and asymmetric division, which dictates divergent cellular fates. This review explores the nuanced dynamics of MuSC division and the molecular mechanisms governing this behavior. Furthermore, it introduces a novel phenomenon observed in a subset of MuSCs under hypertrophic stimuli termed division-independent differentiation. Insights into the underlying mechanisms driving this process are discussed, alongside its broader implications for muscle physiology.
Collapse
Affiliation(s)
- Tolulope P. Saliu
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| | - Gyumin Kang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
| | - Benjamin I. Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| | - John J. McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| |
Collapse
|
23
|
Valdes Michel MF, Phillips BT. SYS-1/beta-catenin inheritance and regulation by Wnt-signaling during asymmetric cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.21.550069. [PMID: 37503055 PMCID: PMC10370182 DOI: 10.1101/2023.07.21.550069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Asymmetric cell division (ACD) allows daughter cells of a polarized mother to acquire different developmental fates. In C. elegans , the Wnt/β-catenin Asymmetry (WβA) pathway oversees many embryonic and larval ACDs; here, a Wnt gradient induces an asymmetric distribution of Wnt signaling components within the dividing mother cell. One terminal nuclear effector of the WβA pathway is the transcriptional activator SYS-1/β-catenin. SYS-1 is sequentially negatively regulated during ACD; first by centrosomal regulation and subsequent proteasomal degradation and second by asymmetric activity of the β-catenin "destruction complex" in one of the two daughter cells, which decreases SYS-1 levels in the absence of WβA signaling. However, the extent to which mother cell SYS-1 influences cell fate decisions of the daughters is unknown. Here, we quantify inherited SYS-1 in the differentiating daughter cells and the role of SYS-1 inheritance in Wnt-directed ACD. Photobleaching experiments demonstrate the GFP::SYS-1 present in daughter cell nuclei is comprised of inherited and de novo translated SYS-1 pools. We used a photoconvertible DENDRA2::SYS-1, to directly observe the dynamics of inherited SYS-1. Photoconversion during mitosis reveals that SYS-1 clearance at the centrosome preferentially degrades older SYS-1, and this accumulation is regulated via dynein trafficking. Photoconversion of the EMS cell during Wnt-driven ACD shows daughter cell inheritance of mother cell SYS-1. Additionally, loss of centrosomal SYS-1 increased inherited SYS-1 and, surprisingly, loss of centrosomal SYS-1 also resulted in increased levels of de novo SYS-1 in both EMS daughter cells. Lastly, we show that daughter cell negative regulation of SYS-1 via the destruction complex member APR-1/APC is key to limit both the de novo and the inherited SYS-1 pools in both the E and the MS cells. We conclude that regulation of both inherited and newly translated SYS-1 via centrosomal processing in the mother cell and daughter cell regulation via Wnt signaling are critical to maintain sister SYS-1 asymmetry during ACD.
Collapse
|
24
|
Urrata V, Toia F, Cammarata E, Franza M, Montesano L, Cordova A, Di Stefano AB. Characterization of the Secretome from Spheroids of Adipose-Derived Stem Cells (SASCs) and Its Potential for Tissue Regeneration. Biomedicines 2024; 12:1842. [PMID: 39200306 PMCID: PMC11351933 DOI: 10.3390/biomedicines12081842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
INTRODUCTION Spheroids are spherical aggregates of cells that mimic the three-dimensional (3D) architecture of tissues more closely than traditional two dimensional (2D) cultures. Spheroids of adipose stem cells (SASCs) show special features such as high multilineage differentiation potential and immunomodulatory activity. These properties have been attributed to their secreted factors, such as cytokines and growth factors. Moreover, a key role is played by the extracellular vesicles (EVs), which lead a heterogeneous cargo of proteins, mRNAs, and small RNAs that interfere with the pathways of the recipient cells. PURPOSE The aim of this work was to characterize the composition of the secretome and exosome from SASCs and evaluate their regenerative potential. MATERIALS AND METHODS SASCs were extracted from adipose samples of healthy individuals after signing informed consent. The exosomes were isolated and characterized by Dinamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Western blotting analyses. The expression of mRNAs and miRNAs were evaluated through real-time PCR. Lastly, a wound-healing assay was performed to investigate their regenerative potential on different cell cultures. RESULTS The SASCs' exosomes showed an up-regulation of NANOG and SOX2 mRNAs, typical of stemness maintenance, as well as miR126 and miR146a, related to angiogenic and osteogenic processes. Moreover, the exosomes showed a regenerative effect. CONCLUSIONS The SASCs' secretome carried paracrine signals involved in stemness maintenance, pro-angiogenic and pro-osteogenic differentiation, immune system regulation, and regeneration.
Collapse
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| | - Francesca Toia
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Emanuele Cammarata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Mara Franza
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Luigi Montesano
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Adriana Cordova
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| |
Collapse
|
25
|
Vidaurre V, Song A, Li T, Ku WL, Zhao K, Qian J, Chen X. The Drosophila histone methyltransferase SET1 coordinates multiple signaling pathways in regulating male germline stem cell maintenance and differentiation. Development 2024; 151:dev202729. [PMID: 39007366 PMCID: PMC11369688 DOI: 10.1242/dev.202729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Many tissue-specific adult stem cell lineages maintain a balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase Set1 regulates early-stage male germ cells in Drosophila. Early-stage germline-specific knockdown of Set1 results in temporally progressive defects, arising as germ cell loss and developing into overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage non-cell-autonomously. Additionally, wild-type Set1, but not the catalytically inactive Set1, rescues the Set1 knockdown phenotypes, highlighting the functional importance of the methyltransferase activity of Set1. Further, RNA-sequencing experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene Stat92E and the BMP pathway gene Mad, which are upregulated upon Set1 knockdown. Genetic interaction assays support the functional relationships between Set1 and JAK-STAT or BMP pathways, as both Stat92E and Mad mutations suppress the Set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The phenotype of germ cell loss followed by over-proliferation when inhibiting a histone methyltransferase also raises concerns about using their inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Annabelle Song
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taibo Li
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wai Lim Ku
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Jiang Qian
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| |
Collapse
|
26
|
Chen HF, Wu KJ. LncRNAs and asymmetric cell division: The epigenetic mechanisms. Biomed J 2024; 48:100774. [PMID: 39059582 DOI: 10.1016/j.bj.2024.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
Asymmetric cell division (ACD) plays a pivotal role in development, tissue homeostasis, and stem cell maintenance. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are key regulators of ACD, orchestrating the intricate molecular machinery that governs cell fate determination. This review summarizes current literature to elucidate the diverse roles of lncRNAs in modulating ACD across various biological contexts. The regulatory mechanisms of asymmetric cell division mediated by lncRNAs, including their interactions with protein effectors, epigenetic regulation, and subcellular localization are explored. Additionally, we discuss the implications of dysregulated lncRNAs in mediating ACD that lead to tumorigenesis. By integrating findings from diverse experimental models and cell types, this review provides insights into the multifaceted roles of lncRNAs in governing asymmetric cell division, shedding light on fundamental biological processes. Further research in this area may lead to the development of novel therapies targeting dysregulated lncRNAs to restore proper cell division and function. The knowledge of lncRNAs regulating ACD could potentially revolutionize the field of regenerative medicine and cancer therapy by targeting specific lncRNAs involved in ACD. By unraveling the complex interactions between lncRNAs and cellular processes, the potential novel opportunities for precision medicine approaches may be uncovered.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Graduate Institutes of Biomedical Sciences, China Medical University, Taichung, Taiwan; Graduate Institutes of Cell Biology, China Medical University, Taichung, Taiwan.
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
27
|
Khachaturyan M, Santer M, Reusch TBH, Dagan T. Heteroplasmy Is Rare in Plant Mitochondria Compared with Plastids despite Similar Mutation Rates. Mol Biol Evol 2024; 41:msae135. [PMID: 38934796 PMCID: PMC11245704 DOI: 10.1093/molbev/msae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Plant cells harbor two membrane-bound organelles containing their own genetic material-plastids and mitochondria. Although the two organelles coexist and coevolve within the same plant cells, they differ in genome copy number, intracellular organization, and mode of segregation. How these attributes affect the time to fixation or, conversely, loss of neutral alleles is currently unresolved. Here, we show that mitochondria and plastids share the same mutation rate, yet plastid alleles remain in a heteroplasmic state significantly longer compared with mitochondrial alleles. By analyzing genetic variants across populations of the marine flowering plant Zostera marina and simulating organelle allele dynamics, we examine the determinants of allele segregation and allele fixation. Our results suggest that the bottlenecks on the cell population, e.g. during branching or seeding, and stratification of the meristematic tissue are important determinants of mitochondrial allele dynamics. Furthermore, we suggest that the prolonged plastid allele dynamics are due to a yet unknown active plastid partition mechanism. The dissimilarity between plastid and mitochondrial novel allele fixation at different levels of organization may manifest in differences in adaptation processes. Our study uncovers fundamental principles of organelle population genetics that are essential for further investigations of long-term evolution and molecular dating of divergence events.
Collapse
Affiliation(s)
- Marina Khachaturyan
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Mario Santer
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| |
Collapse
|
28
|
Kaveh Zenjanab M, Hashemzadeh N, Alimohammadvand S, Sharifi-Azad M, Dalir Abdolahinia E, Jahanban-Esfahlan R. Notch Signaling Suppression by Golden Phytochemicals: Potential for Cancer Therapy. Adv Pharm Bull 2024; 14:302-313. [PMID: 39206407 PMCID: PMC11347744 DOI: 10.34172/apb.2024.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/09/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is one of the main causes of mortality worldwide. Cancer cells are characterized by unregulated cellular processes, including proliferation, progression, and angiogenesis. The occurrence of these processes is due to the dysregulation of various signaling pathways such as NF-κB (nuclear factor-κB), Wnt/beta-catenin, Notch signaling and MAPK (mitogen-activated protein kinases). Notch signaling pathways cause the progression of various types of malignant tumors. Among the phytochemicals for cancer therapy, several have attracted great interest, including curcumin, genistein, quercetin, silibinin, resveratrol, cucurbitacin and glycyrrhizin. Given the great cellular and molecular heterogeneity within tumors and the high toxicity and side effects of synthetic chemotherapeutics, natural products with pleiotropic effects that simultaneously target numerous signaling pathways appear to be ideal substitutes for cancer therapy. With this in mind, we take a look at the current status, impact and potential of known compounds as golden phytochemicals on key signaling pathways in tumors, focusing on the Notch pathway. This review may be useful for discovering new molecular targets for safe and efficient cancer therapy with natural chemotherapeutics.
Collapse
Affiliation(s)
| | - Nastaran Hashemzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, US
| | - Rana Jahanban-Esfahlan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Sulaksono HLS, Annisa A, Ruslami R, Mufeeduzzaman M, Panatarani C, Hermawan W, Ekawardhani S, Joni IM. Recent Advances in Graphene Oxide-Based on Organoid Culture as Disease Model and Cell Behavior - A Systematic Literature Review. Int J Nanomedicine 2024; 19:6201-6228. [PMID: 38911499 PMCID: PMC11193994 DOI: 10.2147/ijn.s455940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.
Collapse
Affiliation(s)
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mufeeduzzaman Mufeeduzzaman
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Camellia Panatarani
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Hermawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Savira Ekawardhani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
30
|
Collins BC, Shapiro JB, Scheib MM, Musci RV, Verma M, Kardon G. Three-dimensional imaging studies in mice identify cellular dynamics of skeletal muscle regeneration. Dev Cell 2024; 59:1457-1474.e5. [PMID: 38569550 PMCID: PMC11153043 DOI: 10.1016/j.devcel.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The function of many organs, including skeletal muscle, depends on their three-dimensional structure. Muscle regeneration therefore requires not only reestablishment of myofibers but also restoration of tissue architecture. Resident muscle stem cells (SCs) are essential for regeneration, but how SCs regenerate muscle architecture is largely unknown. We address this problem using genetic labeling of mouse SCs and whole-mount imaging to reconstruct, in three dimensions, muscle regeneration. Unexpectedly, we found that myofibers form via two distinct phases of fusion and the residual basement membrane of necrotic myofibers is critical for promoting fusion and orienting regenerated myofibers. Furthermore, the centralized myonuclei characteristic of regenerated myofibers are associated with myofibrillogenesis and endure months post injury. Finally, we elucidate two cellular mechanisms for the formation of branched myofibers, a pathology characteristic of diseased muscle. We provide a synthesis of the cellular events of regeneration and show that these differ from those used during development.
Collapse
Affiliation(s)
- Brittany C Collins
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Jacob B Shapiro
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Mya M Scheib
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Robert V Musci
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Mayank Verma
- Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
31
|
Chippalkatti R, Parisi B, Kouzi F, Laurini C, Ben Fredj N, Abankwa DK. RAS isoform specific activities are disrupted by disease associated mutations during cell differentiation. Eur J Cell Biol 2024; 103:151425. [PMID: 38795504 DOI: 10.1016/j.ejcb.2024.151425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
The RAS-MAPK-pathway is aberrantly regulated in cancer and developmental diseases called RASopathies. While typically the impact of Ras on the proliferation of various cancer cell lines is assessed, it is poorly established how Ras affects cellular differentiation. Here we implement the C2C12 myoblast cell line to systematically study the effect of Ras mutants and Ras-pathway drugs on differentiation. We first provide evidence that a minor pool of Pax7+ progenitors replenishes a major pool of transit amplifying cells that are ready to differentiate. Our data indicate that Ras isoforms have distinct roles in the differentiating culture, where K-Ras depletion increases and H-Ras depletion decreases terminal differentiation. This assay could therefore provide significant new insights into Ras biology and Ras-driven diseases. In line with this, we found that all oncogenic Ras mutants block terminal differentiation of transit amplifying cells. By contrast, RASopathy associated K-Ras variants were less able to block differentiation. Profiling of eight targeted Ras-pathway drugs on seven oncogenic Ras mutants revealed their allele-specific activities and distinct abilities to restore normal differentiation as compared to triggering cell death. In particular, the MEK-inhibitor trametinib could broadly restore differentiation, while the mTOR-inhibitor rapamycin broadly suppressed differentiation. We expect that this quantitative assessment of the impact of Ras-pathway mutants and drugs on cellular differentiation has great potential to complement cancer cell proliferation data.
Collapse
Affiliation(s)
- Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Bianca Parisi
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Farah Kouzi
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Christina Laurini
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Nesrine Ben Fredj
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg.
| |
Collapse
|
32
|
Ma W, Zhang L, Chen W, Chang Z, Tu J, Qin Y, Yao Y, Dong M, Ding J, Li S, Li F, Deng Q, Yang Y, Feng T, Zhang F, Shao X, He X, Zhang L, Hu G, Liu Q, Jiang YZ, Zhu S, Xiao Z, Su D, Liu T, Liu S. Microbiota enterotoxigenic Bacteroides fragilis-secreted BFT-1 promotes breast cancer cell stemness and chemoresistance through its functional receptor NOD1. Protein Cell 2024; 15:419-440. [PMID: 38437016 PMCID: PMC11131025 DOI: 10.1093/procel/pwae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Tumor-resident microbiota in breast cancer promotes cancer initiation and malignant progression. However, targeting microbiota to improve the effects of breast cancer therapy has not been investigated in detail. Here, we evaluated the microbiota composition of breast tumors and found that enterotoxigenic Bacteroides fragilis (ETBF) was highly enriched in the tumors of patients who did not respond to taxane-based neoadjuvant chemotherapy. ETBF, albeit at low biomass, secreted the toxic protein BFT-1 to promote breast cancer cell stemness and chemoresistance. Mechanistic studies showed that BFT-1 directly bound to NOD1 and stabilized NOD1 protein. NOD1 was highly expressed on ALDH+ breast cancer stem cells (BCSCs) and cooperated with GAK to phosphorylate NUMB and promote its lysosomal degradation, thereby activating the NOTCH1-HEY1 signaling pathway to increase BCSCs. NOD1 inhibition and ETBF clearance increase the chemosensitivity of breast cancer by impairing BCSCs.
Collapse
Affiliation(s)
- Wei Ma
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weilong Chen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Intelligent Pathology Institute and Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230071, China
| | - Zhaoxia Chang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuanyuan Qin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Intelligent Pathology Institute and Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230071, China
| | - Yuwen Yao
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengxue Dong
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiajun Ding
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fengkai Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yifei Yang
- Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingting Feng
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Fanrong Zhang
- Department of Breast Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiying Shao
- Department of Breast Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Yi-Zhou Jiang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shu Zhu
- Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhi Xiao
- Department of Breast Surgery, Xiangya Hospital, Changsha 410008, China
| | - Dan Su
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Tong Liu
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
33
|
Zhou H, Li I, Bramlett CS, Wang B, Hao J, Yen DP, Ando Y, Fraser SE, Lu R, Shen K. Label-free metabolic optical biomarkers track stem cell fate transition in real time. SCIENCE ADVANCES 2024; 10:eadi6770. [PMID: 38718114 PMCID: PMC11078180 DOI: 10.1126/sciadv.adi6770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Tracking stem cell fate transition is crucial for understanding their development and optimizing biomanufacturing. Destructive single-cell methods provide a pseudotemporal landscape of stem cell differentiation but cannot monitor stem cell fate in real time. We established a metabolic optical metric using label-free fluorescence lifetime imaging microscopy (FLIM), feature extraction and machine learning-assisted analysis, for real-time cell fate tracking. From a library of 205 metabolic optical biomarker (MOB) features, we identified 56 associated with hematopoietic stem cell (HSC) differentiation. These features collectively describe HSC fate transition and detect its bifurcate lineage choice. We further derived a MOB score measuring the "metabolic stemness" of single cells and distinguishing their division patterns. This score reveals a distinct role of asymmetric division in rescuing stem cells with compromised metabolic stemness and a unique mechanism of PI3K inhibition in promoting ex vivo HSC maintenance. MOB profiling is a powerful tool for tracking stem cell fate transition and improving their biomanufacturing from a single-cell perspective.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Irene Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles S. Bramlett
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Bowen Wang
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jia Hao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel P. Yen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Scott E. Fraser
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Rong Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- USC Stem Cell, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
34
|
Osterli E, Ellenbecker M, Wang X, Terzo M, Jacobson K, Cuello D, Voronina E. COP9 signalosome component CSN-5 stabilizes PUF proteins FBF-1 and FBF-2 in Caenorhabditis elegans germline stem and progenitor cells. Genetics 2024; 227:iyae033. [PMID: 38427913 PMCID: PMC11075551 DOI: 10.1093/genetics/iyae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024] Open
Abstract
RNA-binding proteins FBF-1 and FBF-2 (FBFs) are required for germline stem cell maintenance and the sperm/oocyte switch in Caenorhabditis elegans, although the mechanisms controlling FBF protein levels remain unknown. We identified an interaction between both FBFs and CSN-5), a component of the constitutive photomorphogenesis 9 (COP9) signalosome best known for its role in regulating protein degradation. Here, we find that the Mpr1/Pad1 N-terminal metalloprotease domain of CSN-5 interacts with the Pumilio and FBF RNA-binding domain of FBFs and the interaction is conserved for human homologs CSN5 and PUM1. The interaction between FBF-2 and CSN-5 can be detected in vivo by proximity ligation. csn-5 mutation results in the destabilization of FBF proteins, which may explain previously observed decrease in the numbers of germline stem and progenitor cells, and disruption of oogenesis. The loss of csn-5 does not decrease the levels of a related PUF protein PUF-3, and csn-5(lf) phenotype is not enhanced by fbf-1/2 knockdown, suggesting that the effect is specific to FBFs. The effect of csn-5 on oogenesis is largely independent of the COP9 signalosome and is cell autonomous. Surprisingly, the regulation of FBF protein levels involves a combination of COP9-dependent and COP9-independent mechanisms differentially affecting FBF-1 and FBF-2. This work supports a previously unappreciated role for CSN-5 in the stabilization of germline stem cell regulatory proteins FBF-1 and FBF-2.
Collapse
Affiliation(s)
- Emily Osterli
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Mikaya Terzo
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Ketch Jacobson
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - DeAnna Cuello
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
35
|
Rosebrock D, Vingron M, Arndt PF. Modeling gene expression cascades during cell state transitions. iScience 2024; 27:109386. [PMID: 38500834 PMCID: PMC10946328 DOI: 10.1016/j.isci.2024.109386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/14/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
During cellular processes such as differentiation or response to external stimuli, cells exhibit dynamic changes in their gene expression profiles. Single-cell RNA sequencing (scRNA-seq) can be used to investigate these dynamic changes. To this end, cells are typically ordered along a pseudotemporal trajectory which recapitulates the progression of cells as they transition from one cell state to another. We infer transcriptional dynamics by modeling the gene expression profiles in pseudotemporally ordered cells using a Bayesian inference approach. This enables ordering genes along transcriptional cascades, estimating differences in the timing of gene expression dynamics, and deducing regulatory gene interactions. Here, we apply this approach to scRNA-seq datasets derived from mouse embryonic forebrain and pancreas samples. This analysis demonstrates the utility of the method to derive the ordering of gene dynamics and regulatory relationships critical for proper cellular differentiation and maturation across a variety of developmental contexts.
Collapse
Affiliation(s)
- Daniel Rosebrock
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Peter F. Arndt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
36
|
Isaković J, Slatković F, Jagečić D, Petrović DJ, Mitrečić D. Pulsating Extremely Low-Frequency Electromagnetic Fields Influence Differentiation of Mouse Neural Stem Cells towards Astrocyte-like Phenotypes: In Vitro Pilot Study. Int J Mol Sci 2024; 25:4038. [PMID: 38612847 PMCID: PMC11012476 DOI: 10.3390/ijms25074038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Even though electromagnetic fields have been reported to assist endogenous neurogenesis, little is known about the exact mechanisms of their action. In this pilot study, we investigated the effects of pulsating extremely low-frequency electromagnetic fields on neural stem cell differentiation towards specific phenotypes, such as neurons and astrocytes. Neural stem cells isolated from the telencephalic wall of B6(Cg)-Tyrc-2J/J mouse embryos (E14.5) were randomly divided into three experimental groups and three controls. Electromagnetic field application setup included a solenoid placed within an incubator. Each of the experimental groups was exposed to 50Hz ELF-EMFs of varied strengths for 1 h. The expression of each marker (NES, GFAP, β-3 tubulin) was then assessed by immunocytochemistry. The application of high-strength ELF-EMF significantly increased and low-strength ELF-EMF decreased the expression of GFAP. A similar pattern was observed for β-3 tubulin, with high-strength ELF-EMFs significantly increasing the immunoreactivity of β-3 tubulin and medium- and low-strength ELF-EMFs decreasing it. Changes in NES expression were observed for medium-strength ELF-EMFs, with a demonstrated significant upregulation. This suggests that, even though ELF-EMFs appear to inhibit or promote the differentiation of neural stem cells into neurons or astrocytes, this effect highly depends on the strength and frequency of the fields as well as the duration of their application. While numerous studies have demonstrated the capacity of EMFs to guide the differentiation of NSCs into neuron-like cells or β-3 tubulin+ neurons, this is the first study to suggest that ELF-EMFs may also steer NSC differentiation towards astrocyte-like phenotypes.
Collapse
Affiliation(s)
| | - Filip Slatković
- Omnion Research International d.o.o., 10000 Zagreb, Croatia;
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Dražen Juraj Petrović
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Genos d.o.o., Laboratory for Glycobiology, 10000 Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
37
|
Oliveira MT, Anhezini L, Araujo HM, Oliveira MF, Couto-Lima CA. Boosting life sciences research in Brazil: building a case for a local Drosophila stock center. Genet Mol Biol 2024; 47:e20230202. [PMID: 38446983 PMCID: PMC10917079 DOI: 10.1590/1678-4685-gmb-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/30/2023] [Indexed: 03/08/2024] Open
Abstract
Drosophila melanogaster is undoubtedly one of the most useful model organisms in biology. Initially used in solidifying the principles of heredity, and establishing the basic concepts of population genetics and of the synthetic theory of evolution, it can currently offer scientists much more: the possibility of investigating a plethora of cellular and biological mechanisms, from development and function of the immune system to animal neurogenesis, tumorigenesis and beyond. Extensive resources are available for the community of Drosophila researchers worldwide, including an ever-growing number of mutant, transgenic and genomically-edited lines currently carried by stock centers in North America, Europe and Asia. Here, we provide evidence for the importance of stock centers in sustaining the substantial increase in the output of Drosophila research worldwide in recent decades. We also discuss the challenges that Brazilian Drosophila scientists face to keep their research projects internationally competitive, and argue that difficulties in importing fly lines from international stock centers have significantly stalled the progression of all Drosophila research areas in the country. Establishing a local stock center might be the first step towards building a strong local Drosophila community that will likely contribute to all areas of life sciences research.
Collapse
Affiliation(s)
- Marcos T. Oliveira
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Departamento de Biotecnologia, Jaboticabal, SP, Brazil
| | - Lucas Anhezini
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Departamento de Histologia e Embriologia, Maceió, AL, Brazil
| | - Helena M. Araujo
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Graduação em Biologia Celular e do Desenvolvimento, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Marcus F. Oliveira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, RJ, Brazil
| | - Carlos A. Couto-Lima
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Departamento de Biotecnologia, Jaboticabal, SP, Brazil
| |
Collapse
|
38
|
Vidaurre V, Song A, Li T, Ku WL, Zhao K, Qian J, Chen X. The Drosophila histone methyl-transferase SET1 coordinates multiple signaling pathways in regulating male germline stem cell maintenance and differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580277. [PMID: 38405894 PMCID: PMC10888844 DOI: 10.1101/2024.02.14.580277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Many cell types come from tissue-specific adult stem cells that maintain the balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase, Set1, regulates early-stage male germ cell proliferation and differentiation in Drosophila. Early-stage germline-specific knockdown of set1 results in a temporally progressed defects, arising as germ cell loss and developing to overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage in a non-cell-autonomous manner. Additionally, wild-type Set1, but not the catalytically inactive Set1, could rescue the set1 knockdown phenotypes, highlighting the functional importance of the methyl-transferase activity of the Set1 enzyme. Further, RNA-seq experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene stat92E and the BMP pathway gene mad, that are upregulated upon set1 knockdown. Genetic interaction assays support the functional relationships between set1 and JAK-STAT or BMP pathways, as mutations of both the stat92E and mad genes suppress the set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The germ cell loss followed by over-proliferation phenotypes when inhibiting a histone methyl-transferase raise concerns about using their inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Annabelle Song
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Taibo Li
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wai Lim Ku
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xin Chen
- Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
39
|
Ridwan SM, Twillie A, Poursaeid S, Beard EK, Bener MB, Antel M, Cowan AE, Matsuda S, Inaba M. Diffusible fraction of niche BMP ligand safeguards stem-cell differentiation. Nat Commun 2024; 15:1166. [PMID: 38326318 PMCID: PMC10850516 DOI: 10.1038/s41467-024-45408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Drosophila male germline stem cells (GSCs) reside at the tip of the testis and surround a cluster of niche cells. Decapentaplegic (Dpp) is one of the well-established ligands and has a major role in maintaining stem cells located in close proximity. However, the existence and the role of the diffusible fraction of Dpp outside of the niche have been unclear. Here, using genetically-encoded nanobodies called Morphotraps, we physically block Dpp diffusion without interfering with niche-stem cell signaling and find that a diffusible fraction of Dpp is required to ensure differentiation of GSC daughter cells, opposite of its role in maintenance of GSC in the niche. Our work provides an example in which a soluble niche ligand induces opposed cellular responses in stem cells versus in differentiating descendants to ensure spatial control of the niche. This may be a common mechanism to regulate tissue homeostasis.
Collapse
Affiliation(s)
- Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Autumn Twillie
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Samaneh Poursaeid
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Emma Kristine Beard
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Muhammed Burak Bener
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Matthew Antel
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Ann E Cowan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Shinya Matsuda
- Biozentrum, University of Basel, Basel, Switzerland.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
40
|
Kawahigashi T, Iwanami S, Takahashi M, Bhadury J, Iwami S, Yamazaki S. Age-related changes in the hematopoietic stem cell pool revealed via quantifying the balance of symmetric and asymmetric divisions. PLoS One 2024; 19:e0292575. [PMID: 38285676 PMCID: PMC10824414 DOI: 10.1371/journal.pone.0292575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are somatic stem cells that continuously generate lifelong supply of blood cells through a balance of symmetric and asymmetric divisions. It is well established that the HSC pool increases with age. However, not much is known about the underlying cause for these observed changes. Here, using a novel method combining single-cell ex vivo HSC expansion with mathematical modeling, we quantify HSC division types (stem cell-stem cell (S-S) division, stem cell-progenitor cell (S-P) division, and progenitor cell-progenitor cell (P-P) division) as a function of the aging process. Our time-series experiments reveal how changes in these three modes of division can explain the increase in HSC numbers with age. Contrary to the popular notion that HSCs divide predominantly through S-P divisions, we show that S-S divisions are predominant throughout the lifespan of the animal, thereby expanding the HSC pool. We, therefore, provide a novel mathematical model-based experimental validation for reflecting HSC dynamics in vivo.
Collapse
Affiliation(s)
- Teiko Kawahigashi
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shoya Iwanami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Munetomo Takahashi
- Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Medical Research Council Toxicology Unit, Gleeson Building, Tennis Court Road, University of Cambridge, Cambridge, United Kingdom
| | - Joydeep Bhadury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Science Groove Inc., Fukuoka, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
41
|
Al Hmada Y, Brodell RT, Kharouf N, Flanagan TW, Alamodi AA, Hassan SY, Shalaby H, Hassan SL, Haikel Y, Megahed M, Santourlidis S, Hassan M. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers (Basel) 2024; 16:470. [PMID: 38275910 PMCID: PMC10814963 DOI: 10.3390/cancers16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.
Collapse
Affiliation(s)
- Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulhadi A. Alamodi
- College of Health Sciences, Jackson State University, 310 W Woodrow Wilson Ave Ste 300, Jackson, MS 39213, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
42
|
Chen HF, Chang CT, Hsu KW, Peng PH, Lai JCY, Hung MC, Wu KJ. Epigenetic regulation of asymmetric cell division by the LIBR-BRD4 axis. Nucleic Acids Res 2024; 52:154-165. [PMID: 37986225 PMCID: PMC10783485 DOI: 10.1093/nar/gkad1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Asymmetric cell division (ACD) is a mechanism used by stem cells to maintain the number of progeny. However, the epigenetic mechanisms regulating ACD remain elusive. Here we show that BRD4, a BET domain protein that binds to acetylated histone, is segregated in daughter cells together with H3K56Ac and regulates ACD. ITGB1 is regulated by BRD4 to regulate ACD. A long noncoding RNA (lncRNA), LIBR (LncRNA Inhibiting BRD4), decreases the percentage of stem cells going through ACD through interacting with the BRD4 mRNAs. LIBR inhibits the translation of BRD4 through recruiting a translation repressor, RCK, and inhibiting the binding of BRD4 mRNAs to polysomes. These results identify the epigenetic regulatory modules (BRD4, lncRNA LIBR) that regulate ACD. The regulation of ACD by BRD4 suggests the therapeutic limitation of using BRD4 inhibitors to treat cancer due to the ability of these inhibitors to promote symmetric cell division that may lead to tumor progression and treatment resistance.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan
| | - Chia-Ting Chang
- Graduate Institute of Translational Medicine & New Drug Development, China Medical University, Taichung 406, Taiwan
- General Education Center, Feng Chia University, Taichung 407, Taiwan
| | - Kai-Wen Hsu
- Graduate Institute of Translational Medicine & New Drug Development, China Medical University, Taichung 406, Taiwan
| | - Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Joseph Chieh-Yu Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan
- Institutes of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung 406, Taiwan
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
43
|
Zhang S, Wu S, Yao R, Wei X, Ohlstein B, Guo Z. Eclosion muscles secrete ecdysteroids to initiate asymmetric intestinal stem cell division in Drosophila. Dev Cell 2024; 59:125-140.e12. [PMID: 38096823 DOI: 10.1016/j.devcel.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
During organ development, tissue stem cells first expand via symmetric divisions and then switch to asymmetric divisions to minimize the time to obtain a mature tissue. In the Drosophila midgut, intestinal stem cells switch their divisions from symmetric to asymmetric at midpupal development to produce enteroendocrine cells. However, the signals that initiate this switch are unknown. Here, we identify the signal as ecdysteroids. In the presence of ecdysone, EcR and Usp promote the expression of E93 to suppress Br expression, resulting in asymmetric divisions. Surprisingly, the primary source of pupal ecdysone is not from the prothoracic gland but from dorsal internal oblique muscles (DIOMs), a group of transient skeletal muscles that are required for eclosion. Genetic analysis shows that DIOMs secrete ecdysteroids during mTOR-mediated muscle remodeling. Our findings identify sequential endocrine and mechanical roles for skeletal muscle, which ensure the timely asymmetric divisions of intestinal stem cells.
Collapse
Affiliation(s)
- Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Song Wu
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruining Yao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueying Wei
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Benjamin Ohlstein
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
44
|
Kuburich NA, den Hollander P, Castaneda M, Pietilä M, Tang X, Batra H, Martínez-Peña F, Visal TH, Zhou T, Demestichas BR, Dontula RV, Liu JY, Maddela JJ, Padmanabhan RS, Phi LTH, Rosolen MJ, Sabapathy T, Kumar D, Giancotti FG, Lairson LL, Raso MG, Soundararajan R, Mani SA. Stabilizing vimentin phosphorylation inhibits stem-like cell properties and metastasis of hybrid epithelial/mesenchymal carcinomas. Cell Rep 2023; 42:113470. [PMID: 37979166 PMCID: PMC11062250 DOI: 10.1016/j.celrep.2023.113470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) empowers epithelial cells with mesenchymal and stem-like attributes, facilitating metastasis, a leading cause of cancer-related mortality. Hybrid epithelial-mesenchymal (E/M) cells, retaining both epithelial and mesenchymal traits, exhibit heightened metastatic potential and stemness. The mesenchymal intermediate filament, vimentin, is upregulated during EMT, enhancing the resilience and invasiveness of carcinoma cells. The phosphorylation of vimentin is critical to its structure and function. Here, we identify that stabilizing vimentin phosphorylation at serine 56 induces multinucleation, specifically in hybrid E/M cells with stemness properties but not epithelial or mesenchymal cells. Cancer stem-like cells are especially susceptible to vimentin-induced multinucleation relative to differentiated cells, leading to a reduction in self-renewal and stemness. As a result, vimentin-induced multinucleation leads to sustained inhibition of stemness properties, tumor initiation, and metastasis. These observations indicate that a single, targetable phosphorylation event in vimentin is critical for stemness and metastasis in carcinomas with hybrid E/M properties.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Maria Castaneda
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mika Pietilä
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Janssen Pharmaceutical Companies of Johnson & Johnson, Espoo, Uusimaa, Finland
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Tanvi H Visal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tieling Zhou
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Breanna R Demestichas
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Ritesh V Dontula
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jojo Y Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joanna Joyce Maddela
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Reethi S Padmanabhan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lan Thi Hanh Phi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew J Rosolen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Thiru Sabapathy
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
45
|
Pan X, Li H, Putta P, Zhang X. LinRace: cell division history reconstruction of single cells using paired lineage barcode and gene expression data. Nat Commun 2023; 14:8388. [PMID: 38104156 PMCID: PMC10725445 DOI: 10.1038/s41467-023-44173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023] Open
Abstract
Lineage tracing technology using CRISPR/Cas9 genome editing has enabled simultaneous readouts of gene expressions and lineage barcodes in single cells, which allows for inference of cell lineage and cell types at the whole organism level. While most state-of-the-art methods for lineage reconstruction utilize only the lineage barcode data, methods that incorporate gene expressions are emerging. Effectively incorporating the gene expression data requires a reasonable model of how gene expression data changes along generations of divisions. Here, we present LinRace (Lineage Reconstruction with asymmetric cell division model), which integrates lineage barcode and gene expression data using asymmetric cell division model and infers cell lineages and ancestral cell states using Neighbor-Joining and maximum-likelihood heuristics. On both simulated and real data, LinRace outputs more accurate cell division trees than existing methods. With inferred ancestral states, LinRace can also show how a progenitor cell generates a large population of cells with various functionalities.
Collapse
Affiliation(s)
- Xinhai Pan
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hechen Li
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Pranav Putta
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xiuwei Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
46
|
Linehan JB, Edwards GA, Boudreau V, Maddox AS, Maddox PS. Model-based trajectory classification of anchored molecular motor-biopolymer interactions. BIOPHYSICAL REPORTS 2023; 3:100130. [PMID: 37811483 PMCID: PMC10558742 DOI: 10.1016/j.bpr.2023.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
During zygotic mitosis in many species, forces generated at the cell cortex are required for the separation and migration of paternally provided centrosomes, pronuclear migration, segregation of genetic material, and cell division. Furthermore, in some species, force-generating interactions between spindle microtubules and the cortex position the mitotic spindle asymmetrically within the zygote, an essential step in asymmetric cell division. Understanding the mechanical and molecular mechanisms of microtubule-dependent force generation and therefore asymmetric cell division requires identification of individual cortical force-generating units in vivo. There is no current method for identifying individual force-generating units with high spatiotemporal resolution. Here, we present a method to determine both the location and the relative number of microtubule-dependent cortical force-generating units using single-molecule imaging of fluorescently labeled dynein. Dynein behavior is modeled to classify trajectories of cortically bound dynein according to whether they are interacting with a microtubule. The categorization strategy recapitulates well-known force asymmetries in C. elegans zygote mitosis. To evaluate the robustness of categorization, we used RNAi to deplete the tubulin subunit TBA-2. As predicted, this treatment reduced the number of trajectories categorized as engaged with a microtubule. Our technique will be a valuable tool to define the molecular mechanisms of dynein cortical force generation and its regulation as well as other instances wherein anchored motors interact with biopolymers (e.g., actin, tubulin, DNA).
Collapse
Affiliation(s)
- John B. Linehan
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Gerald Alan Edwards
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Vincent Boudreau
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, California
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, California
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Paul S. Maddox
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
47
|
Luo H, Cortés-López M, Tam CL, Xiao M, Wakiro I, Chu KL, Pierson A, Chan M, Chang K, Yang X, Fecko D, Han G, Ahn EYE, Morris QD, Landau DA, Kharas MG. SON is an essential m 6A target for hematopoietic stem cell fate. Cell Stem Cell 2023; 30:1658-1673.e10. [PMID: 38065069 PMCID: PMC10752439 DOI: 10.1016/j.stem.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/23/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Stem cells regulate their self-renewal and differentiation fate outcomes through both symmetric and asymmetric divisions. m6A RNA methylation controls symmetric commitment and inflammation of hematopoietic stem cells (HSCs) through unknown mechanisms. Here, we demonstrate that the nuclear speckle protein SON is an essential m6A target required for murine HSC self-renewal, symmetric commitment, and inflammation control. Global profiling of m6A identified that m6A mRNA methylation of Son increases during HSC commitment. Upon m6A depletion, Son mRNA increases, but its protein is depleted. Reintroduction of SON rescues defects in HSC symmetric commitment divisions and engraftment. Conversely, Son deletion results in a loss of HSC fitness, while overexpression of SON improves mouse and human HSC engraftment potential by increasing quiescence. Mechanistically, we found that SON rescues MYC and suppresses the METTL3-HSC inflammatory gene expression program, including CCL5, through transcriptional regulation. Thus, our findings define a m6A-SON-CCL5 axis that controls inflammation and HSC fate.
Collapse
Affiliation(s)
- Hanzhi Luo
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mariela Cortés-López
- New York Genome Center, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Cyrus L Tam
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Xiao
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isaac Wakiro
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karen L Chu
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell School of Medical Sciences, New York, NY, USA
| | - Aspen Pierson
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mandy Chan
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Chang
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Fecko
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Grace Han
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eun-Young Erin Ahn
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Quaid D Morris
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
48
|
Fujino S, Miyoshi N, Ito A, Hayashi R, Yasui M, Matsuda C, Ohue M, Horie M, Yachida S, Koseki J, Shimamura T, Hata T, Ogino T, Takahashi H, Uemura M, Mizushima T, Doki Y, Eguchi H. Metastases and treatment-resistant lineages in patient-derived cancer cells of colorectal cancer. Commun Biol 2023; 6:1191. [PMID: 37996567 PMCID: PMC10667365 DOI: 10.1038/s42003-023-05562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Circulating tumor cells (CTCs) play an important role in metastasis and recurrence. However, which cells comprise the complex tumor lineages in recurrence and are key in metastasis are unknown in colorectal cancer (CRC). CRC with high expression of POU5F1 has a poor prognosis with a high incidence of liver metastatic recurrence. We aim to reveal the key cells promoting metastasis and identify treatment-resistant lineages with established EGFP-expressing organoids in two-dimensional culture (2DOs) under the POU5F1 promotor. POU5F1-expressing cells are highly present in relapsed clinical patients' blood as CTCs. Sorted POU5F1-expressing cells from 2DOs have cancer stem cell abilities and abundantly form liver metastases in vivo. Single-cell RNA sequencing of 2DOs identifies heterogeneous populations derived from POU5F1-expressing cells and the Wnt signaling pathway is enriched in POU5F1-expressing cells. Characteristic high expression of CTLA4 is observed in POU5F1-expressing cells and immunocytochemistry confirms the co-expression of POU5F1 and CTLA4. Demethylation in some CpG islands at the transcriptional start sites of POU5F1 and CTLA4 is observed. The Wnt/β-catenin pathway inhibitor, XAV939, prevents the adhesion and survival of POU5F1-expressing cells in vitro. Early administration of XAV939 also completely inhibits liver metastasis induced by POU5F1-positive cells.
Collapse
Affiliation(s)
- Shiki Fujino
- Department of Gastroenterology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
- Innovative Oncology Research and Translational Medicine, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
- Innovative Oncology Research and Translational Medicine, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan.
| | - Aya Ito
- Innovative Oncology Research and Translational Medicine, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Rie Hayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
- Innovative Oncology Research and Translational Medicine, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Masayoshi Yasui
- Department of Surgery, Osaka International Cancer Institute, Chuo-ku, Osaka, 541-8567, Japan
| | - Chu Matsuda
- Department of Surgery, Osaka International Cancer Institute, Chuo-ku, Osaka, 541-8567, Japan
| | - Masayuki Ohue
- Department of Surgery, Osaka International Cancer Institute, Chuo-ku, Osaka, 541-8567, Japan
| | - Masafumi Horie
- Department of Cancer Genome Informatics, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Jun Koseki
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Nagoya-City, Aichi, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Nagoya-City, Aichi, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| |
Collapse
|
49
|
Sun G, Hwang C, Jung T, Liu J, Li R. Biased placement of Mitochondria fission facilitates asymmetric inheritance of protein aggregates during yeast cell division. PLoS Comput Biol 2023; 19:e1011588. [PMID: 38011208 PMCID: PMC10703421 DOI: 10.1371/journal.pcbi.1011588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/07/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023] Open
Abstract
Mitochondria are essential and dynamic eukaryotic organelles that must be inherited during cell division. In yeast, mitochondria are inherited asymmetrically based on quality, which is thought to be vital for maintaining a rejuvenated cell population; however, the mechanisms underlying mitochondrial remodeling and segregation during this process are not understood. We used high spatiotemporal imaging to quantify the key aspects of mitochondrial dynamics, including motility, fission, and fusion characteristics, upon aggregation of misfolded proteins in the mitochondrial matrix. Using these measured parameters, we developed an agent-based stochastic model of dynamics of mitochondrial inheritance. Our model predicts that biased mitochondrial fission near the protein aggregates facilitates the clustering of protein aggregates in the mitochondrial matrix, and this process underlies asymmetric mitochondria inheritance. These predictions are supported by live-cell imaging experiments where mitochondrial fission was perturbed. Our findings therefore uncover an unexpected role of mitochondrial dynamics in asymmetric mitochondrial inheritance.
Collapse
Affiliation(s)
- Gordon Sun
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christine Hwang
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tony Jung
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jian Liu
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
50
|
Pollin G, De Assuncao T, Doria Jorge S, Chi YI, Charlesworth M, Madden B, Iovanna J, Zimmermann M, Urrutia R, Lomberk G. Writers and readers of H3K9me2 form distinct protein networks during the cell cycle that include candidates for H3K9 mimicry. Biosci Rep 2023; 43:BSR20231093. [PMID: 37782747 PMCID: PMC10611923 DOI: 10.1042/bsr20231093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023] Open
Abstract
Histone H3 lysine 9 methylation (H3K9me), which is written by the Euchromatic Histone Lysine Methyltransferases EHMT1 and EHMT2 and read by the heterochromatin protein 1 (HP1) chromobox (CBX) protein family, is dysregulated in many types of cancers. Approaches to inhibit regulators of this pathway are currently being evaluated for therapeutic purposes. Thus, knowledge of the complexes supporting the function of these writers and readers during the process of cell proliferation is critical for our understanding of their role in carcinogenesis. Here, we immunopurified each of these proteins and used mass spectrometry to define their associated non-histone proteins, individually and at two different phases of the cell cycle, namely G1/S and G2/M. Our findings identify novel binding proteins for these writers and readers, as well as corroborate known interactors, to show the formation of distinct protein complex networks in a cell cycle phase-specific manner. Furthermore, there is an organizational switch between cell cycle phases for interactions among specific writer-reader pairs. Through a multi-tiered bioinformatics-based approach, we reveal that many interacting proteins exhibit histone mimicry, based on an H3K9-like linear motif. Gene ontology analyses, pathway enrichment, and network reconstruction inferred that these comprehensive EHMT and CBX-associated interacting protein networks participate in various functions, including transcription, DNA repair, splicing, and membrane disassembly. Combined, our data reveals novel complexes that provide insight into key functions of cell cycle-associated epigenomic processes that are highly relevant for better understanding these chromatin-modifying proteins during cell cycle and carcinogenesis.
Collapse
Affiliation(s)
- Gareth Pollin
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Thiago M. De Assuncao
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Salomao Doria Jorge
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Young-In Chi
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | | | - Benjamin Madden
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, MN, U.S.A
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Michael T. Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| |
Collapse
|