1
|
Kim MJ, Kim SH, Kim JO, Lee TK, Jang IK, Choi TJ. Efficacy of White Spot Syndrome Virus Protein VP28-Expressing Chlorella vulgaris as an Oral Vaccine for Shrimp. Viruses 2023; 15:2010. [PMID: 37896787 PMCID: PMC10610983 DOI: 10.3390/v15102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The white spot syndrome virus (WSSV) is the causative agent of white spot disease, which kills shrimp within a few days of infection. Although WSSV has a mortality rate of almost 100% and poses a serious threat to the shrimp farming industry, strategies for its prevention and treatment are extremely limited. In this study, we examined the efficacy of VP28, a recombinant WSSV protein expressed in Chlorella vulgaris (C. vulgaris), as an oral shrimp vaccine. When compared with the control group, in which WSSV had a cumulative mortality of 100%, shrimp treated with 5% VP28-expressing C. vulgaris in their feed only had a 20% cumulative mortality rate 12 days after the WSSV challenge. When compared with the nonvaccinated group, the transcription of anti-lipopolysaccharide factor, C-type lectin, and prophenoloxidase genes, which are involved in shrimp defense against WSSV infection, was upregulated 29.6 fold, 15.4 fold, and 11.5 fold, respectively. These findings highlight C. vulgaris as a potential host for industrial shrimp vaccine production.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Microbiology, School of Marine and Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; (M.-J.K.); (S.-H.K.); (J.-O.K.)
| | - Su-Hyun Kim
- Department of Microbiology, School of Marine and Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; (M.-J.K.); (S.-H.K.); (J.-O.K.)
| | - Jong-Oh Kim
- Department of Microbiology, School of Marine and Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; (M.-J.K.); (S.-H.K.); (J.-O.K.)
| | - Taek-Kyun Lee
- South Sea Environment Research Division, Korea Institute of Ocean Science & Technology, Geoje-si 53201, Republic of Korea;
| | - In-Kwon Jang
- Junggyeom Co., Ltd., Goyang-si 10223, Republic of Korea;
| | - Tae-Jin Choi
- Department of Microbiology, School of Marine and Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; (M.-J.K.); (S.-H.K.); (J.-O.K.)
| |
Collapse
|
2
|
Wang Q, Xu Y, Xiao C, Zhu F. The effect of white spot syndrome virus (WSSV) envelope protein VP28 on innate immunity and resistance to white spot syndrome virus in Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108795. [PMID: 37149234 DOI: 10.1016/j.fsi.2023.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
VP28 is the most abundant membrane protein of WSSV, and the recombinant protein VP28 (VP26 or VP24) was constructed for the immune protection experiment in this study. Crayfish were immunized by intramuscular injection of recombinant protein V28 (VP26 or VP24) at a dose of 2 μg/g. The survival rate of crayfish immunized by VP28 showed a higher value than by VP26 or VP24 after WSSV challenge. Compared with the WSSV-positive control group, the VP28-immunized group could inhibit the replication of WSSV in crayfish, increasing the survival rate of crayfish to 66.67% after WSSV infection. The results of gene expression showed that VP28 treatment could enhance the expression of immune genes, mainly JAK and STAT genes. VP28 treatment also enhanced total hemocyte counts and enzyme activities including PO, SOD, and CAT in crayfish. VP28 treatment reduced the apoptosis of hemocytes in crayfish, as well as after WSSV infection. In conclusion, VP28 treatment can enhance the innate immunity of crayfish and has a significant effect on resistance to WSSV, and can be used as a preventive tool.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Chongyang Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
3
|
Abstract
White spot syndrome virus (WSSV) is a major cause of disease in shrimp cultures worldwide. The infection process of this large circular double-stranded DNA virus has been well studied, but its entry mechanism remains controversial. The major virion envelope protein VP28 has been implicated in oral and systemic viral infection in shrimp. However, genetic analysis of viral DNA has shown the presence of a few genes related to proteins of per os infectivity factor (PIF) complex in baculoviruses. This complex is essential for the entry of baculoviruses, large terrestrial circular DNA viruses, into the midgut epithelial cells of insect larvae. In this study, we aimed to determine whether a PIF complex exists in WSSV, the components of this complex, whether it functions as an oral infectivity complex in shrimp, and the biochemical properties that contribute to its function in a marine environment. The results revealed a WSSV PIF complex (~720 kDa) comprising at least eight proteins, four of which were not identified as PIF homologs: WSV134, VP124 (WSV216), WSSV021, and WSV136. WSV134 is suggested to be a PIF4 homolog due to predicted structural similarity and amino acid sequence identity. The WSSV PIF complex is resistant to alkali, proteolysis, and high salt, properties that are important for maintaining infectivity in aquatic environments. Oral infection can be neutralized by PIF-specific antibodies but not by VP28-specific antibodies. These results indicate that the WSSV PIF complex is critical for WSSV entry into shrimp; the complex's evolutionary significance is also discussed. IMPORTANCE White spot disease, caused by the white spot syndrome virus (WSSV), is a major scourge in cultured shrimp production facilities worldwide. This disease is only effectively controlled by sanitation. Intervention strategies are urgently needed but are limited by a lack of appropriate targets. Our identification of a per os infectivity factor (PIF) complex, which is pivotal for the entry of WSSV into shrimp, could provide new targets for antibody- or dsRNA-based intervention strategies. In addition, the presence of a PIF complex with at least eight components in WSSV, which is ancestrally related to the PIF complex of invertebrate baculoviruses, suggests that this complex is structurally and functionally conserved in disparate virus taxa.
Collapse
|
4
|
Tenriulo A, Parenrengi A, Lante S, Suryati E, Rosmiati R, Nawang A. Application of dsRNA VP24 vaccine by oral administration at different larval stages of Tiger Shrimp Penaeus monodon. IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE 2022; 1119:012045. [DOI: 10.1088/1755-1315/1119/1/012045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
This study aimed to evaluate the effect of dsRNA VP24 application on different stages of larvae. For mass production, cloned recombinant bacteria carrying the construction of the promoter T7VP24 are planted in Luria Bertani broth medium. The bacteria were inactivated using the heat-killed bacteria method by immersion in water at 80 °C for 5 minutes. The inactivated bacteria were mixed with larval commercial feed. The nauplii were produced from broodstock from Aceh waters and reared until postlarva 12 (PL12). The feed containing the dsRNA vaccine was applied to a different stage of larva, i.e: starting from zoea 1 (A), mysis 1 (B), PL 1 to PL 12 (C), and control without dsRNA (D). The PL 12 were challenged with WSSV by the immersion method and morphological characters were assessed. Results showed that inactivating bacteria was effectively done by immersion method without damaging the dsRNA construct in the plasmid. The survival rate was significantly influenced by different stages of larvae (P 0.05), in which the highest survival (26.0%) was obtained from mysis. The highest value of morphological characters (92.3) was also inhibited in the mysis. The results suggested that the dsRNA vaccine for larvae could be started to be applied in the mysis stage.
Collapse
|
5
|
Rab7 Investigation Insights into the Existence of White Spot Syndrome Virus in Crustaceans: An In Silico Approach. Adv Virol 2022; 2022:3887441. [PMID: 36313590 PMCID: PMC9613395 DOI: 10.1155/2022/3887441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, previously published Rab7 sequences from National Center for Biotechnology Information (NCBI) have been investigated from chordates, mollusks, annelids, cnidarians, amphibians, priapulids, brachiopods, and arthropods including decapods and other groups. Among decapod crustacean isolates, amino acid variations were found in 13 locations. Penaeid shrimps had variations in positions 13 (I ⟶ J), 22 (T ⟶ A), 124 (G ⟶ X), and 149 (V ⟶ X) while interestingly the freshwater prawn and mitten crab both had amino acid substitutions in positions 87 (V ⟶ C) and 95 (T ⟶ S) along with the other disagreements in amino acid positions 178 (S ⟶ N), 201 (D ⟶ E), 181 (E ⟶ D), 182 (L ⟶ I), 183 (Y ⟶ G), 184 (N ⟶ H), and 198 (A ⟶ T). Among 100 isolates of Rab7 from organisms of various phyla, mutations were observed in several positions. These mutations caused variations in hydrophobicity and isoelectric point which impact the ligand-protein binding affinity. Some common mutations were found in the organisms of the same phylum and among different phyla. Homology modeling of Rab7 proteins from different organisms was done using SWISS-MODEL and validated further by developing Ramachandran plots. Protein-protein docking showed that active residues were there in the binding interfaces of Rab7 from organisms of seven different phyla and VP28 of WSSV. Similarities were observed in the Rab7-VP28 complexes in those selected organisms which differed from the Rab7-VP28 complex in the case of Penaeid shrimp. The findings of this study suggest that WSSV may exist in different marine organisms that have Rab7 protein and transmit to crustaceans like shrimps and crabs which are of commercial importance.
Collapse
|
6
|
Shrimp protected from a virus by feed containing yeast with a surface-displayed viral binding protein. J Biotechnol 2021; 342:45-53. [PMID: 34619240 DOI: 10.1016/j.jbiotec.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Recombinant Pichia pastoris biomass surface-expressing the viral binding protein PmRab7 (YSD-PmRab7) was prepared by fed-batch, aerobic fermentation with methanol induction for 48 h. By cell based ELISA assay, immunofluorescence and flow cytometry, 45% of the YSD-PmRab7 cells were positive for PmRab7. Freeze dried YSD-PmRab7 cells were added to formulated shrimp feed pellets at 0.25 g and 0.5 g per g feed and fed to 2 shrimp groups for 7 days prior to challenge with white spot syndrome virus (WSSV). Controls consisted of 1 shrimp group fed normal pellets and one fed pellets containing P. pastoris carrying an empty gene cassette. At 10 days post challenge, survival in the two control groups was 6.7 ± 6.6%, while it was 26.7 ± 6.6% in the 0.25 g YSD-PmRab7 group and significantly higher (p < 0.05) in the 0.5 g YSD-PmRab7 group at 46.7 ± 10.1%. Nested PCR assays and histopathological analysis revealed significantly lower WSSV replication levels in the 0.5 g YSD-PmRab7 group. The results indicated potential for development of YSD-PmRab7 cells as an oral prophylactic against WSSV in shrimp.
Collapse
|
7
|
Parenrengi A, Tenriulo A, Mulyaningrum SRH, Suryati E, Rosmiati R, Lante S, Nawang A. Effect of different doses of dsRNA VP15 vaccine for controlling white spot syndrome virus infection in tiger shrimp Penaeus monodon. IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE 2021; 860:012031. [DOI: 10.1088/1755-1315/860/1/012031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Advances in the study of tegument protein VP26 in white spot syndrome virus. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Liu LK, Gao Y, Gao RL, Li DL, Zhang QX, Wang KJ, Liu HP. A barrier-to-autointegration factor promotes white spot syndrome virus infection in a crustacean Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2020; 105:244-252. [PMID: 32693160 DOI: 10.1016/j.fsi.2020.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Barrier-to-autointegration factor (BAF) is a highly conserved DNA binding protein that participates in a variety of biological processes such as transcription, epigenetic regulation and antiviral immunity in vertebrates. However, the function of BAF is poorly understood in crustaceans. In this study, we identified a barrier-to-autointegration factor (CqBAF) from red claw crayfish Cherax quadricarinatus, which was responsive to white spot syndrome virus (WSSV) infection. The full-length cDNA sequence of CqBAF was 544 bp, including an open reading frame of 273 bp encoding 90 amino acids, a 107 bp of 5'-Untranslated Regions (5'-UTR) and a 164 bp of 3'-UTR. Gene expression analysis showed that CqBAF was distributed in all tissues examined with the highest expression in the crayfish haematopietic tissue (Hpt), which protein expression was also significantly up-regulated by WSSV infection in Hpt cells. Furthermore, the transcripts of both an immediate early gene IE1 and a late envelope protein gene VP28 of WSSV were clearly reduced in Hpt cells after gene silencing of CqBAF. Importantly, the promoter activity of two immediate early genes of WSSV, including WSV051 and IE1, was strongly enhanced by the increased phosphorylation of CqBAF, which also facilitated the accumulation of CqBAF protein in the cytoplasm of Sf9 cells. Taken together, these data suggest that CqBAF is likely to increase the replication of WSSV by promoting the transcription of viral immediate early genes, probably regulated by phosphorylation of CqBAF, which sheds new light on the molecular mechanism of WSSV infection.
Collapse
Affiliation(s)
- Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yan Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Rui-Lin Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Dong-Li Li
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qiu-Xia Zhang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
10
|
Huang JY, Wang HC, Chen YC, Wang PS, Lin SJ, Chang YS, Liu KF, Lo CF. A shrimp glycosylase protein, PmENGase, interacts with WSSV envelope protein VP41B and is involved in WSSV pathogenesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103667. [PMID: 32147468 DOI: 10.1016/j.dci.2020.103667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Viral glycoproteins are expressed by many viruses, and during infection they usually play very important roles, such as receptor attachment or membrane fusion. The mature virion of the white spot syndrome virus (WSSV) is unusual in that it contains no glycosylated proteins, and there are currently no reports of any glycosylation mechanisms in the pathogenesis of this virus. In this study, we cloned a glycosylase, mannosyl-glycoprotein endo-β-N-acetylglucosaminidase (ENGase, EC 3.2.1.96), from Penaeus monodon and found that it was significantly up-regulated in WSSV-infected shrimp. A yeast two-hybrid assay showed that PmENGase interacted with both structural and non-structural proteins, and GST-pull down and co-immunoprecipitation (Co-IP) assays confirmed its interaction with the envelope protein VP41B. In the WSSV challenge tests, the cumulative mortality and viral copy number were significantly decreased in the PmEngase-silenced shrimp, from which we conclude that shrimp glycosylase interacts with WSSV in a way that benefits the virus. Lastly, we speculate that the deglycosylation activity of PmENGase might account for the absence of glycosylated proteins in the WSSV virion.
Collapse
Affiliation(s)
- Jiun-Yan Huang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hao-Ching Wang
- Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 110, Taiwan; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Chun Chen
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan
| | - Po-Sue Wang
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shin-Jen Lin
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yun-Shiang Chang
- Department of Molecular Biotechnology, College of Biotechnology and Bioresources, Da-Yeh University, Changhua, 515, Taiwan
| | - Kuan-Fu Liu
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Council of Agriculture, Pingtung, Taiwan
| | - Chu-Fang Lo
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
11
|
Zhang H, Cheng W, Zheng J, Wang P, Liu Q, Li Z, Shi T, Zhou Y, Mao Y, Yu X. Identification and Molecular Characterization of a Pellino Protein in Kuruma Prawn ( Marsupenaeus Japonicus) in Response to White Spot Syndrome Virus and Vibrio Parahaemolyticus Infection. Int J Mol Sci 2020; 21:ijms21041243. [PMID: 32069894 PMCID: PMC7072872 DOI: 10.3390/ijms21041243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Kuruma prawn, Marsupenaeus japonicus, has the third largest annual yield among shrimp species with vital economic significance in China. White spot syndrome virus (WSSV) is a great threat to the global shrimp farming industry and results in high mortality. Pellino, a highly conserved E3 ubiquitin ligase, has been found to be an important modulator of the Toll-like receptor (TLR) signaling pathways that participate in the innate immune response and ubiquitination. In the present study, the Pellino gene from Marsupenaeus japonicus was identified. A qRT-PCR assay showed the presence of MjPellino in all the tested tissues and revealed that the transcript level of this gene was significantly upregulated in both the gills and hemocytes after challenge with WSSV and Vibrio parahaemolyticus. The function of MjPellino was further verified at the protein level. The results of the three-dimensional modeling and protein-protein docking analyses and a GST pull-down assay revealed that the MjPellino protein was able to bind to the WSSV envelope protein VP26. In addition, the knockdown of MjPellino in vivo significantly decreased the expression of MjAMPs. These results suggest that MjPellino might play an important role in the immune response of kuruma prawn.
Collapse
Affiliation(s)
- Heqian Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Wenzhi Cheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Jinbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Panpan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Qinghui Liu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Zhen Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Tianyi Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Yijian Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
- Correspondence: (Y.M.); (X.Y.)
| | - Xiangyong Yu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
- Correspondence: (Y.M.); (X.Y.)
| |
Collapse
|
12
|
Ma X, Tang X, Lin S, Gong Y, Tran NT, Zheng H, Ma H, Aweya JJ, Zhang Y, Li S. SpBAG1 promotes the WSSV infection by inhibiting apoptosis in mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2019; 94:852-860. [PMID: 31600594 DOI: 10.1016/j.fsi.2019.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Bcl-2 associated athanogene-1 (BAG1) is involved in various signalling pathways including apoptosis, cell proliferation, gene transcriptional regulation and signal transduction in animals. However the functions of BAG1 during the antiviral response of mud crab Scylla paramamosain is still unclear. In this study, the mud crab BAG1 (SpBAG1) was characterized to consist of 1761 nucleotides, containing an opening frame of 630bp encoding 209 amino acids with an ubiquitin domain and a BAG1 domain. SpBAG1 was found to be significantly up-regulated at 6 h-24 h, but down-regulated from 48 h-72 h in the hemocytes of mud crab after challenge with white spot syndrome virus (WSSV). RNAi knock-down of SpBAG1 significantly reduced the copies of WSSV and increased the apoptotic rate in mud crabs. The finding from this study suggested that SpBAG1 could promote the WSSV infection by inhibiting apoptosis in mud crab. Therefore, to the best of our knowledge, this is the first study demonstrating the role of SpBAG1 as a novel apoptosis inhibitor to promote virus infection in mud crab.
Collapse
Affiliation(s)
- Xiaomeng Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Shanmeng Lin
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
13
|
Chen X, Chen Y, Shen X, Zuo J, Guo H. The Improvement and Application of Lentivirus-Mediated Gene Transfer and Expression System in Penaeid Shrimp Cells. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:9-18. [PMID: 30542951 DOI: 10.1007/s10126-018-9862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 06/09/2023]
Abstract
This study first reported the improvement and application of lentivirus-mediated gene transfer and expression system in shrimp cells. After modified by the inclusion of two envelope proteins (VP19 and VP28) of shrimp white spot syndrome virus (WSSV) into the envelope of the packaged lentivirus, and insertion of a truncated promoter of immediate-early gene 1 (Pie1-504) of shrimp WSSV virus into the lentiviral reporter plasmid, the second-generation lentiviral expression system (pLVX-PEF1α-IRES-mCherry, psPAX2, and PMD2.G) was found to behave better in the mitosis-arrested shrimp cells than the similarly modified retrovirus expression system did. Results from the insect sf9 cells indicated that the inclusion of VP19 and VP28 into the envelope of packaged lentiviruses could significantly improve the tropism or infectivity of the modified lentiviruses to insect cells in a cumulative way. Notably, the VP28 contributed about 86% of the total increase of the tropism. In the shrimp primary lymphoid cells infected by modified lentivirus IV with both VP19 and VP28 included, the infection efficiency was up to 11% (non-confocal) and 19% (confocal) and no background fluorescent signal was observed. However, background fluorescent signal was observed in the shrimp primary Oka organ cells although only under a confocal microscope. In the lentivirus IV-infected Oka organ cells, the actual infection efficiencies were calculated up to 8% (non-confocal) and 19% (confocal), significantly higher than those of commercial intact lentivirus I of 0 (non-confocal) and 3% (confocal). The insertion of WSSV promoter (Pie1-504) had interrupted the effective expression of reporter plasmid encoding lentiviral construct of pLVX-PEF1α-Pie1-504-IRES-mCherry in the HEK293T cells, but markedly increased its efficiencies up to 14% (non-confocal) and 26% (confocal) in the Oka organ cells. This improved lentivirus expression system will provide us a useful tool for efficient gene transfer and expression in shrimp cells.
Collapse
Affiliation(s)
- Xuemei Chen
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yueru Chen
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaotong Shen
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jianwei Zuo
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Huarong Guo
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
14
|
Complete Genome Sequence of White Spot Syndrome Virus Isolated from Indian White Prawn ( Fenneropenaeus indicus) in Egypt. Microbiol Resour Announc 2019; 8:MRA01508-18. [PMID: 30637403 PMCID: PMC6318374 DOI: 10.1128/mra.01508-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 11/20/2022] Open
Abstract
White spot disease, caused by the white spot syndrome virus (WSSV), has caused major losses in shrimp farming in Egypt since 2009. The genome sequence of the WSSV-Egypt isolate will be valuable in epidemiological studies to delineate the origin and spread of WSSV in Egypt and elsewhere in the world.
Collapse
|
15
|
Zhang K, Koiwai K, Kondo H, Hirono I. A novel white spot syndrome virus-induced gene (MjVIG1) from Marsupenaeus japonicus hemocytes. FISH & SHELLFISH IMMUNOLOGY 2018; 77:46-52. [PMID: 29567134 DOI: 10.1016/j.fsi.2018.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/08/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
cDNA of a newly recognized white spot syndrome virus (WSSV)-induced gene (MjVIG1) was characterized from Marsupenaeus japonicus hemocytes; this gene encodes a protein that lack similarity to any known characterized protein. To identify this novel gene, we mainly conducted transcript level analysis, immunostaining and flow cytometry after WSSV infection. MjV1G1 transcript levels were also measured after Yellow head virus (YHV) and Vibrio parahaemolyticus infection tests. In non-infected and WSSV-infected shrimp, MjVIG1 was observed in granule-containing hemocytes. In addition, the MjVIG1 transcript level and ratio of MjVIG1-positive hemocytes both significantly increased, and number of MjVIG1-positive hemocytes slightly increased after WSSV infection. In contrast, MjVIG1 transcript level did not change after YHV and V. parahaemolyticus infection. These results indicated that MjVIG1 might be a WSSV-specific induced gene in M. japonicus hemocytes.
Collapse
Affiliation(s)
- Kehong Zhang
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan.
| |
Collapse
|
16
|
Onming S, Thongda W, Li C, Sawatdichaikul O, McMillan N, Klinbunga S, Peatman E, Poompuang S. Bioinformatics characterization of a cathepsin B transcript from the giant river prawn, Macrobrachium rosenbergii: Homology modeling and expression analysis after Aeromonas hydrophila infection. Comp Biochem Physiol B Biochem Mol Biol 2018; 221-222:18-28. [PMID: 29649577 DOI: 10.1016/j.cbpb.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cathepsin B is a lysosomal proteolytic enzyme that has been suggested to play a role in pathological processes of immune system. In this study, the full-length cDNA sequence of cathepsin B transcript in the giant river prawn Macrobrachium rosenbergii (MrCTSB) was obtained from 454 pyrosequencing of cDNAs from hepatopancreas and muscle. It was 1158 bp in length, containing an open reading frame (ORF) of 987 bp corresponding to 328 amino acids. The predicted molecular mass and pI of MrCTSB protein was 36.04 kDa and 4.73. The major characteristics of MrCTSB protein consisted of a propeptide of C1 peptidase family at the N-terminus and a cysteine protease (Pept_C1) domain at the C-terminus. The 3-dimentional structure of MrCTSB was constructed by computer-assisted homology modeling. The folding of MrCTSB was highly conserved to human CTSB structure and the modeled MrCTSB displayed characteristics of cysteine proteinases superfamily. The docking study was performed to investigate binding interactions between known inhibitors against MrCTSB. Known inhibitors were oriented in the groove of catalytic site cleft. They bound to subsites from S2, S1, S1', and S2', respectively, with key residues in each subsite. Challenge of juvenile prawns with Aeromonas hydrophila revealed that the MrCTSB transcript in hepatopancreas significantly increased at 60-96 h post injection (hpi). This suggested that MrCTSB may play roles in innate immunity of M. rosenbergii. Our results provide useful information for a more comprehensive study in immune-related functions of MrCTSB.
Collapse
Affiliation(s)
- Saowalak Onming
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Orathai Sawatdichaikul
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| | - Nichanun McMillan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand
| | - Sirawut Klinbunga
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Supawadee Poompuang
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand.
| |
Collapse
|
17
|
Inchara UB, Sathish RP, Shankar KM, Abhiman PB, Prakash P. Evaluation of the Sensitivity of the Flow Through Assay for detection of White Spot Syndrome Virus (WSSV) using a cocktail of monoclonal antibodies. J Immunol Methods 2018; 456:54-60. [PMID: 29486144 DOI: 10.1016/j.jim.2018.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 11/17/2022]
Abstract
A panel of four monoclonal antibodies (C-05, C-14, C-38 and C-56) specific to VP28 of White spot syndrome virus (WSSV) were evaluated individually and in cocktail to increase sensitivity of the Flow Through Assay (FTA) for detection of the virus. Recombinant VP28 and semi purified WSSV was used as antigen for evaluation. Out of the total 11 cocktails and four individual of MAbs, 2 MAb cocktails C-05 + C-56 and C-14 + C-56 exhibited highest sensitivity in the FTA. The two MAb cocktail were 100 times more sensitive than 1-step PCR and nearly equivalent to 2-step PCR for the detection of WSSV. The detection limit of WSSV by MAb cocktail increased by two fold compared to the single MAb C-05 currently being used in (FTA).
Collapse
Affiliation(s)
- U B Inchara
- Aquatic Animal Health Laboratory, Department of Aquaculture College of Fisheries Mangalore
| | - R P Sathish
- Aquatic Animal Health Laboratory, Department of Aquaculture College of Fisheries Mangalore
| | - K M Shankar
- Aquatic Animal Health Laboratory, Department of Aquaculture College of Fisheries Mangalore,.
| | - P B Abhiman
- Aquatic Animal Health Laboratory, Department of Aquaculture College of Fisheries Mangalore
| | - P Prakash
- Department of Pharmacology, School of Medicine, Chonbuk National University. 20, Geonji-ro, Deokjin-gu, Jeonju-si, Republic of Korea
| |
Collapse
|
18
|
Bunsanong N, Chotigeat W, Deachamag P, Thananimit S. Semiquantitative dot-blot immunogold assay for specific detection of white spot syndrome virus. Biotechnol Appl Biochem 2018; 65:586-593. [PMID: 29314269 DOI: 10.1002/bab.1640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/30/2017] [Indexed: 01/01/2023]
Abstract
A dot-blot immunogold assay (DBIA) was developed to detect white spot syndrome virus (WSSV) using the polyclonal antibody VP26 (anti-VP26). The anti-VP26 was immobilized on gold nanoparticles (Ab-AuNPs), and a nitrocellulose membrane was used as a detection pad. When the target WSSV bound to the Ab-AuNPs a reddish dot appeared on the surface of the membrane used within 2-5 Min, which could be seen with the naked eye. The test was able to detect WSSV at concentrations as low as 105 copies μL-1 of WSSV. The DBIA developed had good specificity, and the colloidal gold probe can be applied within 2-3 days when stored at 4 °C. For real sample analysis, the DBIA was applied to samples of seawater used for shrimp cultivation without sample preparation. The results indicate that sample 1 showed a positive result, whereas samples 2 and 3 produced negative results. Then, samples 2 and 3 were spiked with WSSV for method validation. To confirm the performance of the DBIA developed, polymerase chain reaction (PCR) was conducted and the PCR results were the same as those found by the DBIA. Therefore, the DBIA developed could be applied for WSSV detection in real water samples.
Collapse
Affiliation(s)
- Nittaya Bunsanong
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Wilaiwan Chotigeat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Panchalika Deachamag
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suchera Thananimit
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
19
|
Delivery of viral recombinant VP28 protein using chitosan tripolyphosphate nanoparticles to protect the whiteleg shrimp, Litopenaeus vannamei from white spot syndrome virus infection. Int J Biol Macromol 2017; 107:1131-1141. [PMID: 28951305 DOI: 10.1016/j.ijbiomac.2017.09.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022]
Abstract
The VP28 gene of white spot syndrome virus was amplified by PCR using gene specific primer set and cloned into pRSET B vector to produce recombinant VP28 (r-VP28) in E. coli GJ1158. The chitosan tripolyphosphate nanoparticles (CS/TPP) were prepared by ionic gelation process and characterized. The purified r-VP28 protein was encapsulated by CS/TPP nanoparticles. The encapsulation efficiency of CS/TPP nanoparticles was found to be 84.8% for r-VP28 protein binding with CS/TPP nanoparticles. The in vitro release profile of encapsulated r-VP28 was determined after treating with protease and chitosanase. The different types of feed were formulated and named as normal feed with PBS, Feed A coated with crude r-VP28, Feed B with purified r-VP28 and Feed C with CS/TPP encapsulated r-VP28 (Purified). Tissue distribution and clearance of r-VP28 at different time intervals were examined in shrimp fed with different types of feed by ELISA and the results showed the presence of r-VP28 protein in different organs. Various immunological parameters were assessed in experimental shrimp. The mRNA expression of five immune-related genes was analysed by qPCR in order to investigate their response to all types of feed in shrimp. A cumulative percentage mortality was also recorded in treated shrimp challenged with WSSV.
Collapse
|
20
|
Diversity of large DNA viruses of invertebrates. J Invertebr Pathol 2017; 147:4-22. [DOI: 10.1016/j.jip.2016.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/17/2022]
|
21
|
Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Arch Virol 2017. [DOI: 10.1007/s00705-017-3450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Pham KC, Tran HTT, Van Doan C, Le PH, Van Nguyen AT, Nguyen HA, Hong HA, Cutting SM, Phan TN. Protection of Penaeus monodon against white spot syndrome by continuous oral administration of a low concentration of Bacillus subtilis spores expressing the VP28 antigen. Lett Appl Microbiol 2017; 64:184-191. [PMID: 27992657 DOI: 10.1111/lam.12708] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/19/2016] [Accepted: 12/12/2016] [Indexed: 11/28/2022]
Abstract
In this study, Bacillus subtilis spores expressing a chimeric protein, CotB-VP28, were used as a probiotic vaccine to protect black tiger shrimps (Penaeus monodon) against white spot syndrome virus (WSSV) infection. Oral administration of pellets coated with CotB-VP28 spores (at ≥1 × 109 CFU per g pellet) to shrimps induced immune-relating phenoloxydase activity (PO) in shrimps after 14 days of feeding (prior challenge) and at day 3 post challenge (1·26 and 1·70 fold increase respectively). A 75% protection rate was obtained by continuous feeding of the spore-coated pellets at ≥1 × 109 CFU per g for 14 days prior to WSSV challenge and during all the postchallenge period. Even when the amount of CotB-VP28 spores in feed pellets was reduced down to ≥5 × 107 CFU per g and ≥1 × 106 CFU per g, relatively high protection rates of 70 and 67·5%, respectively, were still obtained. By contrast, feeding pellets without spores (untreated group) and with naked spores (PY79 group) at ≥1 × 109 CFU per g could not protect shrimps against WSSV. These data suggest that supplementation of CotB-VP28 spores at low dose of ≥1 × 106 CFU per g could be effective as a prophylactic treatment of WSS for black tiger shrimps. SIGNIFICANCE AND IMPACT OF THE STUDY This study reports the protective efficacy of Bacillus subtilis CotB-VP28 spores on black tiger shrimps (Penaeus monodon) against white spot syndrome virus infection. Oral administration of pellets coated with CotB-VP28 spores (≥1 × 109 CFU per g) conferred 75% protection after white spot syndrome virus challenge. Even after reducing CotB-VP28 spores in feed pellets to ≥1 × 106 CFU per g, 67·5% protections was still obtained. These data indicate that supplementation of CotB-VP28 spores at a low dose of ≥1 × 106 CFU per g could be effective in prophylaxis against white spot syndrome in black tiger shrimps.
Collapse
Affiliation(s)
- K-C Pham
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam.,Department of Biochemistry, Institute of New Technology, Hanoi, Vietnam
| | - H T T Tran
- Faculty of Aquaculture, Can Tho University, Can Tho, Vietnam
| | - C Van Doan
- Southern Monitoring Center for Aquaculture Environment and Epidemic, Research Institute for Aquaculture No. 2, Ho Chi Minh City, Vietnam
| | - P H Le
- Southern Monitoring Center for Aquaculture Environment and Epidemic, Research Institute for Aquaculture No. 2, Ho Chi Minh City, Vietnam
| | - A T Van Nguyen
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam
| | - H A Nguyen
- ANABIO Research & Development JSC, Hanoi, Vietnam
| | - H A Hong
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - S M Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - T-N Phan
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam
| |
Collapse
|
23
|
Sun L, Su Y, Zhao Y, Fu ZQ, Wu Y. Crystal Structure of Major Envelope Protein VP24 from White Spot Syndrome Virus. Sci Rep 2016; 6:32309. [PMID: 27572278 PMCID: PMC5004148 DOI: 10.1038/srep32309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/01/2016] [Indexed: 12/03/2022] Open
Abstract
White spot syndrome virus (WSSV) is one of the major and most serious pathogen in the shrimp industry. As one of the most abundant envelope protein, VP24 acts as a core protein interacting with other structure proteins and plays an important role in virus assembly and infection. Here, we have presented the crystal structure of VP24 from WSSV. In the structure, VP24 consists of a nine-stranded β–barrel fold with mostly antiparallel β-strands, and the loops extending out the β–barrel at both N-terminus and C-terminus, which is distinct to those of the other two major envelope proteins VP28 and VP26. Structural comparison of VP24 with VP26 and VP28 reveals opposite electrostatic surface potential properties of them. These structural differences could provide insight into their differential functional mechanisms and roles for virus assembly and infection. Moreover, the structure reveals a trimeric assembly, suggesting a likely natural conformation of VP24 in viral envelope. Therefore, in addition to confirming the evolutionary relationship among the three abundant envelope proteins of WSSV, our structural studies also facilitate a better understanding of the molecular mechanism underlying special roles of VP24 in WSSV assembly and infection.
Collapse
Affiliation(s)
- Lifang Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yintao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yanhe Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zheng-Qing Fu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yunkun Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
24
|
Sivakumar KC, Sajeevan TP, Bright Singh IS. Marine derived compounds as binders of the White spot syndrome virus VP28 envelope protein: In silico insights from molecular dynamics and binding free energy calculations. Comput Biol Chem 2016; 64:359-367. [PMID: 27591791 DOI: 10.1016/j.compbiolchem.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/03/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022]
Abstract
White spot syndrome virus (WSSV) remains as one of the most dreadful pathogen of the shrimp aquaculture industry owing to its high virulence. The cumulative mortality reaches up to 100% within in 2-10days in a shrimp farm. Currently, no chemotherapeutics are available to control WSSV. The viral envelope protein, VP28, located on the surface of the virus particle acts as a vital virulence factor in the initial phases of inherent WSSV infection in shrimp. Hence, inhibition of envelope protein VP28 could be a novel way to deal with infection by inhibiting its interaction in the endocytic pathway. In this direction, a timely attempt was made to recognize a potential drug candidate of marine origin against WSSV using VP28 as a target by employing in silico docking and molecular dynamic simulations. A virtual library of 388 marine bioactive compounds was extracted from reports published in Marine Drugs. The top ranking compounds from docking studies were chosen from the flexible docking based on the binding affinities (ΔGb). In addition, the MD simulation and binding free energy analysis were implemented to validate and capture intermolecular interactions. The results suggested that the two compounds obtained a negative binding free energy with -40.453kJ/mol and -31.031kJ/mol for compounds with IDs 30797199 and 144162 respectively. The RMSD curve indicated that 30797199 moves into the hydrophobic core, while the position of 144162 atoms changes abruptly during simulation and is mostly stabilized by water bridges. The shift in RMSD values of VP28 corresponding to ligand RMSD gives an insight into the ligand induced conformational changes in the protein. This study is first of its kind to elucidate the explicit binding of chemical inhibitor to WSSV major structural protein VP28.
Collapse
Affiliation(s)
- K C Sivakumar
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682 016, Kerala, India; Bioinformatics Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - T P Sajeevan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682 016, Kerala, India.
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682 016, Kerala, India.
| |
Collapse
|
25
|
Sun L, Wu Y. Envelope protein VP24 from White spot syndrome virus: expression, purification and crystallization. Acta Crystallogr F Struct Biol Commun 2016; 72:586-90. [PMID: 27487921 PMCID: PMC4973298 DOI: 10.1107/s2053230x16009055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/04/2016] [Indexed: 11/10/2022] Open
Abstract
White spot syndrome virus (WSSV) is a major shrimp pathogen known to infect penaeid shrimp and other crustaceans. VP24 is one of the major envelope proteins of WSSV. In order to facilitate purification, crystallization and structure determination, the predicted N-terminal transmembrane region of approximately 26 amino acids was truncated from VP24 and several mutants were prepared to increase the proportion of selenomethionine (SeMet) residues for subsequent structural determination using the SAD method. Truncated VP24, its mutants and the corresponding SeMet-labelled proteins were purified, and the native and SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals of VP24 were obtained using a reservoir consisting of 0.1 M Tris-HCl pH 8.5, 2.75 M ammonium acetate with a drop volume ratio of two parts protein solution to one part reservoir solution. Notably, ATP was added as a critical additive to the drop with a final concentration of 10 mM. Crystals of SeMet-labelled VP24 mutant diffracted to 3.0 Å resolution and those of the native diffracted to 2.4 Å resolution; the crystals belonged to space group I213, with unit-cell parameters a = b = c = 140 Å.
Collapse
Affiliation(s)
- Lifang Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Yunkun Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
26
|
Li Z, Li F, Han Y, Xu L, Yang F. VP24 Is a Chitin-Binding Protein Involved in White Spot Syndrome Virus Infection. J Virol 2016; 90:842-50. [PMID: 26512091 PMCID: PMC4702682 DOI: 10.1128/jvi.02357-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Oral ingestion is the major route of infection for the white spot syndrome virus (WSSV). However, the mechanism by which virus particles in the digestive tract invade host cells is unknown. In the present study, we demonstrate that WSSV virions can bind to chitin through one of the major envelope proteins (VP24). Mutagenesis analysis indicated that amino acids (aa) 186 to 200 in the C terminus of VP24 were required for chitin binding. Moreover, the P-VP24186-200 peptide derived from the VP24 chitin binding region significantly inhibited the VP24-chitin interaction and the WSSV-chitin interaction, implying that VP24 participates in WSSV binding to chitin. Oral inoculation experiments showed that P-VP24186-200 treatment reduced the number of virus particles remaining in the digestive tract during the early stage of infection and greatly hindered WSSV proliferation in shrimp. These data indicate that binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection and provide new ideas for preventing WSSV infection in shrimp farms. IMPORTANCE In this study, we show that WSSV can bind to chitin through the envelope protein VP24. The chitin-binding domain of VP24 maps to amino acids 186 to 200 in the C terminus. Binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection. These findings not only extend our knowledge of WSSV infection but also provide new insights into strategies to prevent WSSV infection in shrimp farms.
Collapse
Affiliation(s)
- Zaipeng Li
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Yali Han
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Limei Xu
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| |
Collapse
|
27
|
Liu J, Pei C, Gao XC, Chen ZY, Zhang QY. Fish reovirus GCReV-109 VP33 protein elicits protective immunity in rare minnows. Arch Virol 2015; 161:573-82. [PMID: 26615551 DOI: 10.1007/s00705-015-2675-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/31/2015] [Indexed: 02/05/2023]
Abstract
Grass carp reovirus strain 109 (GCReV-109) was previously isolated from a grass carp (Ctenopharyngodon idellus) with hemorrhagic disease, and its complete genome has been sequenced. However, the infectivity of GCReV-109 has not been studied, and the viral protein VP33, encoded on genome segment S11, had no detectable sequence homology to other known reovirus proteins. In this study, we characterized GCReV-109 infections in vivo and in vitro, as well as the VP33 protein. Infectivity analysis showed that GCReV-109 caused severe hemorrhagic disease and 100% mortality at dilutions up to 10(-4) in rare minnows (Gobiocypris rarus) by 8 days postinfection, but no visible cytopathic effect was observed in GCReV-109-infected subcultured grass carp muscle (GCM) cells. To confirm that GCReV-109 could be propagated in GCM cells, three virus genome segments were detected by RT-PCR, and large numbers of virus particles were observed by transmission electron microscopy in samples from the infected GCM cells. The suspension of GCReV-109-infected GCM cells was pathogenic to rare minnows. VP33 protein was expressed and purified for generation of an anti-VP33 antiserum. In western blot analysis of purified GCReV-109 particles, the antiserum specifically recognized a protein band (approximately 33 kDa). This revealed that VP33 is a major structural protein of GCReV-109 that might have immunogenic properties. The protective efficacy of the anti-VP33 antiserum against GCReV-109 infection was tested. The death of infected fish was delayed and the mortality fell to 10% when fish were treated with the anti-VP33 antiserum, suggesting that it might be useful for the prevention and control of fish reoviral disease.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chao Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-chan Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
28
|
Ananphongmanee V, Srisala J, Sritunyalucksana K, Boonchird C. Yeast Surface Display of Two Proteins Previously Shown to Be Protective Against White Spot Syndrome Virus (WSSV) in Shrimp. PLoS One 2015; 10:e0128764. [PMID: 26083446 PMCID: PMC4471349 DOI: 10.1371/journal.pone.0128764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/01/2015] [Indexed: 12/11/2022] Open
Abstract
Cell surface display using the yeasts Saccharomyces cerevisiae and Pichia pastoris has been extensively developed for application in bioindustrial processes. Due to the rigid structure of their cell walls, a number of proteins have been successfully displayed on their cell surfaces. It was previously reported that the viral binding protein Rab7 from the giant tiger shrimp Penaeus monodon (PmRab7) and its binding partner envelope protein VP28 of white spot syndrome virus (WSSV) could independently protect shrimp against WSSV infection. Thus, we aimed to display these two proteins independently on the cell surfaces of 2 yeast clones with the ultimate goal of using a mixture of the two clones as an orally deliverable, antiviral agent to protect shrimp against WSSV infection. PmRab7 and VP28 were modified by N-terminal tagging to the C-terminal half of S. cerevisiae α-agglutinin. DNA fragments, harboring fused-gene expression cassettes under control of an alcohol oxidase I (AOX1) promoter were constructed and used to transform the yeast cells. Immunofluorescence microscopy with antibodies specific to both proteins demonstrated that mutated PmRab7 (mPmRab7) and partial VP28 (pVP28) were localized on the cell surfaces of the respective clones, and fluorescence intensity for each was significantly higher than that of control cells by flow cytometry. Enzyme-linked immunosorbant assay (ELISA) using cells displaying mPmRab7 or pVP28 revealed that the binding of specific antibodies for each was dose-dependent, and could be saturated. In addition, the binding of mPmRab7-expressing cells with free VP28, and vice versa was dose dependent. Binding between the two surface-expressed proteins was confirmed by an assay showing agglutination between cells expressing complementary mPmRab7 and pVP28. In summary, our genetically engineered P. pastoris can display biologically active mPmRab7 and pVP28 and is now ready for evaluation of efficacy in protecting shrimp against WSSV by oral administration.
Collapse
Affiliation(s)
| | - Jiraporn Srisala
- Shrimp-Virus Interaction Laboratory (ASVI), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kallaya Sritunyalucksana
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Shrimp-Virus Interaction Laboratory (ASVI), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chuenchit Boonchird
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
29
|
Haryadi D, Verreth JAJ, Verdegem MCJ, Vlak JM. Transmission of white spot syndrome virus (WSSV) from Dendronereis spp. (Peters) (Nereididae) to penaeid shrimp. JOURNAL OF FISH DISEASES 2015; 38:419-428. [PMID: 24716813 DOI: 10.1111/jfd.12247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
Dendronereis spp. (Peters) (Nereididae) is a common polychaete in shrimp ponds built on intertidal land and is natural food for shrimp in traditionally managed ponds in Indonesia. White spot syndrome virus (WSSV), an important viral pathogen of the shrimp, can replicate in this polychaete (Desrina et al. 2013); therefore, it is a potential propagative vector for virus transmission. The major aim of this study was to determine whether WSSV can be transmitted from naturally infected Dendronereis spp. to specific pathogen-free (SPF) Pacific white shrimp Litopenaeus vannamei (Boone) through feeding. WSSV was detected in naturally infected Dendronereis spp. and Penaeus monodon Fabricius from a traditional shrimp pond, and the positive animals were used in the current experiment. WSSV-infected Dendronereis spp. and P. monodon in a pond had a point prevalence of 90% and 80%, respectively, as measured by PCR. WSSV was detected in the head, gills, blood and mid-body of Dendronereis spp. WSSV from naturally infected Dendronereis spp was transmitted to SPF L. vannamei and subsequently from this shrimp to new naïve-SPF L. vannamei to cause transient infection. Our findings support the contention that Dendronereis spp, upon feeding, can be a source of WSSV infection of shrimp in ponds.
Collapse
Affiliation(s)
- D Haryadi
- Faculty of Fisheries and Marine Sciences, Department of Fisheries, Diponegoro University, Semarang, Indonesia; Aquaculture and Fisheries Group, Wageningen University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
30
|
Li Z, Chen W, Xu L, Li F, Yang F. Identification of the interaction domains of white spot syndrome virus envelope proteins VP28 and VP24. Virus Res 2015; 200:24-9. [PMID: 25637460 DOI: 10.1016/j.virusres.2015.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 11/17/2022]
Abstract
VP28 and VP24 are two major envelope proteins of white spot syndrome virus (WSSV). The direct interaction between VP28 and VP24 has been described in previous studies. In this study, we confirmed this interaction and mapped the interaction domains of VP28 and VP24 by constructing a series of deletion mutants. By co-immunoprecipitation, two VP28-binding domains of VP24 were located at amino acid residues 46-61 and 148-160, while VP24-binding domain of VP28 was located at amino acid residues 31-45. These binding domains were further corroborated by peptide blocking assay, in which synthetic peptides spanning the binding domains were able to inhibit VP28-VP24 interaction, whereas same-size control peptides from non-binging regions did not.
Collapse
Affiliation(s)
- Zaipeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China; School of Life Science, Xiamen University, Xiamen 361005, PR China
| | - Weiyu Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China
| | - Limei Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China.
| | - Feng Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration & Fujian, Third Institute of Oceanography, Xiamen 361005, PR China.
| |
Collapse
|
31
|
Thomas A, Sudheer NS, Viswanathan K, Kiron V, Bright Singh IS, Narayanan RB. Immunogenicity and protective efficacy of a major White Spot Syndrome Virus (WSSV) envelope protein VP24 expressed in Escherichia coli against WSSV. J Invertebr Pathol 2014; 123:17-24. [DOI: 10.1016/j.jip.2014.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/16/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022]
|
32
|
Nguyen AT, Pham CK, Pham HT, Pham HL, Nguyen AH, Dang LT, Huynh HA, Cutting SM, Phan TN. Bacillus subtilisspores expressing the VP28 antigen: a potential oral treatment to protectLitopenaeus vannameiagainst white spot syndrome. FEMS Microbiol Lett 2014; 358:202-8. [DOI: 10.1111/1574-6968.12546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 12/29/2022] Open
Affiliation(s)
- Anh T.V. Nguyen
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| | - Cuong K. Pham
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| | - Huong T.T. Pham
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| | - Hang L. Pham
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| | | | - Lua T. Dang
- Center for Environment and Disease Monitoring in Aquaculture; Research Institute for Aquaculture No.1; Bac Ninh Vietnam
| | - Hong A. Huynh
- School of Biological Sciences; Royal Holloway University of London; Egham UK
| | - Simon M. Cutting
- School of Biological Sciences; Royal Holloway University of London; Egham UK
| | - Tuan-Nghia Phan
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| |
Collapse
|
33
|
Xia X, Yu Y, Weidmann M, Pan Y, Yan S, Wang Y. Rapid detection of shrimp white spot syndrome virus by real time, isothermal recombinase polymerase amplification assay. PLoS One 2014; 9:e104667. [PMID: 25121957 PMCID: PMC4133268 DOI: 10.1371/journal.pone.0104667] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/11/2014] [Indexed: 12/26/2022] Open
Abstract
White spot syndrome virus (WSSV) causes large economic losses to the shrimp aquaculture industry, and thus far there are no efficient therapeutic treatments available against this lethal virus. In this study, we present the development of a novel real time isothermal recombinase polymerase amplification (RPA) assay for WSSV detection on a small ESEQuant Tube Scanner device. The RPA sensitivity, specificity and rapidity were evaluated by using a plasmid standard as well as viral and shrimp genomic DNAs. Compared with qPCR, the RPA assay revealed more satisfactory performance. It reached a detection limit up to 10 molecules in 95% of cases as determined by probit analysis of 8 independent experiments within 6.41 ± 0.17 min at 39 °C. Consequently, this rapid RPA method has great application potential for field use or point of care diagnostics.
Collapse
Affiliation(s)
- Xiaoming Xia
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage & Preservation, Ministry of Agriculture, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongxin Yu
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage & Preservation, Ministry of Agriculture, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Yingjie Pan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage & Preservation, Ministry of Agriculture, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuling Yan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage & Preservation, Ministry of Agriculture, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Institute of Biochemistry and Molecular Cell Biology, University of Göttingen, Göttingen, Germany
| | - Yongjie Wang
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage & Preservation, Ministry of Agriculture, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
34
|
Valdez A, Yepiz-Plascencia G, Ricca E, Olmos J. First Litopenaeus vannamei
WSSV 100% oral vaccination protection using CotC::Vp26 fusion protein displayed on Bacillus subtilis
spores surface. J Appl Microbiol 2014; 117:347-57. [DOI: 10.1111/jam.12550] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/22/2014] [Accepted: 05/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
- A. Valdez
- Molecular Microbiology Laboratory; Centro de Investigación Científica y de Educación Superior de Ensenada; Ensenada México
| | - G. Yepiz-Plascencia
- Laboratorio de Biología Molecular de Organismos Acuáticos; Centro de Investigación en Alimentación y Desarrollo; Hermosillo México
| | - E. Ricca
- Department of Structural and Functional Biology; Federico II University; Naples Italy
| | - J. Olmos
- Molecular Microbiology Laboratory; Centro de Investigación Científica y de Educación Superior de Ensenada; Ensenada México
| |
Collapse
|
35
|
Chaivisuthangkura P, Longyant S, Sithigorngul P. Immunological-based assays for specific detection of shrimp viruses. World J Virol 2014; 3:1-10. [PMID: 24567913 PMCID: PMC3926971 DOI: 10.5501/wjv.v3.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/25/2013] [Accepted: 11/16/2013] [Indexed: 02/05/2023] Open
Abstract
Among shrimp viral pathogens, white spot syndrome virus (WSSV) and yellow head virus (YHV) are the most lethal agents, causing serious problems for both the whiteleg shrimp, Penaeus (Litopenaeus) vannamei, and the black tiger shrimp, Penaeus (Penaeus) monodon. Another important virus that infects P. vannamei is infectious myonecrosis virus (IMNV), which induces the white discoloration of affected muscle. In the cases of taura syndrome virus and Penaeus stylirostris densovirus (PstDNV; formerly known as infectious hypodermal and hematopoietic necrosis virus), their impacts were greatly diminished after the introduction of tolerant stocks of P. vannamei. Less important viruses are Penaeus monodon densovirus (PmDNV; formerly called hepatopancreatic parvovirus), and Penaeus monodon nucleopolyhedrovirus (PemoNPV; previously called monodon baculovirus). For freshwater prawn, Macrobrachium rosenbergii nodavirus and extra small virus are considered important viral pathogens. Monoclonal antibodies (MAbs) specific to the shrimp viruses described above have been generated and used as an alternative tool in various immunoassays such as enzyme-linked immunosorbent assay, dot blotting, Western blotting and immunohistochemistry. Some of these MAbs were further developed into immunochromatographic strip tests for the detection of WSSV, YHV, IMNV and PemoNPV and into a dual strip test for the simultaneous detection of WSSV/YHV. The strip test has the advantages of speed, as the result can be obtained within 15 min, and simplicity, as laboratory equipment and specialized skills are not required. Therefore, strip tests can be used by shrimp farmers for the pond-side monitoring of viral infection.
Collapse
|
36
|
Li Q, Liu QH, Huang J. VP292 of White spot syndrome virus Interacts with VP26. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2014; 24:54-8. [PMID: 24426258 DOI: 10.1007/s13337-012-0111-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Interactions between virus structural proteins are suggested to be crucial for virus assembly. Many steps in the process of white spot syndrome virus (WSSV) assembly and maturation remain unclear. In this paper, we discovered a new interaction of WSSV VP292. Temporal-transcription analysis showed that VP292 is expressed in the late stage of WSSV infection. Western blot and matrix-assisted laser desorption ionization MS assays showed that VP292 interacts with VP26, a major envelope protein. Far-western blot provided further evidence for interaction between VP292 and VP26. These results collectively demonstrated that VP292 anchors to the envelope through interaction with VP26.
Collapse
Affiliation(s)
- Qian Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China ; Shanghai Ocean University, Shanghai, China
| | - Qing-Hui Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| |
Collapse
|
37
|
Ponprateep S, Phiwsaiya K, Tassanakajon A, Rimphanitchayakit V. Interaction between Kazal serine proteinase inhibitor SPIPm2 and viral protein WSV477 reduces the replication of white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:957-964. [PMID: 23867494 DOI: 10.1016/j.fsi.2013.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 06/02/2023]
Abstract
White spot syndrome (WSS) is a viral disease caused by white spot syndrome virus (WSSV) which leads to severe mortality in cultured penaeid shrimp. In response to WSSV infection in Penaeus monodon, a Kazal serine proteinase inhibitor SPIPm2, normally stored in the granules of granular and semi-granular hemocytes is up-regulated and found to deter the viral replication. By using yeast two-hybrid screening, we have identified a viral target protein, namely WSV477. Instead of being a proteinase, the WSV477 was reported to be a Cys2/Cys2-type zinc finger regulatory protein having ATP/GTP-binding activity. In vitro pull down assay confirmed the protein-protein interaction between rSPIPm2 and rWSV477. Confocal laser scanning microscopy demonstrated that the SPIPm2 and WSV477 were co-localized in the cytoplasm of shrimp hemocytes. Using RNA interference, the silencing of WSV477 resulted in down-regulated of viral late gene VP28, the same result obtained with SPIPm2. In this instance, the SPIPm2 does not function as proteinase inhibitor but inhibit the regulatory function of WSV477.
Collapse
Affiliation(s)
- Sirikwan Ponprateep
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
38
|
Mendoza-Cano F, Sánchez-Paz A. Development and validation of a quantitative real-time polymerase chain assay for universal detection of the White Spot Syndrome Virus in marine crustaceans. Virol J 2013; 10:186. [PMID: 23758658 PMCID: PMC3685563 DOI: 10.1186/1743-422x-10-186] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/28/2013] [Indexed: 11/23/2022] Open
Abstract
Background The White Spot Syndrome Virus (WSSV), the sole member of the family Whispoviridae, is the etiological agent that causes severe mortality events in wild and farmed shrimp globally. Given its adverse effects, the WSSV has been included in the list of notifiable diseases of the Office of International Epizootic (OIE) since 1997. To date there are no known therapeutic treatments available against this lethal virus, and a surveillance program in brood-stock and larvae, based on appropriate diagnostic tests, has been strongly recommended. However, some currently used procedures intended for diagnosis of WSSV may be particularly susceptible to generate spurious results harmfully impacting the shrimp farming industry. Methods In this study, a sensitive one-step SYBR green-based real-time PCR (qPCR) for the detection and quantitation of WSSV was developed. The method was tested against several WSSV infected crustacean species and on samples that were previously diagnosed as being positive for WSSV from different geographical locations. Results A universal primer set for targeting the WSSV VP28 gene was designed. This method demonstrated its specificity and sensitivity for detection of WSSV, with detection limits of 12 copies per sample, comparable with the results obtained by other protocols. Furthermore, the primers designed in the present study were shown to exclusively amplify the targeted WSSV VP28 fragment, and successfully detected the virus in different samples regardless of their geographical origin. In addition, the presence of WSSV in several species of crustaceans, including both naturally and experimentally infected, were successfully detected by this method. Conclusion The designed qPCR assay here is highly specific and displayed high sensitivity. Furthermore, this assay is universal as it allows the detection of WSSV from different geographic locations and in several crustacean species that may serve as potential vectors. Clearly, in many low-income import-dependent nations, where the growth of shrimp farming industries has been impressive, there is a demand for cost-effective diagnostic tools. This study may become an alternative molecular tool for a less expensive, rapid and efficient detection of WSSV.
Collapse
Affiliation(s)
- Fernando Mendoza-Cano
- Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Centro de Investigaciones Biológicas del Noroeste S. C.-CIBNOR, Calle Hermosa 101, Col. Los Ángeles, Hermosillo Son C.P. 83106, México
| | | |
Collapse
|
39
|
Li Q, Liu QH, Huang J. F0ATP synthase b-chain of Litopenaeus vannamei involved in white spot syndrome virus infection. Virus Genes 2013; 47:42-8. [PMID: 23558437 DOI: 10.1007/s11262-013-0907-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/18/2013] [Indexed: 01/15/2023]
Abstract
White Spot Syndrome Virus (WSSV) is one of the most common and distrous diseases for shrimp. In this study, we show that the protein VP292 that is a envelop protein of WSVV interacts with F0ATP synthase b-chain from Litopenaeus vannamei using far-western blot, ELISA, and indirect immunofluorescence analysis. Tissue distribution analysis of F0ATP synthase b-chain showed that it's transcription can be detected in muscle, hepatopancreas, intestine, hemocytes, lymphoid, and gills. Cellular localization of F0ATP synthase b-chain in shrimp hemocytes showed that F0ATP synthase b-chain was primarily located in the cytoplasm of hemocytes. The transcription levels of F0ATP synthase b-chain were significantly upregulated in intestine, hepatopancreas, hemocytes, and gills of WSSV-infected shrimp at 12 h after infection. Far-western, ELISA, and indirect immunefluorescence assay indicated that F0ATP synthase b-chain interacted with VP292. In the in vivo neutralization experiment, F0ATP synthase b-chain attained 18% protection rate of the shrimp challenged by WSSV. To the best of our knowledge, this is the first report to show that F0ATP synthase b-chain is involved in WSSV infection.
Collapse
Affiliation(s)
- Qian Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | | | | |
Collapse
|
40
|
Kulkarni A, Rombout JHWM, Singh ISB, Sudheer NS, Vlak JM, Caipang CMA, Brinchmann MF, Kiron V. Truncated VP28 as oral vaccine candidate against WSSV infection in shrimp: an uptake and processing study in the midgut of Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2013; 34:159-166. [PMID: 23108255 DOI: 10.1016/j.fsi.2012.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/19/2012] [Accepted: 10/14/2012] [Indexed: 06/01/2023]
Abstract
Several oral vaccination studies have been undertaken to evoke a better protection against white spot syndrome virus (WSSV), a major shrimp pathogen. Formalin-inactivated virus and WSSV envelope protein VP28 were suggested as candidate vaccine components, but their uptake mechanism upon oral delivery was not elucidated. In this study the fate of these components and of live WSSV, orally intubated to black tiger shrimp (Penaeus monodon) was investigated by immunohistochemistry, employing antibodies specific for VP28 and haemocytes. The midgut has been identified as the most prominent site of WSSV uptake and processing. The truncated recombinant VP28 (rec-VP28), formalin-inactivated virus (IVP) and live WSSV follow an identical uptake route suggested as receptor-mediated endocytosis that starts with adherence of luminal antigens at the apical layers of gut epithelium. Processing of internalized antigens is performed in endo-lysosomal compartments leading to formation of supra-nuclear vacuoles. However, the majority of WSSV-antigens escape these compartments and are transported to the inter-cellular space via transcytosis. Accumulation of the transcytosed antigens in the connective tissue initiates aggregation and degranulation of haemocytes. Finally the antigens exiting the midgut seem to reach the haemolymph. The nearly identical uptake pattern of the different WSSV-antigens suggests that receptors on the apical membrane of shrimp enterocytes recognize rec-VP28 efficiently. Hence the truncated VP28 can be considered suitable for oral vaccination, when the digestion in the foregut can be bypassed.
Collapse
Affiliation(s)
- A Kulkarni
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pradeep B, Rai P, Mohan SA, Shekhar MS, Karunasagar I. Biology, Host Range, Pathogenesis and Diagnosis of White spot syndrome virus. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 23:161-74. [PMID: 23997440 PMCID: PMC3550756 DOI: 10.1007/s13337-012-0079-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/26/2012] [Indexed: 01/31/2023]
Abstract
White spot syndrome virus (WSSV) is the most serious viral pathogen of cultured shrimp. It is a highly virulent virus that can spread quickly and can cause up to 100 % mortality in 3-10 days. WSSV is a large enveloped double stranded DNA virus belonging to genus Whispovirus of the virus family Nimaviridae. It has a wide host range among crustaceans and mainly affects commercially cultivated marine shrimp species. The virus infects all age groups causing large scale mortalities and the foci of infection are tissues of ectodermal and mesodermal origin, such as gills, lymphoid organ and cuticular epithelium. The whole genome sequencing of WSSV from China, Thailand and Taiwan have revealed minor genetic differences among different strains. There are varying reports regarding the factors responsible for WSSV virulence which include the differences in variable number of tandem repeats, the genome size and presence or absence of different proteins. Aim of this review is to give current information on the status, host range, pathogenesis and diagnosis of WSSV infection.
Collapse
Affiliation(s)
- Balakrishnan Pradeep
- />Krishi Vigyan Kendra, Indian Institute of Spices Research, Peruvannamuzhi, Kozhikode, 673528 Kerala India
| | - Praveen Rai
- />Department of Fishery Microbiology, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002 India
| | - Seethappa A. Mohan
- />Department of Fishery Microbiology, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002 India
| | - Mudagandur S. Shekhar
- />Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Indrani Karunasagar
- />Department of Fishery Microbiology, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002 India
| |
Collapse
|
42
|
Production of a polyclonal antibody to the VP26 nucleocapsid protein of white spot syndrome virus (wssv) and its use as a biosensor. Front Chem Sci Eng 2012. [DOI: 10.1007/s11705-012-1289-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Haq MAB, Vignesh R, Srinivasan M. Deep insight into white spot syndrome virus vaccines: A review. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60018-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
44
|
Patil R, Shankar KM, Krupesha Sharma SR, Kulkarni A, Patil P, Naveen Kumar BT, Sahoo AK. Epitope analysis of white spot syndrome virus of Penaeus monodon by in vivo neutralization assay employing a panel of monoclonal antibodies. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1007-1013. [PMID: 21310244 DOI: 10.1016/j.fsi.2011.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 01/16/2011] [Accepted: 01/23/2011] [Indexed: 05/30/2023]
Abstract
A panel of six monoclonal antibodies (MAbs) against the major envelope proteins VP18, VP26 and VP28 of white spot syndrome virus (WSSV) was evaluated for neutralization of the virus in vivo in Penaeus monodon. WSSV stock diluted to 1 x 10⁻⁶ resulting in 100% mortality on 12 day post injection (dpi) was used as optimum infectious dose of virus for challenge. Constant quantity (100 μg/ml) of MAbs C-5, C-14, C-33, C-38, C-56 and C-72 was incubated separately with WSSV (1 x 10⁻⁶ dilution) at 27 °C for 90 min and injected to shrimp. WSSV infection was neutralized by the MAbs C-5, C-14 and C-33 with a relative percent survival (RPS) of 60, 80 and 60 on 12 dpi, respectively compared to 100% mortality in positive control injected with WSSV alone. MAbs C-38, C-56 and C-72 could neutralize WSSV infection with RPS on 12 dpi of 40, 30 and 30, respectively. Shrimp injected with WSSV (1 x 10⁻⁶ dilution) incubated with panel of the MAbs at 100 μg/ml separately were subjected to nested PCR analysis at 0, 8, 12, 24, 36, 48 and 72 hour post injection (hpi) to provide further evidence for neutralization. MAbs C-5, C-14 and C-33 showed delay in WSSV positivity by 24 and 48 hpi by 2nd and 1st step PCR, respectively. MAbs C-38, C-56 and C-72 showed WSSV positivity by 12 and 24 hpi by 2nd and 1st step PCR, respectively. Shrimp injected with WSSV alone showed WSSV positivity by 8 and 12 hpi by 2nd and 1st step PCR, respectively. The study clearly shows that infectivity of WSSV could be delayed by MAbs C-14, C-5 and C-33.
Collapse
Affiliation(s)
- Rajreddy Patil
- Fish Pathology and Biotechnology Laboratory, Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore 575002, India
| | | | | | | | | | | | | |
Collapse
|
45
|
Prevalence of three shrimp viruses in Zhejiang Province in 2008. Virol Sin 2011; 26:67-71. [PMID: 21331893 DOI: 10.1007/s12250-011-3157-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/17/2010] [Indexed: 10/18/2022] Open
Abstract
White spot syndrome virus (WSSV), Taura syndrome virus (TSV) and Infectious hypodermal and haematopoietic necrosis virus (IHHNV) are three shrimp viruses responsible for major pandemics affecting the shrimp farming industry. Shrimps samples were collected from 12 farms in Zhejiang province, China, in 2008 and analyzed by PCR to determine the prevalence of these viruses. From the 12 sampling locations, 8 farms were positive for WSSV, 8 for IHHNV and 6 for both WSSV and IHHNV. An average percentage of 57.4% of shrimp individuals were infected with WSSV, while 49.2% were infected with IHHNV. A high prevalence of co-infection with WSSV and IHHNV among samples was detected from the following samples: Bingjiang (93.3%), liuao (66.7%), Jianshan (46.7%) and Xianxiang (46.7%). No samples exhibited evidence of infection with TSV in collected samples. This study provides comprehensive information of the prevalence of three shrimp viruses in Zhejiang and may be helpful for disease prevention control in this region.
Collapse
|
46
|
Sánchez-Paz A. White spot syndrome virus: an overview on an emergent concern. Vet Res 2010; 41:43. [PMID: 20181325 PMCID: PMC2855118 DOI: 10.1051/vetres/2010015] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 02/24/2010] [Indexed: 12/11/2022] Open
Abstract
Viruses are ubiquitous and extremely abundant in the marine environment. One of such marine viruses, the white spot syndrome virus (WSSV), has emerged globally as one of the most prevalent, widespread and lethal for shrimp populations. However, at present there is no treatment available to interfere with the unrestrained occurrence and spread of the disease. The recent progress in molecular biology techniques has made it possible to obtain information on the factors, mechanisms and strategies used by this virus to infect and replicate in susceptible host cells. Yet, further research is still required to fully understand the basic nature of WSSV, its exact life cycle and mode of infection. This information will expand our knowledge and may contribute to developing effective prophylactic or therapeutic measures. This review provides a state-of-the-art overview of the topic, and emphasizes the current progress and future direction for the development of WSSV control strategies.
Collapse
Affiliation(s)
- Arturo Sánchez-Paz
- Centro de Investigaciones Biologicas del Noroeste, Unidad Hermosillo, Hermosillo, Mexico.
| |
Collapse
|
47
|
Mavichak R, Takano T, Kondo H, Hirono I, Wada S, Hatai K, Inagawa H, Takahashi Y, Yoshimura T, Kiyono H, Yuki Y, Aoki T. The effect of liposome-coated recombinant protein VP28 against white spot syndrome virus in kuruma shrimp, Marsupenaeus japonicus. JOURNAL OF FISH DISEASES 2010; 33:69-74. [PMID: 19735346 DOI: 10.1111/j.1365-2761.2009.01090.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- R Mavichak
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gu WG, Yuan JF, Xu GL, Li LJ, Liu N, Zhang C, Zhang JH, Shi ZL. Production and characterization of monoclonal antibodies of shrimp White spot syndrome virus envelope protein VP28. Virol Sin 2009. [DOI: 10.1007/s12250-007-0057-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Syed Musthaq S, Madhan S, Sahul Hameed A, Kwang J. Localization of VP28 on the baculovirus envelope and its immunogenicity against white spot syndrome virus in Penaeus monodon. Virology 2009; 391:315-24. [DOI: 10.1016/j.virol.2009.06.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/24/2009] [Accepted: 06/03/2009] [Indexed: 11/30/2022]
|
50
|
Promoter motifs essential to the differential transcription of structural and non-structural genes of the white spot syndrome virus. Virus Genes 2009; 39:223-33. [DOI: 10.1007/s11262-009-0380-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
|