1
|
Das KK, Pandey R, Dubey AK. Piezo-electronics: A paradigm for self-powered bioelectronics. Biomaterials 2025; 318:123118. [PMID: 39904184 DOI: 10.1016/j.biomaterials.2025.123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Recent breakthroughs in electroactive piezo-biomaterials have driven significant progress towards the development of both, diagnostic and therapeutic purposes, enabling vital sign monitoring, such as heart rate, etc. while also supporting tissue regeneration. Bioelectronic medicine provides a promising method for controlling tissue and organ functions, with 'piezo-electronics' emphasizing the lasting role of electro-active piezo-biomaterials in self-powered devices. This article critically analyses a range of self-powered bioelectronic technologies, including wearable, implantable, regenerative, and cancer therapy applications. Piezoelectric nanogenerators (PENGs) are essential in wearable and implantable systems such as pressure and strain measurements, sensor for human-machine interface, self-powered pacemakers, deep brain stimulation, cochlear implant, tissue restoration and sustained drug delivery, controlled by electrical stimuli from PENGs etc. Regenerative bioelectronics play a key role in healing tissues, such as bone, neural, cardiac, tendon, ligament, skeletal muscle etc. using self-powered implants, which have ability to restore tissue functionality. Additionally, piezoelectric biomaterials are being utilized in cancer treatment, offering more targeted therapies with minimal side effects. Various cancerous tumors can be destroyed by reactive oxygen species (ROS), generated by piezo-biomaterials. Data science is also emerging as a crucial tool in optimizing self-powered bioelectronics, enhancing patient outcomes through data-driven strategies, and broadening the role of bioelectronic technologies in modern healthcare.
Collapse
Affiliation(s)
- Kuntal Kumar Das
- Bioelectronics Laboratory, Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ratnanjali Pandey
- Bioelectronics Laboratory, Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ashutosh Kumar Dubey
- Bioelectronics Laboratory, Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
2
|
Zhou M, Lu Y, Tang Y, Zhang T, Xiao D, Zhang M, Zhang S, Li J, Cai X, Lin Y. A DNA-based nanorobot for targeting, hitchhiking, and regulating neutrophils to enhance sepsis therapy. Biomaterials 2025; 318:123183. [PMID: 39951831 DOI: 10.1016/j.biomaterials.2025.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/29/2024] [Accepted: 02/09/2025] [Indexed: 02/16/2025]
Abstract
Targeted regulation of neutrophils is an effective approach for treating neutrophil-driven inflammatory diseases, but challenges remain in minimizing off-target effects and extending drug half-life. A DNA-based nanorobot was developed to target neutrophils by using an N-acetyl Pro-Gly-Pro (Ac-PGP) peptide to specifically bind to the C-X-C motif of chemokine receptor 2 (CXCR2) on neutrophil membranes. This robot (a tetrahedral framework nucleic acid modified with Ac-PGP, APT) identified and hitchhiked neutrophils to accumulate at inflammatory sites and prolong its half-lives, whilst also was internalized to influence the neutrophil cell cycle and maturation process to regulate oxidative stress, inflammation, migration, and recruitment in both in vivo and in vitro inflammation experiments. Consequently, the tissue damage caused by sepsis was greatly reduced. This novel neutrophil-based nanorobot highlights the high precision of targeting and regulating neutrophils, and presents a potential strategy for treating multiple neutrophil-driven diseases.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Lu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuanlin Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shunhao Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jun Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Trauma Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China; National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Brayan MT, Alejandro AA, Quesada-Gómez C, Chaves-Olarte E, Elías BC. Polymorphonuclear neutrophil depletion in ileal tissues reduces the immunopathology induced by Clostridioides difficile toxins. Anaerobe 2025; 92:102947. [PMID: 40023364 DOI: 10.1016/j.anaerobe.2025.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/28/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Clostridioides difficile, a leading cause of healthcare-associated infections, causes significant morbidity and mortality. Its pathogenesis centers on TcdA and TcdB toxins, which disrupt intestinal integrity, trigger inflammation, and promote extensive neutrophil infiltration. OBJECTIVE The main objective of this study was to evaluate the role of PMNs in CDI using neutrophil depletion in a murine-ileal-ligated loop. METHODS Mice were treated with C. difficile toxins TcdA, TcdB, and TcdBv, with PMN depletion achieved via intraperitoneal injections of Ly6G/Ly6C antibody. Histopathological analysis, cytokine quantification, and MPO activity assays were performed to assess the inflammatory and tissue damage responses. RESULTS PMN depletion significantly reduced histopathological damage and proinflammatory responses. TcdA induced the highest inflammation and epithelial damage, while TcdB showed lower activity, except for MPO. TcdBvNAP1's activity was comparable to that of TcdBNAP1 but less than TcdA. The findings indicate that TcdA's enterotoxin effects are more damaging than TcdBs from different strains and confirm the critical role of PMNs in CDI pathogenesis. CONCLUSION Our results show that PMN depletion reduced inflammatory responses and tissue damage, highlighting potential therapeutic strategies targeting PMN regulation. Further research on PMN extracellular traps (NETs) and their role in CDI is necessary to develop comprehensive treatments. Future studies should focus on combined in vivo and in vitro approaches to fully understand the pathological mechanisms and identify effective biomarkers for CDI therapy.
Collapse
Affiliation(s)
- Montoya-Torres Brayan
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA; Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica
| | - Alfaro-Alarcón Alejandro
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica; Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Carlos Quesada-Gómez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Barquero-Calvo Elías
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica.
| |
Collapse
|
4
|
Wiley CR, Williams DP, Sigrist C, Brownlow BN, Markser A, Hong S, Sternberg EM, Kapuku G, Koenig J, Thayer JF. Differences in inflammation among black and white individuals: A systematic review and meta-analysis. Brain Behav Immun 2025; 127:S0889-1591(25)00104-7. [PMID: 40101808 DOI: 10.1016/j.bbi.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/13/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025] Open
Abstract
IMPORTANCE Despite persisting health disparities between Black and White individuals, racial differences in inflammation have yet to be comprehensively examined. OBJECTIVE To determine if significant differences in circulating levels of inflammatory markers between Black and White populations exist. DATA SOURCES Studies were identified through systematic searches of four electronic databases in January 2022. Additional studies were identified via reference lists and e-mail contact. STUDY SELECTION Eligible studies included full-text empirical articles that consisted of Black and White individuals and reported statistics for inflammatory markers for each racial group. Of the 1368 potentially eligible studies, 84 (6.6 %) representing more than one million participants met study selection criteria. DATA EXTRACTION AND SYNTHESIS Risk of bias was assessed via meta regressions that considered relevant covariates. Data heterogeneity was tested using both the Cochrane Q-statistic and the standard I2 index. Random effects models were used to calculate estimates of effect size from standardized mean differences. MAIN OUTCOMES AND MEASURES Outcome measures included 12 inflammatory markers, including C-reactive protein (CRP), Fibrinogen, Interleukin-6 (IL-6), Tumor necrosis factor-alpha (TNF-α), and soluble intercellular adhesion molecule 1 (sICAM-1). RESULTS Several markers had robust sample sizes for analysis, including CRP (White N = 934,594; Black N = 55,234), Fibrinogen (White N = 80,880; Black N = 18,001), and IL-6 (White N = 20,269; Black N = 14,675). Initial results indicated significant effects on CRP (k = 56, pooled Hedges' g = 0.24), IL-6 (k = 33, g = 0.15), and Fibrinogen (k = 19, g = 0.49), with Black individuals showing higher levels. Results also indicated significant effects on sICAM-1 (k = 6, g = -0.46), and Interleukin-10 (k = 4, g = -0.18), with White individuals showing higher levels. Sensitivity analyses confirmed robust effects for CRP, IL-6, Fibrinogen, and sICAM-1 while also revealing significant effects on TNF-α (k = 18, g = -0.17) and Interleukin-8 (k = 5, g = -0.19), with White individuals showing higher levels of both. CONCLUSIONS AND RELEVANCE Current meta-analytic results provide evidence for marked racial differences in common circulating inflammatory markers and illustrate the complexity of the inflammatory profile differences between Black and White individuals. Review Pre-Registration: PROSPERO Identifier - CRD42022312352.
Collapse
Affiliation(s)
- Cameron R Wiley
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Psychological Science, University of California, Irvine, Irvine, CA, United States.
| | - DeWayne P Williams
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| | - Christine Sigrist
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, United States
| | - Briana N Brownlow
- Duke University Medical Center, Duke University, Durham, NC, United States
| | - Anna Markser
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, United States
| | - Suzi Hong
- Herbert Wertheim School of Public Health, University of California, San Diego, San Diego, CA, United States; Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Esther M Sternberg
- Center for Integrative Medicine, The University of Arizona, Tucson, AZ, United States
| | - Gaston Kapuku
- Department of Pediatrics and Medicine, Georgia Prevention Institute, Augusta, GA, United States
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, United States
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States; Department of Psychology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Luo B, Zhang K, Jiang ZK, Xie YK, Wu YX, Wang RC, Huang JQ, Chen JS. Preoperative blood neutrophil-to-lymphocyte ratio, hematocrit and fibrinogen predict prognosis in colorectal cancer. Biomark Med 2025:1-8. [PMID: 40038869 DOI: 10.1080/17520363.2025.2473310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVE To investigate the prognostic potential of preoperative blood neutrophil to lymphocyte ratio (NLR), hematocrit (HCT) and Fibrinogen (FIB) level in patients with colorectal cancer (CRC). METHODS The data of 268 patients with CRC who underwent radical surgery from March 2013 to August 2017 in the First Affiliated Hospital of Guangzhou Medical University (Guangzhou, China) were retrospectively collected. The correlations between preoperative blood NLR, HCT and FIB level and the clinicopathologic features and prognosis were explored by Cox regression in the patients with CRC. RESULTS Univariate and multivariate analyses identified preoperative blood with high NLR (HR = 2.265, 95% CI: 1.437-3.570), low HCT (HR = 1.575, 95% CI: 1.010-2.454), and high FIB (HR = 1.667, 95% CI: 1.067-2.605) as independent predictors of reduced 5-year overall survival (OS). Furthermore, the patients were stratified into high (with 3 predictors), middle (with 2 predictors) and low (with 0 or 1 predictors) risk groups according to the number of the 3 independent prognostic predictors. The more independent predictors a patient has, the poorer their prognosis tends to be. CONCLUSIONS Preoperative NLR, HCT, and FIB serve as cost-effective prognostic biomarkers in CRC. Their combination enables precise risk stratification, guiding personalized postoperative management.
Collapse
Affiliation(s)
- Bing Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kai Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ze-Kun Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ying-Kang Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yi-Xiang Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Rong-Chang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiong-Qiang Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jing-Song Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Sagae SC, Paz EDR, Zanardini B, Amaral AC, Bronczek GA, Koehler-Santos P, de Oliveira JR, Franci CR, Donadio MVF, Holman PJ, Raineki C. Alternate-day fasting differentially affects body composition, metabolic and immune response to fasting in male rats exposed to early-life adversity: Modulatory role of cafeteria diet. PLoS One 2025; 20:e0313103. [PMID: 40029907 PMCID: PMC11875342 DOI: 10.1371/journal.pone.0313103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/11/2024] [Indexed: 03/06/2025] Open
Abstract
The increased risk for obesity and metabolic disorders following early-life adversity is aggravated by poor diet (e.g., cafeteria diet). Alternate-day fasting (ADF) is a dietary regimen shown to improve immune and metabolic dysfunction related to obesity. Here, we evaluate if ADF can ameliorate the negative effects of early-life adversity and/or cafeteria diet on biological, immune and metabolic parameters. At weaning, animals reared under normal or adverse conditions (i.e., low bedding) were fed either standard chow or cafeteria diets ad libitum or subjected to an ADF regimen. In adulthood, we measured 24-hour fasted cholesterol, triglycerides, cytokines, oxidative stress markers, and body composition parameters including perigonadal, retroperitoneal, and brown fat pad weight. Animals exposed to early-life adversity respond differently to cafeteria diet and ADF. Adverse reared animals fed chow diet in the ADF regimen showed the largest reduction in body weight and perigonadal and retroperitoneal fat pad weight, the smallest increase in corticosterone levels, and the largest increase in TNF-α levels. However, the differential effects of the ADF regimen on body, perigonadal and retroperitoneal fat weight observed in adversely reared animals fed chow diet compared to controls were not present if the adversely reared animals were fed cafeteria diet in the ADF regimen. Furthermore, adversely reared animals fed cafeteria diet in the ADF regimen showed high IL-1β and IL-6 levels. Together, the data suggest that the altered vulnerability to metabolic and immune dysfunction following early-life adversity is not just due to the type of diet but also how the diet is consumed.
Collapse
Affiliation(s)
- Sara C. Sagae
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Edson D. R. Paz
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
- Departamento de Fisiologia Geral do Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Bárbara Zanardini
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Ana Claudia Amaral
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Gabriela A. Bronczek
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
- Departmento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade de Campinas, Campinas, Brazil
| | - Patrícia Koehler-Santos
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Jarbas R. de Oliveira
- Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Celso R. Franci
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Márcio V. F. Donadio
- Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Departmento de Fisioterapia, Facultad de Medicina y Ciencias de la Salud, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Parker J. Holman
- Department of Psychology, Brock University, St. Catharines, Ontario, Canada
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
7
|
Huang L, Liu W, Lv X, Ge X, He Z, Yang Y, Tang Y, Wang L, Zeng J, Cheng P. Rational design, synthesis and anti-inflammatory activity of 6-substituted dihydrobenzophenanthridine derivatives. Bioorg Med Chem 2025; 122:118145. [PMID: 40056889 DOI: 10.1016/j.bmc.2025.118145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
a series of 6-substituted dihydrobenzophenanthridine alkaloids were synthesized by introduction of different functional groups to C-6 of dihydrobenzophenanthridine backbone. The preliminary anti-inflammatory activities of all compounds were screened by investigating the inhibitory ability on NO production in LPS-stimulated RAW 264.7 cells. Among synthesized compounds, 6-(N-phenyl)-aminocarbonyl methyl dihydrochelerythrine (compound 12b) showed increased anti-inflammatory ability and decreased cytotoxicity and could inhibit the expression of pro-inflammatory factors TNF-α and IL-6 in RAW 264.7 macrophages. The anti-inflammatory ability of compound 12b was further evaluated using DSS-induced mice colitis models based on colonic tissue damage assessment, histopathological assessment and immunohistochemical analysis. In vivoexperiment revealed that compound 12b had good alleviating effect on acute colitis in mice. In conclusion, compound 12b may be a promising anti-inflammatory lead compound.
Collapse
Affiliation(s)
- Lei Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Wei Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Xinye Lv
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Xiaomei Ge
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Zhehao He
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Yingxue Yang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Yuhui Tang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Lin Wang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China.
| | - Pi Cheng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China.
| |
Collapse
|
8
|
Sun P, Wang M, Chai X, Liu YX, Li L, Zheng W, Chen S, Zhu X, Zhao S. Disruption of tryptophan metabolism by high-fat diet-triggered maternal immune activation promotes social behavioral deficits in male mice. Nat Commun 2025; 16:2105. [PMID: 40025041 PMCID: PMC11873046 DOI: 10.1038/s41467-025-57414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Diet-related maternal obesity has been implicated in neurodevelopmental disorders in progeny. Although the precise mechanisms and effective interventions remain uncertain, our research elucidates some of these complexities. We established that a prenatal high-fat diet triggered maternal immune activation (MIA), marked by elevated serum lipopolysaccharide levels and inflammatory-cytokine overproduction, which dysregulated the maternal tryptophan metabolism promoting the accumulation of neurotoxic kynurenine metabolites in the embryonic brain. Interventions aimed at mitigating MIA or blocking the kynurenine pathway effectively rescued the male mice social performance. Furthermore, excessive kynurenine metabolites initiated oxidative stress response causing neuronal migration deficits in the fetal neocortex, an effect that was mitigated by administering the glutathione synthesis precursor N-Acetylcysteine, underscoring the central role of maternal immune-metabolic homeostasis in male mice behavioral outcomes. Collectively, our study accentuated the profound influence of maternal diet-induced immuno-metabolic dysregulation on fetal brain development and provided the preventive strategies for addressing neurodevelopmental disorders.
Collapse
Affiliation(s)
- Penghao Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengli Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Yong-Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Zheng
- College of Resources and Environment Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Zhang M, Wei J, Sun Y, He C, Ma S, Pan X, Zhu X. The efferocytosis process in aging: Supporting evidence, mechanisms, and therapeutic prospects for age-related diseases. J Adv Res 2025; 69:31-49. [PMID: 38499245 DOI: 10.1016/j.jare.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Aging is characterized by an ongoing struggle between the buildup of damage caused by a combination of external and internal factors. Aging has different effects on phagocytes, including impaired efferocytosis. A deficiency in efferocytosis can cause chronic inflammation, aging, and several other clinical disorders. AIM OF REVIEW Our review underscores the possible feasibility and extensive scope of employing dual targets in various age-related diseases to reduce the occurrence and progression of age-related diseases, ultimately fostering healthy aging and increasing lifespan. Key scientific concepts of review Hence, the concurrent implementation of strategies aimed at augmenting efferocytic mechanisms and anti-aging treatments has the potential to serve as a potent intervention for extending the duration of a healthy lifespan. In this review, we comprehensively discuss the concept and physiological effects of efferocytosis. Subsequently, we investigated the association between efferocytosis and the hallmarks of aging. Finally, we discuss growing evidence regarding therapeutic interventions for age-related disorders, focusing on the physiological processes of aging and efferocytosis.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shiyin Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
10
|
Elagali A, Eisner A, Tanner S, Drummond K, Symeonides C, Love C, Tang ML, Mansell T, Burgner D, Collier F, Sly PD, O'Hely M, Dunlop S, Vuillermin P, Ponsonby AL. A pathway-based genetic score for inflammation: An indicator of vulnerability to phthalate-induced adverse neurodevelopment outcomes. Int J Hyg Environ Health 2025; 264:114514. [PMID: 39721371 DOI: 10.1016/j.ijheh.2024.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Phthalates, chemical additives used to enhance plastic products' flexibility, are easily released into the environment, and can harm the brain development through various mechanisms including inflammation. Genetic variation influencing an individual's susceptibility to inflammation may play a role in the effects of phthalate exposure on neurodevelopment however there is no summary measure developed for genetic susceptibility to inflammation. METHODS We developed a genetic pathway function score for inflammation (gPFSin), based on the transcriptional activity of the inflammatory response pathway in the brain and other tissues. Using the Barwon Infant Study (a birth cohort of n = 1074), we examined the connection between gPFSin and key neurodevelopmental outcomes, along with the interplay between prenatal phthalate levels, children's genetic susceptibility to inflammation (gPFSin), and adverse neurodevelopmental outcomes. RESULTS Regression techniques revealed consistent associations between gPFSin-phthalate combinations and key neurodevelopmental outcomes. A high gPFSin score was associated with an increased risk of doctor-diagnosed Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) by age 11.5 years, with adjusted odds ratios of 2.15(p = 0.039) and 2.42(p = 0.005), respectively. Furthermore, individuals with both high gPFSin and prenatal phthalate exposure exhibited more neurodevelopmental problems. This included associations of high gPFSin and bis(2-ethylhexyl) phthalate (DEHP) levels with parent-reported ASD traits and doctor-diagnosed ASD. The attributable proportions due to this interaction were 0.39 (p = 0.045) and 0.37 (p = 0.037), respectively. CONCLUSION These findings contribute to the evidence linking gestational phthalate exposure and inflammation to adverse neurodevelopment and underscoring increased risks in children with higher genetic susceptibility to inflammation.
Collapse
Affiliation(s)
- Ahmed Elagali
- Minderoo Foundation, Perth, WA, 6009, Australia; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Alex Eisner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Samuel Tanner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christos Symeonides
- Minderoo Foundation, Perth, WA, 6009, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia
| | - Chloe Love
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Mimi Lk Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Fiona Collier
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD, 4101, Australia
| | - Martin O'Hely
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Sarah Dunlop
- Minderoo Foundation, Perth, WA, 6009, Australia; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Peter Vuillermin
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
11
|
Choi BM, Lee G, Hong H, Park CM, Yeom A, Chi WJ, Kim SY. Whitening and Anti-Inflammatory Activities of Exosomes Derived from Leuconostoc mesenteroides subsp. DB-21 Strain Isolated from Camellia japonica Flower. Molecules 2025; 30:1124. [PMID: 40076347 PMCID: PMC11901582 DOI: 10.3390/molecules30051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
In the present study, we investigated the anti-inflammatory and anti-melanogenic effects of Leuconostoc mesenteroides subsp. DB-21-derived exosomes (DB-21 exosomes), isolated from Camellia japonica flower in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells and melanocyte-stimulating hormone (α-MSH)-induced B16F10 melanoma cells. We confirmed that DB-21 exosomes were not toxic to LPS-induced RAW 264.7 macrophage cells and α-MSH-induced B16F10 melanoma cells. Moreover, we confirmed that DB-21 exosomes inhibit the pro-inflammatory cytokines IL-6, IL-1β, TNF-α, PGE2, and the expression of inflammatory factors iNOS and COX-2. We also found that DB-21 exosomes have a concentration-dependent ability to inhibit melanin, TRP-1, TRP-2, tyrosinase, and MITF, which are factors involved in melanogenesis. Additionally, it inhibits the phosphorylation of Akt and GSK-3β, and MAP kinase pathway proteins such as ERK, JNK, and p38. We confirmed that DB-21 exosomes inhibit melanin synthesis in B16F10 cells through various pathways, and based on previous results, they may be used as a functional cosmetic material with anti-inflammatory and anti-melanogenic activities.
Collapse
Affiliation(s)
- Byeong-Min Choi
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 31460, Republic of Korea; (B.-M.C.); (H.H.)
| | - Gibok Lee
- R&D Center, Hankook Cosmetics Manufacturing Co., Ltd., 35 Cheonggyecheon-ro, Jongno-gu, Seoul 03188, Republic of Korea; (G.L.); (C.-M.P.); (A.Y.)
| | - Hyehyun Hong
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 31460, Republic of Korea; (B.-M.C.); (H.H.)
| | - Chang-Min Park
- R&D Center, Hankook Cosmetics Manufacturing Co., Ltd., 35 Cheonggyecheon-ro, Jongno-gu, Seoul 03188, Republic of Korea; (G.L.); (C.-M.P.); (A.Y.)
| | - Areum Yeom
- R&D Center, Hankook Cosmetics Manufacturing Co., Ltd., 35 Cheonggyecheon-ro, Jongno-gu, Seoul 03188, Republic of Korea; (G.L.); (C.-M.P.); (A.Y.)
| | - Won-Jae Chi
- Biodiversity Research Department, Species Diversity Research Division, Incheon 22689, Republic of Korea;
| | - Seung-Young Kim
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 31460, Republic of Korea; (B.-M.C.); (H.H.)
| |
Collapse
|
12
|
Ciurus S, Elewa MAF, Palmer MA, Wolf A, Hector M, Fuhrmann DC, Thomas D, Gurke R, Schwalm MP, Berger L, Zech TJ, Burgers LD, Marschalek R, Geisslinger G, Knapp S, Langmann T, Bracher F, Weigert A, Fürst R. Inhibition of DYRK1B BY C81 impedes inflammatory processes in leukocytes by reducing STAT3 activity. Cell Mol Life Sci 2025; 82:85. [PMID: 39985685 PMCID: PMC11846820 DOI: 10.1007/s00018-025-05579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/15/2024] [Accepted: 01/05/2025] [Indexed: 02/24/2025]
Abstract
Chronic inflammatory diseases are a significant global burden and are associated with dysregulated resolution of inflammation. Therefore, promoting the process of resolution is a promising therapeutic approach. This study presents the potent anti-inflammatory and pro-resolving effects of a natural product-derived compound called C81. Administration of C81 in a therapeutic window resolved inflammation in the murine imiquimod-induced psoriasis model, and reduced microglial infiltration in a laser-induced choroidal neovascularisation model. Investigations into the underlying mechanisms of C81 identified the DYRK1B/STAT3 axis as a new regulator of inflammatory processes in leukocytes. The inhibition of DYRK1B by C81 resulted in attenuated STAT3 phosphorylation. The depletion of STAT3-regulated gene expression led to the inhibition of leukocyte adhesion and migration due to reduced integrin activation, and in addition to the inhibition of the release of pro-inflammatory mediators such as cytokines and eicosanoids. Importantly, the pro-resolving effects of C81 included the cell type-specific induction of apoptosis in neutrophils and a subsequent increase in efferocytosis. In conclusion, we report the DYRK1B/STAT3 axis as a novel and promising therapeutic target for activating the resolution of inflammation.
Collapse
Affiliation(s)
- Sarah Ciurus
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Mohammed A F Elewa
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
- Department of Biochemistry, Faculty of Pharmacy, Kafr El-Sheikh University, Karf El-Sheikh, Egypt
| | - Megan A Palmer
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
| | - Martin P Schwalm
- Institute of Pharmaceutical Chemistry and Buchmann Institute Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Lena Berger
- Institute of Pharmaceutical Chemistry and Buchmann Institute Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas J Zech
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
- Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Luisa D Burgers
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry and Buchmann Institute Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Franz Bracher
- Pharmaceutical Chemistry, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany.
- Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
13
|
Fujinami Y, Saito M, Ono Y, Akashi M, Inoue S, Kotani J. Malocclusion Worsens Survival Following Sepsis Due to the Disruption of Innate and Acquired Immunity. Int J Mol Sci 2025; 26:1894. [PMID: 40076520 PMCID: PMC11899844 DOI: 10.3390/ijms26051894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Sepsis is a severe condition with high mortality, in which immune dysfunction plays a critical role. Poor oral health has been linked to frailty, but its impact on sepsis outcomes remains unclear. Therefore, we used a mouse model of malocclusion and sepsis to investigate how tooth loss affects immune responses during sepsis. Adult male C57BL/6 mice were divided into four groups: Control, Malocclusion (Mal), Sepsis (CS), and Malocclusion with Sepsis (Mal + CS). Malocclusion was induced by tooth extraction, and sepsis was induced using cecal slurry injection. We assessed survival rates, immune cell counts, and biochemical markers. The Mal + CS group exhibited significantly lower survival rates and greater weight loss compared to the CS group. The flow cytometry showed reduced neutrophils, monocytes, and T cells in the Mal + CS group. Elevated ALT and AST levels indicated liver damage. No significant differences in bacterial loads were observed, but immune suppression was exacerbated in the Mal + CS group. Malocclusion worsens sepsis outcomes by impairing both innate and adaptive immune responses. These findings emphasize the importance of oral health in improving sepsis prognosis and immune function during critical illnesses.
Collapse
Affiliation(s)
- Yoshihisa Fujinami
- Department of Emergency Medicine, Kakogawa Central City Hospital, Hyogo 675-8611, Japan
- Department of Disaster and Emergency and Critical Care Medicine, Graduate School of Medicine, Kobe University, Kobe 650-0047, Japan; (Y.O.); (S.I.); (J.K.)
| | - Masafumi Saito
- Department of Immunology and Microbiology, National Defense Medical College, Saitama 359-8513, Japan;
| | - Yuko Ono
- Department of Disaster and Emergency and Critical Care Medicine, Graduate School of Medicine, Kobe University, Kobe 650-0047, Japan; (Y.O.); (S.I.); (J.K.)
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0047, Japan;
| | - Shigeaki Inoue
- Department of Disaster and Emergency and Critical Care Medicine, Graduate School of Medicine, Kobe University, Kobe 650-0047, Japan; (Y.O.); (S.I.); (J.K.)
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Joji Kotani
- Department of Disaster and Emergency and Critical Care Medicine, Graduate School of Medicine, Kobe University, Kobe 650-0047, Japan; (Y.O.); (S.I.); (J.K.)
| |
Collapse
|
14
|
Skowronska-Krawczyk D, Finnemann SC, Grant MB, Held K, Hu Z, Lu YR, Malek G, Sennlaub F, Sparrow J, D'Amore PA. Features that distinguish age-related macular degeneration from aging. Exp Eye Res 2025; 254:110303. [PMID: 39986366 DOI: 10.1016/j.exer.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial retinal degenerative disease that is influenced by both genetic and environmental factors. However, the strongest risk factor for AMD is advanced age. Several physiological processes are observed in aging tissues including a low level of chronic inflammation (inflammaging), changed lipid and energy metabolism, and senescence. Nevertheless, whereas everyone ages, only a subset of the population develops AMD. The purpose of this review is to delineate the differences on a cellular and molecular level between natural aging changes and those observed in AMD. We provide a unique perspective on how genetic and environmental components modulate aging in the eye, as well as the specific role of the aging RPE and retina in the pathogenesis of AMD. Topics discussed include the mechanism of aging and its relation to the mechanism of AMD, current animal models that can be used to recapitulate some aspects of the pathology, and potential interventions that shift the balance towards healthy aging and therefore attenuate, prevent or delay the initiation of the disease.
Collapse
Affiliation(s)
| | | | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, Marnix E. Heersink School of Medicine University of Alabama at Birmingham, Alabama, USA
| | - Katherine Held
- Ophthalmology Discovery Research, AbbVie Inc., Irvine, CA, USA
| | - Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA
| | | | - Goldis Malek
- Duke University, Departments of Ophthalmology, Pathology, and Cell Biology, Albert Eye Research Institute, Durham, NC, USA
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Janet Sparrow
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Dhanya TM, Prathapachandra Kurup MR, Rajimon KJ, Anjali Krishna G, Varughese JK, Raghu KG, Philip S, Divya KM, Augustine M, Mohanan PV. Unveiling the multifaceted bioactivity of copper(II)-Schiff base complexes: a comprehensive study of antioxidant, anti-bacterial, anti-inflammatory, enzyme inhibition and cytotoxic potentials with DFT insights. Dalton Trans 2025; 54:3216-3234. [PMID: 39820950 DOI: 10.1039/d4dt02486a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The rise of various diseases demands the development of new agents with antioxidant, antimicrobial, anti-inflammatory, enzyme-inhibiting, and cytotoxic properties. In this study, heterocyclic Schiff base complexes of Cu(II) featuring a benzo[b]thiophene moiety were synthesized and their biological activities evaluated. The complexes were characterized using FT-IR, UV-Vis, and EPR spectroscopy, TG-DTG analysis, magnetic moment measurements, molar conductivity measurements, and elemental analyses. Density functional theory (DFT) calculations were used to optimize the theoretical molecular orbital energies of the copper complexes. The complexes exhibited square pyramidal and square planar geometries. Biological assays demonstrated that these complexes generally outperformed the Schiff base ligands for various activities. The antioxidant capacity, measured via the DPPH assay in methanol, was comparable to those of the BHT and ascorbic acid standards, with 4BNPC showing the lowest IC50 value, which was attributed to the free OH group rather than coordination to the metal center. The anti-bacterial activity was assessed using the agar disc diffusion method against E. coli, P. aeruginosa, B. subtilis, and S. aureus, with BAC showing the largest inhibition zone compared to the others and ciprofloxacin as the reference. The anti-inflammatory activity, evaluated by the HRBC membrane stabilization method, showed that the 4BNPC Cu(II) complex had moderate activity similar to that of diclofenac. Enzyme inhibition studies against α-amylase revealed that the BAC complexes had the highest inhibition values, surpassing those of the Schiff base ligands. Cytotoxicity was assessed using Trypan blue exclusion for DLA and HepG2 cancer cell lines, and the MTT assay for H9c2 human cells. BMPC demonstrated superior cytotoxicity at both high and low concentrations against the normal H9c2 cell line. Among the tested compounds, BNPC showed moderate inhibition against HepG2 cells, while BMPC exhibited the greatest cytotoxicity at higher concentrations, particularly reaching nearly 100% cell death at 200 μg mL-1 in DLA cell lines. This suggests that BMPC is a promising candidate for further pharmacological research, particularly against DLA cells.
Collapse
Affiliation(s)
- T M Dhanya
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
| | - M R Prathapachandra Kurup
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
| | - K J Rajimon
- Department of Chemistry, St Berchmans College, Changanacherry, Kerala, India.
| | - G Anjali Krishna
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
- Department of Science and Humanities, Mar Baselios Institute of Technology and Science, Nellimattom, Kothamangalam, Kerala, India.
| | | | - K G Raghu
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, India.
| | - Sachin Philip
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
| | - K M Divya
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
- Department of Chemistry, NSS College, Cherthala, Kerala, India.
| | - Maria Augustine
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
- Department of Chemistry, St Paul's College, Kalamassery, Kerala, India.
| | - P V Mohanan
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
| |
Collapse
|
16
|
Juanes-Velasco P, Pérez-Arévalo JC, Arias-Hidalgo C, Nuño-Soriano A, Landeira-Viñuela A, Corrales F, Bernardo D, Cuesta-Sancho S, Rojo-Rello S, Lécrevisse Q, Góngora R, Sánchez-Santos JM, De Las Rivas J, Hernández ÁP, Fuentes M. Assessment of Humoral Response at SARS-CoV-2 Infection by Multipronged Functional Proteomics Approaches. J Proteome Res 2025; 24:515-525. [PMID: 39772566 DOI: 10.1021/acs.jproteome.4c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
In the past decade, a major goal in biomedical research has been to understand why individuals differ in disease susceptibility, disease dynamics, and progression. In many pathologies, this variability stems from evolved immune mechanisms that resist inflammatory stress from various diseases that have been encountered throughout life. These may provide advantages against other diseases, reduce comorbidities, and enhance longevity. This study evaluates prior immunity as a prognostic factor in COVID-19 patients, crucial for understanding plasmatic signaling cascades in different disease stages and their impact on disease progression. COVID-19, caused by SARS-CoV-2, primarily affects the respiratory system and presents a wide range of symptoms, posing significant challenges to medicine. This study systematically analyzed prior immunity and inflammation in two independent cohorts of infected patients. A serological profile is determined by protein microarrays, which identify IgM and IgG responses against 37 prevalent microbial pathogens and provide a comprehensive plasma analysis of 21 acute-phase proteins. Our results reveal distinct serological profiles correlating with disease severity, indicating that immune system dysregulation in COVID-19 patients is linked to existing immunity. These findings highlight the relevance of prior immunity for monitoring disease progression, particularly in infections and vaccine failure, and underscore the importance of functional proteomics in determining prognostic biomarkers.
Collapse
Affiliation(s)
- Pablo Juanes-Velasco
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Proteomics Unit-IBSAL, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca (IBSAL/USAL), 37007 Salamanca, Spain
| | - Juan Carlos Pérez-Arévalo
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
| | - Carlota Arias-Hidalgo
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Proteomics Unit-IBSAL, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca (IBSAL/USAL), 37007 Salamanca, Spain
| | - Ana Nuño-Soriano
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Proteomics Unit-IBSAL, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca (IBSAL/USAL), 37007 Salamanca, Spain
| | - Alicia Landeira-Viñuela
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - David Bernardo
- Mucosal Immunology Lab, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid-CSIC, 47003 Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Sara Cuesta-Sancho
- Mucosal Immunology Lab, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Silvia Rojo-Rello
- Microbiology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Quentin Lécrevisse
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Góngora
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | | | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Centre (IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), 37007 Salamanca, Spain
| | - Ángela-Patricia Hernández
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Department of Pharmaceutical Sciences: Organic Chemistry, Faculty of Pharmacy, CIETUS, IBSAL, University of Salamanca, 37007 Salamanca, Spain
| | - Manuel Fuentes
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Proteomics Unit-IBSAL, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca (IBSAL/USAL), 37007 Salamanca, Spain
| |
Collapse
|
17
|
Rahdari A, Hamidi F. The effect of intraperitoneal injection of Glycyrrhizin on central regulation of food intake in broilers injected with LPS. Br Poult Sci 2025; 66:124-130. [PMID: 39249117 DOI: 10.1080/00071668.2024.2396451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/17/2024] [Indexed: 09/10/2024]
Abstract
1. Poultry farming faces challenges regarding correct hygiene and nutrition. One of the challenges is gram-negative bacteria that stimulate pro-inflammatory reactions through lipopolysaccharide (LPS) and cause disease and anorexia. Liquorice, a medicinal plant containing glycyrrhizin (Glz; a saponin and emulsifier compound) as its main active ingredient, was injected into broilers to investigate any beneficial effects on feed intake in LPS-injected broilers.2. The study involved three experiments using 72 male broiler chickens in each, to examine the impact of Glz on feed intake, especially when challenged with lipopolysaccharide (LPS) by intra-peritoneal (IP) injection to cause inflammation (n = 24). Experiment 1 was conducted to examine the effects of intraperitoneal injection of Glz (12.5, 25 and 50 mg) on feed intake in chickens. In experiment 2, the effects of intracerebroventricular injections of LPS (6.25, 12.5 and 25 ng) were examined. The third experiment investigated the impact of IP injection of Glz on inflammation induced by LPS.3. Injection of Glz significantly increased feed intake in a dose-dependent manner. Whereas LPS significantly reduced the feed intake in feed-deprived chickens (p < 0.05).4. In conclusion, Glz can neutralise the feed intake reduction caused by inflammation in broilers, highlighting its potential role in modulating feed intake in broilers.
Collapse
Affiliation(s)
- A Rahdari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - F Hamidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
18
|
Herrera TES, Tello IPS, Mustafa MA, Jamil NY, Alaraj M, Atiyah Altameem KK, Alasheqi MQ, Hamoody AHM, Alkhafaji AT, Shakir MN, Alshahrani MY, Alawadi A. Kaempferol: Unveiling its anti-inflammatory properties for therapeutic innovation. Cytokine 2025; 186:156846. [PMID: 39754793 DOI: 10.1016/j.cyto.2024.156846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/24/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Inflammation, driven by various stimuli such as pathogens, cellular damage, or vascular injury, plays a central role in numerous acute and chronic conditions. Current treatments are being re-evaluated, prompting interest in naturally occurring compounds like kaempferol, a flavonoid prevalent in fruits and vegetables, for their anti-inflammatory properties. This study explores the therapeutic potential of kaempferol, focusing on its ability to modulate pro-inflammatory cytokines and its broader effects on inflammatory signaling pathways. Comprehensive reviews of in vitro and in vivo studies were conducted to elucidate the mechanisms underlying its anti-inflammatory and antioxidant actions. Kaempferol effectively inhibits the production of key inflammatory mediators, including cytokines and enzymes such as COX-2 and iNOS, while also targeting oxidative stress pathways like Nrf2 activation. The compound demonstrated protective effects in various inflammatory conditions, including sepsis, neurodegenerative disorders, cardiovascular diseases, and autoimmune conditions, by modulating pathways such as NF-κB, MAPK, and STAT. Despite its promise, kaempferol's clinical application faces challenges related to its bioavailability and stability, underscoring the need for advanced formulation strategies. These findings position kaempferol as a promising candidate for anti-inflammatory therapy, with the potential to improve patient outcomes across a wide range of inflammatory diseases. Further clinical studies are required to validate its efficacy, optimize dosage, and address pharmacokinetic limitations.
Collapse
Affiliation(s)
| | - Iván Patricio Salgado Tello
- Facultad de Ciencias Pecuarias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba 060106, Ecuador
| | | | - Nawfal Yousif Jamil
- Department of Radiology & Sonar Techniques, Al-Noor University College, Nineveh, Iraq
| | - Mohd Alaraj
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand- 831001, India
| | | | | | | | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, Al-Nisour University College/ Baghdad/, Iraq
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, The Islamic University of Al Diwaniyah, Diwaniya, Iraq; College of technical engineering, The Islamic University of Babylon, Hillah, Iraq
| |
Collapse
|
19
|
Yalamandala BN, Moorthy T, Liu ZH, Huynh TMH, Iao HM, Pan WC, Wang KL, Chiang CS, Chiang WH, Liao LD, Liu YC, Hu SH. A Self-Cascading Catalytic Therapy and Antigen Capture Scaffold-Mediated T Cells Augments for Postoperative Brain Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406178. [PMID: 39676476 DOI: 10.1002/smll.202406178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The recruitment of T lymphocytes holds great potential for suppressing the most aggressive glioblastoma (GBM) recurrence with immunotherapy. However, the phenomenon of immune privilege and the generally low immunogenicity of vaccines often reduce the presence of lymphocytes within brain tumors, especially in brain tumor recurrence clusters. In this study, an implantable self-cascading catalytic therapy and antigen capture scaffold (CAS) that can boost catalytic therapy efficiency at post-surgery brain tumor and capture the antigens via urethane-polyethylene glycol-polypropylene glycol (PU-EO-PO) segments are developed for postoperative brain immunotherapy. The CAS consists of 3D-printed elastomers modified with iron (Fe2+) metal-organic frameworks (MOFs, MIL88) and acts as a programmed peroxide mimic in cancer cells to initiate the Fenton reaction and sustain ROS production. With the assistance of chloroquine (CQ), autophagy is inhibited through lysosome deacidification, which interrupts the self-defense mechanism, further enhances cytotoxicity, and releases antigens. Then, CAS containing PU-EO-PO groups acts as an antigen depot to detain autologous tumor-associated antigens to dendritic cells maturation and T cell augments for sustained immune stimulation. CAS enhanced the immune response to postoperative brain tumors and improved survival through brain immunotherapy.
Collapse
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Thrinayan Moorthy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
- Chang Gung University School of Medicine, Taoyuan, 33305, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Thi My Hue Huynh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hoi Man Iao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Kang-Li Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Yu-Chen Liu
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
20
|
Salem PPO, Silva DO, Silva PRS, Costa LPDM, Nicácio KJ, Murgu M, Caldas IS, Leite FB, Paula ACCD, Dias DF, Soares MG, Chagas-Paula DA. Bioguided isolation of anti-inflammatory and anti-urolithiatic active compounds from the decoction of Cissus gongylodes leaves. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118950. [PMID: 39419303 DOI: 10.1016/j.jep.2024.118950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Cissus gongylodes has traditionally been used in the diet of indigenous people in Brazil and in traditional medicine for kidney stone removal and inflammatory diseases. The active compounds responsible for these pharmacological activities are unknown. AIM OF THE STUDY This study aims to isolate, for the first time, the compounds in the decoction of C. gongylodes leaves responsible for their anti-inflammatory and anti-urolithiatic ethnopharmacological properties. MATERIALS AND METHODS The most active fractions of the C. gongylodes leaf decoction were fractionated using SPE-C18 and the compounds were purified through HPLC-UV-DAD. The decoction fractions and isolated compounds were evaluated for their anti-inflammatory and anti-urolithiatic activities. The anti-inflammatory activity was assessed using an ex vivo assay in human blood induced by LPS and calcium ionophore, measuring inflammatory mediators, PGE2 and LTB4. The anti-urolithiatic activity was evaluated using an in vitro experimental model with human urine to determine the dissolution of the most recurrent calcium oxalate (CaOx) crystals. Additionally, the decoction was chemically characterized through metabolomic analysis using UHPLC-ESI-HRMS. RESULTS The isolated compounds from the decoction of C. gongylodes, including rutin, eriodictyol 3'-O-glycoside, and isoquercetin, have demonstrated significant multi-target actions. These components act as anti-inflammatory agents by inhibiting the release of main inflammatory mediators, PGE2 and LTB4. Additionally, they exhibit anti-urolithiatic properties, promoting the dissolution of calcium oxalate (CaOx) crystals. Furthermore, the characterization of the decoction by UHPLC-ESI-HRMS revealed a high content of flavonoids, mainly glycosylated flavonoids. CONCLUSIONS The results support the traditional use of C. gongylodes decoction, identifying the compounds responsible for its anti-inflammatory and anti-urolithiatic effects. The decoction fractions and isolated compounds exhibited dual anti-inflammatory activity, effectively inhibiting key inflammatory pathways and potentially presenting fewer adverse effects while also promoting the dissolution of CaOx crystals associated with urolithiasis. The multi-target action displayed by C. gongylodes is particularly desirable in the treatment of urolithiasis, as inflammation and PGE2 production precede and contribute to the formation of CaOx crystals in the kidneys. Based on these actions, C. gongylodes emerges as a potent source of active compounds for the development of new treatments for urolithiasis.
Collapse
Affiliation(s)
- Paula P O Salem
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Daniele O Silva
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Paulo R S Silva
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Lara P D M Costa
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Karen J Nicácio
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| | | | - Ivo S Caldas
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Fernanda B Leite
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Ana C C de Paula
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Danielle F Dias
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Marisi G Soares
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Daniela A Chagas-Paula
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
21
|
Tang S, Suo Z, Liu D, Wei K, Xu Y, Huang H, Liu X, Li X. Phytochemical constituents from root barks of Eleutherococcus henryi Oliv. and their anti-neuroinflammatory effect. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118877. [PMID: 39362323 DOI: 10.1016/j.jep.2024.118877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The cortex of Eleutherococcus henryi (EH, Araliaceae), also known as "Wu-Jia-Pi", is known for its effects such as dispelling wind and dampness, calming the mind and enhancing intelligence, removing heat and toxin, strengthening muscles and bones, and nourishing the liver and kidneys. Throughout Chinese history and tradition, it has been used for conditions like amnesia, mental fatigue, arthritis, hepatitis, and rheumatism. However, research evaluating its neuroprotective effects and pharmacological properties remains scarce. AIM OF THE STUDY The goal is to explore the anti-neuroinflammatory properties of EH in vitro and to discover precisely the bioactive natural products within the medicinal plant that are relevant to its traditional usage. MATERIALS AND METHODS Utilizing chromatographic techniques, a phytochemical exploration was conducted. The phytochemical structures of the natural products were then elucidated through an analysis involving comprehensive spectra and a comparison with relevant data from published studies. Network pharmacology combined with molecular dynamics simulations (MDs) and docking were applied to forecast potential anti-neuroinflammatory targets of active compounds. In vitro, the anti-neuroinflammatory efficacy was evaluated via the suppression of inflammatory mediators activated by lipopolysaccharide (LPS) in BV2 microglia. RESULTS The methanol extract of E.henryi (EHME) restrained the NO release in LPS-activated BV2 microglia, demonstrating anti-neuroinflammatory activity. Subsequently, chemical composition analysis revealed the separation and elucidation of 31 secondary metabolites, comprising 7 new compounds (1-7) and 1 new natural product (8). Based on LPS-induced BV2 cell in vitro activity tests, compounds 4-17, 19, 20, 22, 23, 26, 29 and 31 were found to exhibit potential anti-neuroinflammatory activity, with compound 6 showing the highest efficacy. Furthermore, employing network pharmacology in conjunction with both molecular docking and MDs, potential anti-neuroinflammatory targets of compound 6 were predicted to include TLR4, Src, MAPK, and NF-κB. Finally, validation through in vitro experiments confirmed that the anti-neuroinflammatory mechanism of compound 6 is associated with the TLR4/Src/MAPK p38/NF-κB p65 signaling pathways. CONCLUSIONS The study affirmed the traditional efficacy of E. henryi and unveiled novel lignans as potent agents against neuroinflammation.
Collapse
Affiliation(s)
- Siqi Tang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zongwu Suo
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Dongxu Liu
- School of Basic Medical Science, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Kaixin Wei
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yi Xu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hao Huang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xiangqian Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiaojun Li
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
22
|
Vo GTT, Nguyen KKH, Kim BS. Evaluation of the Role of PnuC Gene in Enhancing Nicotinamide Mononucleotide Synthesis. Biotechnol Appl Biochem 2025. [PMID: 39865734 DOI: 10.1002/bab.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/22/2024] [Indexed: 01/28/2025]
Abstract
The PnuC gene plays a crucial role in the complex processes related to the absorption and synthesis of the nicotinamide mononucleotide (NMN) precursor. NMN, a nicotinamide adenine dinucleotide (NAD+) precursor, is important for cellular energy metabolism, DNA repair, and antiaging. This study focuses on elucidating the precursor absorption mechanism and the specific function of the PnuC gene in encoding membrane transport proteins, as well as its impact on the regulation and dynamics of NMN within the cell. This understanding aims to provide insights into its potential effects on metabolic balance, illustrated through two NAD+ biosynthesis pathways based on renewable and readily available cytoplasmic resources, assessing the potential of PnuC gene expression in clarifying complex interactions within regulation mechanisms. Enhanced expression analysis of the PnuC gene has initiated discussions on its potential applications in treating aging-related diseases and dysfunctions, contributing to cellular health maintenance.
Collapse
Affiliation(s)
- Giang Thi Thu Vo
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Khang Khoa Hoang Nguyen
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
23
|
Jia J, Niu L, Feng P, Liu S, Han H, Zhang B, Wang Y, Wang M. Identification of Novel Biomarkers for Ischemic Stroke Through Integrated Bioinformatics Analysis and Machine Learning. J Mol Neurosci 2025; 75:13. [PMID: 39862324 DOI: 10.1007/s12031-025-02309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Ischemic stroke leads to permanent damage to the affected brain tissue, with strict time constraints for effective treatment. Predictive biomarkers demonstrate great potential in the clinical diagnosis of ischemic stroke, significantly enhancing the accuracy of early identification, thereby enabling clinicians to intervene promptly and reduce patient disability and mortality rates. Furthermore, the application of predictive biomarkers facilitates the development of personalized treatment plans tailored to the specific conditions of individual patients, optimizing treatment outcomes and improving prognoses. Bioinformatics technologies based on high-throughput data provide a crucial foundation for comprehensively understanding the biological characteristics of ischemic stroke and discovering effective predictive targets. In this study, we evaluated gene expression data from ischemic stroke patients retrieved from the Gene Expression Omnibus (GEO) database, conducting differential expression analysis and functional analysis. Through weighted gene co-expression network analysis (WGCNA), we characterized gene modules associated with ischemic stroke. To screen candidate core genes, three machine learning algorithms were applied, including Least Absolute Shrinkage and Selection Operator (LASSO), random forest (RF), and support vector machine-recursive feature elimination (SVM-RFE), ultimately identifying five candidate core genes: MBOAT2, CKAP4, FAF1, CLEC4D, and VIM. Subsequent validation was performed using an external dataset. Additionally, the immune infiltration landscape of ischemic stroke was mapped using the CIBERSORT method, investigating the relationship between candidate core genes and immune cells in the pathogenesis of ischemic stroke, as well as the key pathways associated with the core genes. Finally, the key gene VIM was further identified and preliminarily validated through four machine learning algorithms, including generalized linear model (GLM), Extreme Gradient Boosting (XGBoost), RF, and SVM-RFE. This study contributes to advancing our understanding of biomarkers for ischemic stroke and provides a reference for the prediction and diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Juan Jia
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
- Department of Anesthesiology, Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Liang Niu
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Peng Feng
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
| | - Shangyu Liu
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
| | - Hongxi Han
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
| | - Bo Zhang
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China
| | - Yingbin Wang
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
- Department of Anesthesiology, Second Hospital of Lanzhou University, Lanzhou, 730030, China.
| | - Manxia Wang
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
- Department of Neurology, Second Hospital of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
| |
Collapse
|
24
|
Harvey LD, Alotaibi M, Tai YY, Tang Y, Kim HJJ, Kelly NJ, Sun W, Woodcock CSC, Arshad S, Culley MK, El Khoury W, Xie R, Al Aaraj Y, Zhao J, Hafeez N, Rao RJ, Jiang S, Negi V, Kirillova A, Perk D, Watson AM, St Croix CM, Stolz DB, Lee JY, Cheng MH, Zhang M, Detmer S, Guzman E, Manan RS, Saggar R, Haley KJ, Waxman AB, Okawa S, Schwantes-An TH, Pauciulo MW, Wang B, Webb A, Chauvet C, Anderson DG, Nichols WC, Desai AA, Lafyatis R, Nouraie SM, Wu H, McDonald JG, Cheng S, Bahar I, Bertero T, Benza RL, Jain M, Chan SY. Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension. Science 2025; 387:eadn7277. [PMID: 39847635 DOI: 10.1126/science.adn7277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025]
Abstract
Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 (NCOA7) deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes. This oxysterol signature overlapped with a plasma metabolite signature associated with human PAH mortality. Mice deficient for endothelial Ncoa7 or exposed to an inflammatory bile acid developed worsened PAH. Genetic predisposition to NCOA7 deficiency was driven by single-nucleotide polymorphism rs11154337, which alters endothelial immunoactivation and is associated with human PAH mortality. An NCOA7-activating agent reversed endothelial immunoactivation and rodent PAH. Thus, we established a genetic and metabolic paradigm that links lysosomal biology and oxysterol processes to endothelial inflammation and PAH.
Collapse
Affiliation(s)
- Lloyd D Harvey
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mona Alotaibi
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hee-Jung J Kim
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chen-Shan C Woodcock
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sanya Arshad
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Miranda K Culley
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wadih El Khoury
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rong Xie
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neha Hafeez
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rashmi J Rao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siyi Jiang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anna Kirillova
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dror Perk
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Annie M Watson
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ji Young Lee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Mary Hongying Cheng
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Manling Zhang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Samuel Detmer
- Department of Chemistry, Massachusetts Institute of Technology, Boston, MA, USA
| | - Edward Guzman
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Rajith S Manan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Rajan Saggar
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Pathology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kathleen J Haley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Okawa
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bing Wang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy Webb
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, USA
| | - Caroline Chauvet
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia-Antipolis, Valbonne, France
| | - Daniel G Anderson
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haodi Wu
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia-Antipolis, Valbonne, France
| | - Raymond L Benza
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohit Jain
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Manju, Raigar AK, Saini K, Jyoti N, Kapavarapu RK, Guleria A. Spiro thiochromene-oxindoles as novel anti-inflammatory agents: design, sustainable synthesis, in vitro and in silico evaluations. RSC Adv 2025; 15:261-275. [PMID: 39758897 PMCID: PMC11694626 DOI: 10.1039/d4ra07990f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
A one-pot, acid-, base-, and metal-free, multicomponent strategy has been developed to synthesize spiro thiochromene-oxindole derivatives as potential anti-inflammatory agents. The synthesized compounds were screened in vitro for their anti-inflammatory activity by inhibiting heat-induced Bovine Serum Albumin (BSA) denaturation assay, revealing moderate to good efficacy. Compounds 4e, 4k, and 4h exhibited the highest activity, inhibiting BSA denaturation by 90.97-95.45% at 800 μg mL-1 concentration with half maximal inhibitory concentration (IC50) values of 127.477 ± 2.285, 190.738 ± 3.561, and 285.806 ± 8.894 μg mL-1, respectively. For mechanistic insights in silico studies were conducted, revealing binding affinities of the active compounds with cyclooxygenase-2 (COX-2) protein, with binding energies of -8.9 kcal mol-1 (4e), -8.7 kcal mol-1 (4k), and -8.6 kcal mol-1 (4h). Bioactivity and pharmacokinetic parameters were further analyzed, encompassing ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) characteristics. This study highlights the potential of spiro thiochromene-oxindoles as anti-inflammatory agents, warranting further exploration as potential leads. The synthetic strategy for these target compounds utilizes taurine as an eco-friendly bio-organic catalyst, facilitating an acid-, base-, and metal-free intramolecular C-S and C-C bond formation in aqueous media. The reaction involves a one-pot, three-component Knoevenagel-Thia-Michael cascade between substituted isatins, 1,3-dicarbonyls, and 2-naphthalene thiol. Key features of this green protocol include high yields, cost-efficiency, non-toxicity, atom economy, and acid-, base-, and metal-free synthesis in water. Additionally, the catalyst exhibits excellent reusability, maintaining its activity across three cycles with easy recovery, while product isolation is achieved through simple filtration, eliminating the need for chromatographic purification and organic solvents. These attributes underscore this approach's synthetic and environmental advantages, highlighting its potential for broader application in the development of anti-inflammatory agents.
Collapse
Affiliation(s)
- Manju
- Department of Chemistry, University of Rajasthan Jaipur-302004 Rajasthan India
| | - Ashok Kumar Raigar
- Department of Chemistry, University of Rajasthan Jaipur-302004 Rajasthan India
| | - Kamlesh Saini
- Department of Chemistry, University of Rajasthan Jaipur-302004 Rajasthan India
| | - Nirmal Jyoti
- Department of Chemistry, University of Rajasthan Jaipur-302004 Rajasthan India
| | - Ravi Kumar Kapavarapu
- Department of Pharmaceutical Chemistry and Phytochemistry, Nirmala College of Pharmacy Atmakur Mangalgiri Andhra Pradesh India
| | - Anjali Guleria
- Department of Chemistry, University of Rajasthan Jaipur-302004 Rajasthan India
| |
Collapse
|
26
|
Anjali, Kamboj P, Amir M. Synthetic Methods of Quinoxaline Derivatives and their Potential Anti-inflammatory Properties. Mini Rev Med Chem 2025; 25:138-162. [PMID: 38910487 DOI: 10.2174/0113895575307480240610055622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024]
Abstract
Quinoxaline molecule has gathered great attention in medicinal chemistry due to its vide spectrum of biological activities and has emerged as a versatile pharmacophore in drug discovery and development. Its structure comprises a bicyclic ring of benzopyrazine and displays a range of pharmacological properties, including antibacterial, antifungal, antiviral, anticancer, and antiinflammatory. This study aims to summarize the different strategies for the synthesis of quinoxalines and their anti-inflammatory properties acting through different mechanisms. Structure-activity relationships have also been discussed in order to determine the effect of structural modifications on anti-inflammatory potential. These analyses illuminate critical structural features required for optimal activity, driving the design and synthesis of new quinoxaline analogues with better antiinflammatory activities. The anti-inflammatory properties of quinoxalines are attributed to their inhibitory action on the expression of several inflammatory modulators such as cyclooxygenase, cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and p38α Mitogen Activated Protein Kinase (p38α MAPK). Activators of nuclear factor erythroid 2-related factor 2 (NRF2) and agonistic effect on opioid receptors have also been discussed. Hence, this study may provide a future template for the design and development of novel quinoxaline derivatives acting through different molecular targets as potential anti-inflammatory agents with better efficacy and safety profiles.
Collapse
Affiliation(s)
- Anjali
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Payal Kamboj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Amir
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
27
|
Khan AH, Mulfaul K. Choroidal macrophages in homeostasis, aging and age-related macular degeneration. Exp Eye Res 2025; 250:110159. [PMID: 39577606 DOI: 10.1016/j.exer.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
With increasing age, the optimal functioning of the choroid is essential for efficient removal of waste products formed from photoreceptor renewal. A decline in regulatory elements of the immune system, termed immunosenescence, and the failure of para-inflammation to restore tissue homeostasis can result in the progression of healthy aging to sight-threatening inflammation of the choroid. Macrophages are uniquely situated between the innate and adaptive immune systems, with a high capacity for phagocytosis, recognition of complement components, as well as antigen presentation. In this review, we provide an overview of macrophages and their properties in the healthy choroid and cover the impact of aging, immunosenescence and inflammaging on the function of choroidal macrophages. We will discuss the impact of age on macrophage phenotype and behaviour in the pathophysiology of age-related macular degeneration.
Collapse
Affiliation(s)
- Adnan H Khan
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Kelly Mulfaul
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
28
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
29
|
Quah S, Subramanian G, Tan JSL, Utami KH, Sampath P. MicroRNAs: a symphony orchestrating evolution and disease dynamics. Trends Mol Med 2025; 31:21-35. [PMID: 39112313 DOI: 10.1016/j.molmed.2024.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 01/11/2025]
Abstract
The genesis of human disease lies in our evolutionary past. Evolution has featured a general trend towards increased morphological complexity, partly conferred by expansion in gene regulatory capacity via microRNA (miRNA) innovation. Many human diseases are directly related to the evolved roles of these miRNAs, and miRNA-based therapies are emerging as an appealing strategy for precision medicine. We focus on three categories of human disease - cancer, inflammation-linked pathologies, and neurological disorders - which are highly prevalent and are associated with substantial disease burden worldwide. In each category we discuss the pathogenic roles of miRNAs in the context of their evolved functions, as well as current and potential advances in targeting these miRNAs for disease therapy.
Collapse
Affiliation(s)
- Shan Quah
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Republic of Singapore
| | - Gowtham Subramanian
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Republic of Singapore
| | - Jonathan S L Tan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Republic of Singapore
| | | | - Prabha Sampath
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Republic of Singapore; Genome Institute of Singapore, Agency for Science, Technology, and Research, 60 Biopolis Street, #02-01 Genome, Singapore 138672, Republic of Singapore; Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Republic of Singapore; Skin Research Institute of Singapore (SRIS), 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Republic of Singapore.
| |
Collapse
|
30
|
Liao P, Tong S, Du L, Mei J, Wang B, Lu Y, Yao M, Zhang C, Liu D, Zhong Z, Ye F, Gao J. Single-cell transcriptomics identifies the common perturbations of monocyte/macrophage lineage cells in inflammaging of bone marrow. J Orthop Translat 2025; 50:85-96. [PMID: 39868348 PMCID: PMC11762928 DOI: 10.1016/j.jot.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025] Open
Abstract
Background Bone marrow inflammaging is a low-grade chronic inflammation that induces bone marrow aging. Multiple age-related and inflammatory diseases involve bone marrow inflammaging. Whether common pathological pathways exist in bone marrow inflammaging remains unclear. Methods We collected bone marrow from telomerase-deficient mice (telomerase RNA component, TERCko/ko), 5 × FAD mice and Dmp1 Cre -DTA ki/wt mice and High-fat diet-fed mice (HFD), and lumbar 5 nerve compression mice. We performed scRNA-Seq analysis on bone marrow obtained from these mouse models to investigate the potential shared pathway of bone marrow inflammation. Results We identified the monocyte/macrophage lineage was activated via the App-Cd74 axis in multiple aging and inflammatory mouse models. Increased expression of CD38 and Ly6a, and decreased expression of Col1a and Lif in macrophages serve as shared changes in different mouse models. The activated macrophages, interacting with other cells, control the expansion of B cells via the CD52-Siglec-G axis. The Ccl6-Ccr2 and Ccl9-Ccr1 ligand-receptor pairs, along with Fn1 and C3-related pathways in macrophages, were associated with immune cell activation and the recruitment of lymphocytes. Interactions with mesenchymal cells were enriched for integrins (Itga4), Fn1, and adhesion molecules (Vcam1). Conclusion Our study demonstrates that monocyte/macrophage lineage stimulation is a key event in bone marrow inflammaging. We identified common differentially expressed genes and activated pathways in this lineage, suggesting potential targets for future interventions. The translational potential of this article Our study revealed shared genes and ligand-receptor pairs in the activated monocyte/macrophage lineage within inflammaging bone marrow. These findings offer potential therapeutic targets for cell-specific anti-inflammatory treatments.
Collapse
Affiliation(s)
- Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Jiong Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
31
|
Li Y, Li LX, Cui H, Xu WX, Fu HY, Li JZ, Fan RF. Dietary Iron Overload Triggers Hepatic Metabolic Disorders and Inflammation in Laying Hen. Biol Trace Elem Res 2025; 203:346-357. [PMID: 38502261 DOI: 10.1007/s12011-024-04149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Iron, an essential trace element, is involved in various physiological processes; however, consumption of excessive iron possesses detrimental effects. In practical feed production, the iron content added to feeds often far exceeds the actual demand, resulting in an excess of iron in the body. The liver as a central regulator of iron homeostasis is susceptible to damage caused by disorders in iron metabolism. A model of hepatic iron overload in laying hens was developed in this study by incorporating iron into their diet, and the specific mechanisms underlying iron overload-induced hepatic injury were investigated. Firstly, this study revealed that a high-iron diet resulted in hepatic iron overload, accompanied by impaired liver function. Next, assessment of oxidative stress markers indicated a decrease in activities of T-SOD and CAT, coupled with an increase in MDA content, pointing to the iron-overloaded liver oxidative stress. Thirdly, the impact of iron overload on hepatic glycolipid and bile acid metabolism-related gene expressions were explored, including PPAR-α, GLUT2, and CYP7A1, highlighting disruptions in hepatic metabolism. Subsequently, analyses of inflammation-related genes such as iNOS and IL-1β at both protein and mRNA levels demonstrated the presence of inflammation in the liver under conditions of dietary iron overload. Overall, this study provided comprehensive evidence that dietary iron overload contributed to disorders in glycolipid and bile acid metabolism, accompanied by inflammatory responses in laying hens. Further detailing the specific pathways involved and the implications of these findings could offer valuable insights for future research and practical applications in poultry nutrition.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Lan-Xin Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Hong-Yu Fu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Jiu-Zhi Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong StreetShandong Province, Tai'an City, 271018, China.
| |
Collapse
|
32
|
Jia B, Ge J, Ma Y, Sun X, Li Z, Jiang S, Yu H. Spatially Preorganized Hybridization Chain Reaction for the Prompt Diagnosis of Inflammation. Angew Chem Int Ed Engl 2024:e202421022. [PMID: 39716958 DOI: 10.1002/anie.202421022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
Biological systems utilize precise spatial organization to facilitate and regulate information transmission within signaling networks. Inspired by this, artificial scaffolds that enable delicate spatial arrangements are desirable to increase the local concentration of reactants, expedite specific interactions, and minimize undesired interference. In this study, we presented an integrated biosensing nanodevice, termed TRI-HCR, in which hybridization chain reaction (HCR) probes were precisely organized on a triangular DNA origami nanostructure (TRI) with finely-tuned distance, quantity, and pattern. Compared to traditional HCR in the free form, this nanodevice demonstrated increased reaction rate and signal level. We further employed the optimized TRI-HCR for in vivo imaging of a nucleic acid biomarker of inflammatory diseases. In both acute gouty arthritis (AGA) and sepsis-associated acute kidney injury (SA-AKI) model mice, TRI-HCR was capable of diagnosing inflammation in the early stages, significantly earlier than histological examination. We anticipate that this precise spatial preorganization strategy for HCR holds promise for broader applications in early disease detection and monitoring.
Collapse
Affiliation(s)
- Bin Jia
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Jingru Ge
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yuxuan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Xiaolei Sun
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhe Li
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Shuoxing Jiang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
33
|
Hoseinpoor S, Ul-Haq Z, Tsatsakis A, Ramu R, Rezaee R. Assessment of binding affinity of major bioactive compounds from Momordica charantia, Azadirachta indica, Nelumbo nucifera, Caesalpinia crista, Martynia annua and Erythrina variegate to COX-2 receptor: an in silico study. J Biomol Struct Dyn 2024:1-14. [PMID: 39659229 DOI: 10.1080/07391102.2024.2439043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/24/2024] [Indexed: 12/12/2024]
Abstract
In traditional medicine, potential anti-inflammatory and pain-relieving activity of Momordica charantia, Azadirachta indica, Nelumbo nucifera, Caesalpinia crista, Martynia annua and Erythrina variegate has been emphasized. In this study, we explored binding affinity of 36 bioactive compounds from these plants to cyclooxygenase-2 (COX-2) receptor using docking method. Six compounds namely, beta carotene, lycopene, lutein, momordicoside, rutin and azadirachtin showed excellent binding affinities (-10.29, -10.22, -10.03, -7.9, -8.81 and -7.88 kcal/mol, respectively) and stable interactions with COX-2 (greater than those of aspirin and diclofenac) and they were chosen for the molecular dynamics (MD) assessments done throughout a 100-ns time period. Based on the computed RMSD, RMSF, Rg, SASA and PCA, all ligands were found to form stable and adequate interactions with COX-2 protein; these findings were comparable to those of aspirin and diclofenac, indicating the potential inhibitory properties of these ligands on COX-2 protein. In addition, the toxicity of compounds was evaluated using Pred-hERG, Pred-Skin and ProTox-II. Since COX-2 inhibitors have been reported to activate the Nrf2 pathway, it is hypothesized that they may confer other health-promoting effects through triggering Nrf2 signaling.
Collapse
Affiliation(s)
- Saeideh Hoseinpoor
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zaheer Ul-Haq
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Li XJ, Shan QY, Wu X, Miao H, Zhao YY. Gut microbiota regulates oxidative stress and inflammation: a double-edged sword in renal fibrosis. Cell Mol Life Sci 2024; 81:480. [PMID: 39636415 PMCID: PMC11621299 DOI: 10.1007/s00018-024-05532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Gut microbiota is a complex and dynamic system that plays critical roles in human health and various disease. Progressive chronic kidney disease (CKD) suggests that patients irreversibly progress to end-stage kidney disease and need renal replacement treatments, including dialysis and transplantation. Ample evidence indicates that local oxidative stress and inflammation play pivotal roles in the pathogenesis and progression of CKD and dysbiosis of gut microbiota. CKD is always accompanied by intestinal inflammation and oxidative stress, which lead to rapid systemic translocation of bacterial-derived uraemic toxins, including indoxyl sulphate, phenyl sulphate and indole-3-acetic acid, and the consequent development and aggravation of renal fibrosis. Although inflammation and oxidative stress have been extensively discussed, there is a paucity of reports on the effects of gut microbiota on renal fibrosis and gut microbiota mediation of oxidative stress and inflammation. This review provides an overview of gut microbiota on inflammation and oxidative stress in renal fibrosis, briefly discusses regulation of the gut flora using microecological preparations and natural products, such as resveratrol, curcumin and emodin as treatments for CKD, and provides a clear pathophysiological rationale for the design of promising therapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Qi-Yuan Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Hua Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
| | - Ying-Yong Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
35
|
Lam PH. An Extension to the stress-buffering model: Timing of support across the lifecourse. Brain Behav Immun Health 2024; 42:100876. [PMID: 39430880 PMCID: PMC11490906 DOI: 10.1016/j.bbih.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/09/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
Children and adolescents exposed to severe stressors exhibit poorer health across the lifespan. However, decades of research evaluating the Stress-Buffering model suggests that social support can attenuate stressors' negative impacts. Psychoneuroimmunology research in this area has shifted from asking whether support buffers stress to when and why support would succeed (or fail) to confer protection. This article takes a lifecourse perspective and proposes that timing of support may shape support's protective value by defining the type of protection that is provided and its operating mechanisms. Specifically, it considers three temporal scenarios: support that occurs during, after, or before stressor exposure. When support intervenes at the same developmental stage as the stressor (concurrent support), buffering effects occur wherein support prevents the development of intermediary mechanisms that reflect or increase disease risk; when support is present at a developmental stage before stressor exposure (prior support), banking effects occur such that support intervenes indirectly by fortifying the individual with resilience-promoting characteristics that in turn prevents the development of intermediary mechanisms; finally, when support arrives at a developmental stage after stressor exposure (later support), counteracting effects occur such that support offsets the impacts of intermediary mechanisms on diseases. It further posits that a match between timing of support and the linkage of interest (e.g., the stressor-mechanism path vs. the mechanism-disease path) is necessary for successful protection. The present paper discusses these postulations, reviews nascent evidence, and proposes future directions.
Collapse
Affiliation(s)
- Phoebe H. Lam
- Department of Psychology, Carnegie Mellon University, 4825 Frew St, Suite 354E, Pittsburgh, PA, 15213, USA
| |
Collapse
|
36
|
Götz T, Cong X, Rauber S, Angeli M, Lang E, Ramming A, Schmidkonz C. A novel Slide-seq based image processing software to identify gene expression at the single cell level. J Pathol Inform 2024; 15:100384. [PMID: 39027045 PMCID: PMC11254742 DOI: 10.1016/j.jpi.2024.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
Analysis of gene expression at the single-cell level could help predict the effectiveness of therapies in the field of chronic inflammatory diseases such as arthritis. Here, we demonstrate an adopted approach for processing images from the Slide-seq method. Using a puck, which consists of about 50,000 DNA barcode beads, an RNA sequence of a cell is to be read. The pucks are repeatedly brought into contact with liquids and then recorded with a conventional epifluorescence microscope. The image analysis initially consists of stitching the partial images of a sequence recording, registering images from different sequences, and finally reading out the bases. The new method enables the use of an inexpensive epifluorescence microscope instead of a confocal microscope.
Collapse
Affiliation(s)
- Th.I. Götz
- Department of Internal Medicine, University Hospital Erlangen, Erlangen, Germany
- Department of Industrial Engineering and Health, Technical University of Applied Sciences Amberg-Weiden, Weiden, Germany
| | - X. Cong
- Department of Internal Medicine, University Hospital Erlangen, Erlangen, Germany
| | - S. Rauber
- Department of Internal Medicine, University Hospital Erlangen, Erlangen, Germany
| | - M. Angeli
- Department of Internal Medicine, University Hospital Erlangen, Erlangen, Germany
| | - E.W. Lang
- CIML Group, Biophysics, University of Regensburg, 93040 Regensburg, Germany
| | - A. Ramming
- Department of Internal Medicine, University Hospital Erlangen, Erlangen, Germany
| | - C. Schmidkonz
- Department of Nuclear Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
- Department of Industrial Engineering and Health, Technical University of Applied Sciences Amberg-Weiden, Weiden, Germany
| |
Collapse
|
37
|
Yang F, Shu R, Dai W, Li B, Liu C, Yang H, Johnson HM, Yu S, Bai D, Yang W, Deng Y. H 2Se-evolving bio-heterojunctions promote cutaneous regeneration in infected wounds by inhibiting excessive cellular senescence. Biomaterials 2024; 311:122659. [PMID: 38861831 DOI: 10.1016/j.biomaterials.2024.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Pathogenic infection leads to excessive senescent cell accumulation and stagnation of wound healing. To address these issues, we devise and develop a hydrogen selenide (H2Se)-evolving bio-heterojunction (bio-HJ) composed of graphene oxide (GO) and FeSe2 to deracinate bacterial infection, suppress cellular senescence and remedy recalcitrant infected wounds. Excited by near-infrared (NIR) laser, the bio-HJ exerts desired photothermal and photodynamic effects, resulting in rapid disinfection. The crafted bio-HJ could also evolve gaseous H2Se to inhibit cellular senescence and dampen inflammation. Mechanism studies reveal the anti-senescence effects of H2Se-evolving bio-HJ are mediated by selenium pathway and glutathione peroxidase 1 (GPX1). More critically, in vivo experiments authenticate that the H2Se-evolving bio-HJ could inhibit cellular senescence and potentiate wound regeneration in rats. As envisioned, our work not only furnishes the novel gasotransmitter-delivering bio-HJ for chronic infected wounds, but also gets insight into the development of anti-senescence biomaterials.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Washington, USA
| | - Sheng Yu
- Department of Chemistry, Washington State University, Washington, USA
| | - Ding Bai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weizhong Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China.
| | - Yi Deng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
38
|
Zhang G, Yao Y, Zhang Z, Xiao J, Yu H, Zhao J, Yao C, Wang Y, Luo H. Regulation of NLRP3 inflammasome and Caspase-3/4/11 by 2',4'-dihydroxychalcone contributes to anti-colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156194. [PMID: 39520954 DOI: 10.1016/j.phymed.2024.156194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Chronic inflammation is closely related to the occurrence and progression of many cancers, especially colorectal cancer (CRC), which can be triggered by repeated and sustained induction of colitis in mice. CRC is a typical type of cancer that can be caused by inflammation and NLRP3 inflammasome dysregulation plays a certain role in the pathogenesis of CRC. PURPOSE As an edible Chinese medicine, Abrus cantoniensis Hance (ACH) has both anti-inflammatory and anti-tumor activities. However, most research has focused on inflammation-related diseases, and less research has been done on its active ingredients and targets and its application in CRC. Here, this study deeply explored the target of 2',4'-DHC and its pharmacological mechanism in anti-colon cancer, and provided a new strategy for its drug development and treatment of colon cancer. METHODS The cytotoxicity of ACH's active ingredient in HT29 and CT26 cells was measured by CCK-8, clone formation, apoptosis, and cell cycle assay. The metastasis inhibition of CRC cells was determined by wound-healing assay. Western blotting was used to detect the NLRP3 inflammasome activation, pyroptosis, and apoptosis activation. Finally, the in vivo efficacy of 2',4'-DHC was verified by establishing CT26 and HT29 tumor transplant models in mice. RESULTS Here, our study firstly demonstrated that 2',4'-DHC inhibited the growth of CRC cells mainly by increasing CRC cell death and ameliorating tumor immunosuppressive environment, which is verified by inducing apoptosis and pyroptosis by regulating caspase-3/4/11, arresting cell cycle in G2/M phase, suppressing the migration of CRC cells, and inhibiting NLRP3 inflammasome activation through inhibiting the NF-κB pathway, enhancing the anticancer immune response by increasing the infiltration of T cells and function of CD8+ cytotoxic T cells but decreasing the infiltration of CD11b+ CD206+ macrophages and function. Importantly, the administration of 2',4'-DHC decreased liver and spleen indexs to mice's normal levels and reduced the burden of CT26 and HT29 tumor-bearing in mice without pathological changes in the major organs. CONCLUSION 2',4'-DHC inhibited CRC growth through various mechanisms, mainly by regulating NLRP3 inflammasome and caspase-3/4/11 activation. Considering the anti-tumor and immunomodulation roles of 2',4'-DHC, it might be a new direction for the development of new strategies to treat colorectal cancer.
Collapse
Affiliation(s)
- Guohui Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Yixin Yao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Zhongyu Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jian Xiao
- Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Hua Yu
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chun Yao
- Guangxi University of Chinese Medicine, Nanning 530001, China.
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
39
|
Tobe-Nishimoto A, Morita Y, Nishimura J, Kitahira Y, Takayama S, Kishimoto S, Matsumiya-Matsumoto Y, Matsunaga K, Imai T, Uzawa N. Tumor microenvironment dynamics in oral cancer: unveiling the role of inflammatory cytokines in a syngeneic mouse model. Clin Exp Metastasis 2024; 41:891-908. [PMID: 39126553 PMCID: PMC11607012 DOI: 10.1007/s10585-024-10306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The process of cervical lymph node metastasis is dependent on the phenotype of the tumor cells and their interaction with the host microenvironment and immune system; conventional research methods that focus exclusively on tumor cells are limited in their ability to elucidate the metastatic mechanism. In cancer tissues, a specialized environment called the tumor microenvironment (TME) is established around tumor cells, and inflammation in the TME has been reported to be closely associated with the development and progression of many types of cancer and with the response to anticancer therapy. In this study, to elucidate the mechanism of metastasis establishment, including the TME, in the cervical lymph node metastasis of oral cancer, we established a mouse-derived oral squamous cell carcinoma cervical lymph node highly metastatic cell line and generated a syngeneic orthotopic transplantation mouse model. In the established highly metastatic cells, epithelial-mesenchymal transition (EMT) induction was enhanced compared to that in parental cells. In the syngeneic mouse model, lymph node metastasis was observed more frequently in tumors of highly metastatic cells than in parental cells, and Cyclooxygenase-2 (COX-2) expression and lymphatic vessels in primary tumor tissues were increased, suggesting that this model is highly useful. Moreover, in the established highly metastatic cells, EMT induction was enhanced compared to that in the parent cell line, and CCL5 and IL-6 secreted during inflammation further enhanced EMT induction in cancer cells. This suggests the possibility of a synergistic effect between EMT induction and inflammation. This model, which allows for the use of two types of cells with different metastatic and tumor growth potentials, is very useful for oral cancer research involving the interaction between cancer cells and the TME in tumor tissues and for further searching for new therapeutic agents.
Collapse
Affiliation(s)
- Ayano Tobe-Nishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yoshihiro Morita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Junya Nishimura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yukiko Kitahira
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Shun Takayama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Satoko Kishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yuka Matsumiya-Matsumoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kazuhide Matsunaga
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Tomoaki Imai
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| |
Collapse
|
40
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
41
|
Shen R, Qi Z, Huang X, Xia J, Zhan Q. Causal relationship between lipidome and acute respiratory distress syndrome. Sci Rep 2024; 14:29523. [PMID: 39604464 PMCID: PMC11603036 DOI: 10.1038/s41598-024-80985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS), with high morbidity and mortality, is a common clinical syndrome of acute respiratory failure caused by diffuse lung inflammation and edema. ARDS can precipitate in various ways. The complex pathophysiology of ARDS involves the activation and dysregulation of multiple metabolisms and immune responses. Using summary-level data from a genome-wide association study (GWAS), a two-sample Mendelian randomization (MR) analysis of 179 genetically predicted lipid species and ARDS (375 cases, 406,518 controls) was performed and validated in plasma and pulmonary edema fluid from 24 patients. Furthermore, we used a two-step MR to quantify the effect of immune cell-mediated lipids on ARDS. We identified 8 lipids (Cholesterol, Phosphatidylcholine (14:0_16:0), Phosphatidylcholine (16:0_20:5), Phosphatidylcholine (18:0_18:2), Phosphatidylethanolamine (18:1_18:1), Triacylglycerol (51:2), Triacylglycerol (52:4), and Triacylglycerol (54:3) ) associated with ARDS. The proportions of genetically-predicted lipids mediated by the four types of immune cells were determined. Sensitivity analysis did not reveal any obvious pleiotropy or heterogeneity. Our study demonstrates the power of multivariate genetic analysis in correlated lipidomic data and reveals genetic links between ARDS and lipid species beyond standard lipids.
Collapse
Affiliation(s)
- Ruoyi Shen
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, People's Republic of China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Disease, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zhijiang Qi
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, People's Republic of China
| | - Xu Huang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, People's Republic of China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Disease, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jingen Xia
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, People's Republic of China.
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Disease, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Qingyuan Zhan
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, People's Republic of China.
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Disease, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
42
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
43
|
Chen X, Shibu G, Sokolsky BA, Soussana TN, Fisher L, Deochand DK, Dacic M, Mantel I, Ramirez DC, Bell RD, Zhang T, Donlin LT, Goodman SM, Gray NS, Chinenov Y, Fisher RP, Rogatsky I. Disrupting the RNA polymerase II transcription cycle through CDK7 inhibition ameliorates inflammatory arthritis. Sci Transl Med 2024; 16:eadq5091. [PMID: 39565872 PMCID: PMC11756345 DOI: 10.1126/scitranslmed.adq5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Macrophages are key drivers of inflammation and tissue damage in autoimmune diseases including rheumatoid arthritis. The rate-limiting step for transcription of more than 70% of inducible genes in macrophages is RNA polymerase II (Pol II) promoter-proximal pause release; however, the specific role of Pol II early elongation control in inflammation, and whether it can be modulated therapeutically, is unknown. Genetic ablation of a pause-stabilizing negative elongation factor (NELF) in macrophages did not affect baseline Pol II occupancy but enhanced the transcriptional response of paused anti-inflammatory genes to lipopolysaccharide followed by secondary attenuation of inflammatory signaling in vitro and in the K/BxN serum transfer mouse model of arthritis. To pharmacologically disrupt the Pol II transcription cycle, we used two covalent inhibitors of the transcription factor II H-associated cyclin-dependent kinase 7 (CDK7), THZ1 and YKL-5-124. Both reduced Pol II pausing in murine and human macrophages, broadly suppressed induction of pro- but not anti-inflammatory genes, and rapidly reversed preestablished inflammatory macrophage polarization. In mice, CDK7 inhibition ameliorated both acute and chronic progressive inflammatory arthritis. Lastly, CDK7 inhibition down-regulated a pathogenic gene expression signature in synovial explants from patients with rheumatoid arthritis. We propose that interfering with Pol II early elongation by targeting CDK7 represents a therapeutic opportunity for rheumatoid arthritis and other inflammatory diseases.
Collapse
Affiliation(s)
- Xi Chen
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gayathri Shibu
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Baila A. Sokolsky
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Logan Fisher
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dinesh K. Deochand
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marija Dacic
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ian Mantel
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel C. Ramirez
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY 10021, USA
| | - Richard D. Bell
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laura T. Donlin
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Susan M. Goodman
- Division of Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yurii Chinenov
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Robert P. Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| | - Inez Rogatsky
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
- David Z. Rosensweig Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
44
|
Angelis NV, Paronis E, Sarikaki G, Kyriakopoulos A, Agapaki A, Niotopoulou PM, Knai CC, Alexakos P, Liagkas O, Mavreas KF, Baxevanis CN, Skaltsounis AL, Tsitsilonis OE, Kostakis IK. Ole-Oxy, a Semi-Synthetic Analog of Oleuropein, Ameliorates Acute Skin and Colon Inflammation in Mice. Antioxidants (Basel) 2024; 13:1422. [PMID: 39594563 PMCID: PMC11590887 DOI: 10.3390/antiox13111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammation is a key process in the pathophysiology of various diseases, with macrophages playing a central role in the inflammatory response. This study investigates the anti-inflammatory potential of a newly synthesized analog of oleuropein (OP), the major olive tree (Olea europaea) metabolite. This derivative of OP, named Ole-Oxy, was designed by introducing an oxygen atom between the aromatic ring and the aliphatic chain of OP, to enhance interaction with proteins and improve bioactivity. Ole-Oxy demonstrated notable anti-inflammatory effects in vitro, particularly in phorbol 12-myristate 13-acetate-differentiated THP-1 macrophages, where it markedly reduced interleukin-6, tumor necrosis factor-α, and reactive oxygen species (ROS) levels, surpassing the effects of OP. In vivo, Ole-Oxy was evaluated in mouse models of acute skin and colon inflammation, showing significant efficacy in C57BL/6J mice, likely due to their Th1-biased immune response. Our results suggest that Ole-Oxy modulates inflammation through ROS scavenging and differential macrophage activation, underscoring the need for further research to fully elucidate its mechanism of action and optimize its pharmacokinetic properties for future therapeutic applications.
Collapse
Affiliation(s)
- Nikolaos V. Angelis
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, 15784 Athens, Greece; (N.V.A.); (E.P.); (P.-M.N.); (C.C.K.); (O.L.); (C.N.B.)
| | - Efthymios Paronis
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, 15784 Athens, Greece; (N.V.A.); (E.P.); (P.-M.N.); (C.C.K.); (O.L.); (C.N.B.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (A.A.); (P.A.)
| | - Georgia Sarikaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, 15774 Athens, Greece; (G.S.); (A.-L.S.)
| | | | - Anna Agapaki
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (A.A.); (P.A.)
| | - Pigi-Maria Niotopoulou
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, 15784 Athens, Greece; (N.V.A.); (E.P.); (P.-M.N.); (C.C.K.); (O.L.); (C.N.B.)
| | - Christina C. Knai
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, 15784 Athens, Greece; (N.V.A.); (E.P.); (P.-M.N.); (C.C.K.); (O.L.); (C.N.B.)
| | - Pavlos Alexakos
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (A.A.); (P.A.)
| | - Odyssefs Liagkas
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, 15784 Athens, Greece; (N.V.A.); (E.P.); (P.-M.N.); (C.C.K.); (O.L.); (C.N.B.)
| | | | - Constantin N. Baxevanis
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, 15784 Athens, Greece; (N.V.A.); (E.P.); (P.-M.N.); (C.C.K.); (O.L.); (C.N.B.)
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, 15774 Athens, Greece; (G.S.); (A.-L.S.)
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, 15784 Athens, Greece; (N.V.A.); (E.P.); (P.-M.N.); (C.C.K.); (O.L.); (C.N.B.)
| | - Ioannis K. Kostakis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, 15771 Athens, Greece
| |
Collapse
|
45
|
Xu M, Zeng X, Pan M, Chen R, Bai Y, He J, Wang C, Qi Y, Sun Q, Wang C, An N. MiR-92a-3p Promotes Renal Injury and Fibrosis Through Facilitating M1 Macrophage Polarization via Targeting LIN28A. Physiol Res 2024; 73:755-767. [PMID: 39545790 PMCID: PMC11629952 DOI: 10.33549/physiolres.935305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/07/2024] [Indexed: 12/13/2024] Open
Abstract
Infiltrated and activated M1 macrophages play a role in kidney injury and fibrosis during chronic kidney disease (CKD) progression. However, the specific ways that M1 macrophage polarization contributes to renal fibrosis are not fully understood. The study seeks to investigate how miR-92a-3p regulates M1 macrophage polarization and its connection to renal fibrosis in the development of CKD. Our results revealed that miR-92a-3p overexpression increased M1-macrophage activation, iNOS, IL-6, and TNF-alpha expression in RAW264.7 upon LPS stimulation. LIN28A overexpression reversed these effects. Moreover, miR-92a-3p overexpression in RAW264.7 exacerbated NRK-52E cell apoptosis induced by LPS, but LIN28A overexpression counteracted this effect. MiR-92a-3p knockout in unilateral ureteral obstruction (UUO) C57BL/6 mice led to reduced renal infiltration and fibrosis, accompanied by decreased iNOS, alpha-SMA, IL-6, TNF-alpha, and increased LIN28A. In summary, our findings suggest that miR-92a-3p may play a role in promoting renal injury and fibrosis both in vitro and in vivo. This effect is potentially achieved by facilitating M1 macrophage polarization through the targeting of LIN28A.
Collapse
Affiliation(s)
- M Xu
- Blood Purification Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Xiuying District, Haikou, Hainan Province, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhu YY, Dong YH, Gu FT, Zhao ZC, Huang LX, Cheng WY, Wu JY. Anti-Inflammatory Effects of Cordyceps Cs-HK1 Fungus Exopolysaccharide on Lipopolysaccharide-Stimulated Macrophages via the TLR4/MyD88/NF-κB Pathway. Nutrients 2024; 16:3885. [PMID: 39599671 PMCID: PMC11597393 DOI: 10.3390/nu16223885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic inflammation is a common factor in the pathological processes of multiple human diseases. EPS-LM, an exopolysaccharide (EPS) from the Cordyceps sinensis fungus Cs-HK1, has shown notable anti-inflammatory activities in previous studies. This study aimed to investigate the major signaling events mediating the anti-inflammatory effects of EPS-LM in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cell culture. EPS-LM treatment significantly reduced LPS-induced production of pro-inflammatory mediators, including nitric oxide (NO) and reactive oxygen species (ROS). It also suppressed the expression levels of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88), subsequently delaying the translocation of nuclear factor-kappa B (NF-κB) to the nucleus. Additionally, co-immunoprecipitation (Co-IP) experiments demonstrated that EPS-LM inhibited the binding of TLR4 to MyD88. The ability of EPS-LM to inhibit the TLR4/MyD88/NF-κB pathway, coupled with its capacity to reduce oxidative stress, underscores its multifaceted anti-inflammatory effects. These effects render EPS-LM as a promising candidate for the comprehensive management of various inflammatory and oxidative stress-related conditions, protecting against cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Wai-Yin Cheng
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Jian-Yong Wu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|
47
|
Rezaei M, Moghoofei M. The role of viral infection in implantation failure: direct and indirect effects. Reprod Biol Endocrinol 2024; 22:142. [PMID: 39529140 PMCID: PMC11552308 DOI: 10.1186/s12958-024-01303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Implantation is the key initial complex stage of pregnancy. Several factors are involved in implantation, but acute and controlled inflammation has been shown to play as a key role. On the other hand, the role of viral infections in directly infecting blastocyst and trophoblast and inducing chronic and uncontrolled inflammation and disrupting microRNAs expression can make this review strongly attractive and practical. We aim to provide an overview of viral infections as the potential etiology of unsuccessful implantation pathophysiology through alteration of the cellular and molecular endometrial microenvironment. Based on our search, this is the first review to discuss the role of inflammation associated with viral infection in implantation failure.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Obstetrics and Gynecology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Moghoofei
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
48
|
Kwong AC, Ordovas-Montanes J. Deconstructing inflammatory memory across tissue set points using cell circuit motifs. J Allergy Clin Immunol 2024; 154:1095-1105. [PMID: 39341577 DOI: 10.1016/j.jaci.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Tissue ecosystems are cellular communities that maintain set points through a network of intercellular interactions. We position health and chronic inflammatory disease as alternative stable set points that are (1) robust to perturbation and (2) capable of adaptation and memory. Inflammatory memory, which is the storage of prior experience to durably influence future responsiveness, is central to how tissue ecosystems may be pushed past tipping points that stabilize disease over health. Here, we develop a reductionist framework of circuit motifs that recur in tissue set points. In type 2 immunity, we distinctly find the emergence of 2-cell positive feedback motifs. In contrast, directional motif relays and 3-cell networks feature more prominently in type 1 and 17 responses. We propose that these differences guide the ecologic networks established after surpassing tipping points and associate closely with therapeutic responsiveness. We highlight opportunities to improve our current knowledge of how circuit motifs interact when building toward tissue-level networks across adaptation and memory. By developing new tools for circuit motif nomination and applying them to temporal profiling of tissue ecosystems, we hope to dissect the stability of the chronic inflammatory set point and open therapeutic avenues for rewriting memory to restore health.
Collapse
Affiliation(s)
- Andrew C Kwong
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Mass; Broad Institute of MIT and Harvard, Cambridge, Mass; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Mass
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Mass; Broad Institute of MIT and Harvard, Cambridge, Mass; Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston; Program in Immunology, Harvard Medical School, Boston, Mass; Harvard Stem Cell Institute, Harvard University, Cambridge, Mass.
| |
Collapse
|
49
|
Fan P, Xie S, Zhang Z, Yuan Q, He J, Zhang J, Liu X, Liu X, Xu L. Dendrobium officinale flos water extract ameliorates ethanol-induced acute gastric mucosal injury via inhibiting oxidative stress and inflammation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8593-8603. [PMID: 38923536 DOI: 10.1002/jsfa.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Dendrobium officinale flos (DOF), a novel food raw material, is used in Chinese folk medicine to nourish the stomach. However, there is still no available study to evaluate the effects of DOF on animal models of acute gastric injury and its mechanism by modern pharmacological research. RESULTS Herein, we characterized the major components of an aqueous extract of DOF and assessed its potential ameliorative effects in a rat model of acute gastric mucosal injury. The DOF water extract showed significant protective effects on the gastric mucosa and exhibited excellent antioxidant and anti-inflammatory activities. Acute gastric injury rat models induced by ethanol (6 mL kg-1) were pretreated with different doses of DOF water extract (50-100 mg kg-1 day-1), and the biological effects of DOF extract in gastric tissues were evaluated. DOF extract alleviated the symptoms of ethanol-stimulated acute gastric mucosal injury, as evidenced by a significant reduction in gastric injury index and the degree of gastric pathological changes. Additionally, treatment with DOF extract upregulated mucin expression in the gastric mucosa, attenuated oxidative stress, decreased the release of inflammatory mediators (TNF-α, IL-6), suppressed the expression of key proinflammatory enzymes (COX-2 and iNOS), reduced the phosphorylation of p38 MAPK and p65 NF-κB and increased the level of PGE2 in gastric tissues. CONCLUSION DOF exerts protective effects against ethanol-induced acute gastric mucosal injury, mainly by inhibiting inflammation and oxidative stress. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pinglong Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Shuchun Xie
- School of Pharmacy, Gannan Medical University, Ganzhou, China
- Ganzhou Cancer Hospital, Ganzhou, China
| | - ZhiQian Zhang
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Quan Yuan
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jiajiang He
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jie Zhang
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xinyue Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xiaoyi Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Lieqiang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
50
|
Alvarez S, Vanasco V, Adán Areán JS, Magnani N, Evelson P. Mitochondrial Mechanisms in Immunity and Inflammatory Conditions: Beyond Energy Management. Antioxid Redox Signal 2024; 41:845-864. [PMID: 38062738 DOI: 10.1089/ars.2023.0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Significance: The growing importance of mitochondria in the immune response and inflammation is multifaceted. Unraveling the different mechanisms by which mitochondria have a relevant role in the inflammatory response beyond the energy management of the process is necessary for improving our understanding of the host immune defense and the pathogenesis of various inflammatory diseases and syndromes. Critical Issues: Mitochondria are relevant in the immune response at different levels, including releasing activation molecules, changing its structure and function to accompany the immune response, and serving as a structural base for activating intermediates as NLRP3 inflammasome. In this scientific journey of dissecting mitochondrial mechanisms, new questions and interesting aspects arise, such as the involvement of mitochondrial-derived vesicles in the immune response with the putative role of preventing uncontrolled situations. Recent Advances: Researchers are continuously rethinking the role of mitochondria in acute and chronic inflammation and related disorders. As such, mitochondria have important roles as centrally positioned signaling hubs in regulating inflammatory and immune responses. In this review, we present the current understanding of mitochondrial mechanisms involved, beyond the largely known mitochondrial dysfunction, in the onset and development of inflammatory situations. Future Directions: Mitochondria emerge as an interesting and multifaceted platform for studying and developing pharmaceutical and therapeutic approaches. There are many ongoing studies aimed to describe the effects of specific mitochondrial targeted molecules and treatments to ameliorate the consequences of exacerbated inflammatory components of pathologies and syndromes, resulting in an open area of increasing research interest.
Collapse
Affiliation(s)
- Silvia Alvarez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Fisicoquímica, CABA, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
| | - Virginia Vanasco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Fisicoquímica, CABA, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
| | - Juan Santiago Adán Areán
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Fisicoquímica, CABA, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, CABA, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, CABA, Argentina
| |
Collapse
|